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A Hybrid Loss for Multiclass
and Structured Prediction

Qinfeng Shi, Mark Reid, Tiberio Caetano, Anton van den Hengel and Zhenhua Wang

Abstract—We propose a novel hybrid loss for multiclass and structured prediction problems that is a convex combination of a log
loss for Conditional Random Fields (CRFs) and a multiclass hinge loss for Support Vector Machines (SVMs). We provide a sufficient
condition for when the hybrid loss is Fisher consistent for classification. This condition depends on a measure of dominance between
labels – specifically, the gap between the probabilities of the best label and the second best label. We also prove Fisher consistency is
necessary for parametric consistency when learning models such as CRFs. We demonstrate empirically that the hybrid loss typically
performs least as well as – and often better than – both of its constituent losses on a variety of tasks, such as human action recognition.
In doing so we also provide an empirical comparison of the efficacy of probabilistic and margin based approaches to multiclass and
structured prediction.

Index Terms—Conditional Random Fields, Support Vector Machines, Hybrid Loss, Fisher Consistency, Structured Learning
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1 INTRODUCTION

COnditional Random Fields (CRFs) and Support Vec-
tor Machines (SVMs) can be seen as representative

of two different approaches to classification problems.
The former is purely probabilistic – the conditional prob-
ability of classes given each observation is explicitly
modelled – while the latter is not – classification is
performed without any attempt to model probabilities.
Both approaches have their strengths and weaknesses.
CRFs [10, 16] are known to yield the Bayes optimal
solution asymptomatically but do not have known tight
generalisation bounds. In contrast, SVMs have tighter
generalisation bounds which typically shrink as the mar-
gin grows, and can easily incorporate interesting label-
cost such as F1 score or hamming distance in structured
cases. But SVMs could be inconsistent when there are
more than two classes [18, 11].

Despite their differences, CRFs and SVMs appear very
similar when viewed as optimisation problems. The
most salient difference is the loss used by each: CRFs
are trained using a log loss while SVMs typically use a
hinge loss. In an attempt to capitalise on their relative
strengths and avoid their weaknesses, we propose a
novel hybrid loss which “blends” the two losses. After
some background (§2) we provide the following analysis:
We argue that Fisher Consistency for Classification (FCC)
– a.k.a. classification calibration – is too coarse a no-
tion and introduce a distribution-dependent refinement

• Q. Shi, A. Hengel and Z. Wang are with The Australian Centre for
Visual Technologies and The Computer Vision group of The University of
Adelaide, SA, Australia.
E-mail: {javen.shi, anton.vandenhengel,zhenhua.wang01}@adelaide.edu.au

• M. Reid and T. Caetano are with The Australian National University and
NICTA, ACT, Australia.
E-mail:mark.reid@anu.edu.au, Tiberio.Caetano@nicta.com.au

called Conditional Fisher Consistency for Classification
(§3). We prove the hybrid loss is conditionally FCC
and give a noise condition that relates the hybrid loss’s
mixture parameter to a margin-like property of the data
distribution (§3.1). We then show that, although FCC
is effectively a non-parametric condition, it is also a
necessary condition for consistent risk minimisation us-
ing parametric models (§3.2). Finally, we empirically test
the hybrid loss on various domains including multiclass
classification, text chunking, human action recognition
and show it consistently performs as least as well as –
and often better than – both of its constituent losses (§5).

2 LOSSES

In classification problems observations x ∈ X are paired
with labels y ∈ Y via some joint distribution D over
X×Y. We will write D(x, y) for the joint probability
and D(y|x) for the conditional probability of y given x.
Since the labels y are finite and discrete we will also
use the notation Dy(x) for the conditional probability to
emphasise that distributions over Y can be thought of
as vectors in Rk for k = |Y |. We will also use p and q
to denote distributions over Y but reserve their use for
distributions generated by models.

2.1 Multiclass Prediction

When the number of possible labels is k = |Y | > 2 the
classification problem is known as a multiclass classifica-
tion problem.

Given m training observations S = {(xi, yi)}mi=1 drawn
i.i.d. from D, the aim of the learner is to produce a
predictor h : X → Y that minimises the misclassification
error eD(h) = PD [h(x) 6= y]. Since the true distribution
is unknown, an approximate solution to this problem is
typically found by minimising a regularised empirical

ar
X

iv
:1

40
2.

19
21

v1
  [

cs
.L

G
] 

 9
 F

eb
 2

01
4



IEEE TRANSACTIONS ON PATTERN ANALYSIS & MACHINE INTELLIGENCE, FINAL DRAFT, FEB. 2014 2

estimate of the risk for a surrogate loss `. Examples of
surrogate losses will be discussed below.

Once a loss is specified, a solution is found by solving

min
f

1

m

m∑
i=1

`(f(xi), yi) + Ω(f) (1)

where each model f : X → Rk assigns a vector of
scores f(x) to each observation and the regulariser Ω(f)
penalises overly complex functions. A model f found
in this way can be transformed into a predictor by
defining hf (x) = argmaxy∈Y fy(x) where ties are broken
in some arbitrary but deterministic way (see Section 3.2
for details). We will overload the definition of misclas-
sification error and sometimes write eD(f) as shorthand
for eD(hf ).

A common surrogate loss for multiclass problems is
a generalisation of the binary class hinge loss used for
SVMs [6]:

`H(f, y) = [1−M(f, y)]+ (2)

where [z]+ = z for z > 0 and is 0 otherwise, and
M(f, y) = fy − maxy′ 6=y fy′ is the margin for the vector
f ∈ Rk. Intuitively, the hinge loss is minimised by
models that not only classify observations correctly but
also maximise the difference between the highest and
second highest scores assigned to the labels.

