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Learning Categories from Few Examples with
Multi Model Knowledge Transfer

Tatiana Tommasi, Francesco Orabona and Barbara Caputo

Abstract—Learning a visual object category from few samples is a compelling and challenging problem. In several real-world
applications collecting many annotated data is costly and not always possible. However a small training set does not allow to cover the
high intraclass variability typical of visual objects. In this condition, machine learning methods provide very few guarantees. This paper
presents a discriminative model adaptation algorithm able to proficiently learn a target object with few examples by relying on other
previously learned source categories. The proposed method autonomously chooses from where and how much to transfer information
by solving a convex optimization problem which ensures to have the minimal leave-one-out error on the available training set. We
analyze several properties of the described approach and perform an extensive experimental comparison with other existing transfer
solutions, consistently showing the value of our algorithm.

Index Terms—Knowledge Transfer, image categorization, discriminative learning
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1 INTRODUCTION

A S human beings, our learning ability develops progres-
sively in time. At the age of six, we recognize around

104 object categories [1] and we go on learning more while
we grow up. All the information acquired through our five
senses are encoded and stored in memory, with concepts and
categories organized on the basis of their common properties.
This intrinsically means that any new concept is not learned
in isolation, but considering connections to what is already
known, which makes the skill of building analogies one of
the cores of human intelligence [2]. Even focusing only on
visual tasks, we can give several examples of this cognitive
ability. Have you ever seen a guava or an okapi? The guava is
a fruit that externally looks like a lime, while its inner part is
similar to an apple. An okapi is an animal that can be roughly
described as a horse, with the legs of a zebra and the head of
a giraffe (see Figure 1). Once we have seen a single image for
each of the two target objects, we can easily memorize and
recognize them by referring to the source objects mentioned in
the provided description. In psychology this process is known
as knowledge transfer: it encompasses phenomena ranging
from simple (e.g. generalization of conditioned response be-
tween familiar and novel stimuli) to extremely complex (e.g.
carrying over a solution from a problem in arithmetic to a
novel class of problems) behaviors [3], and it makes learning
further concepts extremely efficient. This capacity allows us
to evaluate many kinds of recurrent patterns and regularities,
giving the possibility to make inductive inferences on a new
task even with only a small amount of data.
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Fig. 1. The knowledge of the appearance of several
objects can be used when learning something new. For
example, using the source knowledge on fruits and ani-
mals while learning guava and okapi.

A large part of recent literature on visual object cate-
gorization focuses on reaching impressive results on large
and difficult datasets [4], [5]. However, these works rarely
refer to the effort done in collecting the data. In many real
applications gathering fully annotated images can be extremely
time consuming and might have a significant impact on the
overall cost of the final system.

Standard learning techniques do not handle well the case of
very small training sets. Differently from the described human
cognition mechanism, all the learning approaches consider
each task separately with respect to other possible source
of relative information. Reproducing the knowledge transfer
process in this scenario might consistently boost the learning
performance. The basic intuition is that, if a system has already
learned j categories, learning the (j + 1)-th should be easier
even from one or few training samples [6].

A first practical implementation of the knowledge transfer
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idea was presented in [7] following a Bayesian approach. A
generic object model is estimated from some source categories
and it is then used as prior to estimate the target object
parameter distribution with a maximum-a-posteriori technique.
This work left some open questions discussed in its conclusive
section: (i) All the different known source categories are used
together to define a single prior; would a more sophisticated
multi-modal prior be beneficial in learning? (ii) Is there any
other productive point of view beside the generative Bayesian
one that allows to incorporate prior knowledge? (iii) Is it easier
to learn new target categories which are similar to some of
the source categories? Several other works in the computer
vision literature followed this first attempt [8], [9], [10], [11],
introducing different methods to increase the categorization
performance with respect to learning from scratch in case of
few available samples. However, due to the small differences
in the chosen settings, the proposed solutions were never
compared among each other.

In this work we focus on knowledge transfer across visual
object categories and our main contribution is a learning
algorithm that directly addresses the open problems in [7]. We
consider (i) the availability of several separate source models
and we introduce (ii) a discriminative approach based on
Least Square Support Vector Machines (LS-SVM, [12]). Any
new target class is learned through adaptation by imposing
closeness between the target classifier and a linear combination
of the source classifiers already learned on the j object sources.
The weight assigned to each source knowledge is defined
by solving a convex optimization problem which minimizes
an upper bound of the leave-one-out error on the training
set providing a principled solution for choosing from where
to transfer and how much to rely on each known source.
In practice, the proposed method (iii) autonomously tunes
the transfer process depending on the similarity between the
sources and the target tasks. We analyze in detail several
properties of the described approach and perform an extensive
experimental comparison with other existing transfer solutions,
consistently showing the value of our algorithm.

The rest of the paper is organized as follows. Section 2
provides a short introduction to the goals, challenges and
possible scenarios of knowledge transfer. Section 3 briefly
reviews the literature. A detailed description of the notation
and of the mathematical framework for our method follows
in Section 4. Section 5 contains the formal definition of
our knowledge transfer algorithm. Section 6 introduces an
extension to the case of heterogeneous sources. Finally in
Section 7 we present a thorough experimental evaluation of
our approach with a benchmark against several other state
of the art approaches. Section 8 concludes the paper with an
overall discussion and pointing out possible avenues for future
research.

2 KNOWLEDGE TRANSFER: ISSUES AND
SCENARIOS

The main assumption in theoretical models of learning, such
as the standard PAC (Probably Approximately Correct [13])
model, is that training instances are drawn according to the

Fig. 2. Three ways in which transfer might improve the
learning performance when the number of target training
samples increases. Forcing the target learning process to
rely on unrelated sources produces the negative transfer
effect. (Figure reproduced and adapted from [16]).

same probability distribution as the unseen test examples.
This hypothesis permits the estimation of the generalization
error and the uniform convergence theory [14] provides basic
guarantees on the correctness of future decisions.

This ideal assumption is not always true in practical prob-
lems. It can happen that we have a lot of labeled data on
a source problem and the need to solve a different target
problem with few labeled samples, where source and target
present a distribution mismatch. In this case knowledge trans-
fer (a.k.a transfer learning [15]) may decrease the effort of
collecting new samples, while at the same time it may reduce
the lack of robustness issue (risk of overfitting) by leveraging
over the existing source knowledge to solve a target task. It is
possible to define three measures by which transfer improves
the effectiveness of learning; we list them below, referring to
Figure 2.

(1) Higher start: the initial performance achievable on the
target task is much better compared to that of an ignorant
agent [16]. This is true even using only the source transferred
knowledge, before any further learning on the target problem.

(2) Higher slope: this indicates a shorter amount of time
needed to fully learn the target task, given the transferred
knowledge, in comparison with learning from scratch [16].

(3) Higher asymptote: in the long run, the final performance
level achievable over the target task can be higher compared
to the final level without transfer [16].

