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The Sum-over-Forests density index:
identifying dense regions in a graph

Mathieu Senelle, Silvia Garcia-Diez, Amin Mantrach, Masashi Shimbo, Marco Saerens & François Fouss

Abstract—This work introduces a novel nonparametric density index defined on graphs, the Sum-over-Forests (SoF) density index. It
is based on a clear and intuitive idea: high-density regions in a graph are characterized by the fact that they contain a large amount
of low-cost trees with high outdegrees while low-density regions contain few ones. Therefore, inspired by [1], a Boltzmann probability
distribution on the countable set of forests in the graph is defined so that large (high-cost) forests occur with a low probability while
short (low-cost) forests occur with a high probability. Then, the SoF density index of a node is defined as the expected outdegree of this
node in a non-trivial tree of the forest, thus providing a measure of density around that node. Following the matrix-forest theorem [2],
[3] and a statistical physics framework, it is shown that the SoF density index can be easily computed in closed form through a simple
matrix inversion. Experiments on artificial and real data sets show that the proposed index performs well on finding dense regions, for
graphs of various origins.

Index Terms—Graph mining, density index, dense regions on graphs, matrix-forest theorem.
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1 INTRODUCTION
1.1 General introduction

D ENSITY is an important concept in graph analysis
and has been proven to be of particular interest

in various areas such as, for example, social networks,
biology and World-Wide-Web [4]–[6].

The task of identifying dense regions on a graph can
be based on various concepts (degree of a node, cliques,
cores, etc.) leading to various approaches (see Section
1.2). The key concept on which our approach is based is
forest enumeration and, in particular, the matrix-forest
theorem [2], [3], an extension of the well-known matrix-
tree theorem (see, e.g., [7]). More precisely, the method
developed in this paper, inspired by [1], [8]–[10] (based
on paths instead of forests), relies on the enumeration
of all the possible forests in the graph, therefore leading
to the definition of a new density index which will be
called the Sum-over-Forests (SoF) density index. This
measure has a clear and intuitive interpretation: when
enumerating all the possible forests in the graph, a node
will be considered as having a high density index if it is
part of a tree of many – preferably low-cost – forests,
and has a high outdegree within this forest. Indeed,
if a region has a high density, it will contain a large
number of trees – and therefore forests – so that the
nodes belonging to that region will be part of many
forests and have a high outdegree. Those nodes will thus
obtain a high SoF density index.
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In order to compute this index, we first define a
Boltzmann probability distribution on the countable set
of forests in the graph by adopting a statistical physics
framework. This distribution has the desired property
that high-cost forests occur with a low probability while
low-cost forests occur with a high probability. As in
statistical physics, it depends on a parameter, θ = 1/T ,
controlling the temperature T – and thus the entropy
– of the system. When T is low, only low-cost forests
are taken into account (high-cost forest having a negli-
gible contribution) while for high values of T , high-cost
forests are as important as the low-cost ones (uniform
distribution).

In a second step, the SoF density index of a node
is defined according to this probability distribution.
Roughly speaking, it corresponds to the expectation of
the outdegree of this node, averaged over all the forests
(the expectation is taken on all the possible forests).
Technically speaking, the SoF density index is obtained
by taking the first-order derivative of the partition func-
tion associated to the system. It is shown that it can be
computed in closed form by inverting a n × n matrix
depending on the immediate costs assigned to the arcs.

1.2 Related work

This section provides a short survey of the related work
aiming at finding dense regions on graphs.

A well-known approach for finding high density re-
gions on graphs relies on identifying dense, highly con-
nected subgraphs like cliques, plexes, cores, etc. (see, e.g.,
[11]). Cliques are completely connected subgraphs of the
original graph [4]. Unfortunately, finding all the cliques,
or the maximal clique in a graph is NP-complete. As the
notion of clique is very restrictive (if an arc is missing,
then the subgraph is no more considered as a clique),
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other ideas relaxing this notion appeared, such as plexes
[12]. A k-plex is a subgraph containing n nodes where
each node is connected to at least n − k other nodes.
Finding k-plex is alas as hard as finding cliques [11].
Cores are similar to plexes, but instead of specifying
how many links are missing to produce a clique, nodes
inside k-core only have to present a degree superior to k
[13]. All nodes of the core are then connected to at least
k other members of the core. Contrarily to cliques and
plexes, cores can be computed in polynomial time, and
there even exists linear-time algorithm computing the
core structure of a network [14]. A generalization of the
notion of core, called the generalized k-core, is based on
other vertex properties than the degree (in/out degree,
clustering coefficient,...) and can also be found in [14].
Our SoF density index could be used in conjunction with
a generalized k-core.

