
Gaussian Processes for Data-Efficient Learning
in Robotics and Control

Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen

Abstract—Autonomous learning has been a promising direction in control and robotics for more than a decade since data-driven

learning allows to reduce the amount of engineering knowledge, which is otherwise required. However, autonomous reinforcement

learning (RL) approaches typically require many interactions with the system to learn controllers, which is a practical limitation in real

systems, such as robots, where many interactions can be impractical and time consuming. To address this problem, current learning

approaches typically require task-specific knowledge in form of expert demonstrations, realistic simulators, pre-shaped policies, or

specific knowledge about the underlying dynamics. In this paper, we follow a different approach and speed up learning by extracting

more information from data. In particular, we learn a probabilistic, non-parametric Gaussian process transition model of the system. By

explicitly incorporating model uncertainty into long-term planning and controller learning our approach reduces the effects of model

errors, a key problem in model-based learning. Compared to state-of-the art RL our model-based policy search method achieves an

unprecedented speed of learning. We demonstrate its applicability to autonomous learning in real robot and control tasks.

Index Terms—Policy search, robotics, control, Gaussian processes, Bayesian inference, reinforcement learning

Ç

1 INTRODUCTION

ONE of the main limitations of many current reinforce-
ment learning (RL) algorithms is that learning is pro-

hibitively slow, i.e., the required number of interactions
with the environment is impractically high. For example,
many RL approaches in problems with low-dimensional
state spaces and fairly benign dynamics require thousands
of trials to learn. This data inefficiency makes learning in real
control/robotic systems impractical and prohibits RL
approaches in more challenging scenarios.

Increasing the data efficiency in RL requires either
task-specific prior knowledge or extraction of more infor-
mation from available data. In this paper, we assume that
expert knowledge (e.g., in terms of expert demonstrations
[48], realistic simulators, or explicit differential equations
for the dynamics) is unavailable. Instead, we carefully
model the observed dynamics using a general flexible
nonparametric approach.

Generally, model-based methods, i.e., methods which
learn an explicit dynamics model of the environment, are
more promising to efficiently extract valuable information
from available data [5] than model-free methods, such as
Q-learning [55] or TD-learning [52]. The main reason
why model-based methods are not widely used in RL is

that they can suffer severely from model errors, i.e., they
inherently assume that the learned model resembles the
real environment sufficiently accurately [5], [48], [49].
Model errors are especially an issue when only a few
samples and no informative prior knowledge about the
task are available. Fig. 1 illustrates how model errors can
affect learning. Given a small data set of observed transi-
tions (left), multiple transition functions plausibly could
have generated them (center). Choosing a single deter-
ministic model has severe consequences: Long-term pre-
dictions often leave the range of the training data in
which case the predictions become essentially arbitrary.
However, the deterministic model claims them with full
confidence! By contrast, a probabilistic model places a
posterior distribution on plausible transition functions
(right) and expresses the level of uncertainty about the
model itself.

When learning models, considerable model uncertainty
is present, especially early on in learning. Thus, we require
probabilistic models to express this uncertainty. Moreover,
model uncertainty needs to be incorporated into planning
and policy evaluation. Based on these ideas, we propose
Probabilistic Inference for Learning Control (PILCO), a
model-based policy search method [15], [16]. As a probabi-
listic model we use nonparametric Gaussian processes
(GPs) [47]. PILCO uses computationally efficient determin-
istic approximate inference for long-term predictions and
policy evaluation. Policy improvement is based on analytic
policy gradients. Due to probabilistic modeling and infer-
ence PILCO achieves unprecedented learning efficiency in
continuous state-action domains and, hence, is directly
applicable to complex mechanical systems, such as robots.

In this paper, we provide a detailed overview of the key
ingredients of the PILCO learning framework. In particular,
we assess the quality of two different approximate inference
methods in the context of policy search. Moreover, we give
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a concrete example of the importance of Bayesian modeling
and inference for fast learning from scratch. We demon-
strate that PILCO’s unprecedented learning speed makes it
directly applicable to realistic control and robotic hardware
platforms.

This paper is organized as follows: After discussing
related work in Section 2, we describe the key ideas of
the PILCO learning framework in Section 3, i.e., the dynam-
ics model, policy evaluation, and gradient-based policy
improvement. In Section 4, we detail two approaches for
long-term predictions for policy evaluation. In Section 5,
we describe how the policy is represented and practically
implemented. A particular cost function and its natural
exploration/exploitation trade-off are discussed in
Section 6. Experimental results are provided in Section 7.
In Section 8, we discuss key properties, limitations, and
extensions of the PILCO framework before concluding in
Section 9.

2 RELATED WORK

Controlling systems under parameter uncertainty has been
investigated for decades in robust and adaptive control [4],
[35]. Typically, a certainty equivalence principle is applied,
which treats estimates of the model parameters as if they
were the true values [58]. Approaches to designing adaptive
controllers that explicitly take uncertainty about the model
parameters into account are stochastic adaptive control [4]
and dual control [23]. Dual control aims to reduce parame-
ter uncertainty by explicit probing, which is closely related
to the exploration problem in RL. Robust, adaptive, and
dual control are most often applied to linear systems [58];
nonlinear extensions exist in special cases [22].

The specification of parametric models for a particular
control problem is often challenging and requires intricate
knowledge about the system. Sometimes, a rough model
estimate with uncertain parameters is sufficient to solve
challenging control problems. For instance, in [3], this
approach was applied together with locally optimal control-
lers and temporal bias terms for handling model errors. The
key idea was to ground policy evaluations using real-life tri-
als, but not the approximate model.

All above-mentioned approaches to finding controllers
require more or less accurate parametric models. These
models are problem specific and have to be manually
specified, i.e., they are not suited for learning models for
a broad range of tasks. Nonparametric regression meth-
ods, however, are promising to automatically extract the

important features of the latent dynamics from data. In
[7], [49] locally weighted Bayesian regression was used as
a nonparametric method for learning these models. To
deal with model uncertainty, in [7] model parameters
were sampled from the parameter posterior, which
accounts for temporal correlation. In [49], model uncer-
tainty was treated as noise. The approach to controller
learning was based on stochastic dynamic programming
in discretized spaces, where the model errors at each time
step were assumed independent.

PILCO builds upon the idea of treating model uncertainty
as noise [49]. However, unlike [49], PILCO is a policy search
method and does not require state space discretization.
Instead closed-form Bayesian averaging over infinitely
many plausible dynamics models is possible by using non-
parametric GPs.

Nonparametric GP dynamics models in RL were previ-
ously proposed in [17], [30], [46], where the GP training
data were obtained from “motor babbling”. Unlike PILCO,
these approaches model global value functions to derive
policies, requiring accurate value function models. To
reduce the effect of model errors in the value functions,
many data points are necessary as value functions are
often discontinuous, rendering value-function based meth-
ods in high-dimensional state spaces often statistically and
computationally impractical. Therefore, [17], [19], [46], [57]
propose to learn GP value function models to address the
issue of model errors in the value function. However, these
methods can usually only be applied to low-dimensional
RL problems. As a policy search method, PILCO does not
require an explicit global value function model but rather
searches directly in policy space. However, unlike value-
function based methods, PILCO is currently limited to epi-
sodic set-ups.

3 MODEL-BASED POLICY SEARCH

In this paper, we consider dynamical systems

xxxtþ1 ¼ fðxxxt; uuutÞ þ www; www � Nð000;SwÞ; (1)

with continuous-valued states xxx 2 IRD and controls uuu 2 IRF ,
i.i.d. Gaussian system noise www, and unknown transition
dynamics f . The policy search objective is to find a policy/
controller p : xxx 7! pðxxx; uÞ ¼ uuu, which minimizes the expected
long-term cost

JpðuuuÞ ¼
XT
t¼0

IExxxt ½cðxxxtÞ�; xxx0 � Nðmmm0;SSS0Þ; (2)

Fig. 1. Effect of model errors. Left: Small data set of observed transitions from an idealized one-dimensional representations of states and actions
ðxt; utÞ to the next state xtþ1 ¼ fðxt; utÞ. Center: Multiple plausible deterministic models. Right: Probabilistic model. The probabilistic model describes
the uncertainty about the latent function by a probability distribution on the set of all plausible transition functions. Predictions with deterministic mod-
els are claimed with full confidence, while the probabilistic model expresses its predictive uncertainty by a probability distribution.
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of following p for T steps, where cðxxxtÞ is the cost of being in
state xxx at time t. We assume that p is a function parame-
trized by uuu.1

To find a policy p�, which minimizes (2), PILCO builds
upon three components: 1) a probabilistic GP dynamics
model (Section 3.1), 2) deterministic approximate infer-
ence for long-term predictions and policy evaluation (Sec-
tion 3.2), 3) analytic computation of the policy gradients
dJpðuuuÞ=duuu for policy improvement (Section 3.3). The GP
model internally represents the dynamics in (1) and is sub-
sequently employed for long-term predictions pðxxx1jpÞ; . . . ;
pðxxxT jpÞ, given a policy p. These predictions are obtained
through approximate inference and used to evaluate the
expected long-term cost JpðuuuÞ in (2). The policy p is
improved based on gradient information dJpðuuuÞ=duuu.
Algorithm 1 summarizes the PILCO learning framework.