How to get these advantages and up to which extent the
transfer process can be useful depends on the specific sce-
nario at hand (object categorization, recognition, segmentation,
reinforcement learning, etc.) and on the relation between
source and target tasks. Apart from the different levels of
semantic similarity, source and target might be represented
with the same or with different descriptors which give rise
respectively to a homogeneous or a heterogeneous transfer
process. Moreover, a transfer learning problem can scale with
respect to the number of annotated target samples and of
possible source sets (see Figure 3). Indeed, to fully define
any knowledge transfer method it is necessary to answer to
three main questions.

(1) What to transfer? It refers to which knowledge can be
transferred and to the form in which it is coded. In general
terms, some knowledge might be specific for a task while some
other knowledge might be common and sharable.

(2) How to transfer? This question is about the definition of
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Fig. 3. A scheme of the possible transfer learning con-
ditions in visual object categorization. The number of
source sets can increase with different possible levels
of relatedness with respect to the target category. The
tasks are heterogeneous (homogeneous) if the samples
are represented with different (the same) descriptors.
The target task can be supervised with an increasing
number of training samples or unsupervised when the
target samples are not annotated.

a learning algorithm that can properly incorporate the source
knowledge while building on the target samples.

(3) When to transfer? Finally, it is always necessary to
evaluate the differences among the source and the target task
and question whether the transfer is worthwhile or not.

In the following section we review the knowledge transfer
literature, referring to how each of the proposed method
addresses these challenging questions.

3 RELATED WORK
The fundamental motivation for knowledge transfer in the field
of artificial learning was discussed in a NIPS-95 workshop
on learning to learn [17] which focused on the need for
open ended learning systems that retain and reuse previ-
ously acquired knowledge. Since then, research on this topic
has attracted more and more attention and several transfer
approaches has been proposed in machine learning, natural
language processing and computer vision.

3.1 What to Transfer
Depending on which is the problem to solve, the transferred
knowledge can be in the form of instances, feature represen-
tation, or model parameters [15].

The main idea at the basis of instance transfer approaches
is that, although the source data cannot be reused directly,
there are certain parts of them that can still be sampled
and considered together with the few available target labeled
data. In [18] Dai et al. proposed a boosting algorithm that
uses both the source and the target samples to solve visual
object classification problems. Lim et al. [19] have shown
that it is possible to borrow and transform examples across
different visual object classes, demonstrating a performance
improvement in detection problems.

Any feature transfer approach consists in learning a good
representation for the target domain encoding in it some useful

knowledge extracted from the source. Bart and Ullman [20]
proposed to perform feature adaptation using a single example
of a novel class and showed a significant gain in classification
performance. An alternative solution is to consider directly a
metric learning approach [21] or more in general to exploit
suitable kernels for the target data in SVM-based methods
[22]. Moreover, the feature transfer approach has proven to
be extremely useful in the deep learning framework for unsu-
pervised classification tasks [23]. In this setting some recent
work proposed also to represent object categories indirectly
by their attributes [24]. An attribute is a high level semantic
information (e.g. striped, furry) that is shared by multiple
object categories and can be easily transferred as a descriptor.

Finally, a parameter or model transfer approach assumes
that the source tasks and the target tasks share some parameters
or prior distributions of the models. As already mentioned, Fei-
Fei et al. [7] proposed to transfer information via a Bayesian
prior on object class models, using knowledge from known
classes as a generic reference for newly learned models. Stark
et al. [10] defined a technique to transfer a shape model across
object classes.

3.2 How to Transfer
A large variety of methods have been studied to integrate
in different ways the source and target information: boosting
approaches [18], [9], KNN [25], Markov logic [26], graphical
models [27]. Most of the work has however been done in
the generative probabilistic setting. Given the data, the target
model makes predictions by combining them with the prior
source distribution to produce a posterior distribution. A
strong prior significantly affects these results serving as a
natural way for Bayesian learning methods to transfer source
knowledge. Some discriminative (maximum margin) methods
are presented in [21] by learning a distance metric, and in
[11], [28] where a template learned previously for some object
categories is used to regularize the training of a new target
category for detection.

3.3 When to Transfer
Several knowledge transfer solutions have been proposed in
the setting of useful source knowledge [10], [18]. However, in
real learning scenarios, the information acquired in the past is
not always relevant for a new target problem. Rosenstain et al.
[29] empirically showed that if two tasks are dissimilar, brute
force transfer hurts the performance producing the so called
negative transfer (see Figure 2).

Ideally, a transfer method should be beneficial between
appropriately related tasks while avoiding negative transfer
when the tasks are not a good match. In practice, these
goals are difficult to achieve simultaneously. Approaches that
have safeguards to avoid negative transfer often produce a
smaller effect from positive transfer due to their caution.
Conversely, approaches that transfer aggressively and produce
large positive-transfer effects often have no protection against
negative transfer.

It is possible to identify two main strategies to decide when
to transfer. One consists in rejecting bad information or at
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least making sure that its impact is minimized so that the
transfer performance is at least not worse than what obtained
by learning only on the target task. This means that it is
always necessary to choose how much to transfer, possibly
disregarding the transferred knowledge completely. A different
strategy can be applied when there are more than one source
task: in this condition the problem becomes choosing the
best source. Transfer methods without much protection against
negative transfer may still be effective in this scenario, as long
as the best source task is at least a decent match. Taylor et
al. [29] proposed a transfer hierarchy, sorting the tasks by
difficulty. Given a task ordering, it may be possible to locate
the position of the target task in the hierarchy and select the
most useful source set. In [30] the authors used conditional
Kolmogorov complexity to measure relatedness between tasks
and transfer the right amount of information.

Our work fits in this context. We propose a discriminative
knowledge transfer method that relies on a set of models
learned on the source categories (what to transfer) which
are then used to regularize the target object model (how to
transfer). The relatedness among the tasks is automatically
evaluated (when to transfer) through a principled optimization
problem without any need of hand tuned parameters, extra
validation samples or a pre-defined ontology.

4 MATHEMATICAL FRAMEWORK

We introduce here the formal notation that will be used in the
paper and we present all the mathematical tools necessary to
define our knowledge transfer approach. In the following we
denote with small and capital bold letters respectively column
vectors and matrices, e.g. a = [a1, a2, . . . , aN ]T ∈ RN and
A ∈ RM×N with Aji corresponding to the (j, i) element.
When only one subscripted index is present, it represents the
column index, e.g., Ai is the i-th column of the matrix A.

Moreover we indicate with ‖a‖p :=
(∑N

i=1 |ai|p
)1/p

the p-
norm of a vector a ∈ RN .

Let us assume xi ∈ X to be an input vector to a learning
system and yi ∈ Y its associated output. Given a set of
data D = {xi, yi}Ni=1 drawn from an unknown probability
distribution P , we want to find a function f : X → Y such that
it determines the best corresponding y for any future sample
x. We consider X ⊆ Rd and Y = {−1, 1}.