Density-based clustering methods use a measure of
density on graphs as an intermediary step for computing
clusters. DBSCAN [15], a widely used clustering algo-
rithm, computes the local density around a node as the
number of neighbours in a sphere of a certain radius
around that node. Mode-seeking methods, like Mean
Shift [16], compute the modes of a probability density
function to find high density areas. These methods were
originally intended to be used in the feature space of
the data, but adaptations to graph data were recently
proposed [17]–[20].

Another approach for finding dense zones is to com-
pute a density index (or score) on the nodes of a graph.
One of the most intuitive density index is the degree
of a node (on undirected graphs, in/out degree on
directed graphs) defined as the number of links a node
has. Indeed, the larger the number of neighbours of a
node, the higher the density around it. This measure
is then purely local, taking only into account the direct
neighbours. The strength of a node is an extension of the
degree to weighted graphs, computing the sum of the
weights borne by the arcs of the neighbouring nodes.
When those weights are all equal to one, the strength
reduces to the degree. The clustering coefficient [21] of
a node i is also a notion related to the degree. It counts
the number of connected neighbours of i, divided by
the total number of possible connections between those
neighbours. This measure was extended to weighted
graphs in [22].

Similarly, the Sum-over-Forests (SoF) density index
developped in this paper computes a density score on
nodes by enumerating forests on a graph using the
matrix forest theorem [2]. This method is based on a
sum-over-forests statistical physics framework.

1.3 Contributions and organization of the paper
This work has three main contributions:
• It defines a new density index on nodes of a directed

graph.
• It shows how this density index can be computed

efficiently through a statistical physics framework

from the immediate costs associated to each arc by
inverting a n× n matrix.

• It shows through experiments on artificial and real
data sets that the SoF index is an accurate tool for
identifying dense regions on graphs.

Section 2 introduces the necessary background and no-
tation. In Section 3, the probability distribution on the
set of forests – a Boltzmann distribution – is defined.
Section 4 introduces our index and shows how it can be
derived analytically from the partition function. Section
5 explains how the partition function can be computed
exactly from the immediate costs while Section 6 derives
the formulas for computing the density index. Section
7 applies the index to the identification of dense areas
on graphs from various origin. Concluding remarks and
possible extensions are discussed in Section 8.

2 BACKGROUND AND NOTATION

Consider a weighted directed graph or network without
self-loops, G, not necessarily strongly connected, with a
set of n nodes V (or vertices) and a set of arcs E (or
edges). To each arc linking node k and k′, we associate a
positive number ckk′ > 0 representing the immediate
cost of following this arc. The cost matrix C is the
matrix containing the immediate costs ckk′ as elements.
If, instead of C, we are given an adjacency matrix with
elements akk′ ≥ 0 indicating the affinity between node k
and node k′, the corresponding costs could be computed
from ckk′ = 1/akk′ . Notice, however, that other relations
– other than the reciprocal relation – between affinity
and cost could be considered as well. The adjacency
matrix containing the elements akk′ is denoted by A,
while the Laplacian matrix of a graph having adjacency
matrix A is L(A) = D−A, where D = Diag(ATe) is a
diagonal matrix containing the column sums of A. Here,
e is a column vector full of 1’s. Moreover, if the graph is
undirected, it is assumed that, for each arc, there exists
directed links in the two directions k → k′ and k′ → k.

The objective of the next sections is to define the
probability distribution on the set of forests as well as the
density index. Before diving into the details, let us briefly
describe the main ideas behind the model. In a first step,
the set of forests in the graph is enumerated through the
matrix-forest theorem and a probability distribution is
assigned to each individual forest: the larger the forest,
the smaller the weight of its contribution, given that
isolated nodes do not contribute. This probability distri-
bution depends on a parameter, θ = 1/T , controlling the
smoothing level carried out in the graph: when θ is large,
only the lowest-cost forests are considered while when θ
is small, higher-cost forests are also taken into account.
In a second step, the expected outdegree each node
takes in a forest is computed through a sum-over-forests
statistical physics formalism, providing a measure of
density on the set of nodes.
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Fig. 1. A directed graph G in which arc costs are uniformly 1.

(a) High-cost forest ϕ1. (b) Low-cost forest ϕ2.

