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Abstract—This paper shows that the successively evaluated features used in a sliding window detection process to decide about

object presence/absence also contain knowledge about object deformation. We exploit these detection features to estimate the object

deformation. Estimated deformation is then immediately applied to not yet evaluated features to align them with the observed image

data. In our approach, the alignment estimators are jointly learned with the detector. The joint process allows for the learning of each

detection stage from less deformed training samples than in the previous stage. For the alignment estimation we propose regressors

that approximate non-linear regression functions and compute the alignment parameters extremely fast.

Index Terms—Non-rigid object detection, alignment, regression, exploiting features, real-time, waldboost, sliding window, sequential decision

process

Ç

1 INTRODUCTION

DETECTION of objects with appearance altered by pose
variations (including non-rigid deformations and

viewpoint changes) is more difficult than the detection of
objects in a single pose [1], [2]. If the detection time is con-
strained, exhaustive search over the space of possible poses
with a single pose detector is intractable.

An ample amount of work has been devoted to the detec-
tion of objects deformed by pose variations. Many
approaches partition the positive training samples into clus-
ters with similar poses, see Fig. 1b. Some of them [3], [4] first
estimate the pose cluster and then use pose-specific classi-
fier to decide about the object presence. Others [5], [6] esti-
mate pose cluster simultaneously with the detection
process. A fine partitioning of the pose space is desirable to
achieve good detection performance. However, the finer the
partitioning, the fewer training samples fall into each cluster
and therefore immense training sets are often needed [5]. In
contrast to these approaches, recent work [1] uses simple
pose estimators which align some detection features. These
pose estimators help to detect objects in an arbitrary pose
without training set partitioning.

Our feature alignment remedies the partitioning of the
training set. In contrast to [1] which finds simple local
deformations (e.g., inplane rotations) and aligns each fea-
ture independently, we rather estimate a global non-rigid
alignment of all the features. Importantly, the alignment is
estimated solely from the features used for detection by
pre-trained regressors. The alignment estimation is
reduced to reading a value from a look-up table which
costs negligible time. On the other hand, our approach

requires annotated data for learning. Nevertheless, the
use of our method does not prevent the use of [1], thus
the frameworks are complementary.

In our system the features are evaluated sequentially;
each one reveals a certain amount of object deformation, see
Fig. 2. Features are successively aligned to the observed defor-
mation which makes the positive class less scattered and
easier to detect, see Fig. 1c. The training set is not parti-
tioned and the number of necessary training samples
remains relatively low, even for large deformations.

We demonstrate the sequential alignment idea on a
Sequential Decision Process (SDP) similar to Waldboost
[7], where the successive nature of feature evaluation
allows for efficient application of the estimated align-
ment. In the SDP a classifier cumulatively estimates a
confidence about the object presence or absence in a given
detection window. Once the confidence is sufficiently
low, the window is rejected. We extend the SDP by
exploiting the same features that were used for the confi-
dence computation to estimate the alignment. The align-
ment is then applied on the subsequent features and the
process continues with more appropriately aligned fea-
tures. In consequence, both the confidence and the align-
ment are estimated more efficiently as it is then easier to
distinguish the well aligned positive samples from the
background and to estimate the alignment from a closer
neighbourhood. The process continues until the rejection
or acceptance is reached as in the classical SDP. Note that
the confidence and alignment updates are encoded by
the same feature values, therefore in comparison with the
classical SDP the computational complexity of SDP with
alignment is almost preserved. We call the proposed
scheme Sequential Decision Process with Locally Inter-
leaved Sequential Alignment (SDP with LISA).

The contribution of this paper is threefold: (i) we show
that features evaluated in the sliding window detection pro-
cess also contain knowledge about the correct alignment of
the evaluated window on the observed object deformation;
(ii) we propose very efficient piecewise linear regression
functions which are jointly learned with the classifier. This
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facilitates estimating the alignment during the detection
process; and (iii) we show that the estimated alignment
speeds up the detection process by reducing the search
space and improves the detection rates.

2 RELATED WORK

Great progress has been made in the detection of objects
under varying poses and deformations [1], [8], [9], [10].
The predominant strategy is to combine a collection of
classifiers, each dedicated to a single pose or deformation
[2], [11], [12], [13], [14], [15]. To train multiple classifiers,
either the training data need to be separated into disjoint
clusters [5], [12], or the features in training samples need
to be registered to lie in correspondence [1], [13], or both
strategies are combined [2].

The clustering of training data imposes the need to col-
lect large amounts of data for learning each classifier sep-
arately. Some authors try to reduce the amount of
training data by sharing some features across multiple

views [11], [12]. To avoid the clustering of training data,
some methods [12], [13], [14], [15] align the object features
in each training sample (before or during the training pro-
cess) to lie in correspondence. This task usually requires a
precise labelling of object features correspondence.

Other methods avoid the necessary labelling and try to
align the features automatically [1], [2] before their evalua-
tion. Usually, the feature positions and low level deforma-
tions are estimated first, e.g., by computing the dominant
edge orientation in some part of the detection window and
using pose-indexed features [1], [13]. The automatic feature
alignment keeps the training set less scattered, and
improves the detection rates but lacks interpretation. We
model the alignment for a specific class of objects, and as a
side product of the detection we obtain a parametrized
alignment of the whole model.

2.1 Detection of Deformable Objects

Recently, Ali et al. [1] proposed to use pose indexed fea-
tures coupled with dominant edge orientation estimation,

Fig. 1. Simplified sketches of positive (red circles) and negative (blue crosses) samples in 2D feature space. (a) Objects in a single pose exhibit
smaller scatter than objects deformed by pose variations, (b) scattered samples are often partitioned into pose clusters with a small number of train-
ing samples, and (c) our approach aligns features during the detection to compensate for object deformation consequently making positive samples
less scattered.