The described learning process can be formalized as an op-
timization problem which aims at finding f in the hypothesis
space of functions H, which minimizes the structural risk [14]

Ω(f) + C

N∑
i=1

`(f(xi), yi) . (1)

Here Ω(f) is a regularizer, which encodes some notion of
smoothness for f , and guarantees good generalization per-
formance avoiding overfitting. In the second term, ` is some
convex non-negative loss function which assesses the quality
of the function f on the instance and label pair {xi, yi}. In
practice it expresses the price we pay by predicting f(xi)
in place of yi. The predictivity is a trade-off between the
information provided by the training data and the complexity

of the solution we are looking for, controlled by the parameter
C > 0.

4.1 Adaptive Regularization
We set H equal to space of all the linear models of the form

f(x) = w>φ(x) + b . (2)

Here φ(x) is a feature mapping that maps the samples into
a high, possible infinite dimensional space, where the dot
product is expressed with a functional form K(x, x′) =
φ(x)>φ(x′) named kernel [31]. We also set the regularizer
to be Ω(f) = 1

2‖w‖
2, so that, regardless of the specific form

of the loss function, the learning problem (1) becomes

min
w

1

2
‖w‖2 + C

N∑
i=1

`(w>φ(xi) + b, yi) . (3)

In this classical scheme for inductive learning, the knowledge
eventually gained on the data D̂ = {x̂i, ŷi}N̂i=1 extracted from
a distribution P̂ , different with respect to the target one P ,
is not taken into consideration. However, if N̂ � N with
a small number of available samples N (∼ 10) and if the
two distributions P , P̂ are somehow related, the auxiliary
knowledge can be helpful in guiding the learning process.

Let us suppose that the optimal ŵ has been already found
by minimizing (3) for some source problem. When facing a
new target task, we can always ask w to be close to the known
ŵ by simply changing the regularization term [32] such that
the learning problem results

min
w

1

2
‖w − ŵ‖2 + C

N∑
i=1

`(w>φ(xi) + b, yi) . (4)

Thus, apart from minimizing the original term ‖w‖2, the
optimization problem aims now at obtaining a vector w close
to the source model ŵ by maximizing the projection of
the first on the second. To properly scale the importance of
this projection in the optimization problem, it is possible to
add a weighting factor β such that the regularizer becomes
‖w − βŵ‖2.

5 MULTI MODEL KNOWLEDGE TRANSFER

Consider the following situation. We want to learn the target
object class okapi from few examples, having already a model
for the source categories horse, zebra, melon and apple. On
the basis of the visual similarity, we can guess that the
final model for okapi will be close to that of horse and
zebra. Thus in the learning process we would like to transfer
information from these two categories. We would expect the
model obtained in this way to produce better recognition
results with respect to (i) just considering horse or zebra as
reference, and (ii) relying over all the source knowledge in a
flat way, as melon and apple might induce negative transfer.
This kind of reasoning motivates us to design a knowledge
transfer algorithm able to find autonomously the best subset of
known models from where to transfer, and to weight properly
the relevant information.
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Any transfer method, based on the adaptive regularization
described in the previous section, answers the question what to
transfer in terms of model parameters, by passing the known
ŵ to the new target problem. However, previous work did not
pay too much attention on when and how much to transfer.
The discussed weight factor β in the regularizer is usually
set equal to 1 with the hypothesis that the known models are
useful and related to the target problem [33]. In other cases
β is treated as a learning parameter, and is chosen by cross
validation assuming the availability of extra target training
samples [11]. Both these choices present some issues: the
first case does not consider the danger of negative transfer
when only unrelated prior information is available, while in
the second, the existence of extra data for cross validation is
incoherent with the small sample scenario of transfer learning.

Here we study instead the case of multiple (J) available
sources. We propose a learning method which relies over all
of them and assigns to each a weight βj for j = 1, . . . , J .
These values are automatically tuned on the basis of the few
available target training data. We name our algorithm Multi
Model Knowledge Transfer (Multi-KT) and we present its
basic components in the following subsections.

5.1 Adaptive Least-Square Support Vector Machine
The first step to define our transfer learning algorithm consists
in combining linearly the source models to have

∑J
j=1 βjŵj

and using this as reference instead of the single source in (4).
Moreover, we choose the weighted square loss `(f(xi), yi) =
ζi(f(xi) − yi)

2 [34], where the parameter ζi can be used
to balance the contribution of positive and negative samples,
taking into account that their proportion in the training set may
be not representative of the operational class frequency.

The obtained optimization problem is:

min
w,b

1

2

∥∥∥∥∥∥w −
J∑
j=1

βjŵj

∥∥∥∥∥∥
2

+
C

2

N∑
i=1

ζiξ
2
i

subject to yi = w>φ(xi) + b+ ξi ,

for i = 1, . . . , N . (5)

where we have introduced the slack variables ξi which mea-
sure the degree of misclassification on the data xi. Thus
we obtain the soft version of Least Square Support Vector
Machine (LS-SVM [12]), that use the adaptive regularizer
introduced before. The corresponding Lagrangian L is

1

2
‖w−

J∑
j=1

βjŵj‖2+
C

2

N∑
i=1

ζiξ
2
i−

N∑
i=1

ai{w>φ(xi)+b+ξi−yi} .

(6)
Here a ∈ RN is the vector of Lagrange multipliers and the
optimality condition with respect to w is

∂L
∂w

= 0 =⇒ w =

J∑
j=1

βjŵj +

N∑
i=1

aiφ(xi) . (7)

Thus, the adapted model is given by the weighted sum of the
pre-trained source models ŵj and a linear combination of the
target samples. Note that when all the βj are 0 we recover

the original LS-SVM formulation without any adaptation to
previous knowledge. Considering also the derivative of L with
respect to ξi and ai, we have respectively ai = Cζiξi and
w>φ(xi) + b+ ξi − yi = 0. By combining them with (7) we
find
N∑
k=1

ak φ(xk)>φ(xi)+b+
ai
Cζi

= yi−
J∑
j=1

βjŵ
>
j φ(xi) . (8)

Denoting with K the kernel matrix, i.e. Kji = K(xj ,xi) =
φ(xj)

>φ(xi), the obtained system of linear equations can be
written more concisely in matrix form as[

K + 1
CZ 1

1> 0

] [
a
b

]
=

[
y −

∑J
j=1 βj ŷj
0

]
, (9)

where y and ŷj are the vectors containing respectively
the label of each training sample and the prediction
of the previous model j, i.e. y = [y1, . . . , yN ]> ,
ŷj = [ŵ>j φ(x1), . . . , ŵ>j φ(xN )]>. Moreover, Z =

diag{ζ−11 , ζ−12 , . . . , ζ−1N } and to balance the contribution of
differently labeled samples to the misfit term we set

ζi =

{
N

2N+ if yi = +1
N

2N− if yi = −1 .
(10)

Here N+ and N− represent the number of positive and
negative examples respectively.

