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Scaling Multidimensional Inference for
Structured Gaussian Processes

Elad Gilboa, Yunus Saatçi, and John P. Cunningham

Abstract —Exact Gaussian Process (GP) regression has O(N3) runtime for data size N , making it intractable for large N . Many
algorithms for improving GP scaling approximate the covariance with lower rank matrices. Other work has exploited structure
inherent in particular covariance functions, including GPs with implied Markov structure, and equispaced inputs (both enable O(N)

runtime). However, these GP advances have not been extended to the multidimensional input setting, despite the preponderance
of multidimensional applications. This paper introduces and tests novel extensions of structured GPs to multidimensional inputs. We
present new methods for additive GPs, showing a novel connection between the classic backfitting method and the Bayesian framework.
To achieve optimal accuracy-complexity tradeoff, we extend this model with a novel variant of projection pursuit regression. Our primary
result – projection pursuit Gaussian Process Regression – shows orders of magnitude speedup while preserving high accuracy. The
natural second and third steps include non-Gaussian observations and higher dimensional equispaced grid methods. We introduce
novel techniques to address both of these necessary directions. We thoroughly illustrate the power of these three advances on several
datasets, achieving close performance to the naive Full GP at orders of magnitude less cost.

Index Terms —Gaussian Processes, Backfitting, Projection-Pursuit Regression, Kronecker matrices.

✦

1 INTRODUCTION

Gaussian Processes (GP) have become a popular tool for
nonparametric Bayesian regression. Naive GP regression
hasO(N3) runtime (matrix inversions and determinants)
and O(N2) memory complexity, where N is the number
of observations. At ten thousand or more, this problem
is for all practical purposes intractable, given current
hardware.

A significant amount of research has gone into
sparse approximations (reducing run-time complexity to
O(M2N) for some M ≪ N ). For an excellent review of
sparse GP approximations, see [1]. All sparse approxima-
tion methods are based on the assumption of conditional
independence of the training and test sets, given an
active set of inducing inputs. As emphasized in [1], the
results of these algorithms can depend strongly on the
properties of the data. Since different assumptions fit
different datasets, and since sparsity has by no means
solved all efficiency issues for GPs, it is imperative to
explore alternative avenues for attaining scalability.

The central aim of this paper is to introduce struc-
tured GPs for multidimensional inputs. Specifically we
present three novel advances which allow efficient and
sometimes exact inference, or at least a superior runtime-
accuracy tradeoff than existing methods. We say a GP is
structured if its marginals p(f |X, θ) contain exploitable
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structure that enables reduction in computational com-
plexity. While these structured GP methods are known
in the case of scalar inputs, many regression applications
involve multivariate inputs. Our main contribution is
three nontrivial extensions of these algorithms to deal
with this case.

1.1 Gaussian Process Regression

In brief, GP regression is a Bayesian method for non-
parametric regression, where a prior distribution over
continuous functions is specified via a Gaussian process.
(the use of GP in machine learning is well described in
[2]).

A GP is a distribution on f over an input space X such
that any finite selection of input locations x1, . . . ,xN ∈ X
gives rise to a multivariate Gaussian density over the
associated targets, i.e.,

p(f(x1), . . . , f(xN )) = N (mN ,KN ), (1)

where mN = m(x1, . . . , xN ) is the mean vector and
KN = {k(xi, xj)}i,j is the covariance matrix for mean
function m and covariance function k. In this paper we
are specifically interested in the basic equations for GP
regression, which involve two steps. First, for given data
y (making the standard assumption of zero-mean data,
without loss of generality), we calculate the predictive
mean and covariance at M unseen inputs as:

µ⋆ = KMN

(
KN + σ2

nIN
)−1

y, (2)

Σ⋆ = KM −KMN

(
KN + σ2

nIN
)−1

KNM , (3)

For model selection, since the function k(·, ·; θ) is pa-
rameterized by hyperparameters such as amplitude and
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lengthscale (which we group into θ), we must consider
the log marginal likelihood Z(θ):

logZ(θ) = −
1

2

(
y⊤(KN + σ2

nIN )−1y

+ log(det((KN + σ2
nIN ))) +N log(2π)

)
.(4)

Here we use this marginal likelihood to optimize over
the hyperparameters in the usual way [2]. The runtime
of GP regression and hyperparameter learning is O(N3)

due to
(
KN + σ2

nIN
)−1

, which is present in all equations.

1.2 Gauss-Markov Processes

We briefly review the use of Gauss-Markov Processes
for efficient GP regression on scalar inputs, as a starting
point for the multidimensional extensions in Section 2.
Although the Gauss-Markov Process are well studied,
their use for exact and efficient GP regression is under-
appreciated. A GP with a kernel corresponding to a state-
space model can be viewed as a Gauss-Markov Process,
enabling linear runtime. Gauss-Markov Processes can be
viewed as the solution of an order-m linear, stationary
stochastic differential equation (SDE), given by:

dmf(x)

dxm
+am−1

dm−1f(x)

dxm−1
+· · ·+a1

df(x)

dx
+a0f(x) = w(x),

(5)
where w(x) is a zero-mean white noise process. Note
that x can be any scalar input, including time. Because
w(x) is a GP and f is linear in its coefficients, f is also
a GP. See [3] for an excellent introduction to SDEs. We
can rewrite Eq. (5) as a vector Markov process:

dz(x)

dx
= Az(x) + Lw(x), (6)

where

z(x) =

[

f(x),
df(x)

dx
, . . . ,

dm−1f(x)

dxm−1

]⊤

, (7)

and where L = [0, 0, . . . , 1], and A is the usual suitable
coefficient matrix. Eq. (6) shows that, given knowledge
of f(x) and its first m derivatives, we have Markov
structure in the graph underlying GP inference, which
will enable all efficiency gains in this section.

Earlier work [4], [5], derived the SDEs corresponding
to several commonly used covariance functions includ-
ing the Matérn family and spline kernels, and good
approximate SDEs corresponding to the exponentiated-
quadratic kernel. Once the SDE is known, the Kalman
filtering [6] and Rauch-Tung-Striebel (RTS) [7] smoothing
algorithms (which correspond to belief propagation) can
be used to perform GP regression in O(N) time and
memory, a noteworthy leap in efficiency. Note that the
Gauss-Markov Process framework requires sorted input
points. Thus, if a sorting step is required to preprocess
the data, the runtime complexity will be O(N logN).
However, as this is not always relevant and certainly not
the focus of the algorithms presented here, we assume
the inputs are sorted in advance and refer to these

models as O(N) in runtime complexity. For this paper
we will summarize the usual system equations as:

Initial state : p(z(x1)) = N (z(x1);µ1,V1), (8)

State update : p(z(xi)|z(xi−1))

= N (z(xi);Φi−1z(xi−1),Qi−1), (9)

Emission : p(y(xi)|z(xi))

= N (y(xi);h
T z(xi), σ

2
n), (10)

where we assume that the inputs xi are sorted in as-
cending order, and the system matrices Φ and Q are
functions of the original GP’s hyperparameters. Using
these update and emission equations in the standard
Kalman or RTS framework allows exact regression over
the Gauss-Markov Process for a single-input dimension.