Fig. 2. Local Interleaved Sequential Alignment. Left: The first feature always has the same position. The deformation of the local coordinate system is
outlined by the blue mesh. Features evaluated during the detection process contribute to both (i) confidence and (ii) non-rigid deformation. The sec-
ond column shows how features are aligned after 30 evaluated features. A non-aligned feature position is delineated by the red rectangle; the aligned
feature is green. The last column shows alignment of the last evaluated feature.
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in different scales and positions in the detection window,
for feature alignment. By the feature alignment, they
forgo the need to train a collection of detectors for differ-
ent object poses and learn a single deformable detector.
The dominant edge orientation is partitioned into eight
bins in 14 poses (one pose in the largest scale, four in
smaller scale and nine in the smallest scale) and needs to
be computed for every candidate position in order to esti-
mate the features poses. For alignment estimation they
need to evaluate additional 8 � 14 ¼ 112 features apart
from the detection features which is considerably more
than the average number of features needed for classifica-
tion in our system. We interleave object detection and
alignment by regression. The detector runs on increas-
ingly better aligned features, which consequently groups
together the training samples in the feature space, as
shown in Fig. 1c. Thanks to the design of regression func-
tions and the re-use of detection features, a negligible
number of additional computations are needed (reading
the alignment parameters from a look-up table and mov-
ing the features) and the computational complexity
grows with the dimension of the alignment space only
very gently. The approach of [1] does not require the
training data labelling while our method does. However,
our method allows having the pose space not discretized.

In general, SDP with LISA outperforms the standard
SDP’s [7], [16], [17], [18], [19], [20] in both the speed and
detection performance. In [2] the authors argue that the slid-
ing window-based object detectors work best when trained
on examples that come from a single coherent group with
well aligned features, e.g., frontal faces. Our improvement
in performance is caused by the ability to locally align on
the displaced, rotated, and deformed object instances. The
gain in speed is obtained by the search space reduction.
From the point of view of 2D translation search space reduc-
tion (sparser detection grid) has already been shown for a
cascade of classifiers in [21] and for SDP in [22]. Here we
show that we can effectively reduce a high dimensional
search space of non-rigid deformation.

Recent deformable part-based object detectors [12],
[13], [23] achieve excellent detection rates, but are far
from the real-time performance. The computational com-
plexity of part-based object detectors is given governed
by the detection of model parts and by the estimation of
globally optimal parts configuration. Model parts are
usually detected by an SVM-based [12], [23] or AdaBoost
[13] classifier. The root-part of the object is detected first
[13], [23], which allows reducing the search space for the
remaining parts. After estimating the candidate positions
of the parts, the globally optimal configuration of the
model parts (or for multiple models for multiple views
[12]) is found by using the dynamic programming. Our
method may be compared from the computational com-
plexity point of view with [8]. Their classifier is an SVM
working with HoG features which similar to [12] for one-
view model as well as for the root part of the part-based
model in [23]. In [8] N denotes the number of possible
locations in multiple scales and V the number of evalu-
ated features in each subwindow. For an SVM-based
detector, VN multiplications are needed. Since the SDP
with LISA may learn to compensate 2D translation [22],

the number of poses N may be significantly reduced to
M and we may run the SDP with LISA on a sparser
detection grid. Here we compensate non-rigid deforma-
tion of high dimensionality and M � N . Our method
requires 4VMadditions in the worst case (all features
being evaluated without the early rejection), where 4 is
the number of additions needed to transform each
evaluated feature according to estimated alignment (see
Section 6 for details). For performance comparison with
[12], [23] and the running times of different methods see
Section 8.

The patchwork of parts [24] builds a statistical model
for detection of objects with multiple parts. The detection
process loops through the image locations (positions and
scales) and evaluating the classifier for every part (class)
in every location. Model deformations are modelled as
shifts of object parts which are than recombined using a
patchwork operation. The algorithm is able to classify
100 subwindows per second which is not fast enough a
real-time performance.

2.2 Search Space Reduction

A speeding-up of the original part based model [23] was
addressed in [25]. The authors argue that the cost of detec-
tion is dominated by the cost of matching each part of the
model to the image and not by the cost of computing the
optimal configuration of parts. They propose to learn a
multi-resolution hierarchical part based model. The parts
are tested sequentially and image locations are discarded
as soon as a partial detection score falls under some
threshold. The resulting algorithm achieves almost the
same detection accuracy as the original algorithm and
runs twice as fast.

The search space reduction for detection speed-up has
been approached also in Efficient Subwindow Search (ESS)
[26]. ESS is reducing the search space by a branch and
bound algorithm. It defines multiple sets of rectangles
(sets of candidate windows) in the image. After evaluation
of all the features in the image the algorithm computes the
upper bound (highest possible detection score) that the
score function could take on any of the rectangles in each
set. The authors propose an efficient scheme for going
hierarchically through all the possible rectangles (scales
and translations) without the need to exhaustively evalu-
ate the detection score for all possible rectangles. Many
rectangle sets are rejected as soon as the upper bound is
under some acceptance threshold. The disadvantage is the
need for evaluating all the features in the image first. This
is well applicable for the approaches which use a bag of
features or some shared low level features, usually for
multiview and part-based object detection [12], [14]. After
the features evaluation, the detectors need to evaluate a
non-trivial score function (usually SVM-based classifiers)
of all the features which fall into each particular rectangle,
and here ESS brings significant speed-up [14]. A sliding
window-based SDP does not need to evaluate all the fea-
tures in all the positions and scales thanks to the early
rejection stages. Here, ESS would actually slow down the
process by the necessary evaluation of all features first.
Also, in the SDP the rejection thresholds are already
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known in advance for each stage and no other bounds
need to be computed. From the search space reduction
point of view, ESS reduces the number of candidate win-
dow translations as well as scales, but does not take into
account other object deformations.