Finally, the model parameters can be calculated simply by
matrix inversion:[

a
b

]
= P

[
y −

∑J
j=1 βj ŷj
0

]
, (11)

where P = M−1 and M is the first matrix on the left in (9).
We underline that the pre-trained models ŵj can be obtained
by any training algorithm, as long as it can be expressed as a
weighted sum of kernel functions; the framework is therefore
very general.

5.2 When and How Much to Transfer

Finding the optimal value for the elements of the weight vector
β corresponds to ranking the prior knowledge sources and
decide from where and how much to transfer. We propose
to choose β in order to minimize the leave-one-out error,
which is an almost unbiased estimator of the generalization
error [34]. While in general computing the leave-one-out error
is a very expensive procedure, we show that for (5) it can
be computed with a closed-formula, using quantities that are
already computed for the training.

Let us denote by ỹi, i = 1, . . . , N , the prediction on
sample i when it is removed from the training set. LS-SVM
in its original formulation makes it possible to write these
leave-one-out predictions in closed form and with a negligible
additional computational cost [34]. We show below that the
same property extends to the modified problem in (5).

Proposition 1: Let [a′>, b′]> = P [y>, 0]> and
[a′′>j , b′′j ]> = P [ŷ>j , 0]> with a = a′ −

∑J
j=1 βja

′′
j . If

we indicate with A′′ the matrix containing the vector a′′>j in
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the j-th row, the prediction ỹi, obtained on sample i when it
is removed from the training set, is equal to

yi −
a′i
Pii

+
β>A′′i
Pii

, (12)

where β ∈ RJ is a vector containing all the values βj .
Proof of Proposition 1: We start from

M

[
a
b

]
=

[
y −

∑J
j=1 βj ŷj
0

]
, (13)

and we decompose M into block representation isolating the
first row and column as follows:

M =

[
K + 1

CZ 1
1> 0

]
=

[
m11 m>1
m1 M(−1)

]
.

Let a(−i) and b(−i) represent the model parameters
during the i-th iteration of the leave-one-out cross validation
procedure. In the first iteration, where the first training sample
is excluded we have[

a(−1)
b(−1)

]
= P(−1)(y(−1) −

J∑
j=1

βj ŷj(−1)),

where P(−1) = M−1(−1) , y(−1) = [y2, . . . , yN , 0]> and
ŷj(−1) = [ŵ>j φ(x2), . . . , ŵ>j φ(xN ), 0]> . The leave-one-out
prediction for the first training sample is then given by

ỹ1 = m>1

[
a(−1)
b(−1)

]
+

J∑
j=1

βjŵ
>
j φ(x1)

= m>1 P(−1)

y(−1) −
J∑
j=1

βj ŷj(−1)

+

J∑
j=1

βjŵ
>
j φ(x1) .

Considering the last N equations in the system in (13), it is
clear that [m1 M(−1)][a

>, b]> = (y(−1) −
∑J
j=1 βj ŷj(−1)) ,

and so

ỹ1 = m>1 P(−1)[m1M(−1)][a1, . . . , aN , b]
> +

J∑
j=1

βjŵ
>
j φ(x1)

= m>1 P(−1)m1a1 +m>1 [a2, . . . , aN , b]
> +

J∑
j=1

βjŵ
>
j φ(x1) .

In (13) the first equation of the system is y1 −∑J
j=1 βjŵ

>
j φ(x1) = m11a1 + m>1 [a2, . . . , aN , b]

> , and we
have ỹ1 = y1 − a1(m11 −m>1 P(−1)m1) . Finally, by using
P = M−1 and applying the block matrix inversion lemma
we get

P =

[
µ−1 −µ−1m1P(−1)

P(−1) + µ−1P(−1)m
>
1 m1P(−1) −µ−1P(−1)m

>
1

]
,

where µ = m11 −m>1 P(−1)m1 . By noting that the system
of linear equations (13) is insensitive to permutations of the
ordering of the equations and of the unknowns, we have

ỹi = yi −
ai
Pii

.

By defining [a′>, b′]> = P [y>, 0]> , [a′′>j , b′′j ]> =

P [ŷ>j , 0]> , and a = a′ −
∑J
j=1 βja

′′
j , from the equation

above we get

ỹi = yi −
a′i
Pii

+

J∑
j=1

βj
A′′ji
Pii

= yi −
a′i
Pii

+
β>A′′i
Pii

,

where β ∈ RJ is a vector containing all the values βj and A′′

is the matrix containing the vector a′′>j in the j-th row.
Notice that in (12) a depends linearly on β, thus it is
straightforward to obtain the learning model once all the βj
have been chosen. By multiplying the correct label yi to (12)
we get

yiỹi = 1− yi

(
a′i
Pii
− β

>A′′i
Pii

)
, (14)

thus the best values for βj are those producing positive values
for yiỹi, for each i. However, focusing only on the sign of
those quantities would result in a non-convex formulation with
many local minima. We propose instead the following loss
function:

`(ỹi, yi) = ζi max{0, 1− yiỹi}

= ζi max

{
0, yi

(
a′i
Pii
− β

>A′′i
Pii

)}
. (15)

This loss function is similar to the hinge loss. It is a convex
upper bound to the leave-one-out misclassification loss and it
favors solutions in which ỹi has an absolute value equal or
bigger than 1, and the same sign of yi. The weight ζi is set
again according to (10). Finally, the objective function is

min
β

N∑
i=1

`(yi, ỹi) subject to ‖β‖p ≤ 1 , βj ≥ 0 , (16)

where we added some constraint on the β vector as a form
of regularization. They may be helpful to avoid overfitting
problems when the number of known models J is large
compared to the number of training samples N . Depending
on the value of p, how the target learning model leverages
over the source models changes:

p = 2, L2 norm constraint. This is the well known
Euclidean norm indicated by ‖ · ‖2 or simply ‖ · ‖. A reg-
ularization based on it generally induces numerical stability.
The optimization process can be implemented by using a
simple projected sub-gradient descent algorithm, where at each
iteration β is projected onto the L2-sphere ‖β‖ ≤ 1, and then
on the positive semi-plane. The pseudo-code is in Algorithm
1.

p = 1, L1 norm constraint. This is simply the sum of the
absolute values of the vector elements. This constraint induces
a sparse solution, i.e. only some vector elements remain dif-
ferent from zero. Applied on prior knowledge regularization,
the condition ‖β‖1 ≤ 1 can be easily implemented, e.g., on
the basis of the algorithm proposed in [35], and it gives rise
to an automatic source selection technique.

p =∞, L∞ norm constraint. This norm is defined as

‖x‖∞ := max{|x1|, . . . , |xd|}. (17)
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In practice, by using ‖β‖∞ ≤ 1 as regularizer we are imposing
that all the vector elements assume separately an absolute
value not bigger than one. In this case the projection consists
of a simple truncation.

The second condition in (16) limits the weights of the source
knowledge models to be positive. In fact, in the object category
detection problem, all the considered source and target sets
have the background category as common negative class, thus
it is reasonable to expect that the angle between w and any
ŵj is always acute.