While there are other, consistent losses for SVMs [18,
11], these cannot scale up to a large k. For example, the
multiclass hinge loss

∑
j 6=y[1 + fj(x)]+ is shown to be

consistent in [11]. However, it requires evaluating f on
all possible labels except the true y. This is intractable
for labels where the possible assignments grow exponen-
tially. The other known and consistent multiclass hinge
losses have similar intractability.

2.2 Structured Prediction

In the multiclass case {(xi, yi)}mi=1 are assumed i.i.d.
However, in many cases, they are not i.i.d. Structured
prediction [1] can deal with these cases by grouping
correlated labels to form a structured label y. Here the
structured label y can be any object associated with
x. For example, for the automated paragraph breaking
problem, the input x is a document, and the output y is a
sequence whose entries denote the beginning positions
of the paragraphs. For image segmentation, the input
x is an n1 by n2 image, and the structured label y is
a 2-D lattice {yi,j}i=1,··· ,n1;1=1,··· ,n2 . The framework of
Probabilistic Graphical Models (PGMs) [8] provides a
principled way of modelling the dependencies of the
components of y. For a y with L components i.e. y =
(y1, y2, · · · , yL), the graph of PGM G = (V,E) consists of
the node set V = {1, · · · , L} and the edge set E that
reflects the dependencies. Assuming each component
yj ∈ {1, · · · , c} for all j, there are k = cL many possible
assignments for y. In other words, such a structured
label y can be seen as a multiclass problem with k many

classes in theory, although many multiclass algorithms
will be intractable in the structured case.

Once the structured labels are formed, we can assume
the structured input-output pairs {(xi, yi)}mi=1 are i.i.d.
from some joint distribution. The predictors h or the
models f can be learned in a fashion similar to (1). The
models are usually specified in terms of a parameter
vector w ∈ Rn and a feature map φ : X×Y → Rn
by defining fy(x;w) = 〈w, φ(x, y)〉 and in this case the
regulariser is Ω(f) = λ

2 ‖w‖
2 for some choice of λ ∈ R.

This is the framework used to implement the SVMs and
CRFs used in the experiments described in Section 5.
Although much of our analysis does not assume any
particular parametric model, we explicitly discuss the
implications of doing so in §3.2.

2.3 Probabilistic Interpretation and the Hybrid Loss
CRFs are based on a model whereby

py(x; f) =
exp(fy(x))∑
y∈Y exp(fy(x))

, (3)

and use the log loss

`L(p, y) = − ln py.

This loss penalises models that assign low probability to
likely labels and, implicitly, that assign high probability
to unlikely labels.

We can see that (3) provides a probabilistic interpreta-
tion of the scores of fy(x). It is easy to show that under
this interpretation the hinge loss for p = p(·; f) is given
by

`H(p, y) =

[
1− ln

py
maxy′ 6=y py′

]
+

We now propose a novel hybrid loss that is a combina-
tion of the hinge and log losses

`α(p, y) = α`L(p, y) + (1− α)`H(p, y) (4)

where the mixture of the two losses is controlled by a
parameter α ∈ [0, 1]. Setting α = 1 or α = 0 recovers
the log loss or hinge loss, respectively. The intention is
that choosing α close to 0 will emphasise having the
maximum gap between the largest and second largest
label probabilities while an α close to 1 will force models
to prefer accurate probability assessments over strong
classification.

This family of hybrid losses is similar to a recent
proposal by Zhang et al [20]. They also define a single
parameter family of loss functions called coherence func-
tions that interpolate between hinge loss and a loss that
is closely related to loss based on log-likelihood. Like
the loss presented here, their losses are surrogates for
0-1 loss and both families have the hinge loss as a limit
point. A key difference between the two proposals has
to do with the consistency of losses in each family: the
coherence losses are all Fisher consistent for probability
estimation whereas the hybrid losses satisfy a weaker
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form of consistency which we call conditional Fisher
Consistency for Classification and analyse below.

Despite of the properties of the coherence functions,
using them in structured cases is intractable. They re-
quire the evaluation of a function βj(x) for all classes
i.e. j = 1, · · · , k, see Algorithm 1 step 2 (c) in [20].
Note that k grows exponentially in structured cases.
They encounter the same problem as other consistent
multiclass SVMs. Our hybrid loss does not have this
problem.

3 FISHER CONSISTENCY FOR CLASSIFICA-
TION

A desirable property for a loss is that, given enough
data, the models obtained by minimising the loss at each
observation will make predictions that are consistent
with the true label probabilities at each observation. We
are mainly concerned with distributions D(x) over the
set Y for some fixed (but irrelevant) x. We will therefore
overload D and use it to denote a distribution over Y.
Whether D represents a distribution over labels or a
distribution over labels and observations should be clear
from context.

We say a vector f ∈ RY is aligned with a distribution
D over Y whenever maximisers of f are also maximisers
for D. That is, when argmaxy∈Y fy ⊆ argmaxy∈YDy.
Since the probabilistic models described in §2.3 pass the
components of a vector f(x) through exp and rescale,
it is clear that a prediction f(x) is aligned with D if
and only if py(x; f) is aligned with D. Because of this
correspondence, the following definitions of consistency
are equivalent regardless of whether general models and
losses or their probabilistic counterparts are used.

If, for all label distributions D, minimising the condi-
tional risk L(f,D) = Ey∼D[`(f, y)] for a loss ` yields a
vector f∗ aligned with D we will say ` is Fisher consistent
for classification (FCC) 1 – or classification calibrated [18].
This is an important property for losses since it is
related to the asymptotic consistency of the empirical
risk minimiser for that loss [18, Theorem 2].

