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Abstract—We extend kernelized matrix factorization with a full-Bayesian treatment and with an ability to work with multiple side

information sources expressed as different kernels. Kernels have been introduced to integrate side information about the rows and

columns, which is necessary for making out-of-matrix predictions. We discuss specifically binary output matrices but extensions to real-

valued matrices are straightforward. We extend the state of the art in two key aspects: (i) A full-conjugate probabilistic formulation of the

kernelized matrix factorization enables an efficient variational approximation, whereas full-Bayesian treatments are not computationally

feasible in the earlier approaches. (ii) Multiple side information sources are included, treated as different kernels in multiple kernel

learning which additionally reveals which side sources are informative. We then show that the framework can also be used for

supervised and semi-supervised multilabel classification and multi-output regression, by considering samples and outputs as the

domains where matrix factorization operates. Our method outperforms alternatives in predicting drug-protein interactions on two data

sets. On multilabel classification, our algorithm obtains the lowest Hamming losses on 10 out of 14 data sets compared to five state-of-

the-art multilabel classification algorithms. We finally show that the proposed approach outperforms alternatives in multi-output

regression experiments on a yeast cell cycle data set.

Index Terms—Automatic relevance determination, biological interaction networks, large margin learning, matrix factorization, multilabel clas-

sification, multiple kernel learning, multiple output regression, variational approximation

Ç

1 INTRODUCTION

MATRIX factorization algorithms are very popular
matrix completion methods [1], successfully used

in many applications including recommender systems
and image inpainting. The main idea behind these meth-
ods is to factorize a partially observed data matrix by
finding a low-dimensional latent representation for both
its rows and columns. The prediction for a missing entry
can be calculated as the inner product between the latent
representations of the corresponding row and column.
Salakhutdinov and Mnih [2], [3] give a probabilistic for-
mulation for matrix factorization and its fully Bayesian
extension. However, these approaches are still incom-
plete in two major aspects: (i) It is not possible to inte-
grate side information (e.g., social network or user
profiles for recommender systems) into the model. (ii) It
is not possible to make predictions for completely empty
columns or rows (i.e., out-of-matrix prediction).

Algorithms for integrating side information into matrix
factorization have been proposed earlier in the recom-
mender systems literature. Ma et al. [4] propose a probabi-
listic matrix factorization method that uses a social network
and the rating matrix together to find better latent compo-
nents. Agarwal and Chen [5] formulate the latent compo-
nents as the outputs of regression models on row and
column features (i.e., side information sources). Shan and

Banerjee [6] integrate side information into a probabilistic
matrix factorization model using topic models to generate
latent components of the rated items (e.g., movies). Agarwal
and Chen [7] use a similar strategy to generate latent com-
ponents of both users and items using topic models. Wang
and Blei [8] also combine matrix factorization and topic
models for scientific article recommendation using textual
content of articles as side information. Yoo and Choi [9] fac-
torize the rating and side information matrices jointly with
a Bayesian formulation by sharing a factor matrix between
these two. Park et al. [10] formulate a hierarchical Bayesian
model for matrix factorization and use side information in
prior distributions of latent components.

Miller et al. [11] formulate a nonparametric Bayesian
method for modeling relational data such as social net-
works, which uses inferred latent features and input fea-
tures to perform link prediction. Menon and Elkan [12]
propose to solve this link prediction problem in graphs
using a matrix factorization approach that can make use of
explicit node or edge features.

All these algorithms are based on explicit feature rep-
resentations; some are specific to count (e.g., text) data,
and all model linear dependencies. Zhang et al. [13] gen-
eralize their earlier solutions to the nonlinear domain
using, for example, decision trees instead of linear regres-
sion. However, their solution still requires explicit feature
representations for rows and columns. We use kernels to
be able to include nonlinear dependencies and to go
beyond feature representations to structured objects such
as sequences, trees, and graphs, considered especially in
bioinformatics applications.

