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Correlation Clustering
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Abstract—In this paper, a hypergraph-based image segmentation framework is formulated in a supervised manner for many
high-level computer vision tasks. To consider short- and long-range dependency among various regions of an image and
also to incorporate wider selection of features, a higher-order correlation clustering (HO-CC) is incorporated in the framework.
Correlation clustering (CC), which is a graph-partitioning algorithm, was recently shown to be effective in a number of applications
such as natural language processing, document clustering, and image segmentation. It derives its partitioning result from a
pairwise graph by optimizing a global objective function such that it simultaneously maximizes both intra-cluster similarity and
inter-cluster dissimilarity. In the HO-CC, the pairwise graph which is used in the CC is generalized to a hypergraph which can
alleviate local boundary ambiguities that can occur in the CC. Fast inference is possible by linear programming relaxation, and
effective parameter learning by structured support vector machine is also possible by incorporating a decomposable structured
loss function. Experimental results on various datasets show that the proposed HO-CC outperforms other state-of-the-art image
segmentation algorithms. The HO-CC framework is therefore an efficient and flexible image segmentation framework.

Index Terms—Image segmentation, correlation clustering, structural learning.
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1 INTRODUCTION

Image segmentation which can defined as a clustering
of image pixels into disjoint coherent regions is cur-
rently being used in many of the state-of-the-art high-
level image/scene understanding tasks such as object
class segmentation, scene segmentation, surface lay-
out labeling, and single view 3D reconstruction [1]–
[5]. Its use provides the following three benefits: (1)
coherent support regions, commonly assumed to be of
a single label, serve as a good prior for many labeling
tasks; (2) these coherent regions allow extraction of
a more consistent feature that provides surrounding
contextual information through pooling many feature
responses over the region; and (3) a small number of
larger coherent regions, compared to large number of
pixels, significantly reduces the computational cost for
a labeling task.

Many segmentation algorithms have been proposed
in the literature that can be broadly classified into two
groups – graph based (examples include min-cuts [6],
normalized cuts [7] and Felzenszwalb-Huttenlocher
(FH) segmentation algorithm [8]) and non graph
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based (examples include K-means [9], mean-shift [10],
and EM [11]). Compared to non-graph-based segmen-
tations, graph-based segmentations have been shown
to produce more consistent segmentations by adap-
tively balancing local judgements of similarity [12].
Graph-based image segmentation algorithms can be
further categorized into either node-labeling or edge-
labeling algorithms. In contrast to the node-labeling
framework of the min-cuts and normalized cuts, the
edge-labeling framework of the FH algorithm does not
require a pre-specified number of segmentations in an
image.

Correlation clustering (CC) is a graph-partitioning
algorithm [13] that infers the edge labels of the graph
by simultaneously maximizing intra-cluster similarity
and inter-cluster dissimilarity by optimization of a
global objective (discriminant) function. Furthermore,
the CC can be formulated as a linear discriminant
function which allows for approximate polynomial-
time inference by linear programming (LP) and also
allows large margin training based on structured sup-
port vector machine (S-SVM) [14]. Finley et al. [15]
consider a framework that uses the S-SVM for training
the parameters in the CC for noun-phrase clustering
and news article clustering. Taskar derived a max-
margin formulation, different from the S-SVM, for
learning the edge scores in the CC [16] for applications
involving two different segmentations of a single
image. No experimental comparisons or quantitative
results are provided in [16].

We have recently explored a supervised CC over
a pairwise superpixel graph for task-specific image
segmentation [17], and it has been shown to perform
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better than other state-of-the-art image segmentation
algorithms.

Although it derives its segmentation result by op-
timizing a global objective function, which leads to
a discriminatively-trained discriminant function, the
pairwise CC (PW-CC) is restricted to resolving seg-
ment boundary ambiguities corresponding to only
local pairwise edge labels of a graph. Therefore, to
capture long-range dependencies of distant nodes in
a global context, this paper proposes higher-order corre-
lation clustering (HO-CC) to incorporate higher-order
relations. Generalizing the PW-CC over a pairwise
superpixel graph, we develop a HO-CC over a hy-
pergraph that considers higher-order relations among
superpixels. An edge in the hypergraph of the pro-
posed HO-CC can connect to two or more nodes
representing the superpixels as in [18].

Hypergraphs have been previously used to lift
certain limitations of conventional pairwise graphs
[19]–[21]. However, previously proposed hypergraphs
for image segmentation are restricted to partition-
ing based on the generalization of a normalized-cut
framework, which suffer from the following three
difficulties. First, inference is slow and difficult espe-
cially with increasing graph size. To approximate the
inference process, a number of algorithms have been
introduced based on the coarsening algorithm [20]
and the hypergraph Laplacian matrices [19]. These are
heuristic approaches and therefore sub-optimal. Sec-
ond, incorporating a supervised learning algorithm for
parameter estimation under the spectral hypergraph
partitioning framework is difficult. This is in line with
the difficulties in learning spectral graph partitioning.
This requires a complex and unstable eigenvector
approximation which must be differentiable [22], [23].
Third, region-based features are utilized in a restricted
manner. Almost all previous hypergraph-based image
segmentation algorithms have been restricted to color
variances as region features.

The proposed HO-CC framework alleviates all of
the above difficulties by generalizing the PW-CC and
making use of the hypergraph. The hypergraph which
is constructed based on the correlation information of
the superpixels can be equivalently formulated as a
linear discriminant function. A richer feature vector
involving higher-order relations among visual cues of
the superpixels can be utilized. For fast inference, a LP
relaxation is used, and for tractable S-SVM training
of the parameters with unbalance class labeled data,
a decomposable structured-loss function is defined,
which allows the efficient use of the cutting-plane
algorithm to approximately solve the constrained op-
timization. Experimental results on various datasets
show that the proposed HO-CC outperforms other
state-of-the-art image segmentation algorithms.