2 STRUCTURED GP ON MULTIPLE INPUT DI-
MENSIONS

Despite its importance for a variety of applications,
tractable extension of the state-space models (Section
1.2) to higher-dimensional input spaces has not been
addressed in the literature. Doing so involves a number
of novel steps and is the primary contribution of this
work. We introduce three new algorithms for struc-
tured GPs over multivariate inputs, namely: (Sec. 2.1)
additive multidimensional regression (with extension to
additive covariates), (Sec. 2.2) non-Gaussian likelihood
extensions, and (Sec. 2.3) GPs over a multidimensional
grid. Full details of the development of these algorithmic
extensions, including important proofs, can be found in
our supporting work [5].

2.1 GP Regression for Multidimensional State-
Space Models

For the purposes of extending one-dimensional Gauss-
Markov Processes (Sec. 1.2) to multiple dimensions, we
use the assumption of additivity. The optimal accuracy-
efficiency tradeoff will be presented in Section 2.1.3. Here
we introduce the building blocks. The resulting model
regresses a sum of D Gauss-Markov Processes (which
are independent a priori), where D > 1 is the dimen-
sionality of the input space. Additive GP regression can
be described using the following generative model:

yi =

D∑

d=1

fd(Xi,d) + ǫ i = 1, . . . , N, (11)

fd(·) ∼ GP (0; kd(xd,x
′
d; θd)) d = 1, . . . , D, (12)

ǫ ∼ N (0, σ2
n), (13)

where Xi,d is the d-th component of input i, kd(·, ·) is
the kernel of the scalar GP along dimension d, θd repre-
sent the dimension-specific hyperparameters, and σ2

n is
the (global) noise hyperparameter. Although interactions
between input dimensions are not modeled a priori, an
additive model does offer interpretable results – one can
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simply plot the posterior mean of the individual fd to
visualize how each predictor relates to the target [8].

We introduce a novel multidimensional Gauss-Markov
Process regression where the underlying algorithm can
be viewed as a Bayesian interpretation of the classical
backfitting method [9], [10]. As described in [11], a
nonparametric regression technique (such as the spline
smoother) which allows a scalable fit over a scalar input
space can be used to fit an additive model over a D-
dimensional space with the same overall asymptotic
complexity, by means of the backfitting algorithm.

Surprisingly, the application of backfitting (Algorithm
1) can be proved to converge to the exact posterior mean.
The easiest way to see this is by viewing (Algorithm
1) as a Gauss-Seidel iteration. We detail this in-depth
proof in our supporting work [5]. As a reminder, Gauss-
Seidel is an iterative technique to solve linear systems,
in this case solving for the exact posterior mean (see
[12] for a great Gauss-Seidel reference). It is precisely
the additive Gauss-Markov Process structure that makes
the backfitting update equivalent to a Gaussi-Seidel step.

Algorithm 1: Efficient Computation of Additive GP
Posterior Mean via Backfitting

inputs : Training data {X,y}. Suitable covariance

function. Hypers θ =
⋃D

d=1{θd} ∪ σ2
n.

outputs: Posterior training means:
∑D

d=1 µd, where
µd ≡ E(fd|y,X, θd, σ

2
n).

1 Zero-mean the targets y;
2 Initialise the µd (e.g. to 0);
3 while The change in µd is above a threshold do
4 for d = 1, . . . , D do
5 µd ← E(fd|y −

∑

j 6=d µj ,X:,d, θd, σ
2
n); ⊲ Use

state-space model here.
6 end
7 end

To calculate posterior variances and learn hyperpa-
rameters, we must investigate further. We can express
the underlying graphical model as in Fig. 1, where we
have made the state-space representation of each scalar
Gauss Markov process explicit. The observed variables
are the targets y, and the latent variables Z consist of
the D Markov chains:

Z ≡




z11, . . . , z

N
1

︸ ︷︷ ︸

≡Z1

, z12, . . . , z
N
2

︸ ︷︷ ︸

≡Z2

, . . . , z1D, . . . , zND
︸ ︷︷ ︸

≡ZD




 . (14)

Unfortunately, the true posterior p(Z1, . . . ,ZD|y,X, θ)
is hard to handle computationally because all variables
Zi are coupled in the posterior. Although everything is
still Gaussian, we are no longer able to use the efficient
state-space methods of Section 1.2 returning us to the
original computational intractability at large N . Thus,
we require an approximate inference technique such as
variational Bayesian expectation maximization (VBEM)

Fig. 1: Graphical model for efficient additive GP regression.
Each dimension is written in its corresponding state-space
model.

or Markov Chain Monte Carlo (MCMC) [13]. We now
briefly introduce our use of these well-known tech-
nologies, as the details will demonstrate the important
connection to the backfitting algorithm. Note, that the
main benefits of using these algorithms comes from their
scalability as they are able to inherit the linear time
complexity of the state-space model.

2.1.1 Variational-Bayesian Expectation Maximization

E-Step: We use a variational-Bayesian (VB) approxima-
tion to the E-step by making the standard assumption
of an approximate posterior that factorizes across the Zi,
i.e.:

q(Z) =
D∏

i=1

q(Zi). (15)

Given such a factorized approximation, it can be shown
that KL(q(Z)||p(Z|y, θ)) can be minimized in an iterative
fashion, using the following central update rule [13]:

log q(Zj) = Ei6=j(log p(y,Z|θ)) + const. (16)

where Ei6=j(·) is an expectation with respect to
∏

i6=j q(Zi). Using Eqs. (15) and (16), we derive the it-
erative updates required for VBEM. We first write down
the log joint over all variables, given by:

log(p(y,Z|θ)) =
N∑

n=1

log p

(

yn|h
T

D∑

d=1

z
td(n)
d , σ2

n

)

+

D∑

d=1

N∑

t=1

log p(ztd|z
t−1
d , θd), (17)

where we have defined p(ztd|z
t−1
d , θd) ≡ p(z1d|θd), for

t = 1, and hT z gives the first element of z. Note that
it is also necessary to define the mapping td(·) which
gives, for each dimension d, the state-space model index
associated with yn. The index t iterates over the sorted
input locations along axis d. Because the expectation of
the right hand side of Eq. (17) does not depend on zj ,
we can consider that the mean of the Gaussian in the
first term of Eq. (17), allowing us to write:
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log q(Zj)

=

N∑

n=1

logN







yn − hT
∑

i6=j

E

[

z
td(n)
i

]



 ;hT z
tj(n)
j , σ2

n





+

N∑

t=1

log p(ztj |z
t−1
j , θj) + const. (18)

where

E
[
zki
]
=

∫

zki q(Zi)dZi. (19)

A key and somewhat surprising outcome of Eq. (18) is
that in order to update the factor q(Zj) in the E step,
it is sufficient to run the standard state-space model
inference procedure using only the pseudo-observations:(

yn − hT ∑

i6=j E

[

z
td(n)
i

])

.