As in other branches of machine learning, kernel meth-
ods are also investigated for relational learning, factor anal-
ysis models, and matrix factorization. Chu et al. [14] give a
nonparametric Bayesian method to integrate the relational
information and explicit features of entities being modeled
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using Gaussian processes. Luttinen and Ilin [15] present a
Bayesian factor analysis model, which formulates both the
loading and factor matrices using Gaussian process priors.

Schmidt and Laurberg [16] extend nonnegative matrix
factorization using Gaussian process priors on latent
components. The priors enabled integrating side infor-
mation about the objects into the model. Schmidt [17]
further generalizes the idea to factorization of functions
for nonlinear regression. Lawrence and Urtasun [18] for-
mulate a nonlinear matrix factorization method by gener-
ating latent components via Gaussian processes but the
results do not improve when side information is inte-
grated. Adams et al. [19] couple multiple matrix factori-
zation models with Gaussian process priors by replacing
latent components with functions that operate on explicit
feature representation of the objects. Recently, Zhou
et al. [20] propose a kernelized probabilistic matrix fac-
torization method using Gaussian process priors with
covariance matrices on side information. However, with
the modeling assumptions, only a maximum a posteriori
(MAP) estimate for the latent components is computa-
tionally feasible, and even then the used gradient
descent approach can be very slow. Furthermore, the
method uses only a single kernel for each domain and
needs test instances while training to be able to calculate
their latent components (i.e., transductive learning).

All these kernel-based algorithms are able to model
nonlinear dependencies with the help of kernel functions.
However, they still have two limitations: (i) inability of
performing out-of-matrix predictions in an inductive
learning setting and (ii) inability of combining multiple
side information sources about the objects in a principled
way. We use a parametric model to eliminate these two
restrictions.

In this paper, we introduce a kernelized Bayesian matrix
factorization method and, in discussing its details, focus on
the bipartite graph inference [21] scenario. The method can be
applied to other types of matrices besides the bipartite
graphs with slight modifications. The goal in the graph
inference scenario is to model interaction networks between
two domains (e.g., biological networks between drugs and
proteins) and to estimate unknown interactions between
objects from these two domains. The standard pairwise ker-
nel approaches for this problem are based on a kernel
matrix over object pairs in the training set and are computa-
tionally expensive [22]. There are also kernel-based (non-
Bayesian) dimensionality reduction algorithms that map
objects from both domains into a common subspace and
perform prediction there [21], [23], [24].

In biological interaction networks, being composed of
structured objects such as drugs and proteins, there exist
several feature representations or similarity measures for
the objects [25]. Instead of using a single specific kernel, we
can combine multiple kernel functions in a principled way
to obtain a better similarity measure, which is known as
multiple kernel learning [26].

Our two main contributions are: (i) We formulate a
novel fully conjugate probabilistic model that allows us
to develop an efficient variational approximation scheme,
the first fully Bayesian treatment which is still signifi-
cantly faster than the earlier method for computing MAP

point estimates [20]. (ii) The proposed method is able to
integrate multiple side information sources by coupling
matrix factorization with multiple kernel learning. We
show the effectiveness on one toy data set and two
drug-protein interaction data sets. We then show how
the method can be used to solve supervised and semi-
supervised multilabel classification problems and report
classification results on 14 benchmark data sets. We also
perform successful multiple output regression experi-
ments on a yeast cell cycle data set.

This paper extends our preliminary conference paper
[27] to (i) a detailed discussion of the method, and expli-
cates the hyper-parameter learning, large margin learning
connection, and initialization strategy. We additionally
extend the method (ii) to perform Bayesian model selec-
tion using automatic relevance determination (ARD) and (iii)
to handle partially observed outputs. (iv) Finally, the
comprehensive battery of experiments includes automatic
model selection, semi-supervised classification on multila-
bel data sets, and multiple output regression on yeast cell
cycle data set.