An earlier version of this paper appeared as Kim et
al. [24]. This paper provides a more detailed descrip-
tion of the proposed HO-CC, additional empirical

results, and in-depth analysis of the performances on
image segmentation tasks.

Our main contributions can be summarized as fol-
lows: (1) the hypergraph-based HO-CC approach that
takes into account higher-order relationships between
super-pixels; (2) inference using a LP relaxation of the
problem; (3) using supervised learning for discrimi-
native clustering via a cutting plane algorithm that
can handle a decomposable loss function; and (4) the
demonstration of segmentation results that improve
on those obtained by state-of-the-art segmentations
methods.

The rest of the paper is organized as follows. Section
2 describes the PW-CC in [17], and Section 3 presents
the proposed HO-CC. Section 4 describes structural
learning for supervised image segmentation based on
the S-SVM and cutting plane algorithm. A number of
experimental and comparative results are presented
and discussed in Section 5, followed by a conclusion
in Section 6.

2 PAIRWISE CORRELATION CLUSTERING

As alluded earlier, the CC is basically an algorithm
to partition a pairwise graph into disjoint groups of
coherent nodes [13], and it has been used in natural
language processing and document clustering [15],
[25], [26]. This section presents the PW-CC that has
been developed to solve an image segmentation task
by partitioning a pairwise superpixel graph [17].

2.1 Superpixels

The proposed image segmentation is based on super-
pixels which are small coherent regions preserving
almost all boundaries between different regions. This
is an advantage since superpixels significantly reduce
computational cost and allow feature extraction to
be conducted from a larger coherent region. Both
the pairwise and higher-order CC merges superpixels
into disjoint coherent regions over a superpixel graph.
Therefore, the proposed CC is not a replacement
to existing superpixel algorithms, and performances
might be influenced by baseline superpixels.

2.2 Pairwise Correlation Clustering over a Pair-
wise Superpixel Graph

Define a pairwise undirected graph G = (V, E) where
a node corresponds to a superpixel and a link between
adjacent superpixels corresponds to an edge (see Fig-
ure 1.(a)). A binary label yjk for an edge (j, k) ∈ E
between nodes j and k is defined such that

yjk =

{
1, if j and k belong to the same region,
0, otherwise. (1)
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(a)


(b)


Fig. 1. Illustrations of a part of (a) the pairwise graph
(b) and the triplet graph built on superpixels.

A discriminant function is defined over image x and
label y of all edges as

F (x,y;w) =
∑

(j,k)∈E

Simw(x, j, k)yjk (2)

=
∑

(j,k)∈E

⟨w, ϕjk(x)⟩yjk (3)

= ⟨w,
∑

(j,k)∈E

ϕjk(x)yjk⟩ (4)

= ⟨w,Φ(x,y)⟩, (5)

where the similarity measure between nodes j and k,
Simw(x, j, k), is parameterized by w and takes values
of both signs such that a large positive value indicates
strong similarity while a large negative value indi-
cates strong dissimilarity. Note that the discriminant
function F (x,y;w) is assumed to be linear in both
the parameter vector w and the joint feature map
Φ(x,y), and ϕjk(x) is a pairwise feature vector which
reflects the correspondence between the jth and the
kth superpixels. An image segmentation is to infer the
edge label y over the pairwise superpixel graph G by
maximizing F such that

ŷ = argmax
y∈Y(G)

F (x,y;w), (6)

where Y(G) is a subset of {0, 1}E that corresponds to a
valid segmentation and is the set of multicuts [27] of the
graph G. However, solving (6) over Y(G) is generally
NP-hard.

2.3 LP Relaxation for Pairwise Correlation Clus-
tering

We approximate Y(G) by means of a common mul-
ticut LP relaxation [27], [28] with the following two
constraints: (1) cycle inequality and (2) odd-wheel

inequality. The LP relaxation to approximately solve
(6) can be formulated as

argmax
y

∑
(j,k)∈E

⟨w, ϕjk(x)⟩yjk (7)

s.t. y ∈ Z(G),

where Z(G) ⊃ Y(G) is a relaxed polytope defined by
the following two linear inequalities.

1) Cycle inequality: Let Path(j, k) be the set of
paths between nodes j and k. The cycle inequal-
ity is a generalization of the triangle inequality
[27] and is defined as

(1− yjk) ≤
∑

(s,t)∈p

(1− yst), p ∈ Path(j, k). (8)

2) Odd-wheel inequality: Let a q-wheel be a con-
nected subgraph S = (Vs, Es) with a central
vertex j ∈ Vs and a cycle of q vertices in
C = Vs\{j}. For every odd q(≥ 3)-wheel, a valid
segmentation y satisfies∑

(s,t)∈E(C)

(1− yst)−
∑
k∈C

(1− yjk) ≤ ⌊
1

2
q⌋, (9)

where E(C) denotes the set of all edges in the
outer cycle C.

Although the number of inequalities (8) and (9) is
exponentially large in the size of the graph, it is
nevertheless possible to optimize (7) in polynomial
time. The identification of a violated inequality –the so
called separation problem– from both sets (8) and (9) is
possible in polynomial time [29], [30]. A famous result
in combinatorial optimization states the equivalence
between optimization and separation [31]. Thus, the
polynomial time solvability of (7) is guaranteed.

The relation between the solutions of (6) and (7) is
as follows: if the LP solution to (7) is integral, that is
for all (j, k) ∈ E we have yjk ∈ {0, 1}, then the solution
y is the exact solution to (6). If instead, it is fractional,
then we take the floor of a fractionally-predicted label
of each edge independently for simply obtaining a
feasible but potentially sub-optimal solution to (6).