The standard multiclass hinge loss `H is known to be
inconsistent for classification when there are more than
two classes [11, 18]. The analysis in [11] shows that the
hinge loss is inconsistent whenever there is an instance
x with a non-dominant distribution – that is, Dy(x) < 1/2
for all y ∈ Y. Conversely, a distribution is dominant for
an instance x if there is some y with Dy(x) ≥ 1/2. In
contrast, the log loss used to train non-parametric CRFs
is Fisher consistent for probability estimation – that is,
the associated risk is minimised by the true conditional
distribution – and thus `C is FCC since the minimising
distribution is equal to D(x) and thus aligned with D(x).

1. Note that the Fisher consistency for classification is weaker than
Fisher consistency for density estimation. The former requires the same
prediction only, while the latter requires the estimated density is the
same as the true data distribution. In this paper, we focus on the former
only. For an analysis of Fisher consistency for density estimation, we
refer the reader to [15].

3.1 Conditional Consistency of the Hybrid Loss
In order to analyse the consistency of the hybrid loss
we require the following refined notion of Fisher consis-
tency. If D = (D1, . . . , Dk) is a (conditional) distribution
over the labels Y then we say the loss ` is conditionally
FCC with respect to D whenever minimising the con-
ditional risk w.r.t. D, L(f,D) = Ey∼D [`(f, y)] yields a
predictor f∗ that is aligned with D. Of course, if a loss `
is conditionally FCC w.r.t. D for all D it is, by definition,
(unconditionally) FCC.

The following theorem provides sufficient conditions
on the hybrid parameter α in terms of a label distribution
D so that the hybrid loss `α is conditionally FCC w.r.t.
D.

Theorem 1: Let D = (D1, . . . , Dk) be a distribution over
Y and let Dmax := maxyDy be the largest probability
assigned to any y ∈ Y. Also let Ymax := {y : Dy =
Dmax} be the set of labels with maximal probability and
Dnext := maxy/∈Ymax

Dy be the second largest probability
assigned to a label, or Dnext = ∞ if Ymax = Y. Then
the hybrid loss `α is conditionally FCC for D whenever
Dmax ≥ 1

2 or

α > 1− Dmax −Dnext

1− 2Dmax
. (5)

The proof is by contradiction and proceeds at a high
level by showing that if the distribution D satisfies
Dmax ≥ 1

2 or (5) but the minimiser p of the risk
Lα(p,D) is not aligned with D we derive a falsehood.
The argument is broken into two cases: when the risk
minimising distribution p has a unique maximum prob-
ability and when it does not. In both cases we show how
to construct an alternative distribution q (that depends
on D) such that Lα(q,D) < L(p,D), yielding the required
contradiction. In the first case, q is obtained by swapping
the most probable label of p with that of D. In the second
case (when p has two or more most probable labels), q
is obtained by perturbing p slightly towards D.

Proof: Since we are free to permute the labels
within Y, we will assume without loss of generality that
there are t ties for the most probable label and that
Ymax = {1, . . . , t} and so D1 = · · · = Dt. Defining
Lα(p,D) = Ey∼D [`α(p, y)], the proof now proceeds by
contradiction by assuming that there is some minimiser
p = argminq Lα(q,D) that is not aligned with D. For this
to occur there must be some label y∗ > t such that py∗
is as least as large as p1, . . . , pt. For simplicity, and again
without loss of generality, we will assume that y∗ is the
label with the largest probability according to p (that is,
y∗ ∈ argmaxy py). We are also free to have permuted
labels within Ymax to ensure t ∈ argmaxy∈Ymax

py .
The first case to consider is when py∗ is strictly larger

than pt. Here we construct a new distribution q that
swaps the values of pt and py∗ and leaves all the other
values unchanged. That is, qt = py∗ , qy∗ = pt and qy = py
for all y ∈ Y−{t, y∗}. Intuitively, we will now show
that this new point is “closer” to D and therefore the
CRF component of the loss will be reduced while the
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SVM component of the loss won’t increase. To do so, we
consider the difference in conditional risks:

Lα(p,D)− Lα(q,D) =

k∑
y=1

Dy.(`α(p, y)− `α(q, y))

= Dt.(`α(p, t)− `α(q, t))

+Dy∗ .(`α(p, y∗)− `α(q, y∗))

= (Dt −Dy∗)(`α(q, y∗)− `α(q, t))

since `α(p, t) = `α(q, y∗) and `α(p, y∗) = `α(q, t) and the
other terms cancel by construction. Since, by assumption
y∗ > t, we have Dt − Dy∗ > 0, so all that is required
now is to show that `α(q, y∗)− `α(q, t) = α ln qt

qy∗
+ (1−

α)(`H(q, y∗)− `H(q, t)) is strictly positive.
Since py∗ = qt > qy for y 6= t we have ln qt

qy∗
>

0, `H(q, y∗) =
[
1− ln

qy∗

qt

]
+

> 1, and `H(q, t) =[
1− ln qt

qy∗

]
+
< 1, and so `H(q, y∗)− `H(q, t) > 1− 1 = 0.

Thus, `α(q, y∗) − `α(q, t) > 0 as required. This gives a
contradiction and thus establishes the theorem in the
case where py∗ > pt.