A number of conclusions can be drawn from this
connection. First, since VB iterations are guaranteed to
converge, any moment computed using the factors q(Zi)
is also guaranteed to converge. Convergence of these
moments is important because they are used to learn
the hyperparameters. Second, since the true posterior
p(Z1, . . . ,ZD|y, θ) is a large joint Gaussian over all the
latent variables, Eq(Z) will be equal to the true posterior
mean. This is because the true posterior is Gaussian
(unimodal with the mean as its mode) and the VB
approximation is mode-seeking [14]. Additionally, as is
typical for variational methods, the posterior covariance
will be underestimated because KL(q(Z)||p(Z|y, θ)) is an
exclusive divergence measure [14].

The central VB update is precisely a backfitting up-
date, thus illustrating a novel connection between ap-
proximate Bayesian inference for additive models and
classical estimation techniques. Furthermore, this pro-
vides an alternative proof of why backfitting computes
exact posterior means over latent function values.

M-Step: We must optimize Eq (log p(y,Z|θ)) over θ.
Using Eq. (17) it is easy to show that the expected
sufficient statistics required to compute derivatives with
respect to θ are the set of expected sufficient statistics
for the state-space model associated with each individual
dimension. This separability is another major advantage
of using the factorized approximation to the poste-
rior. Thus, for every dimension d, we use the Kalman

filter and RTS smoother to compute
{
Eq(Zd)(z

n
d )
}N

n=1
,

{
Vq(Zd)(z

n
d )
}N

n=1
and

{
Eq(Zd)(z

n
dz

n+1
d )

}N−1

n=1
. We then use

these expected statistics to compute derivatives of the
expected complete data log-likelihood with respect to
θ and use a standard minimizer (we use a conjugate
gradient method) to complete the M step.

2.1.2 Markov Chain Monte Carlo (MCMC)

An important and customary comparison to VB is
MCMC, which carries the usual benefits of approximate
hyperparameter integration, but at a reduced efficiency

[15]. Here we briefly discuss our fairly standard MCMC
implementation, noting only the important differences.

As in standard MCMC, we extended the model to
include a prior over the hyperparameters. The hyper-
parameters for each univariate function fd are given
a prior parameterized by {µl, vl, ατ , βτ}, where {µl, vl}
correspond to the covariance function hyperparameter ℓ
and {ατ , βτ} to τd. We also place a Γ(αn, βn) prior over
the noise precision hyperparameter τn. We run Gibbs
sampling where we block-sample the latent chains. The
algorithm used to sample from the latent Markov chain
in a state-space model has been called the forward-
filtering, backward sampling algorithm, where forward
filtering is followed by a backward sampling from the
conditionals p(zk|z

sample
k+1 ;y;X:,d; θd) [16]. The sampling

is initialized by sampling from p(zK |y;X:,d; θd), which
is computed in the final step of the forward filtering
run, to produce zsample

K . The forward-filtering, backward
sampling algorithm generates a sample of the entire state
vector jointly (over training and test input locations).

2.1.3 Efficient Projected Additive GP Regression

So far, we have shown how the assumption of additivity
can be exploited to derive non-sparse GP regression
algorithms which scale as O(N). These considerable
efficiency gains can however decrease accuracy and
predictive power versus a full unstructured GP, due to
the limited expressivity of the simple additive model.
To address this, we now demonstrate a relaxation of
the additivity assumption without sacrificing the O(N)
scaling, by considering an additive GP regression model
in a feature space linearly related to original space of
covariates [17], [18]. We call this algorithm projection
pursuit Gaussian Process regression (PPGPR).

We show that learning and inference for such a model
can be performed by using projection pursuit GP regres-
sion, a novel fusion of the classical projection pursuit
regression algorithm with GP regression, with no change
to computational complexity. The graphical model illus-
trating this idea is given in Figure 2. We refer to the
following projected additive GP prior:

yi =

M∑

m=1

fm(φm(i)) + ǫ i = 1, . . . , N, (20)

φm = Xwm, (21)

fm(·) ∼ GP
(
0; km(φm,φ′

m; θm)
)

m = 1, . . . ,M, (22)

ǫ ∼ N (0, σ2
n).

Notice that the number of projections, M , can be less
or greater than D. Forming linear combinations of the
inputs before feeding them into an additive GP model
significantly enriches the flexibility of the functions sup-
ported by the prior above, including many terms which
are formed by taking products of covariates, and thus
can capture relationships where the covariates jointly
affect the target variable. In fact, Eqs. (20) through to
(22) are identical to the standard neural network model
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where the nonlinear activation functions are modeled
using GPs.

Fig. 2: Graphical model for Projected Additive GP Regression.
In general, M 6= D. We present a greedy algorithm to select
M , and jointly optimize W and {θm}Mm=1.

For inference and learning, we now derive a novel
greedy algorithm which is similar to another classical
nonparametric regression technique known as projection
pursuit regression [19].

Consider the case where M = 1. In this case, the result-
ing projected additive GP regression model reduces to a
scalar GP with inputs given by Xw. Recall from Section
1.2 that, for a kernel that can be represented as a state-
space model, we can use the EM algorithm to optimize
θ with respect to the marginal likelihood efficiently, for
some fixed w. It is possible to extend this idea and jointly
optimize w and θ with respect to the marginal likelihood,
although we opt to optimize the marginal likelihood
directly. Notice that every step of this optimization scales
as O(N), since at every step we need to compute the
marginal likelihood of a scalar GP (and its derivatives).
These quantities are computed using the Kalman filter by
differentiating the Kalman filtering process with respect
to w and θ. All that is required is the derivatives of the
state transition and process covariance matrices (Φt and
Qt, for t = 1, . . . , N − 1) with respect to w and θ.

We now handle the case where M > 1 using a greedy
approach. At each iteration we find the optimal pro-
jection weights w. The greedy nature of the algorithm
allows the learning of the dimensionality of the feature
space, M , rather naturally – one keeps on adding new
feature dimensions until there is no significant change in
performance (e.g., normalized mean-squared error). One
important issue which arises involves the initialization
of wm at step m. In our simulations we chose to initialize
the weights as those obtained from a linear regression of
X onto the target/residual vector ym. This method acts
as an educated guess expecting a faster convergence rate.
We call this algorithm, which learns W and θ, projection
pursuit GP regression (PPGPR). To be clear, note that
PPGPR is used for the purposes of learning W and θ
only. Once this is complete, one can simply run the VB E-
step to compute predictions. The PPGPR algorithm offers

a bridge between the flexibility and elegance of the naive
full GP, and the efficiency of its approximate additive
counterpart. Its strength lies not only in the connection
to backfitting, but also in its substantial improvement in
performance and efficiency, as will be shown in Section
3.

2.1.4 Parallelization of State-Space Models

The above algorithms can be parallelized to achieve
even more speed up. By transforming the full GP to a
state-space model formulation, we replaced calculating
an inverse of a large joint covariance matrix to that
of manipulating much smaller evolution and emission
matrices (Φ, Q), for all input locations. As these matrices
are functions of the hyperparameters, they must be re-
calculated in every iteration during the hyperparameters
learning stage. Notice, however, that for a fix set of
hyperparameters, the values of Φ, and Q for all locations
are independent, and hence can be precalculated in
parallel. We used a very simple parallelization scheme
across (up to) 8 worker threads. We will further discuss
the gains this in Section 3.1. It is important to note that
as the speed of the CPUs has come to a halt and the
number of cores is on the rise, the ability to use parallel
schemes will be a must for any efficient GP algorithm in
the future.