2.4 The Need for Higher-Order Models

Even though the PW-CC described above can use
a rich pairwise feature vector with an optimized
parameter vector (which will be presented later), it
often produces incorrectly predicted segments due
to segment boundary ambiguities caused by limited
pairwise relations of neighboring superpixels (see Fig-
ure 2). Therefore, to incorporate higher-order relations
of distant superpixels, we develop a HO-CC by gen-
eralizing the CC over a hypergraph.
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(a)
 (b)


(c)
 (d)


Fig. 2. Example of segmentation result by PW-CC. (a)
Original image. (b) Ground-truth. (c) Superpixels. (d)
Segments obtained by PW-CC.

3 HIGHER-ORDER CORRELATION CLUS-
TERING

This section describes the proposed HO-CC for image
segmentation in three steps. In the first step, we define
the hypergraph representation. Second, we generalize
the LP relaxation (7) for hypergraphs. Finally, a feature
vector consisting of pairwise and higher-order feature
vectors to characterize relationship among superpixels
over a hypergraph is presented.

3.1 Hypergraph

The proposed HO-CC is defined over a hypergraph
in which an edge referred to as hyperedge can connect
to two or more nodes. For example, as shown in
Figure 1.(b), one can introduce binary labels for each
adjacent vertices forming a triplet such that yijk = 1
if all vertices in {i, j, k} are in the same cluster;
otherwise, yijk = 0. Define a hypergraph HG = (V, E)
where V is the set of all nodes (superpixels) and E
is the set of all hyperedges (subsets of V) such that∪

e∈E = V . Here, a hyperedge e has at least two
nodes, i.e. |e| ≥ 2. Therefore, the hyperedge set E
can be divided into two disjoint subsets: pairwise
edge set Ep = {e ∈ E | |e| = 2} and higher-
order edge set Eh = {e ∈ E | |e| > 2} such that
Ep

∪
Eh = E . Note that in the proposed hypergraph

for HO-CC all hyperedges containing just two nodes
(∀ep ∈ Ep) are linked between adjacent superpixels.
The pairwise superpixel graph is a special hypergraph
where all hyperedges contain just two (neighboring)
superpixels: Ep = E . A binary label ye for a hyperedge
e ∈ E is defined such that

ye =

{
1, if all nodes in e belong to the same region,
0, otherwise.

(10)

3.2 Higher-Order Correlation Clustering over a
Hypergraph

Similar to the PW-CC, a linear discriminant function
is defined over image x and label y of all hyperedges
as

F (x,y;w)

=
∑
e∈E

Homw(x, e)ye (11)

=
∑
e∈E

⟨w, ϕe(x)⟩ye (12)

=
∑

ep∈Ep

⟨wp, ϕep(x)⟩yep +
∑

eh∈Eh

⟨wh, ϕeh(x)⟩yeh (13)

= ⟨w,Φ(x,y)⟩, (14)

where the homogeneity measure among nodes in e,
Homw(x, e), is also the inner product of the parameter
vector w and the feature vector ϕe(x) and takes values
of both signs such that a large positive value indicates
strong homogeneity while a large negative value in-
dicates high degree of non-homogeneity. Note that
the proposed discriminant function for the HO-CC
is decomposed into two terms by assigning different
parameter vectors to the pairwise edge set Ep and the
higher-order edge set Eh such that w = [wp;wh]. Thus,
in addition to the pairwise similarity between neigh-
boring superpixels, the proposed HO-CC considers
a broad homogeneous region reflecting higher-order
relations among superpixels.

From a given image, a hypergraph is constructed as
follows. First, unsupervised multiple partitionings are
obtained by merging not pixels but superpixels with
different image quantizations using the ultrametric
contour maps [32]. Then, the obtained regions are
used to define hyperedges of the hypergraph. For
example, in Figure 3, there are three region layers,
one superpixel (pairwise) layer and two higher-order
layers. All edges (black line) in the pairwise super-
pixel graph from the first layer are incorporated into
the pairwise edge set Ep. Hyperedges (yellow line)
corresponding to regions (groups of superpixels) in
the second and third layers are included in the higher-
order edge set Eh. Note that we can further decom-
pose the higher-order term in (13) into two terms asso-
ciated with the second and third layers, respectively,
by assigning different parameter vectors; however
for simplicity, this paper aggregates all higher-order
edges from all higher-order layers into a single higher-
order edge set assigning the same parameter vector.

The use of unsupervised multiple partitionings
enables to obtain reasonable candidate regions for
defining higher-order edges. Other methods to define
higher-order edges are also possible. For instance,
from the baseline pairwise superpixel graph, the fully
connected subgraphs referred to as cliques which
have more than two nodes can be obtained, and
these cliques can be associated to the higher-order
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Fig. 3. Hypergraph construction from multiple partitionings. (a) Multiple partitionings from baseline superpixels.
(b) Hyperedge (yellow line) corresponding to a region in the second layer. (c) Hyperedge (yellow line)
corresponding to a region in the third layer.

edges. However, the use of the cliques in the proposed
framework is empirically hard to produce broad re-
gions which consist of more than four fully connected
superpixels.

3.3 LP Relaxation for Higher-Order Correlation
Clustering

An image segmentation is to infer the hyperedge
label, ŷ, over the hypergraph HG by maximizing the
discriminant function F such that

ŷ = argmax
y∈Y(HG)

F (x,y;w), (15)

where Y(HG) is also the subset of {0, 1}E that corre-
sponds to a valid segmentation.

In order to define the state of the higher-order edge
variables in relations to the pairwise edge variables,
we introduce two types of inequalities: the first en-
forces that when a pairwise edge places (or labels)
adjacent superpixels belonging to a certain higher-
order edge as being in different clusters, the higher-
order edge cannot place the two in the same cluster;
and the second enforces that when all pairwise edges
of a set of superpixels agree that all superpixels in
the set are in the same cluster, then the higher-order
edge of the set must place all the superpixels as
belonging to one cluster (see Table 1). We define
novel constraints for labels on pairwise and higher-
order edges, referred to as higher-order inequalities, to
formalize this intuition as follows:

yeh ≤ yep , ∀ep ∈ Ep|ep ⊂ eh, (16)

(1− yeh) ≤
∑

ep∈Ep|ep⊂eh

(1− yep).