Now suppose that py∗ = pt. That is, there is a tie for the
maximum probability label in p and at least one of these
maximising labels coincides with the maximising labels
of D. In this case we show that a slight perturbation of
p yields a new distribution q with a strictly smaller loss.
To define q we let ε > 0 and set qy∗ = py∗ + ε, qt = pt− ε,
and qy = py for all other y 6= t, y∗. Now, for y 6= t, y∗

we have `L(p, y) − `L(q, y) = 0. Also for y 6= t, y∗ we
have pt > py and qy∗ > qy thus `H(p, y) − `H(q, y) =

1 − ln
py
pt
−
(

1− ln
qy
qy∗

)
= ln pt

qy∗
> 1 − qy∗

pt
= − ε

pt
since

− lnx > 1 − x for x > 0 and qy∗ = py∗ + ε = pt + ε. By
substituting this inequality into the definition of `α, we
see that for all y 6= t, y∗

`α(p, y)− `α(q, y) > −ε (1− α)

p1
. (6)

For the label y∗ we see that the log loss component of
`α satisfies `L(p, y∗) − `L(q, y∗) = − ln

py∗

qy∗
>

qy∗−py∗
qy∗

=
ε
qy∗

and the difference between the hinge loss compo-
nents becomes `H(p, y∗) − `H(q, y∗) = (1 − ln

py∗

pt
) −

(1 − ln
qy∗

qt
) = ln

qy∗

qt
= ln

py∗+ε

py∗−ε
since py∗ = pt. Thus

`H(p, y∗)− `H(q, y∗) > 1− py∗−ε
py∗+ε

= 2ε
py∗+ε

. And so

`α(p, y∗)− `α(q, y∗) > ε

[
α

py∗ + ε
+

2(1− α)

py∗ + ε

]
= ε

2− α
py∗ + ε

> ε
2− α
py∗

(7)

since ε > 0 and α ≤ 1. Finally, for the label t we have
`L(p, t) − `L(q, t) = − ln pt

qt
> qt−pt

qt
= −ε

qt
= −ε

py∗−ε
since

qt = pt − ε and pt = py∗ . Similarly, `H(p, t) − `H(q, t) =

(1− ln pt
pt

)− (1− ln qt
qt

) = ln qt
qy∗

> 1− qy∗

qt
= −2ε

py∗−ε
. Thus,

`α(p, t)− `α(q, t) > −ε
[

α

py∗ − ε
+

2(1− α)

py∗ − ε

]
= −ε 2− α

py∗ − ε
> −ε2− α

py∗
(8)

Putting the inequalities (6), (7) and (8) together yields

Lα(p,D)− Lα(q,D)

> Dy∗ε

[
2− α
py∗

]
−Dtε

[
2− α
py∗

]
−
∑
y 6=y∗,t

Dyε
1− α
py∗

=
ε

py∗
[(Dy∗ −Dt)(2− α)− (1−Dy∗ −Dt)(1− α)]

=
ε

py∗
[Dy∗ −Dt + (1− α)(2Dy∗ − 1)] .

Since Dy∗ > Dt, when Dy∗ ≥ 1
2 the final term is non-

negative without any additional constraint on α ∈ [0, 1]
and since Dy∗ > Dt, the difference in risks is thus
positive. When Dy∗ <

1
2 the difference in risks is positive

whenever
α > 1− Dy∗ −Dt

1− 2Dy∗
. (9)

Observing that Dmax = Dy∗ and Dnext = Dt completes
the proof.

Theorem 1 can be inverted and interpreted as a con-
straint on the conditional distributions of some data
distribution D such that a hybrid loss with parameter α
will yield consistent predictions. Specifically, the hybrid
loss will be consistent if, for all x ∈ X such that q = D(x)
has no dominant label (i.e., Dy(x) ≤ 1

2 for all y ∈ Y), the
gap Dy1(x) − Dy2(x) between the top two probabilities
is larger than (1 − α)(1 − 2Dy1(x)). When this is not
the case for some x, the classification problem for that
instance is, in some sense, too difficult to disambiguate.
In this sense, the bound can be seen as a property on
distributions akin to Tsybakov’s noise condition [4]. Both
conditions are non-constructive as they depend on the
unknown distribution but provide some guidance as to
the effect of parameter choices (i.e., α for the hybrid loss
and regularisation constants for SVMs). Exploring the
relationship between conditional FCC and the Tsybakov
noise condition is the focus of ongoing work.

3.2 Parametric Consistency

Since Fisher consistency is defined point-wise on ob-
servations, it is not directly applicable to parametric
models as these enforce inter-observational constraints
(e.g. smoothness). Abstractly, assuming parametric hy-
potheses can be seen as a restriction over the space of
allowable scoring functions. When learning parametric
models, risks are minimised over some subset F of
functions from X→ RY instead of all possible functions.
We now show that, given some weak assumptions on
the hypothesis class F, a loss being FCC is a necessary
condition if the loss is also to be F-consistent.
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We say a loss ` is F-consistent if, for any distribution,
minimising its associated risk over F yields a classifier
with minimal 0-1 loss in F.2 Recall from Section 2.2 that
the risk of a hypothesis f ∈ F associated with a loss `
and distribution D over X×Y is LD(f) = ED [`(y, f(x))]
and the 0-1 risk or misclassification error for f is eD(f) =
PD [h(x) 6= y] where h is some classifier deterministically
derived by some tie-breaking procedure on f . More
precisely, we will say a tie-breaker T is a function from
the power set of Y to Y that guarantees T (Y ) ∈ Y
for all non-empty Y ⊂ Y. Finally, we define hf (x) =
T (argmaxy∈Y fy(x)) to be the classifier derived from f
using T .

Given a function class F we say ` is F-consistent if, for
all distributions D and all tie-breakers T defining the
classifiers hf ,

LD(f∗) = inf
f∈F

LD(f) =⇒ eD(hf∗) = inf
f∈F

eD(hf ). (10)

We need a relatively weak condition on function
classes F to state our theorem. We say a class F is regular
if the follow two properties hold: 1) For any g ∈ RY there
exists an x ∈ X and an f ∈ F so that f(x) = g; and 2)
For any x ∈ X and y ∈ Y there exists an f ∈ F so that
there is a unique y ∈ Y which maximises fy(x).