2.2 Generalized Additive GP Regression

So far we have shown new methods for scaling mul-
tidimensional GP regression. Here, we extend the effi-
ciency of these methods to include problems that need
non-Gaussian likelihood functions, such as classification.
Being able to efficiently handle large multidimensional
datasets of non-Gaussian distributed targets is especially
important in classification problems, which regularly
have multiple input features, and a discrete label. Infer-
ence and learning with non-Gaussian emissions neces-
sitates the use of approximations to the true posterior,
e.g., expectation propagation (EP) [20], and Laplace ap-
proximation (LA) [2]. However, only a handful of works
in the literature focus on tractable algorithms for big
data where exact GP classification is intractable. These
works are extensions of the sparse GP framework using
various approximation methods [21], [22], [23]. Sparse
GP classification, however, is not without problems: for
example, pseudo input learning with EP and hyperpa-
rameter learning expand the parameter space making
the problem more susceptible to overfitting. Other works
which use a subset of data are more stable; however, this
can affect accuracy as the active subset may not be opti-
mal for the sparse conditional independence assumption.
Additionally, there is the problem of model selection for
the number of points to use in the sparse active set. Thus,
extending our structured GP model to the non-Gaussian
case is necessary and useful.

Here we derive, for additive structured GP kernels,
an O(N) algorithm which performs MAP inference and
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hyperparameter learning using Laplace’s approximation.
The resulting LA algorithm is both stable and accurate.
Note, that although it has been suggested in literature
that the EP approximation has superior approximation
qualities (for binary classification [24]), the choice of LA
is due to its computational benefits as, to our knowledge,
there is no good method for lowering the computational
complexity of the EP updates from O(N3). We now
derive this LA algorithm, and then we end this section
with another key insight showing that this algorithm is
a Bayesian interpretation of another classical technique
known as local scoring [25].

Given the likelihood p(y|f) is non-Gaussian, we use
the standard Laplace approximation:

p(f |y, X, θ) ≅ N (f̂ ,Λ−1), (23)

where f̂ ≡ argmaxf p(f |y, X, θ) and the approximated
covariance matrix Λ ≡ −∇∇ log p(f |y, X, θ)|

f=f̂
. We de-

fine the following objective:

Ω(f ) ≡ log p(y|f ) + log p(f |X, θ). (24)

f̂ is found by applying Newton’s method to this objec-
tive. Newton’s method is guaranteed to converge to the
global optimum, given the objective in Eq. (24) is convex
with respect to f . This is the case for many cases of
generalized regression, as the likelihood term is usually
log-concave, as well as the prior term.

If we assume that f is drawn from an additive GP,
then it follows that the required gradient and Hessian
(for Newton iterations) are:

∇Ω(f) = ∇f log p(y|f )−K−1
addf , (25)

∇∇Ω(f ) = ∇∇f log p(y|f)
︸ ︷︷ ︸

≡−W

−K−1
add. (26)

This makes the Newton iteration:

f (k+1) ← f (k) +
(
K−1

add +W
)−1

·
(

∇f log p(y|f )|f (k) −K−1
addf

(k)
)

, (27)

= Kadd

(
Kadd +W−1

)−1

·
[

f (k) +W−1∇f log p(y|f)|f (k)

]

. (28)

Since the generalized additive GP model assumes condi-

tional independence of y given f , p(y|f) =
∏N

n=1 p(yi|fi),
and W is a diagonal matrix and therefore easy to invert.
Looking closer at Eq. (28), we see that it is precisely
the same as the expression to compute the posterior
mean of a GP, where the target vector is given by[

f (k) +W−1∇f log p(y|f)|f (k)

]

and where the diagonal

“noise” term is given by W−1. Given an additive kernel
corresponding to a sum of scalar GPs that can be rep-
resented using state-space models, we can therefore use
Algorithm 1 to implement a single iteration of Newton’s
method. As a result, it is possible to compute f̂ in O(N)
time, since in practice only a handful of Newton itera-
tions are required for convergence. Wrapping backfitting

iterations inside a global Newton iteration is precisely
how the local-scoring algorithm is run to fit a generalized
additive model [25]. Thus, we can view the development
in this section as a novel Bayesian interpretation of local
scoring.

The above calculates the posterior Laplace approxima-
tion. To efficiently approximate the marginal likelihood,
we use the Taylor expansion of the objective function
Ω(F), although we will need to express it explicitly in
terms of F ≡ [f1; . . . ; fD], as opposed to the sum over f .

Ω(F) = log p(y|F) + log p(F|X, θ). (29)

Once F̂ is known, it can be used to compute the ap-
proximation to the marginal likelihood. Using first-order
Taylor expansion we obtain:

log p(y|X)

≈ Ω(F̂)−
1

2
log det

(

W̃ + K̃
−1
)

+
ND

2
log(2π) (30)

= log p(y|F̂)−
1

2
F̂

⊤
K̃

−1
F̂

−
1

2
log det

(

K̃+ W̃
−1
)

−
1

2
log det(W̃), (31)

where K̃ is a block diagonal tiling of K1,K2, . . . ,KD,
and W̃ is a block diagonal tiling of the single W matrix.
We used the matrix determinant lemma to get from Eq.
(30) to Eq. (31). Importantly, all the the terms in Eq. (31)
can be computed in O(N) runtime due to the fact that
the latent function can be represented as a sum of state-
space models (for more details see [5]) .

In summary, we showed that by using the Laplace
approximation, we are able to maintain low runtime
complexity by combining a Newton method with ad-
ditive regression update in Eq. (28) (local scoring), and
by approximating the marginal likelihood using Eq. (30).

2.3 Gaussian Processes on Multidimensional Grids

The second GP kernel structure that can be exploited
involves the assumption of equispaced inputs. This is
commonly seen for GP regression in time and space (e.g.,
regular measurements at evenly spaced weather stations,
or video captured by a CCD camera). Even though there
are good Toeplitz methods for scalar equispaced inputs
[26], the extension to a multidimensional grid has not
been addressed in literature. In this section, we present
a novel method to perform exact inference in O(N) time
for any tensor product kernel (most commonly-used
kernels are of this form), using properties of Kronecker
products.

In this case, we can compute all the computation-
ally troublesome quantities involved (such as (KN +
σ2
nIN )−1y) using a few matrix-vector products (of size

N ). Importantly, these matrix-vector products have the
form:

α =

(
D⊗

d=1

Ad

)

b, (32)
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all of which can be computed in linear runtime.
Computing α using standard matrix-vector multipli-

cation is an O(N2) operation. However, with problems
of this form, it is possible to attain linear runtime us-
ing tensor algebra [27]. For the relevant background in
tensor algebra, see the appendix in our supporting work
[5]. The product in Eq. (32) can be viewed as a tensor
product between the tensor TA

i1,j1,...,iD ,jD
representing

the outer product over [A1, . . . ,AD], and TB
jD ,...,j1

. The

term TB
jD ,...,j1

represents the length-N vector b. Con-
ceptually, the aim is to compute a contraction over the
indices j1, . . . , jD , namely:

Tα =

G1∑

j1=1

· · ·
G1∑

jD=1

TA
i1,j1,...,iD ,jD

TB
jD ,...,j1

, (33)

where Tα is the tensor representing the solution vector

α. As the sum in Eq. (33) is over N =
∏D

d=1Gd elements,
it will run in O(N) time. Equivalently, we can express
this operation as a sequence of matrix-tensor products
and tensor transpose operations.