3.1 Model Learning

PILCO’s probabilistic dynamics model is implemented as a
GP, where we use tuples ðxxxt; uuutÞ 2 IRDþF as training inputs
and differences DDDt ¼ xxxtþ1 � xxxt 2 IRD as training targets.2 A
GP is completely specified by a mean function mð�Þ and a
positive semidefinite covariance function/kernel kð�; �Þ. In
this paper, we consider a prior mean function m � 0 and
the covariance function

kð~xxxp; ~xxxqÞ ¼ s2
f exp � 1

2
ð~xxxp � ~xxxqÞ>LLL�1ð~xxxp � ~xxxqÞ

� �
þ dpq s

2
w (3)

with ~xxx :¼ ½xxx>uuu>�>.We definedLLL :¼ diagð½‘21; . . . ; ‘2DþF �Þ in (3),
which depends on the characteristic length-scales ‘i, and s2

f

is the variance of the latent transition function f . Given n
training inputs ~XXX ¼ ½~xxx1; . . . ; ~xxxn� and corresponding training
targets yyy ¼ ½D1; . . . ;Dn�>, the posterior GP hyper-parameters
(length-scales ‘i, signal variance s2

f , and noise variance s2
w)

are learned by evidencemaximization [34], [47].

The posterior GP is a one-step prediction model, and the
predicted successor state xxxtþ1 is Gaussian distributed

pðxxxtþ1 j xxxt; uuutÞ ¼ N ðxxxtþ1 j mmmtþ1;SSStþ1Þ; (4)

mmmtþ1 ¼ xxxt þ IEf ½DDDt�; SSStþ1 ¼ varf ½DDDt�; (5)

where the mean and variance of the GP prediction are

IEf ½DDDt� ¼ mfð~xxxtÞ ¼ kkk>�
�
KKK þ s2

wIII
��1

yyy ¼ kkk>� bbb; (6)

varf ½DDDt� ¼ k�� � kkk>�
�
KKK þ s2

wIII
��1

kkk�; (7)

respectively, with kkk� :¼ kð ~XXX; ~xxxtÞ, k�� :¼ kð~xxxt; ~xxxtÞ, and bbb :¼
ðKKK þ s2

wIIIÞ�1yyy, where KKK is the kernel matrix with entries
Kij ¼ kð~xxxi; ~xxxjÞ.

For multivariate targets, we train conditionally indepen-
dent GPs for each target dimension, i.e., the GPs are inde-
pendent for given test inputs. For uncertain inputs, the
target dimensions covary [44], see also Section 4.

3.2 Policy Evaluation

To evaluate and minimize Jp in (2) PILCO uses long-term
predictions of the state evolution. In particular, we deter-
mine the marginal t-step-ahead predictive distributions
pðxxx1 j pÞ; . . . ; pðxxxT j pÞ from the initial state distribution
pðxxx0Þ, t ¼ 1; . . . ; T . To obtain these long-term predictions,
we cascade one-step predictions, see (4)-(5), which
requires mapping uncertain test inputs through the GP
dynamics model. In the following, we assume that these
test inputs are Gaussian distributed. For notational conve-
nience, we omit the explicit conditioning on the policy p

in the following and assume that episodes start from
xxx0 � pðxxx0Þ ¼ N �xxx0 j mmm0;SSS0

�
.

For predicting xxxtþ1 from pðxxxtÞ, we require a joint distribu-
tion pð~xxxtÞ ¼ pðxxxt; uuutÞ, see (1). The control uuut ¼ pðxxxt; uuuÞ is a
function of the state, and we approximate the desired joint
distribution pð~xxxtÞ ¼ pðxxxt; uuutÞ by a Gaussian. Details are pro-
vided in Section 5.5.

From now on, we assume a joint Gaussian distribution
distribution pð~xxxtÞ ¼ N ð~xxxtj~mmmt;

~SSStÞ at time t. To compute

pðDDDtÞ ¼
ZZ

pðfð~xxxtÞ j ~xxxtÞpð~xxxtÞdfd~xxxt; (8)

we integrate out both the random variable ~xxxt and the ran-
dom function f , the latter one according to the posterior GP
distribution. Computing the exact predictive distribution in
(8) is analytically intractable as illustrated in Fig. 2. Hence,
we approximate pðDDDtÞ by a Gaussian.

Assume the mean mmmDDD and the covariance SSSDDD of the predic-
tive distribution pðDDDtÞ are known.3 Then, a Gaussian
approximation to the desired predictive distribution pðxxxtþ1Þ
is given asNðxxxtþ1jmmmtþ1;SSStþ1Þwith

mmmtþ1 ¼ mmmt þ mmmDDD; (9)

SSStþ1 ¼ SSSt þ SSSDDD þ cov½xxxt;DDDt� þ cov½DDDt; xxxt�: (10)

1. In our experiments in Section 7, we use a) nonlinear parametriza-
tions by means of RBF networks, where the parameters uuu are the
weights and the features, or b) linear-affine parametrizations, where
the parameters uuu are the weight matrix and a bias term.

2. Using differences as training targets encodes an implicit prior
mean function mðxxxÞ ¼ xxx. This means that when leaving the training
data, the GP predictions do not fall back to 0 but they remain constant. 3. We will detail their computations in Sections 4.1 and 4.2.
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Note that both mmmDDD and SSSDDD are functions of the mean mmmu and
the covariance SSSu of the control signal.

To evaluate the expected long-term cost Jp in (2), it
remains to compute the expected values

IExxxt ½cðxxxtÞ� ¼
Z

cðxxxtÞN ðxxxt j mmmt;SSStÞ dxxxt; (11)

t ¼ 1; . . . ; T , of the cost c with respect to the predictive state
distributions. We choose the cost c such that the integral in
(11) and, thus, Jp in (2) can computed analytically. Examples
of such cost functions include polynomials and mixtures of
Gaussians.

3.3 Analytic Gradients for Policy Improvement

To find policy parameters uuu, which minimize JpðuuuÞ in (2), we
use gradient information dJpðuuuÞ=duuu. We require that the
expected cost in (11) is differentiable with respect to the
moments of the state distribution. Moreover, we assume
that the moments of the control distribution mmmu and SSSu can
be computed analytically and are differentiable with respect
to the policy parameters uuu.

In the following, we describe how to analytically com-
pute these gradients for a gradient-based policy search. We
obtain the gradient dJp=duuu by repeated application of the
chain-rule: First, we move the gradient into the sum in (2),
and with Et :¼ IExxxt ½cðxxxtÞ�we obtain

dJpðuuuÞ
duuu

¼
XT
t¼1

dEt

duuu
;

dEt

duuu
¼ dEt

dpðxxxtÞ
dpðxxxtÞ
duuu

:¼ @Et

@mmmt

dmmmt

duuu
þ @Et

@SSSt

dSSSt

duuu
;

(12)

where we used the shorthand notation dEt=dpðxxxtÞ ¼ fdEt=
dmmmt; dEt=dSSStg for taking the derivative of Et with respect to
both the mean and covariance of pðxxxtÞ ¼ N ðxxxtjmmmt;SSStÞ. Sec-
ond, as we will show in Section 4, the predicted mean mmmt

and covariance SSSt depend on the moments of pðxxxt�1Þ and
the controller parameters uuu. By applying the chain-rule to

(12), we obtain then

dpðxxxtÞ
duuu

¼ @pðxxxtÞ
@pðxxxt�1Þ

dpðxxxt�1Þ
duuu

þ @pðxxxtÞ
@uuu

; (13)

@pðxxxtÞ
@pðxxxt�1Þ ¼

@mmmt

@pðxxxt�1Þ ;
@SSSt

@pðxxxt�1Þ
� �

: (14)

From here onward, we focus on dmmmt=duuu, see (12), but com-
puting dSSSt=duuu in (12) is similar. For dmmmt=duuu, we compute the
derivative

dmmmt

duuu
¼ @mmmt

@mmmt�1

dmmmt�1

duuu
þ @mmmt

@SSSt�1

dSSSt�1

duuu
þ @mmmt

@uuu
: (15)

Since dpðxxxt�1Þ=duuu in (13) is known from time step t� 1 and
@mmmt=@pðxxxt�1Þ is computed by applying the chain-rule to (17)-
(20), we conclude with

@mmmt

@uuu
¼ @mmmDDD

@pðuuut�1Þ
@pðuuut�1Þ

@uuu
¼ @mmmDDD

@mmmu

@mmmu

@uuu
þ @mmmDDD

@SSSu

@SSSu

@uuu
: (16)

The partial derivatives of mmmu and SSSu, i.e., the mean and
covariance of pðuuutÞ, used in (16) depend on the policy
representation. The individual partial derivatives in (12)-
(16) depend on the approximate inference method used
for propagating state distributions through time. For
example, with moment matching (MM) or linearization
of the posterior GP (see Section 4 for details) the desired
gradients can be computed analytically by repeated
application of the chain-rule. The Appendix, which can
be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2013.218, derives the gradients for the moment-
matching approximation.

A gradient-based optimization method using estimates of
the gradient of JpðuuuÞ such as finite differences or more effi-
cient sampling-based methods (see [43] for an overview)
requires many function evaluations, which can be computa-
tionally expensive. However, since in our case policy evalu-
ation can be performed analytically, we profit from analytic
expressions for the gradients, which allows for standard
gradient-based non-convex optimization methods, such as
CG or BFGS, to determine optimized policy parameters uuu�.