The recently proposed Crosstalk Cascades [27] assume
that adjacent subwindows responses at nearby locations
and scales are correlated. As soon as the classification
score for some location reaches some threshold, all points
in the detection grid in the close neighbourhood start to be
evaluated as well (excitatory cascades). When the ratio of
score in the current position and in at least one position in
the close neighbourhood goes under some stage specific
threshold the evaluation of remaining stages in actual
position stops (inhibitory cascades). Training the classifier
needs perturbing each training sample by small 2D shifts
to ensure the correlation of classifier answers at nearby
positions. This perturbing corrupts the performance of the
cascaded detector. We approach the problem from an
opposite direction. We are aligning the detection window
to a pose at which it fits the object better. It does not
require corrupting the training samples by adding shifts to
positive samples. The detection of well aligned samples is
easier and needs to evaluate fewer features to reach the
decision. From the point of view of search space reduction,
the Crosstalk Cascades reduce the 2D sliding window
translation and scale as well as [26]. Nevertheless, they still
need to look at every position in the detection grid but the
number of evaluated features is reduced. Our method
yields the detection grid reduction because our detector is
able to move and deform.

2.3 Non-Rigid Alignment Estimation

We mention only few of the most relevant papers in this
area, since our method focuses more on improvement of
object detection, than on precise alignment estimation.

State of the art methods specialized in alignment of
deformable models are now able to cope with quite large
object deformations [28], [29], [30]. In [28] authors train a
cascade of regressors for non-rigid face deformation esti-
mation. Every regressor in the cascade is a Fern. Each
Fern separates the training set into subsets (one for each
leaf), where within one subset there are samples with a
similar type of deformation. Therefore each Fern basi-
cally divides the space of possible deformations. This
makes the alignment task easier for regressors trained on
subsets in each leaf and allows coping with larger defor-
mations. On the other hand, it is necessary to cluster the
training data to learn the regressors. In comparison, our
method does not need to cluster the training data for
learning. We transform only the features which is faster
than inversely transforming the whole image patch as
in [28].

In the Boosted Appearance Model (BAM) [30] the
authors propose to train a classifier which recognizes
well aligned deformable model from those not well
aligned. The classifier is then used in a criterial function
which includes a parametrized shape of the object. The
goal is to find the shape parameters that maximize the
score of the learned strong classifier. The problem is

solved iteratively by gradient ascent optimization. The
follow-up to BAM is Boosted Ranking Model [29] (BRM).
In BRM given two image patches a classifier is trained to
recognize the better aligned image patch from the worse
aligned. The shape in both BAM and BRM is a set of 2D
points and the displacement of each of the points is
parametrized by a 2D vector. The number of parameters
is reduced by projection to a low dimensional space via
PCA similarly to our approach. In comparison, we model
the shape deformation by deforming the whole grid
which covers the object patch. This allows us to efficiently
transform the features instead of inversely transforming
the whole image patch. We obtain a transformation for
every pixel in the grid and not only for the control points
of the shape as in [28], [29].

A Sequence of Learnable Linear Predictors for learning
a fixed sequence of linear predictors (weak regressors)
that estimate the object alignment was proposed in [31].
Each predictor in the sequence is learned on the estimation
error of the previous predictor. A similar idea was later
proposed in [32], only they use Ferns instead of linear pre-
dictors as the weak regressors. Our work uses weak
regressors proposed in [22]. Instead of using simple linear
functions we propose a non-linear regression and approxi-
mate it by piecewise linear (or piecewise constant) func-
tions which improves the alignment and keeps the fast
performance of linear predictors.

3 SDP WITH LISA CLASSIFICATION

We divide the classification process into K stages. In
each stage k, only one feature is evaluated. The value of
this feature contributes to the confidence and the align-
ment. Contributions are determined by (i) a detection
function dk : IR! IR, which maps the feature value to a
contribution to the confidence, and (ii) a regression func-
tion rk : IR! IRm, which assigns an m-dimensional con-
tribution to the alignment vector a using the same
feature value. Both the confidence and the alignment are
accumulated from evaluated features. Then there is a
threshold uk 2 IR (estimated during the learning), which
allows to reject windows with the so far accumulated
confidence lower than uk. In each stage, the feature can
potentially be aligned. This is determined by a binary
value qk, which is estimated by boosting during the train-
ing stage. If qk is TRUE, this will invoke aligning of the
feature, while qk ¼ FALSE means that the non-aligned fea-
ture will be used.

The alignment estimated from a single feature may be
inaccurate, therefore it must be accumulated over multi-
ple features. We keep the last valid alignment, denoted
as av, where index v corresponds to the stage at which
the alignment was estimated. Besides that, we also accu-
mulate alignment updates from all evaluated features.
This alignment is updated in each stage k and we denote
it by ak. Hence, there are two alignments: (i) accumu-
lated up to stage k denoted by ak and (ii) valid, which is
applied on features, denoted by av. The stage at which
the index v is updated is determined by a binary value
zk ¼ TRUE; zk is again estimated by boosting during the
training stage).
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We define a feature function fk : ðI � IRmÞ ! IR as a
mapping which assigns a feature value to a window with
image data I 2 I and m-dimensional alignment vector
a 2 IRm. For the sake of simplicity, we refer to the feature
function as the feature and to image data in the sliding
window as the window. Based on the above introduced
notation, we define the strong classifier as a collection:

H ¼ ½f1; q1; d1; u1; r1; z1; . . . ; fK; qK; dK; uK � : (1)

The classification Algorithm (Fig. 4) summarizes how
the SDP with LISA decides about object presence or
absence in a given window I with the given strong classi-
fier H. See also Fig. 3 for illustration. In the algorithm, we
denote ck as the confidence and ak as the alignment, both
accumulated up to stage k.