α = vec





(

A1 . . .

(

AD−1

(

ADTB
)⊤
)⊤
)⊤


 , (34)

where we define matrix-tensor products of the form Z =
XT as:

Zi1...iD =

size(T,1)
∑

k

Xi1kTki2...iD . (35)

The operator ⊤ is assumed to perform a cyclic permu-
tation of the indices of a tensor, namely

Y⊤
iDi1...iD−1

= Yi1...iD . (36)

Furthermore, when implementing the expression in Eq.
(34) it is possible to represent the tensors involved using
matrices where the first dimension is retained and all
other dimensions are collapsed into the second, resulting
in a matrix B which is a Gd-by-

∏

j 6=d Gj matrix, where
Gd is the number of elements in dimension d. Algorithm
2 gives pseudo-code illustrating these steps. In short,
we use tensor algebra to create a linear-runtime method
(Algorithm 2) for doing matrix-vector multiplications
across a Kronecker product matrix, which arises quite
naturally for most GP kernels on a grid of inputs.

The critical second step is to note that (K + σ2
nIN )−1

cannot itself be written as Kronecker product, due to
the perturbation on the main diagonal. Nevertheless, it
is possible to sidestep this problem using the eigende-
composition properties and the identity

(
K+ σ2

nIN
)−1

y = Q
(
Λ+ σ2

nIN
)−1

Q⊤y. (37)

Importantly, the eigenvector matrix Q will also be a Kro-
necker product. Hence, to then efficiently solve Eq. (37),
we first evaluate and perform eigendecompositions of
covariances along individual dimensions to get [Qd,Λd].
This has complexity O((maxd Gd)

3), which is negligible

Algorithm 2: Efficient matrix-vector multiply for Kro-
necker matrices

inputs : D matrices [A1 . . .AD], length-N vector b

outputs: α, where α =
(
⊗D

d=1 Ad

)

b

1 x← b;
2 for d← D to 1 do
3 Gd ← size(Ad);
4 X← reshape(x, Gd, N/Gd);
5 Z← AdX ⊲ Matrix-tensor product
6 Z← Z⊤ ⊲ Tensor rotation
7 x← vec(Z);
8 end
9 α← x;

compared to N =
∏D

d=1 Gd. Next, we calculate Eq. (37)
in three steps:

α← kron_mvprod
(

[Q⊤
1 , . . . ,Q

⊤
D],y

)

, (38)

α←
(
Λ+ σ2

nIN
)−1

α, (39)

α← kron_mvprod ([Q1, . . . ,QD],α) , (40)

where we efficiently used kron_mvprod (Alg. 2) twice
and noting that the matrix Λ + σ2

nIN is easy to invert
as it is diagonal. Computation of the test set predic-

tions Q
(
Λ+ σ2

nIN
)−1

Q⊤KMN , can be done efficiently
using the same approach. The result is the third main
contribution of this paper: a linear-runtime1 method for

calculating the key regression equation
(
K+ σ2

nIN
)−1

y

using only the assumption that the inputs lie on a grid.
In summary, we exploited two important realizations:

efficient eigendecomposition using properties of the Kro-
necker product, and tensor products enabling fast multi-
plication by matrices that can be written as a Kronecker
product. This novel improvement for exact GP inference
opens the door to a whole new set of applications, which
would have never been considered otherwise, such as
GP on images or videos.

3 RESULTS

Here we will compare the algorithms discussed in the
paper to other commonly used algorithms both in the GP
world, and other common machine learning techniques.

3.1 Multidimensional Regression

In this section we will compare methods for multidimen-
sional regression on both simulated and real experimen-
tal data. For each experiment presented, we will compare
both runtime and accuracy. If a particular algorithm has
a stochastic component to it (e.g., if it involves MCMC)
its performance will be averaged over 10 runs. Every

1. The complexity of the algorithm is O
(

(logD N)3 N
)

, however it

rapidly converges to O(N) as the number of dimensions grows.
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experiment was composed of training (i.e., smoothing
and hyperparameter learning given {X,y}) and testing
phases. In each experiment, we used 1000 points for test
sets.

In terms of accuracy, we use two standard perfor-
mance measures: normalized mean square error (NMSE)
and test-set Mean Negative Log Probability (MNLP).

NMSE =

∑N⋆

i=1(y⋆(i)− µ⋆(i))
2

∑N⋆

i=1(y⋆(i)− ȳ)2
,

MNLP =
1

2N⋆

N⋆∑

i=1

[
(y⋆(i)− µ⋆(i))

2

v⋆(i)
+ logv⋆(i) + log 2π

]

,

where µ⋆ ≡ E(f⋆|X,y, X⋆, θ), v⋆ ≡ V(f⋆|X,y, X⋆, θ), and
ȳ is the training-set average target value. These measures
have been chosen to be consistent with those commonly
used in the sparse GP regression literature. We compare
runtime performance in seconds, taking into account
both the learning and prediction phases.

We test the following algorithms (with the follow-
ing names): the full naive GP implementation (Full
GP), additive models (Sections 2.1.1 and 2.1.2) using
VBEM inference (Additive-VB) and the MCMC infer-
ence (Additive-MCMC), projected additive models us-
ing greedy projection pursuit of Section 2.1.3 (PPGPR-
Greedy) and a variation of MCMC (PPGPR-MCMC).
Finally, for the sparse GP method we used the sparse
pseudo-input Gaussian process (SPGP) [18]. However,
to be conservative, we did not learn the pseudo inputs
(which can potentially greatly increase the algorithm
complexity and runtime) but rather used a random
subset of the inputs as the active set. For both the SPGP
and the Full-GP, we used the GPML Matlab Code version
3.1 [28]. Also note that, for Additive-VB and PPGPR-
greedy we have set the number of outer loop iterations
(the number of VBEM iterations for the former, and the
number of projections for the latter) to be at maximum
10 for all N . Increasing this number increased the cost
with no change to accuracy, so this is a reasonable choice.
All algorithms were run both as a single thread and
using a parallel multicore, but since SPGP and and Full-
GP do not offer efficient implementation of the parallel
schemes, their results were the same for both cases2.