4 LONG-TERM PREDICTIONS

Long-term predictions pðxxx1Þ; . . . ; pðxxxT Þ for a given policy
parametrization are essential for policy evaluation and
improvement as described in Sections 3.2 and 3.3, respec-
tively. These long-term predictions are computed iteratively:
At each time step, PILCO approximates the predictive state
distribution pðxxxtþ1Þ by a Gaussian, see (9)-(10). For this
approximation, we need to predict with GPs when the input
is given by a probability distribution pð~xxxtÞ, see (8). In this sec-
tion, we detail the computations of the mean mmmDDD and covari-
ance matrix SSSDDD of the GP predictive distribution, see (8), as
well as the cross-covariances cov½~xxxt;DDDt� ¼ cov

�½xxx>
t ; uuu

>
t �>;DDDt

	
,

which are required in (9)-(10). We present two approxima-
tions to predicting with GPs at uncertain inputs: Moment
matching [15], [44] and linearization of the posterior GP
mean function [28]. While moment matching computes the

Fig. 2. GP prediction at an uncertain input. The input distribution pðxxxt; uuutÞ
is assumed Gaussian (lower left panel). When propagating it through the
GP model (upper left panel), we obtain the shaded distribution pðDDtÞ,
upper right panel. We approximate pðDDtÞ by a Gaussian (upper right
panel), which is computed by means of either moment matching (blue)
or linearization of the posterior GP mean (red). Using linearization
for approximate inference can lead to predictive distributions that are
too tight.
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first twomoments of the predictive distribution exactly, their
approximation by explicit linearization of the posterior GP is
computationally advantageous.

4.1 Moment Matching

Following the law of iterated expectations, for target dimen-
sions a ¼ 1; . . . ; D;we obtain the predictive mean

ma
DDD ¼ IE~xxxt ½IEfa ½fað~xxxtÞj~xxxt�� ¼ IE~xxxt ½mfað~xxxtÞ�
¼
Z

mfað~xxxtÞN ð~xxxtj~mmmt;
~SSStÞ d~xxxt ¼ bbb>

a qqqa;
(17)

bbba ¼
�
KKKa þ s2

wa

��1
yyya; (18)

with qqqa ¼ ½qa1 ; . . . ; qan �>. The entries of qqqa 2 IRn are com-
puted using standard results from multiplying and integrat-
ing over Gaussians and are given by

qai ¼
Z

kað~xxxi; ~xxxtÞN ð~xxxtj~mmmt;
~SSStÞ d~xxxt

¼ s2
fa



~SSStLLL
�1
a þ III



�1
2 exp � 1

2
nnn>i ð~SSSt þ LLLaÞ�1nnni

� �
;

(19)

where we define

nnni :¼ ð~xxxi � ~mmmtÞ (20)

as the difference between the training input ~xxxi and the mean
of the test input distribution pðxxxt; uuutÞ.

Computing the predictive covariance matrix SSSDDD 2 IRD	D

requires us to distinguish between diagonal elements s2
aa

and off-diagonal elements s2
ab, a 6¼ b: Using the law of

total (co-)variance, we obtain for target dimensions a; b ¼
1; . . . ; D

s2
aa ¼ IE~xxxt

�
varf ½Daj~xxxt�

	þ IEf;~xxxt

�
D2
a

	� �mmma
DDD

�2
; (21)

s2
ab ¼ IEf;~xxxt ½DaDb� � mmma

DDDmmm
b
DDD; a 6¼ b; (22)

respectively, where ma
DDD is known from (17). The off-diagonal

terms s2
ab do not contain the additional term IE~xxxt ½covf ½Da;

Dbj~xxxt�� because of the conditional independence assumption
of the GP models: Different target dimensions do not covary
for given ~xxxt.

We start the computation of the covariance matrix with
the terms that are common to both the diagonal and the off-
diagonal entries: With pð~xxxtÞ ¼ N ð~xxxtj~mmmt;

~SSStÞ and the law of
iterated expectations, we obtain

IEf;~xxxt ½DaDb� ¼ IE~xxxt

�
IEf ½Daj~xxxt�IEf ½Dbj~xxxt�

	
¼ð6Þ
Z

ma
fð~xxxtÞmb

fð~xxxtÞpð~xxxtÞd~xxxt

(23)

because of the conditional independence of Da and Db

given ~xxxt. Using the definition of the GP mean function in
(6), we obtain

IEf;~xxxt ½DaDb� ¼ bbb>
a QQQbbbb; (24)

QQQ :¼
Z

kað~xxxt; ~XXXÞ>kbð~xxxt; ~XXXÞpð~xxxtÞd~xxxt: (25)

Using standard results from Gaussian multiplications and
integration, we obtain the entries Qij of QQQ 2 IRn	n

Qij ¼ jRRRj�1
2 kað~xxxi; ~mmmtÞkbð~xxxj; ~mmmtÞ exp

1

2
zzz>ijTTT

�1zzzij

� �
; (26)

where we define

RRR :¼ ~SSSt

�
LLL�1
a þ LLL�1

b

�þ III; TTT :¼ LLL�1
a þ LLL�1

b þ ~SSS�1
t ;

zzzij :¼ LLL�1
a nnni þ LLL�1

b nnnj;

with nnni defined in (20). Hence, the off-diagonal entries of SSSDDD

are fully determined by (17)-(20), (22), and (24)-(26).
From (21), we see that the diagonal entries contain the

additional term

IE~xxxt

�
varf ½Daj~xxxt�

	 ¼ s2
fa
� tr

��
KKKa þ s2

wa
III
��1

QQQ
�þ s2

wa
(27)

withQQQ given in (26) and s2
wa

being the system noise variance
of the ath target dimension. This term is the expected vari-
ance of the function, see (7), under the distribution pð~xxxtÞ.

To obtain the cross-covariances cov½xxxt;DDDt� in (10), we com-
pute the cross-covariance cov½~xxxt;DDDt� between an uncertain
state-action pair ~xxxt � Nð~mmmt;

~SSStÞ and the corresponding pre-
dicted state difference xxxtþ1 � xxxt ¼ DDDt � NðmmmDDD;SSSDDDÞ. This
cross-covariance is given by

cov½~xxxt;DDDt� ¼ IE~xxxt;f

�
~xxxtDDD

>
t

	� ~mmmtmmm
>
DDD ; (28)

where the components of mmmDDD are given in (17), and ~mmmt is the
known mean of the input distribution of the state-action
pair at time step t.

Using the law of iterated expectation, for each state
dimension a ¼ 1; . . . ; D, we compute IE~xxxt;f ½~xxxtD

a
t � as

IE~xxxt;f ½~xxxtDa
t � ¼ IE~xxxt ½~xxxtIEf ½Da

t j~xxxt�� ¼
Z

~xxxtm
a
fð~xxxtÞpð~xxxtÞ d~xxxt

¼ð6Þ
Z

~xxxt

Xn
i¼1

bai
kafð~xxxt; ~xxxiÞ

 !
pð~xxxtÞ d~xxxt;

(29)

where the (posterior) GP mean function mfð~xxxtÞ was repre-
sented as a finite kernel expansion. Note that ~xxxi are the state-
action pairs, which were used to train the dynamics GP
model. By pulling the constant bai

out of the integral and
changing the order of summation and integration, we obtain

IE~xxxt;f

�
~xxxtD

a
t

	 ¼Xn
i¼1

bai

Z
~xxxt c1Nð~xxxt j ~xxxi;LLLaÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼ka
f
ð~xxxt;~xxxiÞ

N ð~xxxt j ~mmmt;
~SSStÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

pð~xxxtÞ

d~xxxt;

(30)

where we define c1 :¼ s2
fa
ð2pÞDþF

2 jLLLaj
1
2 with ~xxx 2 IRDþF , such

that kafð~xxxt; ~xxxiÞ ¼ c1Nð~xxxtj~xxxi;LLLaÞ is an unnormalized Gaussian
probability distribution in ~xxxt, where ~xxxi, i ¼ 1; . . . ; n, are the
GP training inputs. The product of the two Gaussians in (30)
yields a new (unnormalized) Gaussian c�1

2 N �~xxxt j ccci;CCC
�
with

c�1
2 ¼ ð2pÞ�DþF

2 jLLLa þ ~SSStj�
1
2

	 exp � 1

2
ð~xxxi � ~mmmtÞ>ðLLLa þ ~SSStÞ�1ð~xxxi � ~mmmtÞ

� �
;

CCC ¼ �LLL�1
a þ ~SSS�1

t

��1
; ccci ¼ CCC

�
LLL�1
a ~xxxi þ ~SSS�1

t ~mmmt

�
:
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By pulling all remaining variables, which are independent
of ~xxxt, out of the integral in (30), the integral determines the
expected value of the product of the two Gaussians, ccci.
Hence, we obtain

IE~xxxt;f

�
~xxxtD

a
t

	 ¼Xn
i¼1

c1c
�1
2 baiccci; a ¼ 1; . . . ; D;

cov~xxxt;f
�
~xxxt;D

a
t

	 ¼Xn
i¼1

c1c
�1
2 baiccci � ~mmmtm

a
DDD;

(31)

for all predictive dimensions a ¼ 1; . . . ; E. With c1c
�1
2 ¼ qai ,

see (19), and ccci ¼ ~SSStð~SSSt þ LLLaÞ�1~xxxi þ LLLð~SSSt þ LLLaÞ�1 ~mmmt we sim-
plify (31) and obtain

cov~xxxt;f
�
~xxxt;D

a
t

	 ¼Xn
i¼1

baiqai
~SSStð~SSSt þ LLLaÞ�1ð~xxxi � ~mmmtÞ; (32)

a ¼ 1; . . . ; E. The desired covariance cov½xxxt;Dt� is a D	 E
submatrix of the ðDþ F Þ 	 E cross-covariance computed
into (32).