Algorithm 1 Projected Sub-gradient Descent Algorithm
Input: calculate a′, a′′j and set A′′ according to Proposi-
tion 1
Initialize: β ← 0 and t← 1
repeat

ỹi ← yi − a′i
Pii

+
∑J
j=1 βj

A′′ji
Pii

∀ i = 1, . . . , N
di ← 1{yiỹi > 0} , ∀ i = 1, . . . , N

βj ← βj − 1√
t

∑N
i=1 diyi

a′′ji
Pii

, ∀ j = 1, . . . , J

if ‖β‖2 > 1 then
β ← β/‖β‖2

end if
βj ← max(βj , 0), ∀ j = 1, . . . , J
t← t+ 1

until convergence
Output: β

5.3 Computational Complexity
From a computational point of view the runtime of the Multi-
KT algorithm is O(N3+JN2), with N the number of training
samples, and J the number of source models. The first term
is related to the evaluation of the matrix P , which must
anyway occur while training, while the second term is the
computational complexity of (12), which results negligible,
if compared to the complexity of training. Thus, we match
the complexity of a plain SVM, which in the worst case is
known to be O(N3) [36]. The computational complexity of
each step of the projected sub-gradient descent to optimize
(15) is O(JN), and it results extremely fast (our MATLAB
implementation takes just half a second with N = 12 and
J = 3 on current hardware).

6 HETEROGOENOUS KNOWLEDGE TRANSFER
The proposed Multi-KT transfer method is based on the idea
of pushing the target model w close to a linear combination
of prior known sources

∑J
j=1 βjŵj . However, to impose this

closeness, all the vectors should live in a single space. This
means that the kernel used in learning over all the sources
and on the new target must be the same. This is quite a strict
condition because it does not give the freedom to build the
source knowledge over heterogeneous feature descriptors, and
imposes a unique metric to evaluate the sample similarity.

We show here that this limit may be easily overcome
by enlarging the space in which we seek the final learning
function on the target task, by a multi-kernel approach. We
call this variant MultiK-KT.

Let us assume to have j = 1, . . . , J mappings, each to a
different space, where the image of a vector x is φj(x). We
can always compose all of them orthogonally (see Figure 4)
obtaining the mapping to the final space by concatenation:
φ′(x) = [φ1(x), φ2(x), . . . , φJ(x)]>. The dot product in this
new space is expressed by the kernel K ′

φ′(x)>φ′(z) =

J∑
j=1

φj(x)>φj(z)

=

J∑
j=1

Kj(x, z) = K ′(x, z), (18)

where Kj(x, z) is the kernel function in the j-th space.

Now let us consider the transfer learning problem with
j = 1, . . . , J source object classes and suppose to solve the
binary classification object-vs-background for each of them
in a specific space, i.e. choosing different feature descriptors,
different kernel functions, and/or different kernel parameters.
The obtained model vectors are

ŵj =

N̂j∑
i=1

αjiφj(xi) .

These solutions can always be mapped in the composed
new space using zero padding. In fact, φj(x) → φ′j(x) =
[0, . . . , φj(x), . . . , 0]>, we have

ŵj → ŵ′j = [0, . . . , ŵj , . . . , 0]>

= [0, . . . ,

N̂j∑
i=1

αjiφj(xi), . . . , 0]> .

Hence, in the new space, a vector obtained as linear com-
bination of all the known models results:

J∑
j=1

βjŵ
′
j = [β1ŵ1, . . . , βJŵJ ]>

= [β1

N̂1∑
i=1

α1
iφ1(xi), . . . , βJ

N̂J∑
i=1

αJi φJ(xi)]
> .

By supposing that the target problem lives in the new com-
posed space, we can apply our Multi-KT algorithm there.
Hence the original optimization problem in (5) becomes

min
w′,b

1

2

∥∥∥∥∥∥w′ −
J∑
j=1

βjŵ
′
j

∥∥∥∥∥∥
2

+
C

2

N∑
i=1

ζi(yi−w′>φ′(xi)− b)2 .

(19)
The solving procedure is the same described in Section 5.1
and the optimal solution is:

w′ =

J∑
j=1

βjŵ
′
j +

N∑
i=1

aiφ
′(xi) .

When we use it for classification we get

w′>φ′(z) =

J∑
j=1

βjŵ
′>
j φ′(z) +

N∑
i=1

aiφ
′(xi)

>φ′(z)

=

J∑
j=1

βjŵ
>
j φj(z) +

N∑
i=1

ai

(
J∑

j=1

φj(xi)
>φj(z)

)
,

that is exactly the same that would be obtained from (7) using



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. Y, MONTH YEAR 8

Fig. 4. For Multi-KT the first the source and target models
must live in the same space identified by the kernelK. For
MultiK-KT all the sources can be defined independently
in their own space and the target solution lives in the
space obtained by orthogonal combination. We show also
a geometrical interpretation of the kernel combination.

K ′(x, z) as kernel. Even the original procedure to choose the
best β can be easily enlarged to the case of linearly combined
orthogonal spaces. The vector ŷ′j containing the predictions
of the j−th known model is:

ŷ′j = [ŵ′>j φ
′(x1), . . . , ŵ′>j φ

′(xN ))]

= [ŵ>j φj(x1), . . . , ŵ>j φj(xN ))] = ŷj .

This indicates that there is no real changing: MultiK-KT
is formally equivalent to the original Multi-KT with the
kernel chosen as in (18). As a consequence the computational
complexity of MultiK-KT is again O(N3+JN2) (see Section
5.3).

7 EXPERIMENTS

In this section we show empirically the effectiveness of
our transfer algorithm1 on three datasets: Caltech-256 [37],
Animals with Attributes (AwA) [24] and IRMA [38].

The Caltech-256 contains images of 256 object classes plus
a clutter category that can be used as negative class in object-
vs-background problems. Moreover, the objects are also orga-
nized in a hierarchical ontology that makes it easy to identify
the related and unrelated categories. We downloaded2 the pre-
computed features of [39] and we selected four different image
descriptors: PHOG Shape Descriptors [40], SIFT Appearance
Descriptors [41], Region Covariance [42], and Local Binary
Patterns [43]. They were all computed in a spatial pyramid
[44] and we considered just the first level (i.e. information
extracted from the whole image).

The AwA dataset contains 50 animal classes and it has been
released with several pre-extracted feature representations for

1. We implemented it in MATLAB, the code is available online http://www.
idiap.ch/∼ttommasi/source code CVPR10.html

2. http://www.vision.ee.ethz.ch/∼pgehler/projects/iccv09/

each image3. From the full set of categories we extracted
the six sea mammals (killer whale, blue whale, humpback
whale, seal, walrus and dolphin) and used them to define
the background class. We used three of the precomputed
descriptors for our experiments: color histogram, PHOG and
SIFT.