4 JOINT LEARNING OF SDP WITH LISA

The expected output from learning is the strong classifier H,
Eq. (1), inputs are training and validation sets. At the begin-
ning of each training stage, the training set with the follow-
ing structure is available:

T ¼ fðI1; t1; y1Þ; . . . ; ðIp; tp; ypÞ;
ðIpþ1; ypþ1Þ; . . . ; ðIN; yNÞg;

(2)

where I1; . . . ; Ip are positive image data, Ipþ1; . . . ; IN are
negative image data, y1 . . . yN are labels such that
y1 ¼ � � � ¼ yp ¼ 1; ypþ1 ¼ � � � ¼ yN ¼ �1 and t1 . . . tp are cor-
rect alignments of positive data. The validation set V and
the testing setW1 have the same structure.

The learning algorithm uses the following notation: ½½C��
is a binary function equal to 1 if a statement C is TRUE and
0 otherwise, and ½� J� is concatenation of � and J. We
introduce the error of the strong classifier H on validation
data V denoted as EðH;VÞ ¼

P
i½½HðIiÞ 6¼ yi��; 8ðIi; yiÞ 2 V.

For the sake of completeness we define: Eð;;VÞ ¼ 1. To
simplify the notation, we also denote a weak classifier wck
to be the following foursome wck ¼ ½fk qk dk uk�.

The joint learning of SDP and LISA, see Fig. 5, succes-
sively builds a strong classifier H. The current stage is
denoted by the lower index k, the training samples are
indexed by the upper index i. Since we allow the align-
ment to be accumulated over multiple stages without
direct application on features, we also keep the index v

of the last valid alignment.
The algorithm (Fig. 5) first constructs two weak classi-

fiers: bwck, that use features either aligned by ak�1 or not
aligned at all, and wck, that use features either aligned by
av or not aligned at all (lines 4-5). Then the validation
errors of ½Hk wck� (strong classifier Hk concatenated with
wck) and ½Hk bwck� (strong classifier Hk concatenated with
bwck) are compared, and the one with the lower error is
selected and denoted as Hk (lines: 6-11). If the alignment

Fig. 4. Classification algorithm. Classification of a single window by SDP
with LISA.

Fig. 3. Classification. Three steps of SDP with LISA are depicted. Left: In the initial position, only feature 1 is evaluated. From its value the first align-
ment a1 and confidence c1 are computed. Middle: the alignment a1 is applied on features 2 and 3. Note that the applied alignment a2 is updated by
contribution of two regressors, not just one. Also note that the alignment a1 was not applied on feature 4. Right: the last feature is moved from its ini-
tial position by the accumulated alignment a2.

1. Sets T and V are used during the learning phase and testing setW
is used for experimental evaluation.
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ak�1 is used (i.e., bwck is used and bqk ¼ TRUE), then v is set
to k� 1, which makes ak�1 to be the valid alignment
from now on. After that, we jointly re-learn regression
functions rvþ1 . . . rk to estimate the alignment from fea-
tures fvþ1 . . . fk, i.e., those features which have not yet
been used for the alignment (lines 12-13). Please note,
that in case where the alignment ak�1 is used, the re-
learning reduces on the learning of the new regression
function rk, which will be used in the following stages.

Eventually, training weights are updated in line 14
and training data T are updated (line 15) by the new
negative samples. Negative samples are collected as the
false positive detections of the current strong classifier
Hk. The algorithm continues until the validation error
starts to increase.

The paper continues as follows: Learning of weak clas-
sifiers and alignment regressors for the group of features
is described in Section 5. The non-rigid deformation
model is summarized in Section 6. Implementation details
are explained in Section 7.

5 LEARNING OF WEAK CLASSIFIERS AND

ALIGNMENT REGRESSORS

5.1 Learning of Weak Classifiers

In our approach, the weak classifier dk is a piecewise con-
stant function of feature fk 2 F dividing feature values
into U bins with sizes proportional to the training data
density.2 To simplify the notation, we define a bin assign-
ing function dj : IR! IN which assigns corresponding bin
u to feature value v ¼ fjðIi; aivÞ for the ith training sample
and jth feature. Given training samples weights wi,
the constant response kku of dk in bin u is computed as
follows:

kku ¼ arg min
k

X

i2Iu
wiðk� yiÞ2 ¼

P
i2Iu w

iyi
P

i2Iu w
i
; (3)

where Iu ¼ fi j dðfjðIi; aivÞÞ ¼ ug is the set of training sam-
ples indexes, which fell to bin u.

In the weak classifier estimation the same procedure is
performed for each bin and each feature from the feature
pool. Finally, we use the feature (and corresponding classi-
fier dk) which yields the lowest weighted error. Such
approach is coincident with Gentleboost technique [33].
Rejection thresholds uk and buk are set in order to preserve
the required maximum number of false negatives (FN) per
learning stage. The FN limit is defined by the user to achieve
the required running time similarly to [20].

5.2 Learning of Regressors

As already noted in Section 3, the use of a regressor,
learned on a single feature, may inaccurately align some
positive samples and cause the lower detection rate. Dur-
ing the learning we do not immediately apply the esti-
mated alignment on the feature, but we wait for the right
number of features, for which jointly learned regressors
yield better alignment and consequently lower the valida-
tion error of the detector.