A visualization of the approximation of the predictive
distribution by means of exact moment matching is given
in Fig. 2.

4.2 Linearization of the Posterior GP Mean Function

An alternative way of approximating the predictive distri-
bution pðDDDtÞ by a Gaussian for ~xxxt � Nð~xxxt j ~mmmt;

~SSStÞ is to line-
arize the posterior GP mean function. Fig. 2 visualizes the
approximation by means of linearizing the posterior GP
mean function.

The predicted mean is obtained by evaluating the posterior
GP mean in (5) at the mean ~mmmt of the input distribution, i.e.,

mmma
DDD ¼ IEf ½fað~mmmtÞ� ¼ mfað~mmmtÞ ¼ bbb>

a kað ~XXX; ~mmmtÞ; (33)

a ¼ 1; . . . ; E, where bbba is given in (18).
To compute the GP predictive covariance matrix SSSDDD, we

explicitly linearize the posterior GP mean function around
~mmmt. By applying standard results for mapping Gaussian dis-
tributions through linear models, the predictive covariance
is given by

SSSDDD ¼ VVV ~SSStVVV
> þ SSSw; (34)

VVV ¼ @mmmDDD

@~mmmt

¼ bbb> @kð ~XXX; ~mmmtÞ
@~mmmt

: (35)

In (34), SSSw is a diagonal matrix whose entries are the noise
variances s2

wa
plus the model uncertainties varf ½Da

t j~mmmt� eval-
uated at ~mmmt, see (7). This means, model uncertainty no longer
depends on the density of the data points. Instead it is
assumed to be constant. Note that the moments computed
in (33)-(34) are not exact.

The cross-covariance cov½~xxxt;DDDt� is given by ~SSStVVV , where VVV is
defined in (35).

5 POLICY

In the following, we describe the desired properties of the
policy within the PILCO learning framework. First, to com-
pute the long-term predictions pðxxx1Þ; . . . ; pðxxxT Þ for policy
evaluation, the policy must allow us to compute a

distribution over controls pðuuuÞ ¼ pðpðxxxÞÞ for a given (Gauss-
ian) state distribution pðxxxÞ. Second, in a realistic real-world
application, the amplitudes of the control signals are
bounded. Ideally, the learning system takes these con-
straints explicitly into account. In the following, we detail
how PILCO implements these desiderata.

5.1 Predictive Distribution over Controls

During the long-term predictions, the states are given by a
probability distribution pðxxxtÞ, t ¼ 0; . . . ; T . The probability
distribution of the state xxxt induces a predictive distribution
pðuuutÞ ¼ pðpðxxxtÞÞ over controls, even when the policy is deter-
ministic. We approximate the distribution over controls
using moment matching, which is in many interesting cases
analytically tractable.

5.2 Constrained Control Signals

In practical applications, force or torque limits are present
and must be accounted for during planning. Suppose the
control limits are such that uuu 2 ½�uuumax; uuumax�. Let us consider
a preliminary policy ~p with an unconstrained amplitude. To
account for the control limits coherently during simulation,
we squash the preliminary policy ~p through a bounded and
differentiable squashing function, which limits the ampli-
tude of the final policy p. As a squashing function, we use

sðxÞ ¼ 9

8
sinðxÞ þ 1

8
sinð3xÞ 2 ½�1; 1�; (36)

which is the third-order Fourier series expansion of a trape-
zoidal wave, normalized to the interval ½�1; 1�. The squash-
ing function in (36) is computationally convenient as we can
analytically compute predictive moments for Gaussian dis-
tributed states. Subsequently, we multiply the squashed
policy by uuumax and obtain the final policy

pðxxxÞ ¼ uuumaxsð~pðxxxÞÞ 2 ½�uuumax; uuumax�; (37)

an illustration of which is shown in Fig. 3. Although the
squashing function in (36) is periodic, it is almost always
used within a half wave if the preliminary policy ~p is initial-
ized to produce function values that do not exceed the
domain of a single period. Therefore, the periodicity does
notmatter in practice.

To compute a distribution over constrained control sig-
nals, we execute the following steps:

pðxxxtÞ 7! pð~pðxxxtÞÞ 7! pðuuumaxsð~pðxxxtÞÞÞ ¼ pðuuutÞ: (38)

Fig. 3. Constraining the control signal. Panel (a) shows an example of an
unconstrained preliminary policy ~p as a function of the state x. Panel
(b) shows the constrained policy pðxÞ ¼ sð~pðxÞÞ as a function of the
state x.
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First, we map the Gaussian state distribution pðxxxtÞ
through the preliminary (unconstrained) policy ~p. Thus, we
require a preliminary policy ~p that allows for closed-form
computation of the moments of the distribution over con-
trols pð~pðxxxtÞÞ. Second, we squash the approximate Gaussian
distribution pð~pðxxxÞÞ according to (37) and compute exactly
the mean and variance of pð~pðxxxÞÞ. Details are given in the
Appendix, available in the online supplemental material.
We approximate pð~pðxxxÞÞ by a Gaussian with these moments,
yielding the distribution pðuuuÞ over controls in (38).

5.3 Representations of the Preliminary Policy

In the following, we present two representations of the pre-
liminary policy ~p, which allow for closed-form computa-
tions of the mean and covariance of pð~pðxxxÞÞwhen the state xxx
is Gaussian distributed. We consider both a linear and a
nonlinear representations of ~p.

5.3.1 Linear Policy

The linear preliminary policy is given by

~pðxxx�Þ ¼ AAAxxx� þ bbb; (39)

where AAA is a parameter matrix of weights and bbb is an offset
vector. In each control dimension d, the policy in (39) is a
linear combination of the states (the weights are given by
the dth row in AAA) plus an offset bd.

The predictive distribution pð~pðxxx�ÞÞ for a state distribu-
tion xxx� � N ðmmm�;SSS�Þ is an exact Gaussian with mean and
covariance

IExxx� ½~pðxxx�Þ� ¼ AAAmmm� þ bbb; covxxx� ½~pðxxx�Þ� ¼ AAASSS�AAA>; (40)

respectively. A drawback of the linear policy is that it is not
flexible. However, a linear controller can often be used for
stabilization around an equilibrium.

5.3.2 Nonlinear Policy: Deterministic Gaussian Process

In the nonlinear case, we represent the preliminary policy ~p
by

~pðxxx�Þ ¼
XN
i¼1

kðmmmi; xxx�Þ
�
KKK þ s2

pIII
��1

ttt ¼ kðMMM;xxx�Þ>aaa; (41)

where xxx� is a test input, aaa ¼ ðKKK þ 0:01IIIÞ�1ttt, where ttt plays
the role of a GP’s training targets. In (41), MMM ¼ ½mmm1; . . . ;mmmN �
are the centers of the (axis-aligned) Gaussian basis functions

kðxxxp; xxxqÞ ¼ exp � 1

2
ðxxxp � xxxqÞ>LLL�1ðxxxp � xxxqÞ

� �
: (42)

We call the policy representation in (41) a deterministic
GP with a fixed number of N basis functions. Here,
“deterministic” means that there is no uncertainty about the
underlying function, that is, var~p½~pðxxxÞ� ¼ 0. Therefore, the
deterministic GP is a degenerate model, which is function-
ally equivalent to a regularized RBF network. The determin-
istic GP is functionally equivalent to the posterior GP mean
function in (6), where we set the signal variance to 1, see
(42), and the noise variance to 0:01. As the preliminary pol-
icy will be squashed through s in (36) whose relevant sup-
port is the interval ½� p

2 ;
p
2�, a signal variance of 1 is about

right. Setting additionally the noise standard deviation to
0.1 corresponds to fixing the signal-to-noise ratio of the pol-
icy to 10 and, hence, the regularization.

For a Gaussian distributed state xxx� � N ðmmm�;SSS�Þ, the pre-
dictive mean of ~pðxxx�Þ as defined in (41) is given as

IExxx� ½~pðxxx�Þ� ¼ aaa>
a IExxx� ½kðMMM;xxx�Þ�

¼ aaa>
a

Z
kðMMM;xxx�Þpðxxx�Þ dxxx� ¼ aaa>

a rrra;
(43)

where for i ¼ 1; . . . ; N and all policy dimensions
a ¼ 1; . . . ; F

rai ¼ jSSS�LLL�1
a þ IIIj�1

2

	 exp � 1

2
ðmmm� �mmmiÞ>ðSSS� þ LLLaÞ�1ðmmm� �mmmiÞ

� �
:

The diagonal matrix LLLa contains the squared length-scales
‘i, i ¼ 1; . . . ; D. The predicted mean in (43) is equivalent to
the standard predicted GP mean in (17).