2 PRELIMINARIES AND NOTATION

The objects come from two domains X and Z. We are given
two samples of independent and identically distributed
training instances from each, denoted by X ¼ fxxi 2 XgNx

i¼1

and Z ¼ fzzj 2 ZgNz
j¼1. For calculating similarities, we have

multiple kernel functions for each domain, namely,
fkx;m : X � X ! RgPxm¼1 and fkz;n : Z �Z ! RgPzn¼1. If the
side information comes in the form of features instead of
similarities, the set of kernels will correspond to different
notions of similarity on the same feature representation or
may be using information coming from multiple feature
representations (i.e., “views”).

The ði; jÞth entry of the target label matrix
Y 2 f�1;þ1gNx�Nz is

yij ¼
þ1; if xxi and zzj have an interaction;
�1; otherwise:

�
The superscript indexes the rows and the subscript the col-
umns. The prediction task is to estimate unknown interac-
tions for out-of-matrix objects, which is also known as cold
start prediction in recommender systems.

Fig. 1 illustrates the method we propose; it is com-
posed of four main parts: (a) kernel-based nonlinear
dimensionality reduction, (b) multiple kernel learning,
(c) matrix factorization, and (d) binary classification. The
first two kernel-based parts are applied to each domain
separately, and they are completely symmetric, hence we

Fig. 1. Flowchart of kernelized matrix factorization with twin multiple ker-
nel learning (the twin domain Z omitted for clarity).
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call them twins. One of the twins (i.e., the one that oper-
ates on domain Z) is omitted for clarity. In this section,
we briefly explain each part and introduce the notation.
In the following sections, we formulate a fully conjugate
probabilistic model and derive a variational approxima-
tion for inference.

Kernel-based nonlinear dimensionality reduction. In this part,
we perform feature extraction using the input kernel matri-
ces fKx;m 2 RNx�NxgPxm¼1 and the common projection matrix
Ax 2 RNx�R where R is the resulting subspace dimensional-
ity. We obtain the kernel-specific components fGx;m ¼
A>

x Kx;mgPxm¼1 after the projection. The main idea is very simi-
lar to kernel principal component analysis or kernel Fisher dis-
criminant analysis, where the columns of the projection
matrix can be solved with eigendecompositions [28]. How-
ever, that solution strategy is not possible for the more com-
plex model formulated here.

Having a shared projection matrix across the kernels has
two main implications: (i) The number of model parameters
is much lower than if we had a separate projection matrix
for each kernel, leading to more regularization. (ii) We can
combine the kernels with multiple kernel learning as
explained in the following.

Multiple kernel learning. This part is responsible for
combining the kernel-specific (i.e., view-specific) compo-
nents linearly to obtain the composite components
Hx ¼

PPx
m¼1 ex;mGx;m where the kernel weights can take

arbitrary values eex 2 RPx . The multiple kernel learning
property of our formulation can easily be seen using the
following equivalence:

XPx
m¼1

ex;m ðA>
x Kx;mÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Gx;m

¼ A>
x

XPx
m¼1

ex;mKx;m

 !
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

combined kernel

;

where we need to have a shared projection matrix to obtain
a valid linear combination of the kernels.

If we have a single kernel function for a specific domain,
we can safely ignore the composite components and the ker-
nel weights, and use the single available kernel-specific
components to represent the objects in that domain [29].
The details of our method with a single kernel function for
each domain are explained in Section 5.

Matrix factorization. In this part, we propose to use the
low-dimensional representations of objects in the unified
subspace, namely, Hx and Hz, to calculate the latent output
matrix F ¼ H>

x Hz. This corresponds to factorizing the latent
outputs into two low-rank matrices.

Binary classification. This part just assigns a class label
to each object pair ðxxi; zzjÞ by looking at the sign of the
latent output fi

j in the matrix factorization part. The pro-
posed method can also be extended to handle other
types of outputs (e.g., real-valued outputs used in rec-
ommender systems) by removing the binary classifica-
tion part and directly generating the target outputs in
the matrix factorization part. This corresponds to remov-
ing the latent output matrix F and generating target
label matrix Y directly from the composite components
Hx and Hz. The details of our method for real-valued
outputs are also given in Section 5.