Intuitively, the first condition says that for any distri-
bution over labels there must be a function in the class
which models it perfectly on some point in the input
space. The second condition requires that any mode can
be modelled on any input by a function that has no ties
for its maximum value. Importantly, these properties are
fairly weak in that they do not say anything about the
constraints a function class might put on relationships
between distributions modelled on different inputs.

Theorem 2: For regular function classes F any loss that
is F-consistent is necessarily also Fisher Consistent for
Classification (FCC).

Proof: The proof is by contradiction. We assume we
have a regular function class F and a loss ` which is F-
consistent but not FCC. That is, (10) holds for ` but there
exists a distribution p over Y such that there is a g ∈ RY

which minimises the conditional risk Lp(g) but g is not
aligned with p (i.e., argmaxy∈Y gy 6⊂ argmaxy∈Y py).

By the assumption of the regularity of F, property 1
means there is an x ∈ X and a f ∈ F so that f(x) = g.
We now define a distribution D over X×Y that puts all
its mass on the set {x}×Y so that D(x, y) = py . Since this
distribution is concentrated on a single x its full risk and
conditional risk on x are the same. That is, LD(·) = Lp(·).
Thus,

LD(f) = Lp(f) = inf
f ′∈F

Lp(f
′) = inf

f ′∈F
LD(f ′)

By the assumption of F-consistency, since f is a min-
imiser of LD the classifier hf must also minimise eD for

2. While this is simpler and stronger than the usual asymptotic no-
tation of consistency [12] it most readily relates to FCC and suffices for
our discussion since we are only establishing that FCC is a necessary
condition.

any choice of tie-breaker T used to define hf . Because
g = f(x), the construction of D implies that eD(hf ) =
ep(hg) = Py∼p [y 6= hg(x)] = 1 − pyg where yg = hg(x)
is the label predicted by hg . However, since g is not
aligned with p by assumption and (10) holds for any
T , we are free to choose the tie-breaker T defining hg so
that hg(x) = T (argmaxy gy(x)) /∈ argmaxy py . Thus

eD(hf ) = ep(hg) = 1− pyg > 1− py∗ (11)

since yg 6= y∗ ∈ argmaxy py .
By the second regularity property, there must also be

an f̂ ∈ F such that y∗ is the unique maximiser of f̂y(x)
for y ∈ Y. Since y∗ is a unique maximiser, any choice of
tie-breaker T will result in a classifier satisfying hf̂ (x) =
y∗ as any T must guarantee T ({y}) ∈ {y} for all y ∈ Y.
Therefore, we arrive at the contradiction

1− py∗ = eD(hf̂ ) ≥ eD(hf ) > 1− py∗

since hf is a minimiser of eD and eD(hf ) > 1 − py∗ by
(11). Thus, we have shown that there exists a distribution
D so f ∈ F is a minimiser of the risk LD but hf is not a
minimiser of the misclassification rate eD, contradicting
the assumption of the F-consistency of `. Therefore, `
must be FCC.

The above analysis of the hybrid loss suggests it
should outperform the hinge loss due to its improved
consistency on distributions with non-dominant labels.
Furthermore, it should also make more efficient use of
data than log loss on distributions with dominant labels.
These hypotheses are confirmed in the next section by
applying the hybrid, log and hinge losses to a number of
synthetic multiclass data sets in which the data set size
and proportion of examples with non-dominant labels
are carefully controlled.

We also compare the hybrid loss with the log and
hinge losses on several real structured estimation prob-
lems and observe that the hybrid loss regularly outper-
forms the other losses and consistently performs at least
as well as either of the other losses on any problem.

4 MULTICLASS CLASSIFICATION

Two types of multiclass simulations were performed.
The first examined the performances of the hybrid, log
and hinge losses when no observation had a dominant
label. That is all observations were drawn from a D with
Dy(x) < 1/2 for all labels y. The second experiment
considered distributions with a controlled mixture of
observations with dominant and non-dominant labels.

4.1 Non-dominant Distributions
To make the experiment as simple as possible, we con-
sidered an observation space of size |X | = 1 and focused
on varying the number of labels and their probabilities.

Fisher consistency analyses the behaviour of
losses while observing the entire data population.



IEEE TRANSACTIONS ON PATTERN ANALYSIS & MACHINE INTELLIGENCE, FINAL DRAFT, FEB. 2014 6

0.2 0.25 0.3 0.35 0.4

0.2

0.25

0.3

0.35

0.4

Hinge

H
yb

rid

(a) Hybrid v.s. Hinge (31/15)

0.2 0.25 0.3 0.35 0.4

0.2

0.25

0.3

0.35

0.4

Log

H
yb

rid

(b) Hybrid v.s. Log (34/15)

0.2 0.25 0.3 0.35 0.4

0.2

0.25

0.3

0.35

0.4

Log

H
in

ge

(c) Hinge v.s. Log (30/23)

Fig. 2. Performance of the hybrid, hinge, and log losses on non-dominant/dominant mixtures. Points denote pairs of
test accuracies for models trained on one of 60 data sets using the losses named on the axes. Score (a/b) denotes
the vertical loss with a wins and b losses (ties not counted).
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Fig. 1. Training Error with various number of classes.
α = 0.5 for the hybrid loss. Fisher consistency analyses
the behaviour of a loss observing the entire data popula-
tion. Thus the training data are the entire data, so are the
testing data. Consequently, the training error is the testing
error.