Proposition The set of all binary solutions satisfying
the inequalities (8), (9), and (16), which forms the HO-
CC problem, represents exactly the set of consistent
cluster assignments.

Proof. All solutions satisfying the pairwise inequal-
ities (8) and (9) lead to consistent pairwise edge label
assignments. Inclusion of (16) does not make any pair-
wise solution inconsistent. Also, by formalizing the
above intuitive reasoning as (16), for binary variables,
all higher-order edge assignments are consistent with
all pairwise edge assignments.

The LP relaxation to approximately solve (15) is
formulated as

argmax
y

∑
ep∈Ep

⟨wp, ϕep(x)⟩yep +
∑

eh∈Eh

⟨wh, ϕeh(x)⟩yeh (17)

s.t. y ∈ Z(HG),

where Z(HG) ⊃ Y(HG) is the relaxed polytope de-
fined by the cycle inequality of (8), odd-wheel in-
equality of (9), and higher-order inequality of (16).

Due to the exponentially large number of con-
straints, we use the cutting plane algorithm [33],
which is summarized in Algorithm 1, to solve (17)
efficiently. The algorithm works with a small set of
constraints that defines a loose relaxation S to the
feasible set. It iteratively tightens S by means of
violated inequalities. In each iteration, the optimal y
on the current set of constraints is found, then violated
inequalities are searched. When a violated inequality
is found, it is added to the current constraint set to
reduce S, and (17) is re-solved with the tightened
relaxation (reduced S). Here, the search for a violated
inequality runs in polynomial time.

Note that the proposed HO-CC follows the concept
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TABLE 1
Label validity for segmentation from the hypergraph (triplet graph) in Figure 1.(b).

yijk 0 0 0 0 0 0 0 0
yij 0 0 0 0 1 1 1 1
yjk 0 0 1 1 0 0 1 1
yik 0 1 0 1 0 1 0 1

Validity valid valid valid invalid valid invalid invalid invalid
yijk 1 1 1 1 1 1 1 1
yij 0 0 0 0 1 1 1 1
yjk 0 0 1 1 0 0 1 1
yik 0 1 0 1 0 1 0 1

Validity invalid invalid invalid invalid invalid invalid invalid valid

Algorithm 1 Cutting Plane Algorithm for Inference

Input: w, S ← [0, 1]E

repeat
Solve LP relaxation on the current constraint set:

y← argmax
y∈S

∑
ep∈Ep

⟨wp, ϕep(x)⟩yep+
∑

eh∈Eh

⟨wh, ϕeh(x)⟩yeh

Sviolated ← VIOLATE CYCLE INEQUALITIES (y):
check (8)
if no violated inequality found then
Sviolated ← VIOLATE HIGHER-ORDER IN-
EQUALITIES (y): check (16)
if no violated inequality found then

Integrality check
if no fractional-predicted label then

break
else
Sviolated ← VIOLATE ODD-WHEEL IN-
EQUALITIES (y): check (9)

end if
end if

end if
S ← S ∩ Sviolated

until no S has changed

of soft constraints: superpixels belonging to a hyper-
edge are not forced but encouraged to merge if a
hyperedge is highly homogeneous. This is in line
with recent higher-order models for high-level image
understanding [1], [34], [35].

3.4 Feature Vector
We construct a 481-dimensional feature vector ϕe(x) =
[ϕep(x);ϕeh(x)] by concatenating several visual cues
with different quantization levels and thresholds.
The pairwise feature vector ϕep(x) reflects the cor-
respondence between neighboring superpixels, and
the higher-order feature vector ϕeh(x) characterizes
a more complex relations among superpixels in a
broader region to measure homogeneity. The magni-
tude of w determines the importance of each feature,
and this importance is task-dependent. Thus, w is

estimated by supervised training described in Section
4.

3.4.1 Pairwise feature vector
We extract several visual cues from a superpixel,
including brightness (intensity), color, texture, and
shape. Based on these visual cues, we construct a 321-
dimensional pairwise feature vector ϕep by concate-
nating a color difference feature ϕc, texture difference
feature ϕt, shape/location difference feature ϕs, edge
strength feature ϕe, joint visual word posterior feature
ϕv , and bias as follows:

ϕep = [ϕc
ep ;ϕ

t
ep ;ϕ

s
ep ;ϕ

e
ep ;ϕ

v
ep ; 1]. (18)

• Color difference feature ϕc
ep : The color difference

feature ϕc
ep is composed of 26 color distances

between two adjacent superpixels based on RGB
and HSV channels. Specifically, we calculate 18
earth mover’s distances (EMDs) [36] between two
color histograms extracted from each superpixel
with various numbers of bins and thresholds
for ground distance. In addition, six absolute
differences (one for each color channel) between
the means of the two superpixels and two χ2-
distances between hue/saturation histograms of
the two superpixels are concatenated in ϕc

ep .
• Texture difference feature ϕt

ep : The 64-
dimensional texture difference feature ϕt

ep is
composed of 15 absolute differences (one for
each texture-response) between the means of two
superpixels using 15 Leung-Malik (LM) filter
banks [37] and one χ2-distance and 48 EMDs
(from various numbers of bins and thresholds
for ground distance) between texture histograms
of the two superpixels.

• Shape/location difference feature ϕs
ep : The 5-

dimensional shape/location difference feature
ϕs
ep is composed of two absolute differences be-

tween the normalized (x/y) center positions of
the two superpixels, the ratio of the size of the
smaller superpixel to that of the larger super-
pixel, the percentage of boundary with respect
to the smaller superpixel, and the straightness of
boundary [4].
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• Edge strength feature ϕe
ep : The 15-dimensional

edge strength feature ϕe
ep is a 1-of-15 coding of the

quantized edge strength proposed by Arbelaez et
al. [32].