In the learning algorithm (Fig. 5, line 12), regressors
rvþ1; . . . ; rk are jointly learned to compensate the residual
alignment error Dti ¼ ðti � aivÞ of preceding regressors
r1; . . . ; rv. ti is the vector of ground truth parameters of
alignment. We search for regressors rvþ1; . . . ; rk which are
the solution of the following problem:

arg min
~rvþ1...~rk

Xp

i¼1

Xk

j¼vþ1

~rj
�
fj
�
Ii; aiv

��
 !

� Dti

�
�
�
�
�

�
�
�
�
�

2

F

: (4)

For simplicity we explain only one dimensional align-
ment estimation, i.e., with Dti being only a scalar for each
sample instead of a vector. The higher dimensional align-
ment is learned for each dimension independently, there-
fore the following equations are valid for multiple
alignment parameters estimated by each regressor. To
solve the problem (4) we propose to learn a piecewise
affine function by the least squares method. The feature

Fig. 5. Learning of SDP with LISA.

2. Except the size of border bins which are ½�1; min value� and
½max value;þ1�:
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space is divided into U bins, where each bin gives an affine
response, see green lines in Fig. 6.

The response of a regression function rðvÞ is then com-
puted as follows:

rðvÞ ¼ gj;dðvÞvþ �j;dðvÞ; (5)

where gj;dðvÞ and �j;dðvÞ are scalar coefficients. We considered
(i) full affine function with gj;dðvÞ 2 IR; �j;dðvÞ 2 IR, (ii) linear
function gj;dðvÞ 2 IR; �j;dðvÞ ¼ 0 and (iii) constant function
with gj;dðvÞ ¼ 0; �j;dðvÞ 2 IR. Since we experimentally verified
that all three functions yield similar results for a sufficient
number of bins (see experimental evaluation in Section
8.4), we used the piecewise constant function to speed up
the alignment estimation process. Therefore problem (4) is
reduced to search for coefficients ½�vþ1;1 � � ��k;U �. We substi-
tute Equation (5) with gj;dðvÞ ¼ 0 into problem (4) to obtain
the corresponding least squares problem:

arg min
~�h;u2 IR

Xp

i¼1

Xk

j¼vþ1

~�j;dðfjðIi;aivÞÞ � Dti

�
�
�
�
�

�
�
�
�
�

2

: (6)

To write the solution of (6) in a compact form, we further
introduce a binary matrix

½AA�i;ðjuÞ ¼
1; if d

�
fj
�
Ii; aiv

��
¼ u

0; otherwise;

�

(7)

where index i determines the row and indexes ðjuÞ3 deter-
mine the column. We also introduce vector
~� ¼ ½~�vþ1;1 . . . ~�k;U �>, which is concatenation of all
unknown lambdas from all bins and all features. Finally,
we form the vector Dg ¼ ½Dt1 . . . Dtp�> with all the residual
alignments. The solution of problem (6) is then

� ¼ argmin
~�

kAA~�� Dgk2 ¼ AAþDg; (8)

where AAþ denotes Moore-Penrose pseudo-inverse [34] of
matrix AA.

Two types of feature space partitionings were tested: (i)
non-proportional partitioning, which divides the space
into bins of equal sizes and (ii) proportional partitioning,
which divides the space into bins of sizes inverse propor-
tional to the training data density, where each bin con-
tains the same number of training samples. See Fig. 6 for
example of partitioning into seven bins with all three
tested functions fit into the training data of one feature.

6 NON-RIGID DEFORMATION MODEL

We work with two types of alignments. The first is a simple
two dimensional displacement and the second is a non-
rigid deformation parametrized via PCA [35]. We define
the feature as function P : ðI � IR4 � INÞ ! IR, the value of
which is computed from image I 2 I on the position speci-
fied by its left-upper corner a 2 IR2 and right-bottom cor-
ner b 2 IR2 with type g 2 IN. We experimented with HoG
features [27] (where g denotes orientation of edges) and
Haar features [36] (where g stands for the feature type).

The alignment encoding the two dimensional displace-
ment is given by two dimensional vector a ¼ ðDx; DyÞT .
Then, feature function fðI; aÞ of the feature P ða;b; gÞ
aligned by the two dimensional displacement a is

fðI; aÞ ¼ P ðI;aþ a;bþ a; gÞ: (9)

The non-rigid alignment deforms the position of every
corner point a (resp. b) by m-dimensional vector a ¼
½a1 . . . am�T as follows:

aðaÞ ¼ aþ a1w
1
a þ � � � þ amwm

a ; (10)

where w1
a . . . wm

a are 2D Eigenvectors corresponding to
deformations modelled in point a. Eigenvectors of the
non-rigid deformation are obtained by PCA. Training of

Fig. 6. Examples of tested piecewise linear regression functions. The density of the training data for one feature (depicted as grayscale heatmap)
with fitted regression functions. The left image corresponds to non-proportional partitioning and the right image to the proportional partitioning of
the feature space. Green is a piecewise affine function (i), yellow corresponds to a piecewise linear function (ii) and red is a piecewise constant
function (iii).

3. ðjuÞ denotes a linear combination of indexes j and u.
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PCA is detailed in the next paragraph. Feature function
fðI; aÞ of the feature P ða;b; gÞ aligned by the non-rigid
deformation a is

fðI; aÞ ¼ P ðI;aðaÞ;bðaÞ; gÞ: (11)

To train the PCA, we use the position of a few manu-
ally selected keypoints in each bounding box from the
training set, see the red points in Fig. 7. Given these key-
points, we compute the elastic transformation by thin
plate splines transformation [37] of an orthogonal pixel
grid within the bounding box for each training sample,
see blue grids in Fig. 7. The elastic transformation assigns
a two-dimensional displacement vector to each pixel from
the orthogonal grid in each bounding box. Finally, we
concatenate these displacements for each training sample
into one column vector and project them into the lower
dimensional space by PCA.