Fig. 2. Examples of forests on graph G containing two trees. Isolated

nodes are not displayed since they do not contribute to the density index.

3 A BOLTZMANN DISTRIBUTION ON THE SET
OF FORESTS

The present section describes how the probability dis-
tribution on the set of forests is assigned. To this end,
let us define the set of rooted forests ϕ that can be
defined in the graph G as F = {ϕ1, ϕ2, . . . }. Intuitively,
a rooted forest is an acyclic subgraph of G that has
the same nodes as G and one marked node (a root) in
each component (see [2], [3] for details). In the directed
case, diverging forests are considered, that is, forests
containing diverging rooted trees (i.e., trees that contain
only directed paths from the root to all the other nodes).
Now, as we are dealing with directed graphs, diverging
rooted trees and forests will simply be referred to as trees
and forests. The total cost of such a forest ϕ is defined as
the sum of the individual costs of the arcs belonging to ϕ,
C(ϕ). On the other hand, the total weight of such a forest
ϕ is defined as the product of the individual weights (the
elements of the adjacency matrix) of the arcs belonging
to ϕ. A forest with no arc (containing only individual
nodes without any connection) has a 0 total cost and a
total weight of 1.

A Boltzmann probability distribution is defined on
the set F :

P(ϕ) =
exp [−θC(ϕ)]∑

ϕ∈F
exp [−θC(ϕ)]

(1)

where θ is the inverse temperature. Thus, as expected,
low-cost forests ϕ (having small C(ϕ)) are favored in that
they have a large probability of being chosen. Indeed,
from Equation (1), we clearly observe that when θ → 0+,
the forest probabilities tend to a uniform probability.
On the other hand, when θ is large, the probability
distribution defined by Equation (1) is biased towards
low-cost forests (the most likely forests are the lowest-
cost ones). Notice that in Equation (1) isolated nodes
(with no ingoing or outgoing link) do not contribute to
the probability. In the sequel, it will be assumed that the
user provides the value of the parameter θ.

For illustration, the simple graph G shown in Figure 1

is analysed. Figure 2 represents examples of respectively
a high-cost forest ϕ1 and a low-cost forest ϕ2 on G. The
cost associated to ϕ1 is 5, as this forest contains five arcs
with a cost equal to 1. Similarly, the cost of ϕ2 is 2. The
numerator of the Equation (1) for ϕ1 becomes exp [−θ5],
the numerator for ϕ2 exp [−θ2], while the denominator
is the same for both forests. For small values of θ, those
numerators tend to 1 and the probabilities to the uniform
distribution. For high values of θ, the probability of the
lower-cost forest ϕ2 is higher than the probability of the
higher-cost forest ϕ1.

4 THE SOF DENSITY INDEX

By following arguments inspired from [9], it is now
shown that the density index can be computed from a
quantity appearing in the denominator of Equation (1),
defined as

Z =
∑
ϕ∈F

exp [−θC(ϕ)] , (2)

and which corresponds to the partition function in
statistical physics (see [23] or any textbook in statistical
physics; for instance [24], [25]). For this purpose, let us
further define the free energy F in the usual way [24],
[25] as

F = −1

θ
log(Z) = −T log(Z) (3)

where T = 1/θ is the temperature of the system. The
expected number of times a link k → k′ is present in a
forest can easily be computed through

η(k, k′) =
∂F

∂ckk′
= −1

θ

∂(logZ)
∂ckk′

(4)

=
∑
ϕ∈F

exp [−θC(ϕ)]
Z

δ(ϕ; k, k′) (5)

=
∑
ϕ∈F

P(ϕ) δ(ϕ; k, k′) (6)

where δ(ϕ; k, k′) is a Kronecker delta indicating if the
link k → k′ is present in forest ϕ, and thus if the link is
part of forest ϕ. The expected outdegree of node k on a
forest, which defines the SoF density index, is

dens(k) =
∑
ϕ∈F

P(ϕ)

(
n∑

k′=1

δ(ϕ; k, k′)

)
=

n∑
k′=1

η(k, k′) (7)

and corresponds to the sum of the contributions of the
arcs issued from node k.

In the next section, we show that the partition function
can easily be computed from the cost matrix.