The IRMA database is a collection of x-ray images pre-
senting a large number of rich classes defined according to a
four-axis hierarchical code [45]. We decided to work on the
2008 IRMA database version [38], just considering the third
axis of the code: it describes the anatomy, namely which part
of the body is depicted, independently to the used acquisition
technique or direction. A total of 23 classes with more than
100 images were selected from various sub-levels of the third
axis, 3 of them were used to define the background class. As
features we used the global pixel-based and local SIFT-based
descriptors following the experimental setup in [46].

We performed all the experiments in a leave-one-class-out
approach, that is considering in turn each class as target and all
the others as sources. The number of negative training samples
is kept fixed while the number of positive training samples
increases in subsequent steps till reaching the same amount
of the negative set. The samples are extracted randomly 10
times for an equal number of experimental runs. Each prior
knowledge model is built with classical LS-SVM. We use
the Gaussian kernel both on the source and on the target
for all the experiments K(x,x′) = exp(−γ‖x − x′‖2)
(exceptions for the heterogeneous case are explicitly indi-
cated). To integrate multiple (F) features we calculate one
kernel for each of them and we use the average kernel
K(x,x′) = 1/F

∑F
f=1Kf (x,x′). All the transfer results

are benchmarked against no transfer: this corresponds to
learning from scratch with weighted-LS-SVM, i.e. solving the
optimization problem in (5) with β = 0.

Regarding the parameters, a unique common value for γ was
chosen for all the kernels by cross validation on the source
sets. In particular, we trained a model for each class in the
source set and we used it to classify on the remaining J − 1
source classes. Finally, we selected the γ value producing on
average the best recognition rate. The value of C is instead
determined as the one producing the best result when learning
from scratch. There is no guarantee that the obtained C value
is the best for the transfer approach; still in this way we
compare against the best performance that can be obtained
by learning only on the available training samples, without
exploiting the source knowledge. We used this setup for all
the experiments; specific differences are otherwise mentioned.

7.1 Setting the Constraints
To fully define the Multi-KT algorithm it is necessary to
choose the p value in the constraint of (16). We evaluate
empirically three cases with p = 1, 2,∞ and we compare
the obtained results over three groups of data that differ
in the level of relatedness among source and target knowl-
edge. Specifically, we extracted 6 unrelated classes (harp,
microwave, fire-truck, cowboy-hat, snake, bonsai), 6 related

3. http://attributes.kyb.tuebingen.mpg.de/
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classes (all vehicles: bulldozer, fire-truck, motorbikes, school-
bus, snowmobile, car-side) and 10 mixed classes (motorbikes,
dog, cactus, helicopter, fighter, car-side, dolphin, zebra, horse,
goose) from Caltech-256. We refer to a class as the com-
bination of 80 object and 80 background images. For each
class used as target, we extracted 20 training and 100 testing
samples with half positive and half negative data.

The results in Figure 5 (top line) show the clear gain
obtained by using Multi-KT with respect to no transfer.
The advantage is maximum in case of related classes (the
difference between Multi-KT L2 and no transfer is 39% in
recognition rate for 1 positive sample), it is just a little bit
smaller for mixed classes (34%) and drops more in case of
sources unrelated to the target task (29%). However, regardless
of the relatedness level, the choice of the constraint on prior
knowledge weight β does not produce significantly different
results4, apart for a slightly lower performance of the L1 case
with respect to the others. Hence, in the following we will
always use the L2 norm constraint.

7.2 Transfer Weights and Semantic Similarity
The Multi-KT algorithm defines automatically the relevance of
each source model to the current target task. We analyze here
the β vector obtained as a byproduct of the transfer process,
to verify if its elements have a correspondence with the real
visual and semantic relation among the tasks.

We start from the results obtained in the previous section
with the L2 norm constraint and we consider the intermediate
training step with 5 positive samples. We average the β vectors
obtained over the 10 runs defining a matrix of weights with
one row for each class used as target. By simple algebra
we can transform it to a fully symmetric matrix containing
measures of class dissimilarities evaluated as (1 − βj) and
apply multidimensional scaling on it [48]. To have an imme-
diate visualization we considered only two dimensions and
we obtain plots where each point represents a class, and the
distance among the points is directly proportional to the input
dissimilarities.

Figure 5 (bottom line) shows the obtained results. It can be
seen that in the case of unrelated classes the corresponding
points tend to be far from each other. On the other hand,
among the related classes extracted from the general cate-
gory motorized-ground-vehicles, the four wheels vehicles (fire-
truck, school-bus and car-side) form a cluster, leaving aside
motorbikes (two wheels), snowmobile (skis) and bulldozer
(tracks). Finally, among the mixed classes, helicopter and
fighter-jet appear close to each other and to dolphin. Probably
this is due to the shape appearance of these object classes and
to the common uniformity of the sky and water background.
Moreover, all the four legged animals (zebra, horse and dog)
appear on the right side of the plot, while the vehicles (car-side
and motorbikes) are in the left bottom corner.

Globally all the results indicate that the β vectors actually
contain meaningful values in terms of semantic relation be-
tween the object classes.

4. We used the sign test [47] to evaluate the statistical significance of the
results for all the experiments.

7.3 Comparison and Evaluation

Here we evaluate our Multi-KT algorithm in comparison with
several state of the art transfer learning approaches. We briefly
review them before discussing the experimental results.

Single Source. Most of the existing knowledge transfer
methods suppose the availability of a single source knowledge.
Among the approaches listed below, the first two are based on
transferring model parameters as our Multi-KT, while the last
one is an instance transfer approach and exploits directly the
source samples.

Adaptive SVM (A-SVM). This method has been originally
presented in [33] and is based on substituting the usual
regularizer of the SVM formulation with the adaptive version

min
w
‖w − βŵ‖2 + C

N∑
i=1

`H(w>φ(xi), yi) . (20)

Projective Model Transfer SVM (PMT-SVM). Maximizing
the projection of w onto ŵ corresponds also to minimizing
the projection of w onto the prior knowledge separating
hyperplane (orthogonal to ŵ). Following this idea the objective
function of PMT-SVM is

min
w
‖w‖2 + β‖Rw‖2 + C

N∑
i=1

`H(w>φ(xi), yi)

subject to w>ŵ ≥ 0, (21)

here R is the projection matrix and ‖Rw‖2 = ‖w‖2 sin2 θ,
where θ is the angle between w and ŵ.

TrAdaBoost: boosting for Transfer Learning. A simple
instance transfer approach can be defined by extending the
AdaBoost learning framework. Specifically TrAdaBoost [18]
considers a mix of source and target data in training and is
based on a mechanism which decreases the weights of the
source samples in order to weaken their impact. Finally, the
source instances with large training weights help the learning
algorithm to train better classifiers.

Experiments. We benchmark here our Multi-KT algorithm
against the described A-SVM, PMT-SVM and TrAdaBoost.
Since these baseline methods were defined in the hypothesis
of a single available source set, we considered two cases: a
pair of unrelated and a pair of related classes. Both the pairs
were extracted from Caltech-256 and each of the classes is
considered in turn as target while the other represents the
source task.