To mimic seeing the entire data population and the
dominant/non-dominant class case, we use a constant
vector in R2 as features, and learn the parameter vectors
wy ∈ R2 for y ∈ Y. The labels y take different values
proportionally as follows: The label set Y took the
sizes |Y | = 3, 4, 5, . . . , 10. One label y∗ ∈ Y is assigned
probability Dy∗(x) = 0.46 and the remainder are given
an equal portion of 0.54 (e.g., in the 3 class case the
other labels each have probability 0.27, and in the 10
class case, 0.06). Note that this means for all the label
set sizes, the gap Dy∗(x) − Dy(x) is at least 0.19 which
is always greater than (1 − α)(1 − 2Dy∗(x)) = 0.04 so
the hybrid consistency condition (5) is always met. This
way, the size of training data does not affect the training
error as long as the proportions of y values are not
altered. In the same vein, the proportions of y values in
the test data are the same as that in the training data,
thus test errors and training errors should be the same

in this case. Thus we plot the resulting training errors
(and the test errors) for hinge, log and hybrid losses
in Figure 1 as a function of the number of labels. As
we can clearly see, the hinge loss error increases as the
number of classes increases, whereas the errors for the
log and the hybrid losses remain a constant (1−Dy∗(x)),
in concordance with the consistency analysis.

Models were found using LBFGS [3] with inexact
line search, thus landing on the hinge point almost
never happens. In theory, it is a problem — it may not
converge for the non-smooth optimisation problem. But
in practice, it works well.

4.2 Mix of Non-dominant and Dominant Distribu-
tions
The second synthetic experiment examined how the
three losses performed given various training set sizes
(denoted by m) and various proportions of instances
with non-dominant distributions (denoted by ρ).

We generated 60 different data sets, all with Y =
{1, 2, 3, 4, 5}, in the following manner: Instances came
from either a non-dominant class distribution or a dom-
inant class distribution. In the non-dominant class case,
x ∈ R100 is set to a predefined, constant, non-zero vector
and its label distribution is D1(x) = 0.4 and Dy(x) = 0.15
for y > 1. In the dominant case, each dimension xi was
drawn from a normal distribution N(µ = 1 + y, σ = 0.6)
depending on the class y = 1, . . . , 5. The proportion ρ
ranged over 10 values ρ = 0.1, 0.2, 0.3, . . . , 1 and for each
ρ, test and validation sets of size 1000 were generated.
Training set sizes of m = 30, 60, 100, 300, 600, 1000 were
used for each ρ value for a total of 60 training sets. The
optimal regularisation parameter λ and hybrid loss pa-
rameter α were selected using the validation set for each
loss on each training set. Then models with parameters
wy ∈ R100 for y ∈ Y were found using LBFGS [3] for
each of the three losses on each of the 60 training sets
and then assessed using the test set.

The results are summarised in Figure 2. Each point
shows the test accuracy for a pair of losses. The pre-
dominance of points above the diagonal lines in a) and b)
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Fig. 3. Estimated probabilities of the true label Dyi(xi) and most likely label Dy∗i
(xi). Sentences are sorted according

to Dyi(xi) and Dy∗i
(xi) respectively in ascending order. D = 1/2 is shown as the straight black dot line. About 700

sentences out of 2012 in the testing set and 2000 sentences out of 8936 in the training set have no dominant label.

TABLE 1
Accuracy, precision, recall and F1 Score on the CONLL2000 text chunking task.

Train Portion Loss Accuracy Precision Recall F1 Score
Hinge 91.14 85.31 85.52 85.41

0.1 Log 92.05 87.04 87.01 87.02
Hybrid 92.07 87.17 86.93 87.05
Hinge 94.61 91.23 91.37 91.30

1 Log 95.10 92.32 91.97 92.15
Hybrid 95.11 92.35 92.00 92.17

show that the hybrid loss outperforms the hinge loss and
the log loss in most of the data sets. while the log and
hinge losses perform competitively against each other.

5 STRUCTURED ESTIMATION

Unlike the general multiclass case, structured estimation
problems have a higher chance of non-dominant distri-
butions because of the very large number of labels as
well as ties or ambiguity regarding those labels. For ex-
ample, in text chunking, changing the tag of one phrase
while leaving the rest unchanged should not drastically
change the probability predictions – especially when
there are ambiguities. Due to the prevalence of non-
dominant distributions, we expect models trained using
the hinge loss to perform poorly on these problems
relative to those trained with hybrid or log losses. We
emphasise that our main motivation for investigating
structured prediction problems is that, as multiclass
problems, they tend to have non-dominant distributions.

5.1 CONLL2000 Text Chunking
Our first structured estimation experiment is carried out
on the CONLL2000 text chunking task [5]. The data
set has 8936 training sentences and 2012 test sentences
with 106978 and 23852 phrases (a.k.a. chunks), respec-
tively. The task is to divide a text into syntactically
correlated parts of words such as noun phrases, verb
phrases, and so on. For a sentence with L chunks, its

label consists of the tagging sequence of all its chunks,
i.e. y = (y1, y2, . . . , yL), where yj is the chunking tag
for chunk j. As is common in this task, the label y
is modelled as a chain-structured graphical model to
account for the dependency between adjacent chunking
tags (yji , y

j+1
i ) given observation xi. Clearly, the model

has exponentially many possible labels, which suggests
the absence of a dominant class.

Since the true underlying distribution is unknown,
we train a CRF on the training set and then apply the
trained model to both testing and training datasets to
obtain an estimate of the conditional distributions for
each instance. We sort the sentences xi from highest
to lowest estimated probability on the true chunking
label yi given xi. The result is plotted in Figure 3, from
which we observe the existence of many non-dominant
distributions — about 1/3 of the testing sentences and
about 1/4 of the training sentences.