• Joint visual word posterior feature ϕv
ep : The 210-

dimensional joint visual word posterior feature
ϕv
ep is defined as the vector holding the joint

visual word posteriors for a pair of neighboring
superpixels using 20 visual words [38] as follows.
First, a 52-dimensional raw feature vector xj

based on color, texture, location, and shape fea-
tures described in [4] is extracted from the jth
superpixel. Then, the visual word posterior distri-
bution P (vi|xj) is computed using the Gaussian
RBF kernel where vi denotes the ith visual word.
Let Vjk(x) be a 20-by-20 matrix whose elements
are the joint visual word posteriors between
nodes j and k defined such that

Vjk(x)

=


P (v1|xj)P (v1|xk) · · · P (v1|xj)P (v20|xk)
P (v2|xj)P (v1|xk) · · · P (v2|xj)P (v20|xk)

...
. . .

...
P (v20|xj)P (v1|xk)· · ·P (v20|xj)P (v20|xk)

. (19)

The joint visual word posterior feature between
nodes j and k, ϕv

jk(x), is defined as

ϕv
jk(x) = vec

(
Vjk(x)

)
+ vec

(
V T
jk(x)

)
, (20)

where vec(V ) be the 210(= 20 × 21/2)-
dimensional vector whose elements are from the
upper triangular part of V .
This joint visual word posterior feature could
overcome the weakness of class-agnostic features
and incorporate the contextual information.

3.4.2 Higher-order feature vector
We construct a 160-dimensional higher-order feature
vector ϕeh by concatenating the variance feature ϕva

eh
,

edge strength feature ϕe
eh

, template matching feature
ϕtm
eh

and bias as follows:

ϕeh = [ϕva
eh
;ϕe

eh
;ϕtm

eh
; 1]. (21)

• Variance feature ϕva
eh

: The 44-dimensional vari-
ance feature is a generalized version of the
color/texture difference feature used in the pair-
wise graph. We calculate 14 color variances
among superpixels in a hyperedge based on
the average RGB and HSV values and the
hue/saturation histograms with 8 bins. In addi-
tion, 30 texture variances from 15 mean texture
responses and texture response histogram with
15 bins are incorporated into the variance feature
vector.

• Edge strength feature ϕe
eh

: The 15-dimensional
edge strength feature ϕe

eh
is a ℓ1-normalized his-

togram of the quantized edge strengths of neigh-
boring superpixels in eh.

• Template matching feature ϕtm
eh

: The 44-
dimensional color/texture features and 5-
dimensional shape/location features of all (task-
specific ground truth) regions in the training
images are clustered using k-means with k = 100
to obtain 100 representative templates of distinct
regions. The 100-dimensional template matching
feature vector is composed of the matching
scores between a region defined by hyperedge
and these templates using the Gaussian RBF
kernel.

Note that in each feature vector, the bias (=1)
is augmented in order to obtain a proper similar-
ity/homogeneity measure which can either be posi-
tive or negative.

4 STRUCTURAL LEARNING

The proposed discriminant function is defined over
the superpixel graph, and therefore, the ground-truth
segmentation needs to be transformed to the ground-
truth edge labels in the superpixel graph. For this, we
first assign a single dominant segment label to each
superpixel by majority voting over the superpixel’s
constituent pixels and then obtain the ground-truth
edge labels according to whether dominant labels of
superpixels in a hyperedge are equal or not.

Using this ground-truth edge labels of the training
data, we use the S-SVM to estimate the parameter
vector for task-specific CC. We use the cutting plane
algorithm with LP relaxation (17) for loss-augmented
inference to solve the optimization problem of the
S-SVM, since fast convergence and high robustness
of the cutting plane algorithm in handling a large
number of margin constraints are well-known [14].

4.1 Structured Support Vector Machine
Given N training samples {(xn,yn)}Nn=1 where yn

is the ground-truth edge labels for the nth training
image xn, the S-SVM [14] optimizes w by minimizing
a quadratic objective function subject to a set of linear
margin constraints:

min
w,ξ

1

2
∥w∥2 + C

N∑
n=1

ξn (22)

s.t. ∀n,y ∈ Z(HG),
⟨w,∆Φ(xn,y)⟩ ≥ ∆(yn,y)− ξn,

∀n, ξn ≥ 0,

where ∆Φ(xn,y) = Φ(xn,yn)−Φ(xn,y), and C > 0 is
a constant that controls the trade-off between margin
maximization and training error minimization. In the
S-SVM, the margin is scaled with a loss ∆(yn,y),
which is the difference measure between prediction
y and ground-truth label yn of the nth image. The S-
SVM offers good generalization ability as well as the
flexibility to choose any loss function [14].
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Algorithm 2 Cutting Plane Algorithm for S-SVM
Choose: w0, C, R, ϵ
Sn ← ø, ∀n, w← w0, ξ ← 0
repeat

for n = 1, ..., N do
Perform the loss-augmented inference by LP
relaxation:

ŷn = argmax
y∈Z(HG)

(
⟨w,Φ(xn,y)⟩+∆(yn,y)

)
if −⟨w, δΦ(xn, ŷn)⟩+∆(yn, ŷn) > ξn + ϵ then
Sn ← Sn ∪ {ŷn}

end if
end for
Solve the restricted problem of (22) on the current
set of constraints:

(w∗, ξ∗) = argmin
w′,ξ′

1

2
∥w′∥2 + C

N∑
n=1

ξ′n

s.t. ⟨w′, δΦ(xn,y)⟩ ≥ ∆(yn,y)− ξ′n, ∀n,y ∈ Sn,

ξ′n ≥ 0, ∀n

Update: w← w∗, ξ ← ξ∗

until no Sn has changed

4.2 Cutting Plane Algorithm
The exponentially large number of margin constraints
and the intractability of the loss-augmented inference
problem make it difficult to solve the constrained
optimization problem of (22). Therefore, we apply the
cutting plane algorithm [14] to approximately solve
the constrained optimization problem. The cutting
plane algorithm is summarized in Algorithm 2. In
each iteration, the most violated constraint for each
training sample is approximately found by perform-
ing the loss-augmented inference using the LP re-
laxation. The computational cost for inference can
be greatly reduced when a decomposable loss such
as the Hamming loss is used. When a loss function
can be decomposed in the same manner as the joint
feature map, it can be added to each edge score in
the inference. It can then be checked whether the
constraint found tightens the feasible set of (22) or
not, and when it does, then the parameter vector w
and ξ are updated by solving the restricted problem
of (22) on the current set of active constraints that
includes it. The theoretical convergence and robust-
ness of the cutting plane algorithm was studied by
Tsochantaridis et al. [14]. The LP relaxations for loss-
augmented inferences are considered to be well suited
to structured learning [39]–[41].