5 COMPUTATION OF THE PARTITION FUNC-
TION Z
By using the matrix-forest theorem [2], [3], let us now
show how the partition function Z (Equation (2)) can
be computed exactly from the immediate costs. Indeed,
let us assume a graph G characterized by an adjacency
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matrix A containing the weights on the arcs. From
the matrix-forest theorem (see [2], lemma 2, or [3] for
details), det(I + L(A)) is the sum of the total weights
of all the rooted (diverging in the directed case) forests
ϕ ∈ F that can be extracted from the graph. The total
weight of a particular rooted forest ϕ is the product of
the weights of the individual arcs defining it.

Let us now apply this concept to a new matrix W
defined from the cost matrix, C,

W = exp [−θC] , (8)

where the logarithm/exponential functions are taken
elementwise. Thus, the elements of matrix W are
exp [−θckk′ ]. Now, if we set as adjacency matrix A = W,
the total weight of a rooted forest ϕ is the product of the
individual weights defining it, i.e,

∏
k,k′:k→k′∈ϕ akk′ =∏

k,k′:k→k′∈ϕ exp [−θckk′ ] = exp[−θ
∑
k,k′:k→k′∈ϕ ckk′ ] =

exp [−θC(ϕ)]. We can immediately deduce from the
matrix-forest theorem that det(I+L(W)), where L(W) =
Diag(WTe) −W, is equal to

∑
ϕ∈F exp [−θC(ϕ)] = Z .

Therefore,

Z = det(I+ L(W)), with W = exp [−θC] (9)

This result is used in next section in order to derive
the SoF density index.

6 COMPUTATION OF THE SOF DENSITY INDEX

Now that we have seen how to compute the partition
function Z , we turn to the computation of the density
index that can be deduced from Z thanks to Equations
(4) and (7).

We thus have to compute the derivatives of Z (Equa-
tion (9)) in terms of ckk′ (see Equation (4)) in order
to obtain the different quantities of interest. Now, it is
well-known (see, e.g., [26], [27]) that ∂ log(det(X))/∂t =
trace(X−1 ∂X∂t ). Thus, for the expected number of times
the link k → k′ appears in a forest, we obtain

η(k, k′) =
∂F

∂ckk′
= −1

θ

∂ log(det(I+ L(W)))

∂ckk′

= −1

θ
trace(Z

∂(I+ L(W))

∂ckk′
)

= −1

θ
trace(Z

∂L(W)

∂ckk′
)

= −1

θ
trace(Z

∂(D−W)

∂ckk′
) (10)

where the matrix Z is defined as

Z = (I+ L(W))−1 = (I+ (Diag(WTe)−W))−1 (11)

Now, we easily find that ∂W/∂ckk′ = −θwkk′ekeT
k′ and

∂D/∂ckk′ = −θwkk′ek′eT
k′ so that

∂L(W)

∂ckk′
=
∂(D−W)

∂ckk′
= −θwkk′(ek′eT

k′ − eke
T
k′), (12)

where ek is a basis column vector with zeroes every-
where except in position k where there is a 1.

Thus, by defining zk = colk(Z) as column k of matrix
Z,

η(k, k′) = trace(wkk′Z(ek′eT
k′ − eke

T
k′))

= wkk′ trace(zk′eT
k′)− trace(zkeT

k′)

= wkk′zk′k′ − wkk′zk′k (13)

Therefore, the expected outdegree of node k – the SoF
density index of node k – is

dens(k) =
n∑

k′=1

η(k, k′) =

n∑
k′=1

(wkk′zk′k′ − wkk′zk′k) (14)

where we used Equations (7) and (13). The n×1 column
vector containing the elements dens(k) will be called d,
with

d = Wdiag(Z)− diag(WZ) (15)

and where diag(X) is a column vector containing the
diagonal of matrix X. The SoF index can therefore be
found by applying the following, simple, procedure:

1) Compute the W matrix through Equation (8).
2) Find the matrix Z from Equation (11).
3) Compute the column vector d containing the SoF

index of each node with Equation (15).

7 EXPERIMENTS

In this experimental section, the SoF density index is
assessed on the identification of dense regions on graphs.
Unlike classical clustering methods, the goal here is not
to find an exact partition of the data, but only regions
of graphs where the nodes are tightly aggregated, sug-
gesting some community-like structure.

7.1 Datasets
The performance of the SoF density index is assessed on
ten datasets belonging to four groups: 3-communities,
10-communities, S-Sets and NewsGroup datasets.