The alignment may be applied either by deforming the
features and placing them in the right position in the image
or by inversely deforming the image. The latter would
require the image deformation after each applied align-
ment update. Unfortunately, this is unthinkable for the
real-time performance of the detector as we would need to
transform the image (or part of it) multiple times for each
candidate window. Hence we transform the features.

We need to keep the features in a rectangular shape to
take advantage of the fast evaluation on integral images.
Therefore the deformation of each feature is only approx-
imated by anisotropic scaling, see Fig. 2 for example. The
non-rigid transformation is applied on the upper left and
lower right corner of each feature. This gives us the cor-
rect positions of both corners for each feature and deter-
mines the new width and height of each feature, see

Fig. 2. This feature transformation costs eight additions
per feature and is very efficient. This type of feature
transformation is used in the learning as well as in the
detection process.

7 IMPLEMENTATION DETAILS

Both the weak classifier dk and the weak regressor rk in
stage k are implemented as a single lookup table (see
Table 1 for an example); both confidence and alignment
updates are read by a single look-up. The only additional
cost during the classification for the alignment is its appli-
cation to the features positions. For a rigid alignment by
translation, application of the alignment means only two
scalar additions per evaluated stage since both corners
move identically and the feature’s height and width are
precomputed. In non-rigid deformations, we precompute
an alignment lookup table, where each alignment vector
a ¼ ½a1 . . . am� is assigned with both position corners ai; bi
for all features fi, see Table 2. To speed-up the m-dimen-
sional indexing, we compute a 1-dimensional index from
a1 . . . am by bit-shifting. As a consequence, application of
the non-rigid alignment costs four additions plus one
access to the lookup table per stage. The size of the lookup
table is reasonable. We usually use m ¼ 3 and feature cor-
ners positions are integer values, that can be encoded by
one byte. Denoting: D to be the number of discrete values
of aj and F to be the total number of features, the size of
the alignment lookup table is 4FDm (e.g., for D ¼ 100,
m ¼ 3 and F ¼ 300, the size is 1:2 GB).

8 EXPERIMENTS

The results of the experiments demonstrate the importance
of (non-rigid and rigid) LISA for SDP. Sections 8.1 and 8.2
describes experiments with non-rigid LISA on Annotated
Faces in the Wild data set (AFW [38]) and Car Semi-profile
View data set (CSV). Our negative data consist mostly of

Fig. 7. Example data from the LFW and CSV data sets. The red crosses are ground truth labels. Yellow crosses depict the mean of labelled positions
for each data set and the blue points are the deformed grid. The deformed grid is obtained by thin plate splines non-rigid deformation using the corre-
spondences between the yellow and red points.

TABLE 1
A Part of a Lookup Table Encoding the Confidence and 2D

Translation Updates for One Feature in Stage k

Bin sizes and values of the first regression column correspond to the
function shown in red in the right image in Fig. 6.

TABLE 2
A Part of a Lookup Table Encoding Corner Positions

of Particular Features for All Possible Alignments
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Google street-view images without cars and faces in total
amount of 15Gpxl. Experiments with rigid LISA are detailed
in [22]. Section 8.4 evaluates performance of different
regression functions.

We apply our feature alignment method on SDP similar
to Waldboost [7]. We refer to our method applied on SDP
as SDP+LISA, reimplementation of the alignment method
proposed by Ali et al. [1] applied on SDP is referred to as
SDP+Ali [1]. Besides that we also evaluate SDP+LISA+Ali
[1]. This method allows to combine non-aligned features
with features aligned by either the Ali [1] method, LISA
method, or by both methods simultaneously. The align-
ment method of each particular feature is determined by
boosting during the training stage. In addition to that, we
also show baseline given by pre-trained, publicly available
models: (i) deformable part based models (DPM) [15] on a
CSV and AFW data set and (ii) Zhu and Ramanan’s [12]
face detector on AFW data set. In Section 8.4 we also com-
pare the precision of our alignment to the one of Zhu [12].
Section 8.5 discusses advantages, drawbacks, and limita-
tions of the proposed method.

Ground truth annotations contain positions of several
manually annotated keypoints. AFW has seven keypoints
and CSV has only three keypoints (upper left, lower right
for bounding box and one vertical edge point), see Fig. 7.
All experiments are conducted with HoG features. Detec-
tion rates are summarized in Fig. 8. Section 8.3 justifies the
choice of HoG over Haar features by comparing detection
rates on CSV data set.

In all experiments where sequential decision process
is involved, detected windows are filtered by Non Max-
ima Suppression (NMS). NMS is set to suppress all
detections which have mutual coverage (union of bound-
ing boxes divided by their intersection) bigger than 0:6.
Criterion for correct detection is that the detected bound-
ing box and ground truth bounding box have mutual
coverage bigger than 0:3.

8.1 AFW Data Set Results

The AFW data set is a publicly available data set of face
images obtained by random sampling of Flicker images.
We use ground truth data which specify positions of 7
manually chosen keypoints (two for each eye, one for the
nose and two for the mouth corners). Note that a consider-
able amount of publicly available annotations have very

low accuracy of keypoint positions (errors corresponding
to 15 percent of the face size are not an exception). Even
though such annotations make it difficult to train any
accurate regression function (especially in L2-norm), we
use them directly. Since our approach does not contain
any decision tree, which could split frontal and profile
images, we focused only on frontal images captured
within the range of approximately �45 degrees (in-plane
and out-of-plane rotations).