For a; b ¼ 1; . . . ; F , the entries of the predictive covariance
matrix are computed according to

covxxx� ½~paðxxx�Þ; ~pbðxxx�Þ�
¼ IExxx� ½~paðxxx�Þ~pbðxxx�Þ� � IExxx� ½~paðxxx�Þ�IExxx� ½~pbðxxx�Þ�;

where IExxx� ½~pfa;bgðxxx�Þ� is given in (43). Hence, we focus on the
term IExxx� ½~paðxxx�Þ~pbðxxx�Þ�, which for a; b ¼ 1; . . . ; F is given by

IExxx� ½~paðxxx�Þ~pbðxxx�Þ� ¼ aaa>
a IExxx� ½kaðMMM;xxx�ÞkbðMMM;xxx�Þ>�aaab

¼ aaa>
a QQQaaab:

For i; j ¼ 1; . . . ; N , we compute the entries of QQQ as

Qij ¼
Z

kaðmmmi; xxx�Þkbðmmmj; xxx�Þpðxxx�Þdxxx�

¼ kaðmmmi; xxx�Þkbðmmmj; xxx�ÞjRRRj�
1
2 exp

�
zzz>ijTTT

�1zzzij
�
;

RRR ¼ SSS�
�
LLL�1
a þ LLL�1

b

�þ III; TTT ¼ LLL�1
a þ LLL�1

b þ SSS�1
� ;

zzzij ¼ LLL�1
a ðmmm� �mmmiÞ þ LLL�1

b ðmmm� �mmmjÞ:

Combining this result with (43) fully determines the predic-
tive covariance matrix of the preliminary policy.

Unlike the predictive covariance of a probabilistic GP,
see (21)-(22), the predictive covariance matrix of the deter-
ministic GP does not comprise any model uncertainty in its
diagonal entries.

5.4 Policy Parameters

In the following, we describe the policy parameters for both
the linear and the nonlinear policy.4

5.4.1 Linear Policy

The linear policy in (39) possesses Dþ 1 parameters per
control dimension: For control dimension d there are D
weights in the dth row of the matrix AAA. One additional
parameter originates from the offset parameter bd.

4. For notational convenience, with a (non)linear policy we mean
the (non)linear preliminary policy ~p mapped through the squashing
function s and subsequently multiplied by uuumax.
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5.4.2 Nonlinear Policy

The parameters of the deterministic GP in (41) are the loca-
tionsMMM of the centers (DN parameters), the (shared) length-
scales of the Gaussian basis functions (D length-scale
parameters per target dimension), and the N targets ttt per
target dimension. In the case of multivariate controls, the
basis function centersMMM are shared.

5.5 Computing the Successor State Distribution

Algorithm 2 summarizes the computational steps required
to compute the successor state distribution pðxxxtþ1Þ from
pðxxxtÞ.

The computation of a distribution over controls pðuuutÞ
from the state distribution pðxxxtÞ requires two steps: First, for
a Gaussian state distribution pðxxxtÞ at time t a Gaussian
approximation of the distribution pð~pðxxxtÞÞ of the prelimi-
nary policy is computed analytically. Second, the prelimi-
nary policy is squashed through s and an approximate
Gaussian distribution of pðuuumaxsð~pðxxxtÞÞÞ is computed analyt-
ically in (38) using results from the Appendix, available in
the online supplemental material. Third, we analytically
compute a Gaussian approximation to the joint distribution
pðxxxt; uuutÞ ¼ pðxxxt;pðxxxtÞÞ. For this, we compute (a) a Gaussian
approximation to the joint distribution pðxxxt; ~pðxxxtÞÞ, which is
exact if ~p is linear, and (b) an approximate fully joint Gauss-
ian distribution pðxxxt; ~pðxxxtÞ; uuutÞ. We obtain cross-covariance
information between the state xxxt and the control signal
uuut ¼ uuumaxsð~pðxxxtÞÞ via

cov½xxxt; uuut� ¼ cov½xxxt; ~pðxxxtÞ�cov½~pðxxxtÞ; ~pðxxxtÞ��1cov½~pðxxxtÞ; uuut�;
where we exploit the conditional independence of xxxt and
uuut given ~pðxxxtÞ. Then, we integrate ~pðxxxtÞ out to obtain the
desired joint distribution pðxxxt; uuutÞ. This leads to an approxi-
mate Gaussian joint probability distribution pðxxxt; uuutÞ ¼
pðxxxt; pðxxxtÞÞ ¼ pð~xxxtÞ. Fourth, with the approximate Gaussian
input distribution pð~xxxtÞ, the distribution pðDDDtÞ of the
change in state is computed using the results from Section
4. Finally, the mean and covariance of a Gaussian approxi-
mation of the successor state distribution pðxxxtþ1Þ are given
by (9) and (10), respectively.

All required computations can be performed analytically
because of the choice of the Gaussian covariance function
for the GP dynamics model, see (3), the representations of
the preliminary policy ~p, see Section 5.3, and the choice of
the squashing function, see (36).

6 COST FUNCTION

In our learning set-up, we use a cost function that solely
penalizes the euclidean distance d of the current state to
the target state. Using only distance penalties is often suf-
ficient to solve a task: Reaching a target xxxtarget with high

speed naturally leads to overshooting and, thus, to high
long-term costs. In particular, we use the generalized
binary saturating cost

cðxxxÞ ¼ 1� exp � 1

2s2
c

dðxxx; xxxtargetÞ2
� �

2 ½0; 1�; (44)

which is locally quadratic but saturates at unity for large
deviations d from the desired target xxxtarget. In (44), the geo-
metric distance from the state xxx to the target state is
denoted by d, and the parameter sc controls the width of
the cost function.5

In classical control, typically a quadratic cost is assumed.
However, a quadratic cost tends to focus attention on the
worst deviation from the target state along a predicted tra-
jectory. In the early stages of learning the predictive uncer-
tainty is large and, therefore, the policy gradients, which are
described in Section 3.3 become less useful. Therefore, we
use the saturating cost in (44) as a default within the PILCO

learning framework.
The immediate cost in (44) is an unnormalized Gaussian

with mean xxxtarget and variance s2
c , subtracted from unity.

Therefore, the expected immediate cost can be computed
analytically according to

IExxx½cðxxxÞ� ¼
Z

cðxxxÞpðxxxÞ dxxx

¼ 1�
Z

exp � 1

2
ðxxx� xxxtargetÞ>TTT�1ðxxx� xxxtargetÞ

� �
pðxxxÞ dxxx;

(45)

where TTT�1 is the precision matrix of the unnormalized
Gaussian in (45). If the state xxx has the same representation as
the target vector, TTT�1 is a diagonal matrix with entries either
unity or zero, scaled by 1=s2

c . Hence, for xxx � Nðmmm;SSSÞ we
obtain the expected immediate cost

IExxx½cðxxxÞ� ¼ 1� jIII þ SSSTTT�1j�1=2

	 exp � 1

2
ðmmm� xxxtargetÞ>~SSS1ðmmm� xxxtargetÞ

� �
;

(46)

~SSS1 :¼ TTT�1ðIII þ SSSTTT�1Þ�1: (47)

The partial derivatives @
@mmmt

IExxxt ½cðxxxtÞ�; @
@SSSt

IExxxt ½cðxxxtÞ� of the
immediate cost with respect to the mean and the covari-
ance of the state distribution pðxxxtÞ ¼ N ðmmmt;SSStÞ, which are
required to compute the policy gradients analytically,
are given by

@IExxxt ½cðxxxtÞ�
@mmmt

¼ �IExxxt ½cðxxxtÞ�ðmmmt � xxxtargetÞ>~SSS1; (48)

@IExxxt ½cðxxxtÞ�
@SSSt

¼ 1

2
IExxxt ½cðxxxtÞ�

	 �~SSS1ðmmmt � xxxtargetÞðmmmt � xxxtargetÞ> � III
�
~SSS1;

(49)

respectively, where ~SSS1 is given in (47).

5. In the context of sensorimotor control, the saturating cost function
in (44) resembles the cost function in human reasoning as experimen-
tally validated by K€ording and Wolpert [31].
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6.1 Exploration and Exploitation

The saturating cost function in (44) allows for a natural
exploration when the policy aims to minimize the expected
long-term cost in (2). This property is illustrated in Fig. 4 for
a single time step where we assume a Gaussian state distri-
bution pðxxxtÞ. If the mean of pðxxxtÞ is far away from the
targetxxxtarget, a wide state distribution is more likely to have
substantial tails in some low-cost region than a more
peaked distribution as shown in Fig. 4a. In the early stages
of learning, the predictive state uncertainty is largely due to
propagating model uncertainties forward. If we predict a
state distribution in a high-cost region, the saturating cost
then leads to automatic exploration by favoring uncertain
states, i.e., states in regions far from the target with a poor
dynamics model. When visiting these regions during inter-
action with the physical system, subsequent model learning
reduces the model uncertainty locally. In the subsequent
policy evaluation, PILCO will predict a tighter state distribu-
tion in the situations described in Fig. 4.