The 3-communities (resp. 10-communities) datasets
are artificial datasets we built: each one is made of three
(resp. ten) clusters, created using gaussian distributions
N(µ, σ), µ being the mean (the center of the cluster)
and σ2 the variance of the data. Each cluster is made
of 500 nodes, lying in two dimensions. Three values of
σ (illustrating various degree of overlapping between
the communities) were used to build graphs in the 3-
communities case: 0.05, 0.1, 0.5 (the standard deviation
is the same in each direction, giving isotropic communi-
ties). For the 10-communities datasets, the σ values are
different in the two space directions, (x, y). These values,
called σx and σy are reported in Table 1 for two sets : S1

with small overlapping and S2 with strong overlapping.
The S-Sets [28] include two datasets: S2 and S4. They

are also based on artificial data and are composed of 5000
two-dimensional observations each, grouped in 15 clus-
ters of various shapes. Figure 7 illustrates S2, with well
separated clusters and S4, showing more overlapped
ones.
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S1 σx 0.8 0.5 0.5 0.8 1 1 0.5 0.5 0.5 1
σy 0.8 0.5 0.5 0.5 1 0.5 1 1 1 0.5

S2 σx 1.8 1.5 1 1.8 2 1 2.5 1.5 1 3
σy 1.6 1 2.5 3 2 1 2 2 3 1.5

TABLE 1
(σx, σy) (standard deviations) values for the 10-communities datasets, for

two degrees of overlapping between the clusters (S1 small overlapping, S2

strong overlapping).

Finally, graphs generated from the Newsgroup dataset
are used. This dataset is originally composed of about
20,000 unstructured documents, taken from 20 discus-
sion groups (newsgroups) of the Usernet diffusion list,
and composed of 20 classes. For our experiments, three
subsets related to different topics are extracted from
the original database (NewsGroup1, 2, and 3) [29]. The
graphs of documents were built by sampling at random
about 200 documents in each of three classes from three
different topics.

7.2 Graph construction

We constructed the graphs corresponding to the 3/10-
communities and the S-Sets datasets using two classical
methods: the ε-graph and the k-nearest neighbours (k-
NN).

The ε-graph computes the euclidean distance between
each pair of observations in the dataset and transforms
it into an affinity using

aij = exp

[
−
d2ij
σ2

]
(16)

where dij is the euclidean distance between nodes i and
j, and σ2 is the variance of the distances between all the
observations in the dataset. The nodes are then linked
to others only if they show an affinity superior to a
certain threshold (80, 90, 95, and 99 percentiles were
used). The resulting graphs are undirected, and both the
weighted case (where arcs bear the nodes affinities) and
the unweighted case are investigated.

The k-NN graph construction method simply links a
node to its k nearest neighbours, i.e., those who have
the highest affinity with that node. This relation is not
symmetric, giving birth to directed graphs. We transform
them into undirected graphs using

A← max
(
A,AT

)
(17)

where A is the adjacency matrix of the created graph,
and the maximum operator is taken elementwise.

For the NewsGroup datasets, the graphs were already
build [29] and only the adjacency matrices are at our
disposal. To visualize those graphs, we use the diffusion
maps embedding method [30]–[32] in two dimensions
(see Figure 11), whose output is the new spatial coordi-
nates of the nodes. The corresponding graphs are recon-
structed with the ε-graph method, allowing to compute

the density index on the nodes. Indeed, trying to proceed
inversely (computing the densities before the diffusion
map embedding) is not visually accurate: during the em-
bedding, the nodes are spatially rearranged and the color
of the nodes (indicating high or low density, see below)
do not reflect the true density of the 2-D embedding.

The cost matrices used in the evaluation of the SoF
density index are then computed as the reciprocals of
the affinity matrices constructed above.

7.3 Evaluation methods

We use two methods to evaluate to which extent the
high density areas are well identified: Spearman’s cor-
relation (only applicable to 3/10-communities datasets)
and visual checking (applicable to all datasets).

Firstly, since the probability density function is known
for every node of the 3/10-communities datasets (i.e., the
exact parameters’ values of the gaussian distributions are
known), we compute Spearman’s correlation between
those true densities and the SoF densities.

Secondly, we perform a visual checking on the graphs
by superimposing the density index on the representa-
tion of the nodes. This is done by assigning each node a
color: from dark blue for nodes presenting a low density
value to dark red for nodes presenting a high density
value.