Fig. 10 shows ROC curves of SDP, SDP+LISA, SDP+Ali
[1], SDP+LISA+Ali [1] trained on the first part of the AFW
data set. We can see that LISA outperforms Ali’s [1]
method. However, Ali’s [1] method still yields significant
improvement with respect to the pure SDP. It is also
worth emphasizing that the SDP+Ali [1] method only
needs annotated bounding boxes, while SDP+LISA also
needs annotated keypoints to learn the regressors estimat-
ing non-rigid deformation. We can also see that the
SDP+LISA+Ali [1] method, which combines features
aligned by Ali [1] and LISA methods, has almost the same
results as the SDP+LISA method. For comparative pur-
poses the results of publicly available pre-trained models
of Zhu and Ramanan’s [12] detector and Felzenszwalb’s
DPM detector [15] are shown. We do not retrain their

Fig. 8. Experiment summary. Comparison of FN rates for fixed number of FP per 1 Mpxl equal to 10�2. Results corresponds to ROC curves in
Figs. 10 and 12.

Fig. 9. Running time. Comparison of running time on Intel core i7 Q700, 1.7 GHz. Methods SDP+LISA, SDP+Ali [1], Zhu [12] run on single core, DPM
[15] uses 4 cores. We used publicly available MATLAB/MEX implementation of DPM [15] and Zhu [12], while SDP+LISA and SDP+Ali [1] is mea-
sured on our C++ implementation with image resolution known in advance and the nearest neighbour image rescaling (ROC curves correspond to
the linear interpolation when rescaling images). Time reported in [1] for AdaBoost+Ali is 30 ms for 120� 190 images and probably only one scale.
Nevertheless, we reimplemented their feature alignment method and use it in our SDP, which is significantly faster than the AdaBoost used in [1]
due to early rejections.

Fig. 10. AFW-AFW ROC curves. Comparison of different methods on
the AFW data set. SDP, SDP+LISA, SDP+Ali [1], SDP+LISA+Ali [1]
trained on the first part of AFW. All methods were tested on the second
part of AFW (images were captured by random sampling of Flicker
images, therefore training and testing sets are independent). False posi-
tives are measured per 1 Mpxl of background data, false negatives per
data set.
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detector and use publicly available model p146 small and
the same DPM model from [12] using 10 mixtures learned
for faces and kindly provided to us by Xiangxin Zhu.
Unlike our detector, Zhu and Ramanan’s detector is
designed to detect high-resolution faces only (bigger than
80� 80 while our detector works with 40� 40 pixels). To
make the comparison fair, we evaluated all methods only
on faces which are bigger than 80� 80.

Since AFW was captured by random sampling of Flicker
images, training and testing sets are independent. Never-
theless, we also show that if we train on a subset of the
BIOID data set and a small fraction of the LFW data set
(faces already detected by Viola-Jones detector), we achieve
almost the same results (see Fig. 11 for the comparison of
SDP and SDP+LISA trained on different data sets).

8.2 CSV Data Set Results

The CSV data set consists of 1;600 images of cars taken
from a semi-profile view ranging from almost pure rear
view to the almost pure side view. Images are taken
from a human view angle. We use 1;200 images for train-
ing (training and validation sets) and 400 for testing. As
the ground truth three points were marked: upper left,
lower right, and a rear vertical edge point. The rear edge
point corresponds to the imaginary intersection of the
lower side windows line and the rear edge. The bound-
ing box has a fixed aspect ratio. The parameters which
were estimated by the regressors were selected by PCA,

as described in Section 6, for both modelled non-rigid
deformations in the AFW and CSV data sets.

Fig. 12 shows ROC curves of SDP, SDP+LISA, SDP+Ali
[1], SDP+LISA+Ali [1] and publicly available DPM [15]
pre-trained from VOC 2007 data. Fig. 12 shows corre-
sponding ROC curves. LISA outperformed Ali’s [1]
method. Actually, Ali’s [1] method did not yield any sig-
nificant improvement in the detection rate, because the
deformations in this data set probably could not be well
modelled by the pose estimators of [1] (mainly estimating
dominant edge orientation) since there is almost no in-
plane rotation present in the CSV data set. We can also
see that DPM slightly outperforms SDP+LISA in human
view-point images, however we still preserve real-time
performance, see running time summary in Fig. 9.

8.3 Haar versus HoG Features

We also demonstrate the influence of the choice of feature
type. Fig. 13 shows ROC curves of SDP and SDP+LISA
methods evaluated on the CSV data set captured from the
human-view angle for (a) Haar features and (b) HoG fea-
tures. While the relative improvement coming from using
LISA is preserved, HoG features exhibit much better
detection rates than Haar’s.

8.4 Regression Functions Evaluation

In this experiment we evaluate the performance of piece-
wise regression functions in all three variants of equation
(5): (i) affine function with g and �, (ii) linear function with
g only and (iii) constant function with � only (used in
LISA). We learn the regression functions for different num-
bers of bins in combination with two types of feature space
partitionings.

Here the regression functions are learned separately
from the detector on their own features. In line 12 of the
Learning Algorithm in Fig. 5 multiple regressors are jointly
learned at once. The number of jointly learned regressors is
estimated automatically by observing the error on valida-
tion data. Five regressors are jointly learned on average.
Therefore for performance evaluation, we also jointly learn
5 regressors.

As a criterion for selection of the best performing func-
tion and feature space partitioning we use the mean regres-
sion error (MRE) of the alignment parameters (selected by
PCA) estimation with respect to the parameters computed

Fig. 12. CSV ROC curves. False positives are measured per 1Mpxl of
background data, false negatives per data set.

Fig. 11. AFW-BIOID ROC curves. Comparison of (i) SDP, SDP+LISA
trained on first part of AFW (solid lines) and (ii) SDP, SDP+LISA trained
on BIOID data set (office environment images) and small fraction of
LFW (dashed line). All methods were tested on the second part of AFW.
False positives are measured per 1 Mpxl of background data, false neg-
atives per data set.