3 KERNELIZED BAYESIAN MATRIX FACTORIZATION

WITH TWIN MULTIPLE KERNEL LEARNING

For the method described in the previous section, we for-
mulate a probabilistic model, called kernelized Bayesian
matrix factorization with twin multiple kernel learning
(KBMF2MKL), which has two key properties that enable us
to perform efficient inference: (i) The kernel-specific and
composite components are modeled explicitly by introduc-
ing them as latent variables. (ii) Kernel weights are assumed
to be normally distributed without enforcing any con-
straints (e.g., non-negativity) on them. The reasons for intro-
ducing these two properties become clear when we explain
the inference.

Fig. 2 gives the graphical model of KBMF2MKL with
latent variables and their corresponding priors. There are
some additions to the notation described earlier: The
Nx �R matrix of priors for the entries of the projection
matrix Ax is denoted by Lx. The Px � 1 vector of priors for
the kernel weights eex is denoted by hhx. The standard devia-
tions for the kernel-specific and composite components are
sg and sh, respectively; these hyper-parameters are not
shown for clarity.

The distributional assumptions of the dimensionality
reduction part are

�i
x;s � G

�
�i
x;s;a�;b�

�
8ði; sÞ

aix;sj�i
x;s � N

�
aix;s; 0;

�
�i
x;s

��1� 8ði; sÞ
gsx;m;ijaax;s; kkx;m;i � N

�
gsx;m;i; aa

>
x;skkx;m;i; s

2
g

�
8ðm; s; iÞ;

where Nð�;mm;SÞ is the normal distribution with mean vec-
tor mm (here scalar) and covariance matrix S (here scalar),
and Gð�;a;bÞ denotes the gamma distribution with shape
parameter a and scale parameter b. The multiple kernel
learning part has the following distributional assumptions:

hx;m � Gðhx;m;ah;bhÞ 8m
ex;mjhx;m � N

�
ex;m; 0; h

�1
x;m

�
8m

hs
x;ij
�
ex;m; g

s
x;m;i

�Px
m¼1

� N hs
x;i;
XPx
m¼1

ex;mg
s
x;m;i; s

2
h

 !
8ðs; iÞ;

where kernel-level sparsity can be tuned by changing the
hyper-parameters ðah;bhÞ. Setting the gamma priors to
induce sparsity, e.g., ðah;bhÞ ¼ ð0:001; 1000Þ, produces
results analogous to using the ‘1-norm on the kernel
weights, whereas using uninformative priors, e.g.,
ðah;bhÞ ¼ ð1; 1Þ, resembles using the ‘2-norm. The matrix

Fig. 2. Graphical model of kernelized Bayesian matrix factorization with
twin multiple kernel learning.
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factorization part calculates the latent outputs using the
inner products between the low-dimensional representa-
tions of the object pairs:

fij jhhx;i; hhz;j � N
�
fi
j ;hh

>
x;ihhz;j; 1

�
8ði; jÞ;

where the latent outputs are introduced to speed up the
inference procedures [30]. Finally, a binary classification is
produced:

yijjfi
j � d

�
fi
jy

i
j > n

�
8ði; jÞ;

where the margin parameter n is introduced to remove
ambiguity in the scaling and to place a low-density region
between the two classes, similarly to the margin idea in
SVMs, which is generally used for semi-supervised learning
[31]. Here, dð�Þ is the Kronecker delta function that returns 1
if its argument is true and 0 otherwise.

4 EFFICIENT INFERENCE USING VARIATIONAL

APPROXIMATION

Exact inference for the model is intractable and of the
two readily available alternatives, Gibbs sampling and
variational approximation, we choose the latter for compu-
tational efficiency. Variational methods optimize a lower
bound on the marginal likelihood, which involves a factor-
ized approximation of the posterior, to find the joint param-
eter distribution [32].