Concerning the tuning of the θ parameter in the SoF
method, we used the correlation method on the 3/10-
communities graphs. The parameter’s value giving the
highest correlation score (for threshold graphs, θ = 5
and for k-NN graphs, θ = 50) is then used for the 3/10-
communities as well as for the S-Sets and Newsgroup
datasets.

The results obtained with the SoF density index are
finally compared with two other measures for identify-
ing dense zones: the strength (Str) and the clustering
coefficient (CC).

7.4 Results

Correlation results
The correlation results for 3/10-communities are dis-
played in Figure 3.

When using the k-NN for constructing graphs, the
SoF density index is clearly superior to the strength and
to the clustering coefficient (the latter performs badly
in every situation, and is not further considered in the
sequel of this section). This may be explained by the
fact that the information concerning the connectivity is
useless in this case, as all the nodes have theoretically
almost the same degree. The SoF density index then
makes a better use of the affinities borne by the arcs
of the graphs than the strength does, which explains its
superior results.

When using the ε-graph construction method, the
results are not so clear. The results obtained by the
strength and the SoF index for the 3-communities case
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have a correlation with the true density of almost one
and are practically identical (only the weighted case is
represented here in Figure 3(b), as the unweigthed case
gives similar results). The SoF index is clearly better
on the 10-communities datasets in the weighted case
and for low threshold (ε) values. Indeed, the number of
neighbours increases dramatically when the threshold is
low, and again the information of connectivity becomes
useless, nodes having each a large degree value. The
only useful information are the affinities and, as before,
the SoF density index uses it in a more efficient way
than the strength. When the threshold is higher the two
measures converge to the same value. In the unweighted
case (no affinity information), the SoF index and the
strength behave similarly: the correlations are low for
low threshold values and increase when the threshold
increase. The good results of both the SoF index and
the strength in the 3-communities dataset with threshold
and unweighted arcs are probably due to the fact that
these datasets are quite smaller and simpler to handle,
having only 3 clusters instead of 10, distributed with
gaussians of the same variance in all directions.

A first conclusion can de drawn so far: the SoF density
index is much more stable and independent from the
type of graph than the strength (and the clustering
coefficient).

Visual results

The visual results confirm the correlation results de-
scribed above. As there are many different cases for the
3/10-communities datasets, only few visual examples,
representative of the overall behavior of the density
measures, are shown. For instance, Figure 5 shows the 3-
communities datasets (threshold 95, weighted) with the
SoF density index superimposed. It can be observed on
this simple example that the SoF density index is able
to recover the dense areas of the clusters. In the 10-
communities datasets, a visual confirmation is given in
Figure 6. The SoF density index is visually very close to
the true density and the highly dense regions are well
identified.

The dense regions on the S-Sets are also well iden-
tified. Figure 8 shows that the SoF density index is
able to recover the 15 densest areas on the S2 and S4
graphs, even if they are tightly aggregated. Str and
CC are illustrated on Figures 9 and 10, showing poor
results, mainly on S4. The Newsgroup datasets con-
firm the results obtained so far (Figure 12). For SoF
density index and Str, the three clusters are recovered
on those graphs, except on NewsGroup3 where two
clusters are too tightly intrictated to be differentiated.
The CC does not identify correctly the dense areas, like
in the 3-communities case. Figures concerning S-Sets
and Newgroup graphs show only results obtained for
weighted graphs, as those results are essentially identical
for unweighted graphs.
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Fig. 3. Correlation results for the 3/10-communities datasets, between

true density and SoF density index, Strength, CC. Weighted (W) and Un-

weighted (U) graphs are considered, constructed with k-Nearest Neighbours

(k-NN) or Threshold (Th) methods.
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(a) σ = 0.05 (b) σ = 0.1 (c) σ = 0.5

Fig. 4. 3-communities datasets for various σ values with true density

superimposed.

(a) σ = 0.05 (b) σ = 0.1 (c) σ = 0.5

Fig. 5. 3-communities datasets for various σ values with the SoF density

index superimposed.

(a) True density (b) SoF

Fig. 6. 10-communities dataset (low sigma values S1) with true density

(left figure) and SoF density index (right figure) superimposed.

(a) S2 (b) S4

Fig. 7. S-Sets datasets.

(a) S2 (b) S4

Fig. 8. S-Sets datasets with SoF density index superimposed (Threshold

95, Weighted).

(a) S2 (b) S4

Fig. 9. S-Sets datasets with strength superimposed (Threshold 95,

Weighted).

(a) S2 (b) S4

Fig. 10. S-Sets datasets with CC superimposed (Threshold 95, Weighted).