4.3 Label Loss
A non-negative and decomposable loss function ∆ :
Z × Z → R+ enables efficient loss-augmented infer-
ence in the cutting plane algorithm. The loss can be

TABLE 2
Label loss at the edge level.

yne 0 1 0 1
ye 0 1 1 0
∆e 0 0 1 R

absorbed into the edge homogeneity, and the loss-
augmented inferencing can be performed by the LP
relaxation which is used in the original inference.

The most popular loss function that is non-negative
and decomposable is the Hamming loss which is
equivalent to the number of mismatches between yn

and y at the edge level in this CC. In the proposed
CC for image segmentation, however, the number of
edges which are labeled as 1 is considerably higher
than that of edges which are labeled as 0. This im-
balance leads to the clustering of the whole image
as one segment when we use the Hamming loss in
the S-SVM. Therefore, we use the following modified
Hamming loss function:

∆(yn,y)=
∑
e∈E

∆e(y
n
e , ye) (23)

=
∑

ep∈Ep

(
Rpy

n
ep+yep− (Rp + 1)ynepyep

)
+Dn

∑
eh∈Eh

(
Rhy

n
eh
+yeh− (Rh + 1)ynehyeh

)
, (24)

where Dn is the relative weight of the loss at higher-
order edge level to that of the loss at pairwise edge
level. In addition, Rp and Rh control the relative im-
portance between the incorrect merging of the super-
pixels and the incorrect separation of the superpixels
by imposing different weights to the false negative
and the false positive, as shown in Table 2. Here,
we set Dn =

|Ep|
|Eh| , and both Rp and Rh are set to

be less than 1 to overcome the unbalanced problem
mentioned above.

5 EXPERIMENTS

To evaluate segmentations obtained by various al-
gorithms against the ground-truth segmentation, we
conducted image segmentations on three benchmark
datasets: Stanford background dataset [2] (SBD),
Berkeley segmentation dataset (BSDS) [42], and MSRC
dataset [43]. For image segmentation based on CC, we
initially obtain baseline superpixels (438 superpixels
per image on average) by the gPb contour detector
and the oriented watershed transform [32] and then
construct a hypergraph. The function parameters are
initially set to zero, and then based on the S-SVM,
the structured output learning is used to estimate the
parameter vectors. Note that the relaxed solutions in
loss-augmented inference are used during training,
while in testing, our simple rounding method is used
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to produce valid segmentation results. Rounding is
only necessary when the LP relaxation fails to be
exact, that is, when fractional solutions from LP-
relaxed CC are obtained.

We compared the proposed HO-CC to the follow-
ing three unsupervised and three supervised image
segmentation algorithms:

• Mean-shift: Comaniciu and Meer [10] devised
a mode-seeking algorithm to locate points of
locally-maximal density in a feature space.

• Multiscale NCut: Cour et al. [44] devised a multi-
scale spectral image segmentation algorithm by
decomposing an image partitioning graph into
different scales in the normalized cut framework.

• gPb-owt-ucm: The oriented watershed transform
- ultrametric contour map algorithm [32] pro-
duces hierarchical regions of superpixels ob-
tained by using the gPb contour detector.

• gPb-Hoiem: Hoiem et al. [4] grouped superpixels
based on pairwise same-label likelihoods. The
superpixels were obtained by the gPb contour
detector, and the pairwise same-label likelihoods
estimated by a boosted decision tree were inde-
pendently learnt from the training data where
the same 321-dimensional pairwise feature vector
was used as an input to the boosted decision tree.

• Supervised NCut: A supervised learning algo-
rithm for parameter estimation under the nor-
malized cut framework is applied. For this, the
affinity matrix on the same pairwise superpixel
graph is defined as

Ajk =

{
min(1, exp{−⟨w, ϕjk⟩}), if (j, k) ∈ E ,
0, otherwise,

where the same 321-dimensional pairwise feature
vector ϕjk was used. Afterwards, the standard
pairwise affinity learning with the square-square
loss function and the gradient descent algorithm
[45] is used for supervised training.

• PW-CC: The PW-CC is described in Section 2. A
pairwise superpixel graph is obtained with the
same 321-dimensional pairwise feature vector.

Note that we used the codes publicly released
by the authors for Mean-shift, (multiscale) NCut,
gPb-owt-ucm, and gPb-hoiem. Specifically, when we
performed the supervised image segmentation algo-
rithms such as the gPb-hoiem and supervised NCut,
we modified each code to use the same pairwise
feature vector as for our method.

We consider four performance measures: probabilis-
tic Rand index (PRI) [46], segmentation covering (SCO)
[32], variation of information (VOI) [47], and boundary
displacement error (BDE) [48]. When the predicted seg-
mentation is close to the ground-truth segmentation,
the PRI and SCO increases while the VOI and BDE
decreases.

An implementation of the HO-CC is available at
http://slsp.kaist.ac.kr/xe/?mid=software.