As short-hand notations, all hyper-parameters in the
model are denoted by zz ¼ fah;bh;a�;b�; sg; sh; ng, all prior
variables byJ ¼ fhhx; hhz;Lx;Lzg, and the remaining random
variables by Q ¼ fAx;Az; eex; eez;F; fGx;mgPxm¼1; fGz;ngPzn¼1;
Hx;Hzg. We omit the dependence on zz for clarity. We fac-
torize the variational approximation as

pðQ;JjfKx;mgPxm¼1; fKz;ngPzn¼1;YÞ � qðQ;JÞ
¼ qðLxÞqðAxÞqðfGx;mgPxm¼1ÞqðhhxÞqðeexÞqðHxÞ

qðLzÞqðAzÞqðfGz;ngPzn¼1ÞqðhhzÞqðeezÞqðHzÞqðFÞ

and define each factor according to its full conditional:

qðLxÞ ¼
YNx

i¼1

YR
s¼1

G
�
�i
x;s;a

�
�i
x;s

�
;b
�
�i
x;s

��
qðAxÞ ¼

YR
s¼1

Nðaax;s;mðaax;sÞ;Sðaax;sÞÞ

qðGx;mÞ ¼
YNx

i¼1

Nðggx;m;i;mðggx;m;iÞ;Sðggx;m;iÞÞ 8m

qðeexÞ ¼ N ðeex;mðeexÞ;SðeexÞÞ

qðhhxÞ ¼
YPx
m¼1

Gðhx;m;aðhx;mÞ;bðhx;mÞÞ

qðHxÞ ¼
YNx

i¼1

Nðhhx;i;mðhhx;iÞ;Sðhhx;iÞÞ

qðFÞ ¼
YNx

i¼1

YNz

j¼1

TN
�
fi
j ;m
�
fi
j

�
;S
�
fi
j

�
; r
�
fi
j

��
;

where að�Þ, bð�Þ, mð�Þ, and Sð�Þ denote the shape parameter,
scale parameter, mean vector, and covariance matrix,
respectively. Here, TN ð�;mm;S; rð�ÞÞ denotes the truncated
normal distribution with mean vector mm, covariance matrix
S, and truncation rule rð�Þ such that TN ð�;mm;S; rð�ÞÞ /
N ð�;mm;SÞ if rð�Þ is true and TN ð�;mm;S; rð�ÞÞ ¼ 0 otherwise.

We can bound the marginal likelihood using Jensen’s
inequality:

log p
�
YjfKx;mgPxm¼1; fKz;ngPzn¼1

�
� EqðQ;JÞ

�
logp

�
Y;Q;JjfKx;mgPxm¼1; fKz;ngPzn¼1

�	
� EqðQ;JÞ½logqðQ;JÞ	 (1)

and optimize this bound by maximizing with respect to
each factor separately until convergence. The approximate
posterior distribution of a specific factor tt can be found as

qðttÞ / exp
�
EqðfQ;JgnttÞ

�
log p

�
Y;Q;JjfKx;mgPxm¼1; fKz;ngPzn¼1

�	�
:

For our model, thanks to the conjugacy, the resulting
approximate posterior distribution of each factor follows
the same distribution as the corresponding factor.

The approximate posterior distribution parameters of the
dimensionality reduction part can be found as

a
�
�i
x;s

�
¼ a� þ 1=2

b
�
�i
x;s

�
¼ 1=b� þ

g�
aix;s
�2
=2


 ��1

Sðaax;sÞ ¼ diag
�f��s

x

�
þ
XPx
m¼1

s�2
g Kx;mK

>
x;m

 !�1

(2)

mðaax;sÞ ¼ Sðaax;sÞ
XPx
m¼1

s�2
g Kx;m

g�
ggsx;m

�>
;

where the tilde notation denotes the posterior expectations
as usual, i.e., gfðttÞ ¼ EqðttÞ½fðttÞ	.