8 CONCLUSION AND PERSPECTIVES

This work introduced a new density index on the nodes
of a graph. The main idea behind the model is that
a node has a high density index if it is present on a
large number of (preferably low-cost) forests, together
with a high outdegree. This model depends on a meta-
parameter θ, biasing gradually the forests probabilities
from uniform towards low-cost forests. A sum-over-
paths statistical physics framework is used in order to
derive the form of the index in terms of the immediate

(a) NewsGroup1 (b) NewsGroup2 (c) NewsGroup3

Fig. 11. NewsGroup datasets.

(a) NewsGroup1 (b) NewsGroup2 (c) NewsGroup3

Fig. 12. NewsGroup datasets with SoF density index superimposed

(Threshold 95, Weighted).
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costs defined on the arcs. It can be computed efficiently
by inverting a n × n matrix, where n is the number of
nodes, leading to an overall time complexity of O(n3).

The application of the SoF density index to the task of
searching dense areas on graphs shows that it performs
well, being able to recover all the high density regions
– corresponding to the center of clusters – on different
graphs. Moreover, the correlation results between the
SoF density index and the true density (when available)
are often close to one. The SoF density index also gives
more stable results than the strength regarding the way
a graph is constructed.

In the future, this index could be used together with
a density-based clustering method, for instance a mode
seeking algorithm on graphs (like in [20]), for clustering
tasks. We will also investigate the application of the pro-
posed technique on large graphs, as in [33]. Indeed, the
Sum-over-Forests measure only depends on the diagonal
of the inverse matrix Z (this can be easily deduced from
Equation (15). Moreover, the matrix (I + L(W))−1 is
diagonally dominant). In this case, scalable methods can
be used for computing the diagonal of Z (see, e.g., [34]–
[36]).

ACKNOWLEDGMENTS
Part of this work has been funded by projects with the “Région
wallonne”. We thank this institution for giving us the opportunity to
conduct both fundamental and applied research.

REFERENCES
[1] A. Mantrach, L. Yen, J. Callut, K. Francoisse, M. Shimbo, and

M. Saerens, “The sum-over-paths covariance kernel: A novel
covariance measure between nodes of a directed graph,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32,
pp. 1112–1126, 2010.

[2] P. Chebotarev and E. Shamis, “The matrix-forest theorem and
measuring relations in small social groups,” Automation and Re-
mote Control, vol. 58, no. 9, pp. 1505–1514, 1997.

[3] P. Chebotarev and R. Agaev, “Forest matrices around the laplacian
matrix,” Linear Algebra and its Applications, vol. 356, pp. 253–274,
2002.

[4] D. Luce and A. Perry, “A method of matrix analysis of group
structure,” Psychometrika, vol. 14, no. 2, pp. 95–116, 1949.

[5] X. Li, C. Foo, and S. Ng, “Discovering protein complexes in
dense reliable neighborhoods of protein interaction networks,”
Computational Systems Bioinformatics Conference, vol. 6, pp. 157–
168, 2007.

[6] G. W. Flake, S. Lawrence, and C. L. Giles, “Efficient identification
of web communities,” Proc. 6th ACM SIGKDD Intl. Conf. on
Knowledge Discovery and Data Mining, pp. 150–160, 2000.

[7] W. Tutte, Graph theory. Cambridge University Press, 2002.
[8] T. Akamatsu, “Cyclic flows, markov process and stochastic traffic

assignment,” Transportation Research B, vol. 30, no. 5, pp. 369–386,
1996.

[9] M. Saerens, Y. Achbany, F. Fouss, and L. Yen, “Randomized
shortest-path problems: Two related models,” Neural Computation,
vol. 21, pp. 2363–2404, 2009.

[10] L. Yen, A. Mantrach, M. Shimbo, and M. Saerens, “A family
of dissimilarity measures between nodes generalizing both the
shortest-path and the commute-time distances,” in Proceedings of
the 14th SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2008, pp. 785–793.

[11] U. Brandes and T. Erlebach, Network analysis: methodological foun-
dations. Springer-Verlag, 2005.

[12] S. Seidman and B. Foster, “A graph theoretic generalization of
the clique concept,” Journal of Mathematical Sociology, no. 6, pp.
139–154, 1978.

[13] M. E. J. Newman, Networks: An introduction. Oxford University
Press, 2010.