We used the MATLAB code of PMT-SVM provided by
its authors, together with their implementation of A-SVM 5

slightly modifying them to introduce the weights ζi for i =
1, . . . , N in the corresponding loss function, so to have a fair
comparison with our Multi-KT. The original formulation con-
sidered the linear kernel, thus we chose K(x, z) = x>z for
all the experiments together with the SIFT feature descriptors.
In [11] the β value is defined by cross validation on extra
validation target samples. Here we decided to simply tune it on
the test set, showing the best result that could be obtained. The
same approach was adopted to choose the number of boosting
iterations for TrAdaBoost.

5. http://www.robots.ox.ac.uk/∼vgg/software/tabularasa/
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Fig. 5. Top line: Performance of the proposed Multi-KT method with various settings for the constraint on the source
knowledge weights. The results correspond to average recognition rate over the categories, considering each class
out experiment repeated ten times. Bottom line: output of the bidimensional scaling applied on the β vector values.

The results are shown in Figure 6 (top line). In the related
(left plot) case all the transfer learning methods show better
performance than learning from scratch with different extent.
The results of our Multi-KT are significantly better than those
of no transfer and PMT-SVM (p ≤ 0.01). Only for 10
positive training samples PMT-SVM and Multi-KT produce
comparable results. Multi-KT also outperforms TrAdaBoost
for all the training steps (p ≤ 0.01) except the first one, where
they are statistically equivalent. Finally, the difference between
Multi-KT and A-SVM is not significant: since the β parameter
for A-SVM is tuned on the test set, this indicates that Multi-
KT is autonomously able to identify the optimal weight to
assign to prior knowledge. The bias of A-SVM towards the
best possible recognition rate is evident in the case of unrelated
classes (middle plot) where it is the only method to outperform
no transfer along all the steps. The other knowledge transfer
approaches show better results than no transfer only for less
than three positive training samples (p ≤ 0.05), becoming then
statistically equivalent to learning from scratch.

The histogram bars on the right in Figure 6 (top right)
show the recall produced by each source model when used
directly to classify on the target task. This indicates the prior
knowledge capability in recognizing the new object without
adaptation and it is clearly lower for unrelated than for related
classes.

Multiple Sources. When more than one source set is
available, there are three main strategies that a transfer learning
method can consider. Two extreme solutions consist in either
selecting only one source, evaluated as the best for the target
problem, or averaging over all of them supposing that they are
all equally useful. The third strategy considers the intermediate
case where only some of the source sets are helpful for the

target task and consists in selecting them by assigning to each
a proper weight. To our knowledge, only our Multi-KT method
is based on the third selective technique.

MultiSourceTrAdaBoost: boosting by transferring samples.
An extension to the TrAdaBoost approach in the case of
multiple available sources has been presented in [9]. The
method MultiSourceTrAdaBoost considers one source set at the
time, combining it with the target set and defining a candidate
weak classifier. The final classifier is then chosen as the one
producing the smallest training target classification error by
automatically selecting the corresponding best source.

TaskTrAdaBoost: boosting by transferring models. This is a
parameter transfer approach consisting of two steps. Phase I
deploys traditional AdaBoost separately on each source task
to get a collection of candidate weak classifiers. Only the most
discriminative are stored by asking that the weight assigned
by the boosting process to each classifier is greater than a
certain threshold τ : this guarantees to avoid overfitting. Phase
II is again an AdaBoost loop over the target training data
where at each iteration the weak classifier is extracted from
the set produced in the previous phase. The choice is done on
the basis of the minimal classification error produced on the
target training set.

Single KT. Our Multi-KT algorithm chooses the best set of
weights for all the prior knowledge models at once on the basis
of the loss function defined in (15). An alternative approach
can be defined adopting a logistic loss function [49]:

`(ỹi, yi) = ζi
1

1 + exp{−10(ỹi − yi)}
. (22)

If we consider one single source knowledge j at the time,
the corresponding loss `j(ỹi, yi) will depend on the difference
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Fig. 6. Left and middle columns: recognition rate as a function of the number of positive training samples. In each
experiment we consider in turn one of the classes as target and the others as source, on ten random training sets. The
final results are obtained as average over all the runs. Top Right: the histogram bars represent the recall produced by
the model of the source class (indicated on the x-axis) when used to classify on the other class, considered as target.
Bottom Right: average norm of the difference between two β vectors obtained for a pair of subsequent training steps.

(ỹi − yi) =
(
a′i
Pii
− βj

A′′ji
Pii

)
for all i = 1, . . . , N . Although

this formulation results in a non convex objective function
with respect to βj , it is always possible to evaluate (22) for
a finite set S of weights6. We can store for each source the
value minS{

∑
i `j(ỹi, yi)}, and then compare all the results

to identify the best prior knowledge model and the best weight
value to assign. We call this variant of our method Single-KT.

Average Prior Knowledge. As already mentioned in the
introduction, the first knowledge transfer approach able to
perform one-shot learning on computer vision problems was
presented in [7]. This approach does not make any assumption
on the reliability of the prior knowledge, which is always con-
sidered as an average over all the known classes. The algorithm
structure is strictly related to the part-based model descriptors
and neither the code nor the feature used for the experiments
in [7] have ever been publicly released. However, following
the proposed main idea, any transfer learning method that
originally considers the existence of a single source task can
be extended to the case of multiple sources by relying on the
average of all the prior known models.

Experiments. Here we show a benchmark evaluation of
our Multi-KT algorithm against its Single-KT version, Multi-
SourceTrAdaBoost and TaskTrAdaBoost. Following the basic
idea of [7] we also use A-SVM as baseline supposing to con-
sider the average of all the prior models as source knowledge,
thus ŵ = 1

J

∑J
j=1 ŵj and β = 1.

We used the same experimental setting of the previous
section considering the linear kernel, SIFT features and two

6. We considered a fine tuning varying β in {0.01, 1} with step of 0.01.

randomly extracted sets of 10 and 20 classes from Caltech-
256. In particular, the second set is obtained by adding an extra
random group of 10 classes to the first one. For the boosting
approaches all the parameters (number of boosting iterations
and the threshold in Phase I of TaskTrAdaBoost) where tuned
on the test set and only the best results are presented. From
Figure 6 it is clear that in both the experiments our Multi-KT
approach clearly outperforms Single-KT and the two boosting
methods (p ≤ 0.01), besides producing better results than
learning from scratch (p ≤ 0.01). Moreover, for very few
samples, properly weighting each prior knowledge source with
Multi-KT is better (p ≤ 0.05) than averaging over all the
known models as done by A-SVM: the two approaches are
equivalent only after five positive training samples with 10
classes and respectively three positive training samples for 20
classes.