3.1.1 Synthetic Data Experiments

First we used synthetic data generated by the following
model:

yi=

D∑

d=1

fd(x:,d) + ǫ i = 1, . . . , N, (41)

fd(·)∼GP (0; kd(xd,x
′
d; [1, 1])) d = 1, . . . , D, (42)

ǫ∼N (0, 0.01),

2. When discussing parallel schemes we refer to only the learning
stage. As in all GP frameworks, parallelism can always be used for
prediction, since we are only interested in the predictive marginals
per test point. However, this does not have any noticeable effect on
the runtime and is thus unimportant to the comparison.

where kd(xD,x′
d; [1, 1]) is given by the Matérn(7/2) ker-

nel with unit lengthscale and amplitude. We used D = 8
dimensions, and collected runtimes for a set of values
for N ranging from 1000 to 50000.

Figure 3 illustrates the significant computational sav-
ings attained by exploiting the structure of the additive
kernel. To find the relationship between the number of
inputs to the runtime, we calculated a linear slope of
the data in the log-log scale. As expected, the slope of
the Full-GP is close to three due to its cubic complexity,
and all the approximation algorithms have runtimes that
scale linearly with the input size. We can also see that
parallel processing of the state-space model matrices
offers further improvement in scaling. These results
serve only as a rough estimate, because the performance
can depend on the chosen algorithm parameters, such
as: number of outer loop iterations in the Additive-VB,
number of projections in PPGPR-greedy, or number of
samples in the MCMC methods. This runtime/accuracy
consideration should be used when comparing the effi-
ciency of the algorithms.
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Full−GP

Fig. 3: A comparison of runtimes for efficient Bayesian
additive GP regression, with D = 8, N =
[2; 4; 6; 8; 10; 20; 30; 40; 50] × 103, presented as a log-log
plot. The algorithms ran on a Linux server, once as a
single thread (dash lines) and once in a multicore parallel
scheme using 8 processors (solid lines). At N=7168,
we added an overlay of the runtime results for the
pumadyn8-nm dataset (described in Section 3.1.2) for
both single (’x’) and multicore (’o’) runs.

Additionally, runtime on a modern computer is by
no means a perfect measure of algorithmic complexity.
Nonetheless, we will see that the results of Fig. 3 agree
with all the results from the real datasets. For example,
in Fig. 3 we overlay the results of one of the real datasets,
and one sees a close correspondence between synthetic
and real data. Thus, these and subsequent results are
highly representative and assert the primary point of this
section: the runtime of our approximation algorithms do
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indeed scale linearly with N , versus the cubic scaling of
the naive GP implementation, not GP-grid.

Fig. 4 shows the effects of increased dimensionality on
the approximate algorithms. In this figure we show the
runtime speedup of the algorithms with respect to the
runtime of the Full-GP on the synthetic data generated
with dimensionality of either D = 8 or D = 32. In all the
runs the number of inputs was set to N = 8000, and the
algorithms were run once with a single thread (1 worker
= 1W), and once using the parallel scheme (8 workers =
8W). In the multidimensional case, the projection pursuit
algorithm exhibits the largest speedup, as it allows for
a reduction in the number of effective dimensions (via
the greedy selection). Notably, PPGPR-Greedy achieves
consistently an order of magnitude improvement over
SPGP.
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Fig. 4: A comparison of the speed up offered by the
approximation algorithms compared with exact GP. The
runtime was measured on the learning stage for three
approximation algorithms: sparse GP, Additive VB, and
greedy Projection-Pursuit. The comparison was done
using synthetic results with different dimensions (8D
and 32D), and running on both a single and multicore
(8-core) computer. As can be seen from the figure, the
greedy Projection-Pursuit offers the highest speedup,
and is especially efficient in high dimensions.

3.1.2 Real Data Experiments
Next, we extend the comparison to real datasets, which
will allow thorough accuracy comparisons. We test
over seven well-known datasets. These data sets are:
synth-8D (N = 8000 synthetic data from Section 3.1.1).
Next, the pumadyn family is a robotic arm dataset from
[2], and consist of three datasets: pumadyn8-fm1000
(N = 1000, fairly linear data with D = 8 dimensions),
pumadyn8-fm7168 (N = 7168, fairly linear data with
D = 8 dimensions), pumadyn32-nm (N = 7168, highly
nonlinear data with D = 32). Elevators dataset con-
sists of the current state of the f16 aircraft (N = 8752,
17-dimensional) [29], and kin40k is a highly nonlinear

dataset (N = 10000, 8-dimensional) as introduced in
[30]. Fig. 5 demonstrates the central analysis of this
section. In each subplot, we calculate speedup, MNLP,
and NMSE across all seven datasets and six algorithmic
options. To reiterate, the two additive and two PPGPR
algorithms are our advances of Section 2.1, and our main
comparison points are SPGP [18] and a naive full GP
implementation. The top subplot in Fig. 5 indicates the
substantial speedups offered by all algorithms over the
full GP, with the exception only of the N = 1000 dataset
(pumadyn8-fm1000; this is not surprising given small
N). Further, as indicated in Figure 3, our PPGPR-Greedy
achieves the largest speedup across all datasets, and in
most cases the error (MNLP and NMSE) is the same as
competing methods. The first four or five datasets tell a
very similar accuracy story across PPGPR-Greedy, SPGP,
and the full GP. We also see that the simple additive
models almost always underperform in accuracy, which
is as expected given their limited expressivity compared
to PPGPR-Greedy. The one exception where Additive-
VB outperforms PPGPR-Greedy is the synthetic data set.
However, this is expected as we used an additive model
to generate data and the greedy nature of PPGPR-Greedy
causes it to underperform. In the final two datasets, we
see that SPGP and the full GP have considerably better
accuracy. This may be explained as both these datasets
are highly nonlinear, making the additive assumption
inaccurate.

Understanding the runtime-accuracy tradeoff based
on problem requirements is essential. As we just de-
scribed, PPGPR-greedy achieves the best runtimes but at
times with an accuracy cost. Thus we want to quantify
the notion of a runtime-accuracy tradeoff. To do so
we plot all data sets and algorithms in a runtime vs.
error plot (Fig. 6), and we use the economics concept
of Pareto efficiency: efficient points in the runtime vs
error plot represent algorithms with minimum runtime
for a given error rate. Pareto inefficient algorithms are
then those points that are unambiguously inferior. The
efficient frontier is the convex hull of all {runtime,error}
points (algorithms) for a given dataset. This will give us
a clear picture of which algorithms are optimal choices
across a range of datasets. Fig. 6 details this, with one
efficient frontier for each dataset (a given color). Each
algorithm has a given marker type. This immediately
shows what one would expect: the full GP implementa-
tion is typically most accurate, but only if one is willing
to invest substantial runtime. This choice is often Pareto
efficient. Secondly, most often the PPGPR-greedy is the
other efficient choice for a substantially reduced runtime,
albeit higher error. Surprising to note is the relative
weakness of SPGP over several datasets.