If the mean of the state distribution is close to the target as
in Fig. 4b, wide distributions are likely to have substantial
tails in high-cost regions. By contrast, the mass of a peaked
distribution is more concentrated in low-cost regions. In
this case, the policy prefers peaked distributions close to the
target, leading to exploitation.

To summarize, combining a probabilistic dynamics
model, Bayesian inference, and a saturating cost leads to
automatic exploration as long as the predictions are far
from the target—even for a policy, which greedily mini-
mizes the expected cost. Once close to the target, the policy
does not substantially deviate from a confident trajectory
that leads the system close to the target.6

7 EXPERIMENTAL RESULTS

In this section, we assess PILCO’s key properties and show
that PILCO scales to high-dimensional control problems.
Moreover, we demonstrate the hardware applicability of
our learning framework on two real systems. In all cases,
PILCO followed the steps outlined in Algorithm 1. To reduce

the computational burden, we used the sparse GP method
of [50] after 300 collected data points.

7.1 Evaluation of Key Properties

In the following, we assess the quality of the approximate
inference method used for long-term predictions in terms of
computational demand and learning speed. Moreover, we
shed some light on the quality of the Gaussian approxima-
tions of the predictive state distributions and the impor-
tance of Bayesian averaging. For these assessments, we
applied PILCO to two nonlinear control tasks, which are
introduced in the following.

7.1.1 Task Descriptions

We considered two simulated tasks (double-pendulum
swing-up, cart-pole swing-up) to evaluate important prop-
erties of the PILCO policy search framework: learning speed,
quality of approximate inference, importance of Bayesian
averaging, and hardware applicability. In the following we
briefly introduce the experimental set-ups.

Double-pendulum swing-up with two actuators. The double
pendulum system is a two-link robot arm with two actua-
tors, see Fig. 5. The state xxx is given by the angles u1; u2 and
the corresponding angular velocities _u1; _u2 of the inner and
outer link, respectively, measured from being upright. Each
link was of length 1m and mass 0:5 kg. Both torques u1 and
u2 were constrained to ½�3; 3�Nm. The control signal could
be changed every 100ms. In the meantime it was constant
(zero-order-hold control). The objective was to learn a con-
troller that swings the double pendulum up from an initial
distribution pðxxx0Þ around mmm0 ¼ ½p;p; 0; 0�> and balances it in
the inverted position with u1 ¼ 0 ¼ u2. The prediction hori-
zon was 2:5 s.

The task is challenging since its solution requires the
interplay of two correlated control signals. The challenge is
to automatically learn this interplay from experience. To
solve the double pendulum swing-up task, a nonlinear pol-
icy is required. Thus, we parametrized the preliminary pol-
icy as a deterministic GP, see (41), with 100 basis functions
resulting in 812 policy parameters. We chose the saturating
immediate cost in (44), where the Euclidean distance
between the upright position and the tip of the outer link
was penalized. We chose the cost width sc ¼ 0:5, which
means that the tip of the outer pendulum had to cross hori-
zontal to achieve an immediate cost smaller than unity.

Fig. 4. Automatic exploration and exploitation with the saturating cost
function (blue, solid). The x-axes describe the state space. The target
state is the origin.

Fig. 5. Double pendulum with two actuators applying torques u1 and u2.
The cost function penalizes the distance d to the target.

6. Code is available at http://mloss.org/software/view/508/.
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Cart-Pole swing-up. The cart-pole system consists of a cart
running on a track and a freely swinging pendulum attached
to the cart. The state of the system is the position x of the cart,
the velocity _x of the cart, the angle u of the pendulum mea-
sured from hanging downward, and the angular velocity _u.
A horizontal force u 2 ½�10; 10�N could be applied to the
cart. The objective was to learn a controller to swing the pen-
dulum up from aroundmmm0 ¼ ½x0; _x0; u0; _u0�> ¼ ½0; 0; 0; 0�> and
to balance it in the inverted position in the middle of the
track, i.e., around xxxtarget ¼ ½0; �;p; ��>. Since a linear control-
ler is not capable of solving the task [45], PILCO learned a non-
linear state-feedback controller based on a deterministic GP
with 50 basis functions (see Section 5.3.2), resulting in 305
policy parameters to be learned.We chose the saturating cost
in (44), where the Euclidean distance between the target posi-
tion (pendulum upright in the middle of the track) and the
tip of the pendulumwas penalized.

In our simulation, we set the masses of the cart and the
pendulum to 0:5 kg each, the length of the pendulum to
0:5 m, and the coefficient of friction between cart and ground
to 0:1 Ns=m. The prediction horizon was set to 2:5 s. The con-
trol signal could be changed every 100 ms. In the meantime,
it was constant (zero-order-hold control). The only knowl-
edge employed about the system was the length of the pen-
dulum to find appropriate orders of magnitude to set the
sampling frequency (10 Hz) and the standard deviation of
the cost function (sc ¼ 0:25 m), requiring the tip of the pen-
dulum tomove above horizontal not to incur full cost.

7.1.2 Approximate Inference Assessment

In the following, we evaluate the quality of the presented
approximate inference methods for policy evaluation
(moment matching as described in Section 4.1) and lineari-
zation of the posterior GP mean as described in Section 4.2)
with respect to computational demand (Section 7.1.2) and
learning speed (Section 7.1.2).

Computational demand For a single time step, the compu-
tational complexity of moment matching is Oðn2E2DÞ, where
n is the number of GP training points, D is the input
dimensionality, and E the dimension of the prediction. The
most expensive computations are the entries of QQQ 2 IRn	n,
which are given in (26). Each entry Qij requires evaluating a
kernel, which is essentially a D-dimensional scalar product.
The values zzzij are cheap to compute and RRR needs to be com-
puted only once. We end up with Oðn2E2DÞ since QQQ needs
to be computed for all entries of the E 	 E predictive
covariance matrix.

For a single time step, the computational complexity of
linearizing the posterior GP mean function is Oðn2DEÞ. The
most expensive operation is the determination of SSSw in (34),
i.e., the model uncertainty at the mean of the input
distribution, which scales in Oðn2DÞ. This computation is
performed for all E predictive dimensions, resulting in a
computational complexity ofOðn2DEÞ.

Fig. 6 illustrates the empirical computational effort for
both linearization of the posterior GP mean and exact
moment matching. We randomly generated GP models in
D ¼ 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 15; 20; 50 dimensions and GP
training set sizes of n ¼ 100; 250; 500; 1;000 data points. We
set the predictive dimension E ¼ D. The CPU time (single
core) for computing a predictive state distribution and
the required derivatives are shown as a function of the
dimensionality of the state. Four graphs are shown for set-
ups with 100, 250, 500, and 1,000 GP training points, respec-
tively. Fig. 6a shows the graphs for approximate inference
based on linearization of the posterior GP mean, and Fig. 6b
shows the corresponding graphs for exact moment match-
ing on a logarithmic scale. Computations based on lineari-
zation were consistently faster by a factor of 5-10.

Learning Speed. For eight different random initial tra-
jectories and controller initializations, PILCO followed
Algorithm 1 to learn policies. In the cart-pole swing-up
task, PILCO learned for 15 episodes, which corresponds to
a total of 37:5 s of data. In the double-pendulum swing-
up task, PILCO learned for 30 episodes, corresponding to a
total of 75 s of data. To evaluate the learning progress,
we applied the learned controllers after each policy
search (see line 10 in Algorihm 1) 20 times for 2:5 s, start-
ing from 20 different initial states xxx0 � pðxxx0Þ. The learned
controller was considered successful when the tip of the
pendulum was close to the target location from 2 s to
2:5 s, i.e., at the end of the rollout.

� Cart-Pole swing-up. Fig. 7a shows PILCO’s average
learning success for the cart-pole swing-up task as a
function of the total experience. We evaluated both
approximate inference methods for policy evalua-
tion, moment matching and linearization of the pos-
terior GP mean function. Fig. 7a shows that learning
using the computationally more demanding
moment matching is more reliable than using the
computationally more advantageous linearization.

Fig. 6. Empirical computational demand for approximate inference and
derivative computation with GPs for a single time step, shown on a log
scale. (a): Linearization of the posterior GP mean. (b): Exact moment
matching. Fig. 7. Results for the cart-pole swing-up task. (a) Learning curves for

moment matching and linearization (simulation task), (b) required inter-
action time for solving the cart-pole swing-up task compared with other
algorithms.
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On average, after 15–20 s of experience, PILCO reli-
ably, i.e., in 
95 percent of the test runs, solved the
cart-pole swing-up task, whereas the linearization
resulted in a success rate of about 83 percent.

Fig. 7b relates PILCO’s learning speed (blue bar) to
other RL methods (black bars), which solved the
cart-pole swing-up task from scratch, i.e., without
human demonstrations or known dynamics models
[11], [18], [27], [45], [56]. Dynamics models were only
learned in [18], [45], using RBF networks and multi-
layered perceptrons, respectively. In all cases with-
out state-space discretization, cost functions similar
to ours (see (44)) were used. Fig. 7b stresses PILCO’s
data efficiency: PILCO outperforms any other cur-
rently existing RL algorithm by at least one order of
magnitude.