For any method that chooses only one source model in
transferring, every time there is a change in the selected source,
the behavior of the algorithm might change. This indicates low
stability. Recent work has shown that the more stable is an
algorithm, the better is its generalization ability [50]. The plot
on the right in Figure 6 (bottom right) shows the comparison
of Multi-KT with its Single-KT version in terms of stability.
The best βj value chosen by Single-KT can be considered
as an element of the full β vector where all the remaining
elements are zero. For each pair of subsequent steps in time,
corresponding to a new added positive training sample, we
calculate the difference between the obtained β both for Multi-
KT and Single-KT. From the average norm of these differences
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Fig. 8. Recognition rate as a function of the number of
positive training samples. Each source model is defined
by using a Gaussian kernel with a different γ parameter.

it is evident that choosing a combination of the prior known
models for transfer learning is more stable than relying on just
a single source (lower average variation in the vector β).

7.4 Heterogeneous Knowledge
In this section we consider an heterogeneous experimental
setting where each source knowledge lives in its own feature
space and we compare the performance of MultiK-KT with
that of Multi-KT applied on a restricted homogeneous condi-
tion. We show that the space enlarging trick at the basis of
MultiK-KT, not only allows to overcome the problem raised
by the existence of a variability in the sources, but also, by
exploiting this higher level of freedom, produces better results
than Multi-KT in the corresponding single space case.

We ran experiments on the same subset of data used in the
section 7.1. Here we considered SIFT as unique descriptor
together with the generalized Gaussian kernel: K(x, z) =
exp(−γdρ,δ(x, z)), where dρ,δ(x, z) =

∑
i |x

ρ
i − z

ρ
i |δ . Each

source knowledge is defined by using the best set {γ, ρ, δ}
obtained by cross validation on the corresponding object
category, while we learn on the target class considering the
sum over the source kernels. We name no transfer multiK
the baseline corresponding to learning from scratch in this
combined space. Figure 7 presents the obtained results in
comparison with the case of using a single standard Gaussian
kernel, with fixed γ for sources and target tasks (no transfer
and Multi-KT curves in the plot): MultiK-KT always performs
significantly better than Multi-KT (p ≤ 0.002).

Among the baseline methods that we considered in the
homogeneous experiments, the only one that allows also the
use of heterogeneous sources is TaskTrAdaBoost. We compare
it with MultiK-KT over the random set of ten classes already
used in the previous section. For each source we suppose to
have already learned an SVM model with SIFT descriptors and
Gaussian kernel where the γ parameter is set to the mean of
the pairwise distances among the samples. This means that
each source model lives in its own specific feature space.
TaskTrAdaboost in each boosting iteration simply chooses one
of the source models, while MultiK-KT learns the target task
in the composed space defined by all the sources and obtained
on the basis of the sum kernel. Figure 8 shows that multiK-
KT outperforms TaskTrAdaBoost (p ≤ 0.01) besides obtaining
better results than learning from scratch.
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Fig. 9. Multi-KT performance for high number of source
knowledge sets. Right: one shot learning performance of
Multi-KT and no transfer when varying the number of prior
known object categories.

7.5 Increasing Number of Sources

For any open-ended learning agent the number of known
object categories is expected to grow in time. An increasing
number of sources may give rise to a scalability problem in
transfer learning due to the necessity of checking each of them
and evaluate the reliability for the new task. Specifically, for
102 source sets the boosting methods described in Section 7.3
become extremely expensive in computational terms (indeed
the paper which presented them considered a maximum of 5
sources [9]).

We performed experiments with 100 and 256 object classes
from Caltech-256 dataset, reporting the result of Multi-KT, no
transfer and A-SVM with average prior knowledge in Figure 9.
In both cases, properly choosing the weights to assign to each
source pays off with respect to average over all the sources
for very few training samples: Multi-KT outperforms A-SVM
(p ≤ 0.05) for less than three positive samples. With enough
training samples and a rich prior knowledge set, the best choice
is to not neglect any source information.

We can expect that with a growing prior knowledge set,
also the probability to find a useful source for the target task
increases. To verify this behavior we focus on the Multi-
KT results obtained with a single positive image. The one-
shot performance obtained in the previous experiments for 2
unrelated classes, 2 related classes, random sets of 10, 20, 100
classes plus the final full set of 256 objects are summarized
in Figure 9 (right). Although some small oscillation due to
the specific group of classes considered, it is clear that by
increasing the number of available sources of one order of
magnitude the one-shot recognition rate obtained with Multi-
KT grows. After an evident gain obtained by passing from 100

to 101 classes, the difference becomes less evident from 101

to 102 classes.

7.6 Increasing Number of Samples

Transfer learning has its maximum effectiveness in the small
sample scenario in comparison to learning from scratch. How-
ever, it is also interesting to evaluate the performance of a
knowledge transfer approach when the number of available
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Fig. 10. Top line: recognition rate as a function of the number of positive training samples. Each experiment is defined
by considering in turn one of the classes as target and the others as sources. The final results are obtained as average
over ten runs. Bottom line: Maximum value over the elements of the β vector averaged over the classes and the splits.

training instances increases, thus checking its asymptotic be-
havior (see Figure 2).

We repeated the experiments on the full Caltech-256 dataset
considering {1, 5, 10, 30, 50} positive training samples with a
fixed set of 50 negative training samples. We also run analo-
gous experiments on the AwA and IRMA dataset, considering
respectively 60 (60) and 70 (70) positive (negative) training
samples. For all the datasets the test set contains 60 (30
positive and 30 negative) instances.

All the results are reported in Figure 10 (top line). Although
it is clear the gain of Multi-KT with respect to learning from
scratch for limited available data, in general this advantage
disappears when the number of positive training samples
reaches 50. Figure 10 (bottom line) indicates that the weights
associated to prior knowledge progressively decrease. The
absence of the asymptotic advantage was to be expected for
Multi-KT and can be justified in theoretical terms: when the
number of training samples increases, the adaptive regulariza-
tion loses its relevance and the problem reduces to learning
from scratch.

8 CONCLUSION
A learning system able to exploit prior knowledge when
learning something new should rely only on the available
target information for choosing from where and how much
to transfer. To be autonomous it should not need an external
teacher providing either information on which is the best

source to use, or extra target training samples. In this paper we
presented our Multi-KT algorithm, a LS-SVM based transfer
learning approach with a principled technique to rely on source
models and avoid negative transfer. The results of extensive
experiments demonstrated the effectiveness of Multi-KT for
object categorization problems with respect to other existing
transfer learning methods. Moreover the weight assigned to
the source knowledge set proved to be meaningful in terms of
the semantic relation among the considered classes. We also
extended our algorithm to the heterogeneous setting.

Recently the computer vision literature has seen an increas-
ing interest towards high scale (104) object problems [5]. Most
of the proposed transfer learning algorithms in this setting
has been developed for object detection [51] and segmentation
[52], while how to scale up the classification problem is still
an open issue. Introducing a structure on the source knowledge
while learning something new might be a promising strategy
to use Multi-KT in this condition. Moreover the associated
scalability problem due to the increasing number of training
examples can be overcome by casting Multi-KT in an online
learning framework [53]. All this clearly indicates possible
directions for future research.
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