In Table 1 we count of the number of datasets where
each algorithm is on the efficient frontier, which gives an
idea of how often an algorithm is competitive with oth-
ers, or optimal given a particular runtime or error bud-
get. Three algorithms stand out in their overall efficiency:
PPGPR-Greedy, SPGP, and full GP. The PPGPR-Greedy
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is the only consistent efficient algorithm for all datasets as
it achieves the fastest runtime. However, more interest-
ingly, it also achieves very good accuracy results making
most other algorithms inefficient. Of course, any trivial
algorithm could achieve efficiency by having minimal
runtime and arbitrary error, but the data demonstrates
that this is not the case with our algorithms: the PPGPR-
greedy error in almost all datasets is competitive or
better than all alternatives. Thus the frequent efficiency
of PPGPR-greedy is legitimate.
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Fig. 5: These figures offer a comparison between the
different GP methods discussed in the text, taking into
account both speedup and accuracy. For comparison we
used several known datasets from literature and ran
the algorithms on a multicore (8-core) computer. The
top figure illustrates the speedup of the approximation
algorithms runtimes with respect to the full GP (exact
inference) runtime. The bottom two figures show two
metrics for calculating regression accuracy.

TABLE 1: Efficiency comparison, showing the number of
datasets where the algorithm was on the Pareto efficient
frontier. There were seven datasets tested.

Algorithm Pareto Efficient Frontier Count

PPGPR-Greedy 7
PPGPR-MCMC 0
Additive-VB 1
Additive-MCMC 0
SPGP 4
Full-GP 6

3.2 Multidimensional Classification

In this section we will compare the generalized additive-
GP from Section 2.2 to other kernel classifiers (both
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Fig. 6: The two fundamental desiderata of our algorithms
are accuracy and speed. Here we plot error vs runtime to
quantify the tradeoff between these two objectives using
the notion of Pareto efficiency. Every algorithm is repre-
sented using a unique marker and with a color scheme
chosen according to the datasets. For each dataset, the
Pareto efficient frontier is shown as a color line passing
through the efficient algorithms for that dataset.

Bayesian and non-Bayesian). We use common perfor-
mance metrics from the sparse GP classification liter-
ature, enabling straightforward comparison with other
experimental results. In this paper we will focus on
the task of binary classification, however in principle,
extensions to tasks such as multi-class classification and
Poisson regression can be performed without affecting
asymptotic complexity. For performance measures we
use: algorithm runtime (in seconds), error rate, and the
test-set mean negative log-likelihood (MNLL):

Error Rate =
#(incorrect classifications)

#(test cases)
, (43)

MNLL =
1

N⋆

N⋆∑

i=1

[yi log p̂i + (1− yi) log(1− p̂i)] . (44)

For both the test error rate and MNLL measures lower
values indicate better performance.

3.2.1 Synthetic Data Experiments
We used synthetic data generated by the following
model:

yi ∼ Bernoulli(pi) i = 1, . . . , N,

pi = g(fi), (45)

f(·) =
∑

d

fd(·), (46)

fd(·) ∼ GP (0; kd(xd,x
′
d; θd)) d = 1, . . . , D,

where g(fi) is the logistic link function.
Within the GP framework, we compared generalized

additive GP Regression from Section 2.2 (Additive-LA),
standard GP classification with Laplace’s approximation
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(Full-GP) [2], and sparse GP methods of informative
vector machine (IVM) [23] and fully independent con-
ditional (FIC) [1]. For completeness, we also include
support vector machines (SVM) [31].3 For the Full-GP
we used GPML Matlab Code version 3.1 [28]; for FIC
we used the GPstuff Matlab package [33]; for SVM
we used LIBSVM [34]; and for IVM we used the im-
plementation given in [23]. We tested the algorithms
on the synthetic data from the model above using 8
dimensions while varying the number of inputs N =
[2; 4; 6; 8; 10; 20; 30; 40; 50]× 103. We stopped running the
Full-GP at 10000 as it took too long to finish. A compar-
ison of the runtime results is shown in Fig. 7. To be con-
sistent, we used exactly 25 iterations for all algorithms
during the learning stage. As can be seen from the figure,
Additive-GP offers excellent scaling for large input sizes.
The only algorithm that offers faster runtime than the
additive-GP is IVM. This can be expected as the IVM
only uses the information in the active set and discards
the rest. Our algorithm, on the other hand, makes use of
all the data, and is thus able to achieve a more accurate
estimation, as the results below demonstrate.
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Fig. 7: This figure shows the runtime of the classification
algorithms for the synthetic dataset with D = 8, N =
[2; 4; 6; 8; 10; 20; 30; 40; 50]×103. For the learning stage we
used 50 iterations, and we did prediction on 1000 points.
The log-log slopes of the algorithms are: Full-GP = 2.75,
Additive-GP = 1.07, FIC = 1.53, IVM = 0.80, SVM =
2.16.

3.2.2 Real Data Experiments
We tested the classification algorithms from the pre-
vious section on three additional popular datasets:
Breast Cancer [35], Magic Gamma Telescope [36],
and IJCNN [37]. We again only allowed 25 iterations in
the learning stage. For sparse methods we tested two
activeset sizes: 50, and 0.1N . Table 2 summarizes the

3. To calculate the MNLL, we used the probabilistic predictions from
the SVM using cross-validation and cross-entropy metric [32]

classification results across all algorithms and datasets.
Each column gives the classification error rate, MNLL,
and runtime. First, we consider the runtime. We note
that, as expected from Figure 7, the Full GP has the
least attractive runtime in all but the Breast Cancer
data (due to the small data size). The IVM has the
best runtime performance across all datasets, after which
our Additive-LA method is superior. In terms of per-
formance, error rates are fairly consistent throughout
the data sets, with the exception of notably high errors
for IVM in the last two data sets. This is echoed by
MNLL, where the IVM tends to have a significantly
larger error. These results are not as compelling as in
the regression case (as is often the case when comparing
Bayesian methods to an SVM), but the Additive-LA
is competitive overall. Thus, if a Bayesian method is
needed for nonparametric classification, the Additive-LA
approach is a viable and stable solution.

TABLE 2: Performance Comparison of efficient Bayesian
additive GP classification algorithms with commonly-
used classification techniques on larger datasets.

Algorithm Error Rate MNLL Runtime (s)

Synthetic Additive Data (N = 4000, M = 1000, D = 8)
Full-GP 0.6040 0.7402 2244.5111
Additive-LA 0.2800 0.5929 161.1185
FIC - 50 0.2800 1.0640 525.6684
FIC - 400 0.4550 1.3612 850.8427
IVM - 50 0.2800 0.6931 65.1951
SVM 0.2940 0.5838 345.7267

Breast Cancer (N = 359, M = 90, D = 9)
Full-GP 0.0667 0.1436 6.0435
Additive-LA 0.0667 0.1215 89.2993
FIC - 50 0.0556 0.0999 27.9584
FIC - 36 0.0556 0.0999 55.9182
IVM - 50 0.0667 0.6382 12.4867
SVM 0.0556 3.1717 1.7062

Magic Gamma Telescope (N = 15216, M = 3804, D = 10)
Full-GP NA NA NA
Additive-LA 0.1393 0.3419 2345.6546
FIC - 50 0.1441 0.3656 3339.6185
FIC - 1522 0.1396 0.3654 7331.2780
IVM - 50 0.6583 0.6932 118.0407
SVM 0.1191 0.3026 8070.2400

IJCNN (N = 49990, M = 91701, D = 13)
Full-GP NA NA NA
Additive-LA 0.0516 0.1560 14505.5000
FIC - 50 0.0482 1.1859 4390.2498
FIC - 4999 0.0770 0.8171 16728.0911
IVM - 50 0.0950 0.6932 369.0000
SVM 0.0166 0.0509 22170.1000

3.3 Multidimensional Regression on a Grid

In this section we consider data with input on a multidi-
mensional grid. We compare the exact GP-grid method
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from Section 2.3 to the naive Full-GP method and show
an application for this method in image reconstruction.