5.1 Stanford Background Dataset

The SBD consists of 715 outdoor images with corre-
sponding pixel-wise annotations such that each pixel
is labeled with either one of 7 background classes
or a generic foreground class. From the given pixel-
wise ground-truth annotations, we obtain a ground-
truth segmentation for each image. We employed 5-
fold cross-validation with the dataset randomly split
into 572 training images and 143 test images for each
fold.

Figure 4 shows the four measures obtained from
segmentation results according to the average number
of regions. Note that the performance varies with
different numbers of regions, and for this reason, we
designed each algorithm to produce multiple segmen-
tations (20 to 40 regions). Specifically, multiple seg-
mentations in the proposed algorithm were obtained
by varying Rp (0.01∼0.15) and Rh (0.4∼0.6) in the
loss function during training. When Rh is fixed, as
Rp increases, the number of segmented regions of a
test image tends to decrease, since the false negative
error is penalized more compared to the false positive
error. The same observation is also verified when Rp

is fixed and Rh increases. Irrespective of the measure,
the proposed HO-CC performed better than other
algorithms including the PW-CC.

Figure 5 shows some examples of segmentations.
The proposed HO-CC yielded the best segmentation
results. Incorrectly predicted segments by the PW-CC
were reduced in the segmentation results obtained
by the HO-CC owing to the higher-order relations
in broad regions. The gPb-Hoiem and the supervised
NCut treat each edge as an independent pairwise
instance during training, therefore, the segmentation
results are not stable (producing inconsistant local re-
gions) even though it uses the same pairwise features.

Regarding the runtime of our algorithm, we ob-
served that for test-time inference it took on average
around 15 seconds (graph construction and feature
extraction: 14s, LP: 1s) per image on a 2.67GHz proces-
sor, whereas the overall training took 20 hours on the
training set. In terms of the LP runtime, HO-CC took
about four times more time than PW-CC on average.

The performance improvement is obtained from
both higher-order features and higher-order con-
straints. Segmentation results obtained by HO-CC
without higher-order features were observed to be
very similar to those obtained by PW-CC: without
higher-order features, higher-order constraints did not
tighten the relaxation for PW-CC. However, as shown
in Figure 6, we observed that the performance gap
between the HO-CC with the full higher-order feature
vector (160-dim) and the HO-CC with the simple
higher-order feature vector (45-dim, variances only)
was smaller than that between the HO-CC with the
simple higher-order feature vector and the PW-CC.

In order to confirm improvements obtained by HO-
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Fig. 4. Obtained evaluation measures from segmentation results on the SBD.
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Fig. 5. Results of image segmentation on the SBD.

CC are statistically significant, we performed statis-
tical hypothesis tests for each performance measure.
The Friedman test [49], [50] was used to evaluate
the null-hypothesis that all the algorithms perform
equally well. Table 3 shows the obtained average
ranks. Under the null-hypothesis, all average ranks
should be equal. However, as shown in Table 3, the
ranks are different, and the null-hypothesis is rejected
for all the four measures. This is also verified by
the obtained p-values which are numerically equal to
zeros for all the four measures. Furthermore, we per-
formed a post-hoc test, called Nemenyi test [50], [51]
for pairwise comparison of algorithms, testing for the
null-hypothesis of pairwise equal performance. The

Nemenyi test is based on the difference of the average
performance ranks achieved by the algorithms; if the
difference between two ranks exceeds a critical value,
the null-hypothesis is refuted. As a result, at the level
α = 0.05, with the PRI and BDE measures, the HO-
CC is statistically significantly superior to all other
algorithms except PW-CC, with the VOI measures,
the HO-CC is statistically significantly superior to
all other algorithms except Mean-shift, and with the
SCO measures, the HO-CC is statistically significantly
superior to all other algorithms.
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Fig. 6. Obtained evaluation measures from segmentation results according to the different set of features on the
SBD.

TABLE 3
Average ranks by Friedman test on the SBD.

Average ranks Mean-shift Multi-NCut gPb-owt-ucm gPb-Hoiem Supervised-NCut PW-CC HO-CC
PRI 4.0168 5.0951 3.1524 4.6923 5.5692 2.8797 2.5944
SCO 2.8559 5.8350 2.8587 4.9860 6.5497 2.6462 2.2685
VOI 2.5287 5.6587 3.1203 5.0895 6.4671 2.8028 2.3329
BDE 4.2783 4.4042 3.3203 4.9133 5.4350 2.9399 2.7091

Human #1
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 Human #3
 Human #4
 Human #5


Single

p
robabilistic

ground truth


Fig. 7. Examples of partitionings by multiple human
subjects and single probabilistic (real-valued) ground-
truth partitioning.

5.2 Berkeley Segmentation Dataset

The BSDS300 contains 300 natural images split into
the 200 training images and 100 test images. Since
each image is segmented by multiple human subjects,
we defined a single probabilistic (real-valued) ground-
truth segmentation of each image for training in the
proposed HO-CC (see Figure 7). The gPb-Hoiem and
the supervised NCut used a different ground-truth for
training on the BSDS: declare two superpixels to lie in
the same segment only if all human subjects declare
them to lie in the same segment.

Table 4 and Figure 8 shows the obtained results
at a universal fixed scale (ODS) in terms of vari-
ous performance measures including the boundary
F-measure and the boundary precision-recall curve.
Note that for each algorithm, the same parameters
which produce the best F-measure were used for all
other performance measures in evaluating algorithms.

TABLE 4
Quantitative results on the BSDS300 test set.

BSDS300 test set PRI SCO VOI BDE F
Mean-shift 0.668 0.501 1.962 25.945 0.512
Multi-NCut 0.718 0.263 3.458 14.383 0.595

gPb-owt-ucm 0.807 0.571 2.039 11.001 0.710
gPb-Hoiem 0.724 0.334 3.014 14.651 0.621

Supervised-NCut 0.713 0.235 3.632 16.443 0.545
PW-CC 0.806 0.585 1.829 11.194 0.715
HO-CC 0.814 0.599 1.743 10.377 0.722

For example, the level-threshold of 0.12 for gPb-owt-
ucm, Rp of 0.15 for the PW-CC, and (Rp, Rh) of
(0.01,0.1) for the HO-CC were used for producing
segmentation results at ODS listed in Table 4, since
these values gave the best results with regards to the
F-measure. Irrespective of the measure, the proposed
HO-CC gave the best results, which are similar or
even better than the best results ever reported on the
BSDS300 [32], [52], [53].