We use the feature template from the CRF++ toolkit
[9], and the CRF code from Leon Bottou [2]. Stochastic
Gradient Descent (SGD) [2] is used for training. During
training, dynamic programming (i.e. Viterbi algorithm)
for inference is used. We split the data into 3 parts:
training (20%), testing (40%) and validation (40%). The
regularisation parameter λ and the weight α were deter-
mined via parameter selection using the validation set.
To see the performance with different training sizes, we
took part of the training data to learn the model and
gathered statistics on the test set. The accuracy, precision,
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TABLE 2
Accuracy, precision, recall and F1 Score on the baseNP chunking task for training on increasing portions of training

set.

Train Portion Loss Accuracy Precision Recall F1 Score
Hinge 88.48 71.70 75.96 73.77

0.1 Log 90.86 81.09 78.96 80.01
Hybrid 90.90 81.23 79.09 80.15
Hinge 94.64 87.58 88.30 87.94

1 Log 95.21 90.07 88.89 89.48
Hybrid 95.24 90.12 88.98 89.55

recall and F1 Score on the test set are reported in Table 1
when using 10% and 100% of the training set. The hybrid
loss marginally outperforms both the hinge loss and the
log loss.

5.2 baseNP Chunking

A similar methodology to the previous experiment is
applied to the BaseNP data set [9]. It has 900 sentences in
total and the task is to automatically classify a chunking
phrase as baseNP or not.

Again SGD [2] is used for training. During training,
dynamic programming (i.e. Viterbi algorithm) for infer-
ence is used. We split the data into 3 parts: training
(20%), testing (40%) and validation (40%). Once again,
λ and α are determined via model selection on the
validation set. We report the test accuracy, precision,
recall and F1 Score in Table 2 for training on increasing
proportions of the training set. The hybrid marginally
outperforms the other two losses on all measures.

5.3 Human action recognition

Here we consider recognising human actions in TV
episodes, where each contains one or more persons and
may interact with each other. We evaluate our method
on the TVHI dataset [14], which contains 300 short
videos collected from TV episodes and includes five
action classes: handshake (HS), hug (HG), high-five (HF),
kiss (KS) and others (OT). Here a person labelled the
action others means that there is no interaction between
this person and any other persons in the image. Each
video contains a number (up to seven) of people per-
forming one of the five action classes. The ground-
truth provided with the dataset includes upper body
bounding boxes, discrete body poses, the action labels
and the interaction status between any pair of persons
(i.e. a binary variable indicating whether there is an
interaction). We manually choose 2,188 images from this
dataset and divide these examples into three sets without
intersection: the training set (400 frames), the validating
set (894 frames) and the testing set (894 frames). Here α
is determined via model selection on the validation set.
Note in [14] their task is to predict both interactions and
actions, whereas here our task is to predict actions given
interaction status. More specifically, our goal is to solve
the estimation problem of finding the actions y ∈ Y of all

subjects in an observation image x ∈ X, given pairwise
interaction status.

We use PGMs to model the dependency of the actions
in the same image. Consider a graph G = (V,E) with
each node i ∈ V representing an action variable yi

and each edge (i, j) ∈ E reflecting the dependency of
the two action variables. The edge set E is constructed
according to the annotated interaction status. If there is
an interaction between two persons in the annotation,
then an edge between two corresponding nodes is added
to the edge set E.

We cast this estimation problem as finding an energy
function E(x, y) such that for an observation image x ∈
X, we assign the actions that receive the smallest energy
with respect to E, that is

y∗ = argmin
y∈Y

E(x, y;w). (12)

Here we use the energy function E with unary terms U
and pairwise terms S as follows,

E(x, y;w) =
∑
i∈V

U(yi, x;w′)+
∑

(i,j)∈E

S(yi, yj , x;w′′). (13)

where w = [w′;w′′], and

U(yi, x;w′) =
〈
φ1(xi, yi), w′

〉
, (14a)

S(yi, yj , x;w′′) =
〈
φ2(xi, xj , yi, yj), w′′

〉
. (14b)

Here φ1 and φ2 are node and edge features (which
we will define later), and xi is the sub-image of the
bounding box on the i-th subject. The model parameter
w will be learned during training.

Our feature representation is a combination of several
visual cues including multiclass SVM action classifica-
tion scores, human body poses and the relative position
between two individuals, which have been exploited to
distinguish different actions in [14, 13]. Here we combine
these visual cues in a similar way as [14]. To be specific,
let e1(yi) ∈ {0, 1}5 represent an unit vector with the
yi-th dimension equals 1 (0 elsewhere). Similarly, let
e2(rij) ∈ {0, 1}6 denote another unit vector with the rij-
th dimension equals 1 (0 elsewhere). Here rij denotes
the relative position of person j to i. To compute rij , we
employ a simple method in [14] which only requires the
bounding boxes of person i and j. Each rij value rep-
resents a relative position in the set {overlap, adjacent−
left, adjacent−right, near−left, near−right, far}. Let ⊗
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denote the Kronecker product. The features are defined
as

φ1(xi, yi) = di⊗ e1(yi), (15a)

φ2(xi, xj , yi, yj) = e1(yi)⊗ e1(yj)⊗ e2(rij)⊗ oi⊗oj

+ e1(yj)⊗ e1(yi)⊗ e2(rij)⊗ oj ⊗oi, (15b)

where di ∈ R5 is a score vector contains the action
classification scores obtained by applying a multiclass
SVM classifier to the histograms of gradients (HoG)
descriptor [7] extracted from the bounding box area of
person i. Similarly, oi ∈ R5 represents another score
vector of the pose classification scores (the descriptors
for pose classification is the same as that used for action
classification). Here we consider five body pose classes
{profile− left, profile− right, frontal− left, frontal−
right, backwards}. To extract the HoG features, we su-
perimpose an 8 × 8 grid on the bounding box area and
accumulate HoG for each grid cell using five orientation
bins. The final descriptor is a concatenation of the sub-
descriptors of all cells.