[14] V. Batagelj and M. Zaversnik, “Fast algorithms for determining
(generalized) core groups in social networks,” Advances in Data
Analysis and Classification, vol. 5, no. 2, pp. 129–145, 2011.

[15] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in 2nd International Conference on Knowledge Discovery
(ICKD), 1996, pp. 226–31.

[16] W. Koontz, P. Narendra, and K. Fukunaga, “A graph-theoretic
approach to nonparametric cluster analysis,” IEEE Transactions on
Computers, pp. 936–944, 1976.

[17] T. Falkowski, A. Barth, and M. Spiliopoulou, “Dengraph:
A density-based community detection algorithm,” in
IEEE/WIC/ACM International Conference on Web Intelligence,
2007, pp. 112–115.

[18] S. Jouili, S. Tabbone, and V. Lacroix, “Median graph shift : A
new clustering algorithm for graph domain,” in 20th International
Conference on Pattern Recognition (ICPR), 2010.

[19] H. Liu and S. Yan, “Robust graph mode seeking by graph shift,”
in International Conference on Machine Learning (ICML), 2010.

[20] M. Cho and K. Lee, “Mode-seeking on graphs via random walks,”
in Computer Vision and Pattern Recognition (CVPR), 2012.

[21] D. Watts and S. Strogatz, “Collective dynamics of small-world
networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[22] A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani,
“The architecture of complex weighted networks,” Proceedings of
the National Academy of Sciences of the United States of America, vol.
101, no. 11, pp. 3747–3752, 2004.

[23] E. T. Jaynes, “Information theory and statistical mechanics,” Phys-
ical Review, vol. 106, pp. 620–630, 1957.

[24] L. Reichl, A modern course in statistical physics, 2nd ed. Wiley, 1998.
[25] E. Schrodinger, Statistical thermodynamics, 2nd ed. Cambridge

University Press, 1952.
[26] D. A. Harville, Matrix Algebra from a Statistician’s Perspective.

Springer-Verlag, 1997.
[27] J. Schott, Matrix analysis for statistics. Wiley, 2005.
[28] P. Franti and O. Virmajoki, “Iterative shrinking method for clus-

tering problems,” Pattern Recognition, vol. 39(5), pp. 761–765, 2006.
[29] L. Yen, F. Fouss, C. Decaestecker, P. Francq, and M. Saerens,

“Graph nodes clustering with the sigmoid commute-time kernel:
A comparative study,” Data and Knowledge Engineering, vol. 68,
pp. 338–361, 2009.

[30] B. Nadler, S. Lafon, R. Coifman, and I. Kevrekidis, “Diffusion
maps, spectral clustering and eigenfunctions of fokker-planck op-
erators,” Advances in Neural Information Processing Systems (NIPS)
18, pp. 955–962, 2005.

[31] S. Lafon and A. B. Lee, “Diffusion maps and coarse-graining: A
unified framework for dimensionality reduction, graph partition-
ing, and data set parameterization,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 9, pp. 1393–1403,
2006.

[32] L. Yen, M. Saerens, and F. Fouss, “A link analysis extension of
correspondence analysis for mining relational databases,” IEEE
Transactions on Knowledge and Data Engineering, vol. 23, no. 4, pp.
481–495, 2011.

[33] A. Mantrach, N. van Zeebroeck, P. Francq, M. Shimbo, H. Bersini,
and M. Saerens, “Semi-supervised classification and betweenness
computation on large, sparse, directed graphs,” Pattern Recogni-
tion, vol. 44, no. 6, pp. 1212 – 1224, 2011.

[34] I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices.
Clarendon Press, Oxford, 1986.

[35] A. M. Erisman and W. F. Tinney, “On computing certain elements
of the inverse of a sparse matrix,” Communications of the ACM,
vol. 18, no. 3, pp. 177–179, 1975.

[36] J. M. Tang and Y. Saad, “A probing method for computing
the diagonal of a matrix inverse,” Numerical Linear Algebra with
Applications, vol. 19, no. 3, pp. 485–501, 2012.


	1 Introduction
	1.1 General introduction
	1.2 Related work
	1.3 Contributions and organization of the paper

	2 Background and notation
	3 A Boltzmann distribution on the set of forests
	4 The SoF density index
	5 Computation of the partition function Z
	6 Computation of the SoF density index
	7 Experiments
	7.1 Datasets
	7.2 Graph construction
	7.3 Evaluation methods
	7.4 Results

	8 Conclusion and Perspectives
	References