We first start by comparing the runtime complexity of
the GP-grid to Full-GP. For this we ran both algorithms
on synthetic data where each synthetic dataset has input
locations at the corners of the {−1, 1} hypercube in D
dimensions. The target value is set to noise. At each run
we increased the dimension D by 1, thereby multiplying
the number of input points by 2. Fig. 8 illustrates the
time it takes for one iteration during the learning stage.
As can be seen, the GP-grid scales linearly with the input
size while the Full-GP is cubic.
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Fig. 8: Runtimes of naive Full-GP in red and GP regres-
sion on Grid using Kronecker product (GP-Grid from
Sec. 2.3) in black, for N = [28; 29; . . . ; 220]. The slope for
the naive Full-GP is 2.6 and that of Kronecker product
is 1.05 (based on last 7 points). This empirically verifies
the improvement to linear scaling.

Improving the scalability of exact GP on a multi-
dimensional grid may seem like an unusual special
case, but it importantly enables new applications which
were not tractable previously. One such application is
picture reconstruction as pictures are an equispaced grid
of pixels. Here we show how GP-grid can be used
to reconstruct and interpolate a noisy image. We first
apply GP-grid on a 200 × 200 pixel noisy image (Fig.
9a) and use the inferred GP posterior as a denoised
reconstruction (Fig. 9b). Note that the GP nicely smooths
out most of the compression artifacts that were present
in the original image. Note also that this is a GP on
N = 40000, which is hopelessly intractable for Full-GP.
However, GP-grid was able to learn the parameters in
42.75 seconds, and denoise in 1490.3 seconds. Further,
because the two methods are mathematically proven to
be identical, any small numerical differences will be due
to relative instability of the naive GP implementation.

Next, we down-sampled the original image by 1
4 (Fig.

9c) and used GP-grid to interpolate the missing values
(Fig. 9d). Here the learning stage was 4.57 seconds and

the reconstruction with interpolation was 186.61 seconds,
and the overall quality of the interpolated reconstruction
is still high. This image example is only a single example,
but it is representative: due to the Kronecker method of
Section 2.3, we have a provably exact GP method that
scales linearly in the number of data points. Image and
video analysis is a critical and common machine learn-
ing application, but the use of nonparametric Bayesian
algorithms in this domain is infrequent. Our GP-grid al-
gorithm importantly enables the use of GP technologies
in this application area.

(a) (b)

(c) (d)

Fig. 9: Illustration of GP regression on a picture as an
equidistance grid. Fig. 9a shows a 200 × 200 pixels of
the original noisy picture. in Fig. 9b we used the GPR-
grid method from Section 2.3 to learn the parameters
and reconstruct the picture. Fig. 9c is a down-sampled
the original picture (Fig. 9a) by 2 in both dimensions ( 14
of the data). Fig. 9d shows a reconstruction of the pic-
ture where the GPR-grid used the down-sampled data
for learning, and then predicted the values at missing
locations.

4 DISCUSSION AND CONCLUSION

Gaussian Processes are perhaps the most popular non-
parametric Bayesian method in machine learning, but
their adoption across other fields - and notably in appli-
cation domains - has been limited by their burdensome
scaling properties. Having fast, scalable methods for
Gaussian Processes may mean the difference between a
theoretically interesting approach and a method that is
widely used in practice.

While important sparsification work has somewhat
addressed this scalability issue, the problem is by no
means closed. Our aim here has been to explore the use
of structured GP models. We made nontrivial advances
to existing state-space and equispaced GP methods in
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order to extend structured GP techniques into the multi-
dimensional input domain. Our results (Section 3) illus-
trate across a range of data and different algorithms that
structured models are most often superior to the state of
the art sparse methods (SPGP). Notably, we introduced
projection pursuit Gaussian Process regression (PPGPR-
greedy, Section 2.1.3), an O(N) runtime algorithm that
combines the computational efficiency of additive GP
models (Section 2.1.1) with the expressivity of a mul-
tidimensional coupled model. The result (Section 3.1.2,
notably Table 1) is an algorithm that has a superior
runtime-accuracy tradeoff than several other algorithms
including the sparse SPGP. While its accuracy was often
slightly lower than a full GP, the linear scaling properties
of PPGPR mean that it can be efficiently used across
a much broader range of data sizes and applications.
The primary takeaway of this work is thus: while the
naive GP implementation may often produce the highest
accuracy, the PPGPR algorithm that we introduced offers
the best runtime-accuracy tradeoff across many datasets
and is able to scale well beyond the realm of a naive GP.

Of course, in some cases the researcher will prefer
the SPGP method over PPGPR-greedy. Indeed, in many
senses, these two approaches are orthogonal to each
other. We see this as an inherent fact in approximation
techniques: various methods will be more appropriate in
different settings. Our results (Section 3) presented an in-
depth investigation into this runtime-accuracy tradeoff,
using both metrics on real datasets and meta-analyses
of Pareto efficiency. Our well-founded and competitive
alternatives for efficient GP regression and classification
can thus enable the researcher to make an informed
choice about a GP method for a given data size, data
complexity, and available computational resource.

To the point of runtime-accuracy tradeoff, there are
sometimes opportunities for great scaling advantages
with no accuracy tradeoff whatsoever. We demonstrated
such an example with equispaced inputs in Section 2.1.3.
Though this method exploits structure differently than
the main PPGPR-greedy algorithm, our novel use of ten-
sor algebra to create an O(N) GP model belongs in this
exposition of the computational advantages of careful
structural consideration. Notably, this method also opens
up an entirely new set of big-data applications, such
as image and video processing, or financial engineering
applications such as implied volatility surfaces. Our
future work is pursuing these application domains.

As a last computational point, as growth in com-
putational speed is increasingly driven by parallelism
over raw processor speed, it will become increasingly
important to use GP schemes that naturally incorporate
parallel processing, to efficiently deal with the rapid
growth of future datasets. Our PPGPR-greedy method
stands out in this regard versus both the naive full GP
and SPGP, and again the results of Section 3 reiterated
this fact.

Finally, from an algorithmic perspective, another in-
teresting byproduct of this work was a number of sur-

prising connections to classical statistical techniques. The
additive model turned out to be a Bayesian interpreta-
tion of the backfitting algorithm, importantly yielding
an alternative proof of that algorithm’s validity. We
utilized another classical technique - projection pursuit -
in the PPGPR model, which dramatically increased the
expressivity of the additive model without sacrificing
O(N) performance.

Understanding how our existing nonparametric mod-
els can scale and be used in real data, and how these
models connect to other areas of statistics, will increase
the utility of machine learning algorithms in general.
This is perhaps most important with Gaussian Processes,
which promise a wide range of useful applications.
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