� Double-pendulum swing-up with two actuators. Fig. 8
shows the learning curves for the double-pendulum
swing-up task when using either moment matching
or mean function linearization for approximate infer-
ence during policy evaluation. Fig. 8 shows that PILCO
learns faster (learning already kicks in after 20 s of
data) and overall more successfully with moment
matching. Policy evaluation based on linearization
of the posterior GP mean function achieved about 80
percent success on average, whereas moment match-
ing on average solved the task reliably after about
50 s of data with a success rate 
95 percent.

Summary. We have seen that both approximate inference
methods have pros and cons: Moment matching requires
more computational resources than linearization, but learns
faster and more reliably. The reason why linearization did
not reliably succeed in learning the tasks is that it gets rela-
tively easily stuck in local minima, which is largely a result
of underestimating predictive variances, an example of
which is given in Fig. 2. Propagating too confident predic-
tions over a longer horizon often worsens the problem.
Hence, in the following, we focus solely on the moment
matching approximation.

7.1.3 Quality of the Gaussian Approximation

PILCO strongly relies on the quality of approximate infer-
ence, which is used for long-term predictions and policy

evaluation, see Section 4. We already saw differences
between linearization and moment matching; however,
both methods approximate predictive distributions by a
Gaussian. Although we ultimately cannot answer whether
this approximation is good under all circumstances, we will
shed some light on this issue.

Fig. 9 shows a typical example of the angle of the inner
pendulum of the double pendulum system where, in the
early stages of learning, the Gaussian approximation to
the multi-step ahead predictive distribution is not ideal.
The trajectory distribution of a set of rollouts (red) is multi-
modal. PILCO deals with this inappropriate modeling by
learning a controller that forces the actual trajectories into
a unimodal distribution such that a Gaussian approxima-
tion is appropriate, Fig. 9b.

We explain this behavior as follows: Assuming that
PILCO found different paths that lead to a target, a wide
Gaussian distribution is required to capture the variability
of the bimodal distribution. However, when computing
the expected cost using a quadratic or saturating cost, for
example, uncertainty in the predicted state leads to higher
expected cost, assuming that the mean is close to the tar-
get. Therefore, PILCO uses its ability to choose control
policies to push the marginally multimodal trajectory dis-
tribution into a single mode—from the perspective of min-
imizing expected cost with limited expressive power, this
approach is desirable. Effectively, learning good control-
lers and models goes hand in hand with good Gaussian
approximations.

7.1.4 Importance of Bayesian Averaging

Model-based RL greatly profits from the flexibility of non-
parametric models as motivated in Section 2. In the follow-
ing, we have a closer look at whether Bayesian models are
strictly necessary as well. In particular, we evaluated
whether Bayesian averaging is necessary for successfully
learning from scratch. To do so, we considered the cart-pole
swing-up task with two different dynamics models: first,
the standard nonparametric Bayesian GP model, second, a
nonparametric deterministic GP model, i.e., a GP where we
considered only the posterior mean, but discarded the pos-
terior model uncertainty when doing long-term predictions.
We already described a similar kind of function representa-
tion to learn a deterministic policy, see Section 5.3.2. The dif-
ference to the policy is that in this section the deterministic

Fig. 8. Average success as a function of the total data used for learning
(double pendulum swing-up). The blue error bars show the 95 percent
confidence bounds of the standard error for the moment matching
approximation, the red area represents the corresponding confidence
bounds of success when using approximate inference by means of line-
arizing the posterior GP mean (Lin).

Fig. 9. Long-term predictive (Gaussian) distributions during planning
(shaded) and sample rollouts (red). (a) In the early stages of learning,
the Gaussian approximation is a suboptimal choice. (b) PILCO learned a
controller such that the Gaussian approximations of the predictive states
are good. Note the different scales in (a) and (b).
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GP is still nonparametric (new basis functions are added if
we get more data), whereas the number of basis functions
in the policy is fixed. However, the deterministic GP is no
longer probabilistic because of the loss of model uncer-
tainty, which also results in a degenerate model. Note that
we still propagate uncertainties resulting from the initial
state distribution pðxxx0Þ forward.

Table 1 shows the average learning success of swinging
the pendulum up and balancing it in the inverted position
in the middle of the track. We used moment matching for
approximate inference, see Section 4. Table 1 shows that
learning is only successful when model uncertainties are
taken into account during long-term planning and control
learning, which strongly suggests Bayesian nonparametric
models in model-based RL.

The reason why model uncertainties must be appropri-
ately taken into account is the following: In the early
stages of learning, the learned dynamics model is based
on a relatively small data set. States close to the target are
unlikely to be observed when applying random controls.
Therefore, the model must extrapolate from the current
set of observed states. This requires to predict function
values in regions with large posterior model uncertainty.
Depending on the choice of the deterministic function (we
chose the MAP estimate), the predictions (point estimates)
are very different. Iteratively predicting state distributions
ends up in predicting trajectories, which are essentially
arbitrary and not close to the target state either, resulting
in vanishing policy gradients.

7.2 Scaling to Higher Dimensions: Unicycling

We applied PILCO to learning to ride a five-DoF unicycle with
xxx 2 IR12 and uuu 2 IR2 in a realistic simulation of the one
shown in Fig. 10a. The unicycle was 0:76m high and con-
sisted of a 1 kg wheel, a 23:5 kg frame, and a 10 kg flywheel
mounted perpendicularly to the frame. Two torques could
be applied to the unicycle: The first torque juwj � 10Nm
was applied directly on the wheel to mimic a human rider
using pedals. The torque produced longitudinal and tilt
accelerations. Lateral stability of the wheel could be main-
tained by steering the wheel toward the falling direction of
the unicycle and by applying a torque jutj � 50Nm to the
flywheel. The dynamics of the robotic unicycle were
described by 12 coupled first-order ODEs, see [24].

The objective was to learn a controller for riding the uni-
cycle, i.e., to prevent it from falling. To solve the balancing
task, we used the linear preliminary policy ~pðxxx; uuuÞ ¼ AAAxxxþ bbb
with uuu ¼ fAAA; bbbg 2 IR28. The covariance SSS0 of the initial state
was 0:252III allowing each angle to be off by about 30 degree
(twice the standard deviation).

PILCO differs from conventional controllers in that it
learns a single controller for all control dimensions jointly.
Thus, PILCO takes the correlation of all control and state
dimensions into account during planning and control.

Learning separate controllers for each control variable is
often unsuccessful [37].

PILCO required about 20 trials, corresponding to an over-
all experience of about 30 s, to learn a dynamics model and
a controller that keeps the unicycle upright. A trial was
aborted when the turntable hit the ground, which hap-
pened quickly during the five random trials used for ini-
tialization. Fig. 10b shows empirical results after 1,000 test
runs with the learned policy: Differently-colored bars
show the distance of the flywheel from a fully upright
position. Depending on the initial configuration of the
angles, the unicycle had a transient phase of about a sec-
ond. After 1:2 s, either the unicycle had fallen or the
learned controller had managed to balance it very closely
to the desired upright position. The success rate was
approximately 93 percent; bringing the unicycle upright
from extreme initial configurations was sometimes impos-
sible due to the torque constraints.

7.3 Hardware Tasks

In the following, we present results from [15], [16], where
we successfully applied the PILCO policy search framework
to challenging control and robotics tasks, respectively. It is
important to mention that no task-specific modifications
were necessary, besides choosing a controller representation
and defining an immediate cost function. In particular, we
used the same standard GP priors for learning the forward
dynamics models.

7.3.1 Cart-Pole Swing-Up

As described in [15], PILCO was applied to learning to control
the real cart-pole system, see Fig. 11, developed by [26]. The
masses of the cart and pendulum were 0:7 kg and 0:325 kg,
respectively. A horizontal force u 2 ½�10; 10�N could be
applied to the cart.

PILCO successfully learned a sufficiently good dynamics
model and a good controller fully automatically in only a
handful of trials and a total experience of 17:5 s, which also
confirms the learning speed of the simulated cart-pole sys-
tem in Fig. 7b despite the fact that the parameters of the sys-
tem dynamics (masses, pendulum length, friction, delays,
stiction, etc.) are different. Snapshots of a 20 s test trajectory
are shown in Fig. 11; a video of the entire learning process is
available at http://www.youtube.com/user/PilcoLearner.

TABLE 1
Average Learning Success with Learned Nonparametric

(NP) Transition Models (Cart-Pole Swing-Up)

Fig. 10. Robotic unicycle system and simulation results. The state space
is IR12, the control space IR2.
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7.3.2 Controlling a Low-Cost Robotic Manipulator

We applied PILCO to make a low-precision robotic arm learn
to stack a tower of foam blocks—fully autonomously [16].
For this purpose, we used the lightweight robotic manipula-
tor by Lynxmotion [1] shown in Fig. 12. The arm costs
approximately $370 and possesses six controllable degrees
of freedom: base rotate, three joints, wrist rotate, and a grip-
per (open/close). The plastic arm was controllable by com-
manding both a desired configuration of the six servos via
their pulse durations and the duration for executing the
command. The arm was very noisy: Tapping on the base
made the end effector swing in a radius of about 2 cm. The
system noise was particularly pronounced when moving
the arm vertically (up/down). Additionally, the servo
motors had some play.

Knowledge about the joint configuration of the robot was
not available. We used a PrimeSense depth camera [2] as an
external sensor for visual tracking the block in the gripper
of the robot. The camera was identical to the Kinect sensor,
providing a synchronized depth image and a 640	 480
RGB image at 30 Hz. Using structured infrared light, the
camera delivered useful depth information of objects in a
range of about 0:5-5 m. The depth resolution was approxi-
mately 1 cm at a distance of 2 m [2].