We changed the level-threshold for the gPb-owt-
ucm and Rp and Rh for the PW-CC and HO-CC
to produce different numbers of regions per image,
on average, and observed that the HO-CC always
performed better than the PW-CC and the gPb-owt-
ucm (see Figure 9), as on the SBD. Improvement of 1%
in PRI, 1.5% in SCO, 0.1 in VOI, and 1 pixel in BDE on
the BSDS test set is comparable to the improvements
reported in [32], [52] (1% in PRI, 2% in SCO, 0.05
in VOI, and 1 pixel in BDE). We observed that in
comparison to the PW-CC, by the proposed HO-CC,
78 segmentation results were improved, 9 results did
not change, and the rest 13 results got worse on the
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Fig. 8. Boundary precision-recall curve on the
BSDS300 test set.
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Fig. 9. Obtained evaluation measures from segmen-
tation results of gPb-owt-ucm, PW-CC, and HO-CC on
the BSDS300 test set according to the average number
of regions.

BSDS test set.
We also performed experiments on the BSDS500

dataset and obtained the results at ODS. As shown
in Table 5 and Figure 10, the HO-CC performed the
best on the BSDS500.

We increased the number of layers from two to
three by splitting the original higher-order layer into
two layers according to the edge-strengths obtained
from the gPb-owt, then assigned different parameter
vectors to each layer. The obtained performance is
shown in Table 6. The performance of the hypergraph
which has the three layers (HO-CC-Layer3) was a lit-
tle improved in comparison to that of the hypergraph

TABLE 5
Quantitative results on the BSDS500 test set.

BSDS500 test set PRI SCO VOI BDE F
gPb-owt-ucm 0.825 0.579 1.971 9.995 0.726

PW-CC 0.826 0.589 1.859 9.812 0.728
HO-CC 0.828 0.595 1.791 9.770 0.730
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Fig. 10. Boundary precision-recall curve on the
BSDS500 test set.

which has the two layers (HO-CC-Layer2). This small
improvement is due to a small number of hyperedges
associated with the third layer.

The performances obtained by HO-CC might
be influenced by candidate regions for defining
higher-order edges. Therefore, we used a different
superpixel-grouping method – category independent
object proposals (CIOP) [54]. As shown in the Table 7,
the hypergraphs based on the gPb-owt performed a
little better than that based on the gPb-CIOP, but the
gap is not critical.

Figure 11 shows some example segmentations on
BSDS test images obtained by various segmentation
algorithms. The proposed HO-CC yielded the best
segmentation results.

5.3 MSRC Dataset

The MSRC dataset is composed of 591 natural images.
We split the data into 45% training, 10% validation,
and 45% test sets, following [43]. We used the ground-
truth object instance labeling of [55], which does not
contain void regions and is more precise than the
original ground-truth, for both training and testing
(including the performance evaluation) on the MSRC.
On average, all partitioning algorithms were set to
produce approximately 15 disjoint regions per image
on the MSRC dataset. Regarding the performances
according to the number of regions, we observed
the same tendency on the MSRC dataset as on the
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Fig. 11. Results of image segmentation on the BSDS test set.

TABLE 6
Quantitative results on the BSDS500 test set

according to the number of layers.

BSDS500 test set PRI SCO VOI BDE F
HO-CC-Layer2 0.828 0.595 1.791 9.770 0.730
HO-CC-Layer3 0.829 0.599 1.786 9.764 0.730

TABLE 7
Quantitative results on the BSDS500 test set
according to different superpixel-groupings for

hypergraph construction.

BSDS500 test set PRI SCO VOI BDE F
HO-CC-gPb-owt 0.828 0.595 1.791 9.770 0.730

HO-CC-gPb-CIOP 0.826 0.592 1.801 9.797 0.728

BSDS dataset. As shown in Table 8 and Figure 12, the
proposed HO-CC gave the best results on the test set.

We also trained on the MSRC dataset and tested
on the BSDS dataset. This decreases the performance
over training and testing on the BSDS dataset. This
observation is also true in the reverse direction, i.e.
when training on the BSDS dataset and testing on
the MSRC dataset. Overall, this suggests that the two
datasets have different statistics, and the proposed
framework allows the segmentation to be tuned to
the particular dataset at hand.

TABLE 8
Quantitative results on the MSRC test set.

MSRC test set PRI SCO VOI BDE
Mean-shift 0.734 0.606 1.649 13.944
Multi-NCut 0.628 0.341 2.765 11.941

gPb-owt-ucm 0.779 0.628 1.675 9.800
gPb-Hoiem 0.614 0.353 2.847 13.533

Supervised-NCut 0.601 0.287 3.101 13.498
PW-CC 0.773 0.632 1.648 9.194
HO-CC 0.784 0.648 1.594 9.040

6 CONCLUSION

This paper proposed the HO-CC over a hypergraph
to merge superpixels into homogeneous regions. The
LP relaxation was used to approximately solve the
inference problem over a hypergraph where a rich
feature vector was defined based on several visual
cues involving higher-order relations among super-
pixels. The S-SVM was used for supervised training
of parameters in CC, and the cutting plane algo-
rithm with LP-relaxed inference was applied to solve
the optimization problem of S-SVM. Experimental
results showed that the proposed HO-CC outper-
formed other image segmentation algorithms on var-
ious datasets. The proposed framework is applicable
to a variety of other tasks.
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Fig. 12. Results of image segmentation on the MSRC test set.
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