Intuitively, the node term U reflects the confidence of
assigning person i the action label yi observing xi. The
edge term S encodes the correlation between actions yi

and yj observing xi, xj .
Implementing Kronecker product naively to compute

energies could be memory and time consuming. For-
tunately, we see that the feature vectors in (15) are
highly sparse (especially the edge feature). Thus we only
need to multiply the non-zero components of the feature
vectors with corresponding components of the w without
using Kronecker product.

Following the work of SVMs for structured prediction
[19], the hinge loss in this case is

`H(x, y, w) = [∆(y†, y) + E(x, y;w)− E(x, y†;w)]+. (16)

where

y†i = argmin
y

(E(y, xi;w)−∆(y, yi)). (17)

Here ∆ is a label cost function (or distance) that describes
the discrepancy of two labels. We use the popular Ham-
ming distance, which is defined as

∆Ham(y, y′) =
1

L

L∑
j=1

δ(yj 6= y′j), (18)

where y = (yj)Lj=1 and y′ = (y′j)Lj=1.
For the log loss, let E(x, y;w) = −fy(x). Thus, accord-

ing to (3) we have

p(y|x;w) =
exp(−E(x, y;w))∑

y′∈Y exp(−E(x, y′;w))
. (19)

So the log loss is

`L(x, y, w) = − log
( exp(−E(x, y;w))∑

y′∈Y exp(−E(x, y′;w))

)
(20)

= E(x, y;w) + log
(∑
y′∈Y

exp(−E(x, y′;w))
)
. (21)

According to (4) the hybrid loss is

`α(x, y, w) = α`L(x, y, w)+(1− α)`H(x, y, w). (22)

The sub-gradient of the hybrid loss is simply a convex
combination of the sub-gradient of the hinge loss and
the gradient of the log loss. It is known that the sub-
gradient of the hinge loss can be computed via standard
MAP inference techniques, and the gradient of the log
loss can be computed via standard marginal inference
techniques. We use the max-product algorithm for the
hinge loss and the sum-product algorithm for the log
loss.

To accelerate the training, we apply the stochastic sub-
gradient method from [17] to the hybrid loss. Here the
maximum number of iterations is set to be 30 and the
min-batch size is set to be 10. Once the parameters are
learned, we use the standard max-product algorithm to
make prediction on testing data.

In order to evaluate the recognition performance of
different losses, we show the confusion matrices in
Figure 4. It can be seen that the hybrid loss achieves
the best true positive rates on 3 classes (OT, HG and
KS) out of 5 action classes, while the log loss and the
hinge loss perform best on the HS class and the HF class
respectively. Note all losses perform much worse on the
HF class than the rest classes. This is because the training
set is highly biased as the number of persons performing
the high-five action in the training set is much less than
other classes.

We also give some recognition examples as that shown
in Figure 5. The first column shows four input im-
ages, each containing multiple persons with occlusions
making the recognition task difficult. As we can see,
hinge loss performs worst with 10 persons out of 18
mislabelled. The log loss outperforms the hinge loss in
general as 5 persons are misclassified. For the hybrid
loss, persons in all images are perfectly classified except
for the third image, where all 3 persons are misclassified.

6 CONCLUSION AND DISCUSSION

We have provided theoretical and empirical motivation
for the use of a novel hybrid loss for multiclass and struc-
tured prediction problems which can be used in place of
the more common log loss or multiclass hinge loss. This
new loss attempts to blend the strength of purely dis-
criminative approaches to classification, such as Support
Vector machines, with probabilistic approaches, such as
Conditional Random Fields. Theoretically, the hybrid
loss enjoys better consistency guarantees than the hinge
loss while experimentally we have seen that the addi-
tion of a purely discriminative component can improve
accuracy when data is less prevalent.

In general the consistency condition may not hold
if α is selected by cross-validation. For example, when
the selected α is very small. However, we observe the
selected α values in our experiments are always very
close to 1.
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Fig. 4. Confusion matrices on the TVHI dataset. For each class the best are highlighted by green rectangles. The
hybrid loss achieves the best classification accuracy on three out of five action classes, i.e. other, hug and kiss.
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Fig. 5. Visualisation of some action predictions using different losses. FIRST COLUMN: the input images; SECOND
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The edges (line segments in pink) come from the interaction annotation in the dataset, and are used to model the
dependency between two action variables of subjects.
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6.1 Future Work
Theoretically, we expect that some stronger sufficient
conditions on α are possible since the bounds used to
establish Theorem 1 are not tight. Our conjecture is
that a necessary and sufficient condition would include
a dependency on the number of classes. We are also
investigating connections between α and the multiclass
Tsybakov noise condition [4].

To our knowledge, the notion of a regular function
class for the purposes of consistency analysis is novel.
Characterisations of this property for existing parametric
models would make testing for regularity easier.

In structured prediction, there is still a big gap be-
tween the analysis and the practice. For example, in
structured prediction, we know the parametric hinge
loss is not consistent for binary label cost function, but
we don’t know whether the parametric hybrid loss is.
Moreover, we don’t have theoretical results for general
label cost functions. To better connect our theory with
actual practice on structured prediction problems, we
plan to investigate consistency for general cost functions
(e.g. Hamming loss) that are more commonly used in
these problems.
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