Every 500 ms, the robot used the 3D center of the block in
its gripper as the state xxx 2 IR3 to compute a continuous-val-
ued control signal uuu 2 IR4, which comprised the com-
manded pulse widths for the first four servo motors. Wrist
rotation and gripper opening/closing were not learned. For
block tracking we used real-time (50 Hz) color-based region
growing to estimate the extent and 3D center of the object,
which was used as the state xxx 2 IR3 by PILCO.

As an initial state distribution, we chose pðxxx0Þ ¼
N �xxx0 j mmm0;SSS0

�
with mmm0 being a single noisy measurement of

the 3D camera coordinates of the block in the gripper when
the robot was in its initial configuration. The initial covari-
ance SSS0 was diagonal, where the 95 percent-confidence

bounds were the edge length b of the block. Similarly, the
target state was set based on a single noisy measurement
using the PrimeSense camera. We used linear preliminary
policies, i.e., ~pðxxxÞ ¼ uuu ¼ AAAxxxþ bbb, and initialized the control-
ler parameters uuu ¼ fAAA; bbbg 2 IR16 to zero. The euclidean
distance d of the end effector from the camera was approxi-
mately 0:7–2:0 m, depending on the robot’s configuration.
The cost function in (44) penalized the Euclidean distance
of the block in the gripper from its desired target location
on top of the current tower. Both the frequency at which
the controls were changed and the time discretization were
set to 2 Hz; the planning horizon T was 5 s. After 5 s, the
robot opened the gripper and released the block.

We split the task of building a tower into learning indi-
vidual controllers for each target block B2-B6 (bottom to
top), see Fig. 12, starting from a configuration, in which the
robot arm was upright. All independently trained control-
lers shared the same initial trial.

The motion of the block in the end effector was modeled
by GPs. The inferred system noise standard deviations,
which comprised stochasticity of the robot arm, synchroniza-
tion errors, delays, image processing errors, etc., ranged from
0:5 to 2:0 cm. Here, the y-coordinate, which corresponded to
the height, suffered from larger noise than the other coordi-
nates. The reason for this is that the robot movement was
particularly jerky in the up/down movements. These
learned noise levels were in the right ballpark since they
were slightly larger than the expected camera noise [2]. The
signal-to-noise ratio in our experiments ranged from 2 to 6.

A total of ten learning-interacting iterations (including
the random initial trial) generally sufficed to learn both
good forward models and good controllers as shown in
Fig. 13a, which displays the learning curve for a typical
training session, averaged over ten test runs after each
learning stage and all blocks B2–B6. The effects of learn-
ing became noticeable after about four learning iterations.
After 10 learning iterations, the block in the gripper was
expected to be very close (approximately at noise level) to
the target. The required interaction time sums up to only
50 s per controller and 230 s in total (the initial random
trial is counted only once). This speed of learning is diffi-
cult to achieve by other RL methods that learn from
scratch as shown in Section 7.1.1.

Fig. 13b gives some insights into the quality of the
learned forward model after 10 controlled trials. It shows
the marginal predictive distributions and the actual trajecto-
ries of the block in the gripper. The robot learned to pay
attention to stabilizing the y-coordinate quickly: Moving the
arm up/down caused relatively large “system noise” as
the arm was quite jerky in this direction: In the y-coordinate
the predictive marginal distribution noticeably increases
between 0 s and 2 s. As soon as the y-coordinate was

Fig. 11. Real cart-pole system [15]. Snapshots of a controlled trajectory of 20 s length after having learned the task. To solve the swing-up plus bal-
ancing, PILCO required only 17:5 s of interaction with the physical system.

Fig. 12. Low-cost robotic arm by Lynxmotion [1]. The manipulator does
not provide any pose feedback. Hence, PILCO learns a controller directly
in the task space using visual feedback from a PrimeSense depth
camera.
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stabilized, the predictive uncertainty in all three coordinates
collapsed. Videos of the block-stacking robot are available
at http://www.youtube.com/user/PilcoLearner.

8 DISCUSSION

We have shed some light on essential ingredients for
successful and efficient policy learning: (1) a probabilistic
forward model with a faithful representation of model
uncertainty and (2) Bayesian inference. We focused on
very basic representations: GPs for the probabilistic for-
ward model and Gaussian distributions for the state and
control distributions. More expressive representations
and Bayesian inference methods are conceivable to
account for multi-modality, for instance. However, even
with our current set-up, PILCO can already learn complex
control and robotics tasks. In [8], our framework was
used in an industrial application for throttle valve con-
trol in a combustion engine.

PILCO is a model-based policy search method, which
uses the GP forward model to predict state sequences
given the current policy. These predictions are based on
deterministic approximate inference, e.g., moment
matching. Unlike all model-free policy search methods,
which are inherently based on sampling trajectories [14],
PILCO exploits the learned GP model to compute analytic
gradients of an approximation to the expected long-term
cost Jp for policy search. Finite differences or more effi-
cient sampling-based approximations of the gradients
require many function evaluations, which limits the
effective number of policy parameters [14], [42]. Instead,
PILCO computes the gradients analytically and, therefore,
can learn thousands of policy parameters [15].

It is possible to exploit the learned GP model for sam-
pling trajectories using the PEGASUS algorithm [39], for
instance. Sampling with GPs can be straightforwardly par-
allelized, and was exploited in [32] for learning meta con-
trollers. However, even with high parallelization, policy
search methods based on trajectory sampling do usually not
rely on gradients [7], [30], [32], [40] and are practically lim-
ited by a relatively small number of a few tens of policy
parameters they can manage [38].7

In Section 6.1, we discussed PILCO’s natural exploration
property as a result of Bayesian averaging. It is, however,
also possible to explicitly encourage additional exploration
in a UCB (upper confidence bounds) sense [6]: Instead of
summing up expected immediate costs, see (2), we would
add the sum of cost standard deviations, weighted by a fac-
tor k 2 IR. Then, JpðuuuÞ ¼Pt

�
IE½cðxxxtÞ� þ ks½cðxxxtÞ�

�
. This type

of utility function is also often used in experimental design
[10] and Bayesian optimization [9], [33], [41], [51] to avoid
getting stuck in local minima. Since PILCO’s approximate
state distributions pðxxxtÞ are Gaussian, the cost standard
deviations s½cðxxxtÞ� can often be computed analytically. For
further details, we refer the reader to [12].

One of PILCO’s key benefits is the reduction of model
errors by explicitly incorporating model uncertainty into
planning and control. PILCO, however, does not take tempo-
ral correlation into account. Instead, model uncertainty is
treated as noise, which can result in an under-estimation of
model uncertainty [49]. On the other hand, the moment-
matching approximation used for approximate inference is
typically a conservative approximation.

In this paper, we focused on learning controllers in
MDPs with transition dynamics that suffer from system
noise, see (1). The case of measurement noise is more challeng-
ing: Learning the GP models is a real challenge since we
no longer have direct access to the state. However,
approaches for training GPs with noise on both the training
inputs and training targets yield initial promising results
[36]. For a more general POMDP set-up, Gaussian Process
Dynamical Models (GPDMs) [29], [54] could be used for
learning both a transition mapping and the observation
mapping. However, GPDMs typically need a good
initialization [53] since the learning problem is very high
dimensional.

In [25], the PILCO framework was extended to allow for
learning reference tracking controllers instead of solely
controlling the system to a fixed target location. In [16],
we used PILCO for planning and control in constrained envi-
ronments, i.e., environments with obstacles. This learning
set-up is important for practical robot applications. By dis-
couraging obstacle collisions in the cost function, PILCO

was able to find paths around obstacles without ever col-
liding with them, not even during training. Initially, when
the model was uncertain, the policy was conservative to
stay away from obstacles. The PILCO framework has been
applied in the context of model-based imitation learning

Fig. 13. Robot block stacking task: (a) Average learning curve with 95 percent standard error, (b) Long-term predictions.

7. “Typically, PEGASUS policy search algorithms have been using
[...] maybe on the order of ten parameters or tens of parameters; so, 30,
40 parameters, but not thousands of parameters [...]”, Ng [38].
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to learn controllers that minimize the Kullback-Leibler
divergence between a distribution of demonstrated trajec-
tories and the predictive distribution of robot trajectories
[20], [21]. Recently, PILCO has also been extended to a
multi-task set-up [13].

9 CONCLUSION

We have introduced PILCO, a practical model-based policy
search method using analytic gradients for policy learn-
ing. PILCO advances state-of-the-art RL methods for con-
tinuous state and control spaces in terms of learning
speed by at least an order of magnitude. Key to PILCO’s
success is a principled way of reducing the effect of
model errors in model learning, long-term planning, and
policy learning. PILCO is one of the few RL methods that
has been directly applied to robotics without human dem-
onstrations or other kinds of informative initializations or
prior knowledge.

The PILCO learning framework has demonstrated that
Bayesian inference and nonparametric models for learning
controllers is not only possible but also practicable. Hence,
nonparametric Bayesian models can play a fundamental
role in classical control set-ups, while avoiding the typically
excessive reliance on explicit models.
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