Fig. 13. ROC curves (Haar vs HoG features). False positives are mea-
sured per 1 Mpxl of background data, false negatives per data set.
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from the deformed grids computed from ground truth
annotations, depicted in Fig. 7. Each features’ regressor esti-
mates all m ¼ 3 alignment parameters. In this section we
denote rkj a part of the jth regressor, which estimates single
alignment parameter k. The MRE of the positive samples in
the testing set is then computed as follows

MRE ¼
Xp

i¼1

Xm

k¼1

X5

j¼1

rkj
�
vij
�
� Dtki

 !2�

m

0

@

1

A

,

p; (12)

where p is the number of positive image samples, vij is the
jth feature value of sample i and tki is the samples’ kth
ground truth parameter.

The resulting MREs on testing data for all variants of
tested regression functions dependent on the number of
bins are depicted in Fig. 15. The MREs are normalized

by the initial MRE of the testing set when no alignment
is applied. The results in Fig. 15 correspond to non-rigid
alignment estimation on the testing part of the LFW data
set. The results for other data sets are similar.

The important observation here is that MREs of the
third function (piecewise constant—dark and light red
bars in Fig. 15) decrease very quickly with the growing
number of bins. At approximately 15 bins it reaches the
testing error of the first two types of functions with the
slope parameter g. Also the proportional partitioning var-
iants (bars in light tones) perform better than the non-pro-
portional ones (bars in dark tones). In our algorithm we
use the piecewise constant function with the proportional par-
titioning (light red bars). It achieves a good alignment pre-
cision and is extremely fast to evaluate.

In the last experiment we evaluate the precision of esti-
mated alignment and we compare our results to [12] on
facial features. Alignment precision is evaluated on a test-
ing part of the AFW data set. Our model was trained on
the training part of the AFW data set. The same model
was used to generate red curve in Fig. 10. The publicly
available model p146 small from [12] works with faces
larger than 80� 80. That is why we made a selection of
images with faces appearing in larger resolution. We took
the positive detections of [12], which corresponded to one
of seven frontal face models (out of 13). The remaining
are side-view models, which do not contain all the facial
features necessary for comparison with our model. From
this selection we made an intersection of true positive
detections of both our method and the one of [12] in
order to evaluate the alignment on the exact same images.
A total of 338 images from the testing set were selected
for this experiment. The computed errors are euclidean
distances of estimated facial features positions from
ground truth facial features positions relative to face size
(to compensate for different face scales). Seven facial fea-
tures were used: four eye corners, one nose tip and two
mouth corners. The resulting mean error of [12] is 0.0513,

Fig. 14. Detections. with the SDP+LISA detector. Upper row shows some faces from AFW testing set. The last image in the upper row shows FP
detection. The bottom row shows semi-profile cars from robot view angle on CSV testing images.

Fig. 15. Mean Regression Error (Eq. (12)) as a function of the number of
bins for LFW alignment learned on 5 features. Please note that piece-
wise constant function (dark and light red bars) quickly reaches the test-
ing error of the first two functions, which use the slope parameter g. Also
note that the proportional partitioning of the feature space yields better
results than the non-proportional one. MREs are normalized, with 1
being the testing set error when no alignment is estimated.
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median 0.0441 with variance 0.0012, i.e., for a face of size
100� 100 pixels, there is a mean error of 5.13 pixels for
each facial feature. The resulting mean error of our
method is 0.0472, median 0.0410 with variance 0.0009. For
the same face size, we achieve a lower mean error of 4.72
pixels for each facial feature.

8.5 Discussion

The proposed local interleaved sequential alignment
improves the sequential decision process. The main compet-
itors are the SDP itself and local pose estimators proposed
by Ali [1], which may be combined with the SDP as well.

The SDP is favorable for its high detection speed, see
running time comparison in Fig. 9. On the other hand, it is
known that the greedy learning suffers from lower gener-
alization when compared to SVM based approaches like
[12], [15]. Notice that in the previous experiments we used
publicly available models of [12], [15] to show the baseline.
When the DPM with four components [15] and SDP+LISA
are trained on the same data set and tested on a harder
face data set with wide range of poses, illuminations and
occlusions, then the detection rate of DPM is indeed better,
see Fig. 16. To achieve both high speed of SDP+LISA and
high detection rate of DPM, we propose a combined
SDP+LISA+DPM pipeline. The SDP+LISA step reduces
the number of possible sub-windows and the strong but
slow DPM runs only on the remaining small fraction of all
sub-windows. In this experiment, the SDP+LISA leaves
only 15 sub-windows per 1 MPxl image in average for
additional DPM evaluation, while only 2 percent of true
positives are rejected. Remaining 15 sub-windows are
finally evaluated by the DPM in a negligible time.

LISA is based on regression functions, which sequen-
tially compensate deformation of the object in the evaluated
sub-window. The advantage of the regression functions is
that the computational complexity grows only linearly with
the dimensionality of the pose space. However, accurate
regression is usually possible only for a limited range of
local deformations.

Main drawbacks of the proposed method are: (i) inher-
ently limited generalization of SDP methods, (ii) limited
range of deformations and (iii) keypoint annotations needed
for learning. The main advantages are: (i) high detection
speed, (ii) better detection rate than other SDP methods,

and (iii) global object deformation is estimated as a side-
product of the detection process.

9 CONCLUSION

We have proposed an efficient approach for aligning detec-
tion features with observed non-rigid object deformation in
a real-time. The idea was shown on sequential decision pro-
cess, where pre-trained features are successively evaluated
in a detection window. The successive feature evaluation
allows for efficient alignment estimation by pre-learned
regressors during the detection process. The estimated
alignment is directly applied to not yet evaluated features
which significantly improves the detection rates.
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