The kernel-specific components have the following
approximate posterior distribution parameters:

Sðggx;m;iÞ ¼
�
s�2
g Iþ s�2

h
ge2x;mI�1

ð3Þ

mðggx;m;iÞ ¼ Sðggx;m;iÞ
�
s�2
g
gA>

x kkx;m;i þ s�2
h gex;mghhx;i

�
X
o 6¼m

s�2
h gex;mex;ogggx;o;i;

where the mean and covariance parameters are affected by
the kernel weights, the composite components, and other
kernel-specific components in addition to the projection
matrix and the corresponding kernel matrix.

The approximate posterior distribution parameters of the
multiple kernel learning part can be found as

aðhx;mÞ ¼ ah þ 1=2

bðhx;mÞ ¼ 1=bh þ ge2x;m=2� �1

SðeexÞ ¼ diagð ehhxÞ þ s�2
h tr gG>

x;mGx;o

� h iPx;Px
m¼1;o¼1


 ��1

mðeexÞ ¼ SðeexÞ s�2
h tr gG>

x;m
fHx

� h iPx
m¼1

;

(4)

2050 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 10, OCTOBER 2014



where the mean and covariance parameters of the kernel
weights are calculated using the kernel-specific and com-
posite components.

The composite components have the following approxi-
mate posterior distribution parameters:

Sðhhx;iÞ ¼ s�2
h Iþ gHzH

>
z

� �1

mðhhx;iÞ ¼ Sðhhx;iÞ
XPx
m¼1

s�2
h gex;m gggx;m;i þ fHz

gðffiÞ> !
; (5)

where it can be seen that the inference transfers information
between the two domains. Note that the composite compo-
nents of each domain are the only random variables that
have an effect on the other domain, i.e., only the Hz varia-
bles of domain Z are used when updating the random vari-
ables of the domain X .

The approximate posterior distribution parameters of the
latent outputs are:

Sðfi
jÞ ¼ 1

mðfi
jÞ ¼

ghh>
x;i
ghhz;j

rðfi
jÞ , fi

jy
i
j > n;

where we need to find the posterior expectation of F to
update the approximate posterior distributions of the com-
posite components. Fortunately, the truncated normal dis-
tribution has a closed-form formula for its expectation.

Modeling choices. Note that using the kernel-specific and
composite components as latent variables in our probabilis-
tic model introduces extra conditional independencies
between the random variables and enables us to derive
efficient update rules for the approximate posterior distribu-
tions. The other key property of our model is the assump-
tion of normality of the kernel weights, which allows us to
obtain a fully conjugate probabilistic model [33]. In earlier
Bayesian multiple kernel learning algorithms, the combined
kernel has usually been defined as a convex sum of the
input kernels, by assuming a Dirichlet distribution on the
kernel weights [34], [35]. As a consequence of the nonconju-
gacy between Dirichlet and normal distributions, they need
to use a sampling strategy (e.g., importance sampling)
to update the kernel weights when deriving variational
approximations.

Hyper-parameter learning. When formulating our method,
we assume that the kernel functions and their hyper-param-
eters are fixed prior to inference. When we also want to
tune the hyper-parameters (e.g., kernel width for the Gauss-
ian kernel), we have two viable options in addition to the
standard cross-validation strategy: (i) We can tune the
hyper-parameters using a type-II maximum likelihood [36]
or Markov chain Monte Carlo [37], [38] approach, which is
still feasible even though the conjugacy would be lost. (ii)
We can provide multiple copies of the same kernel with dif-
ferent hyper-parameter values and let the algorithm pick
suitable ones with the help of multiple kernel learning part.

Large margin learning. Modeling the approximate poste-
rior distribution of the latent output matrix F with the trun-
cated normal distribution enables us to integrate the large
margin property into our probabilistic model. Fig. 3 shows
the effect of the truncated normal distribution for two

positively labeled object pairs. Their latent output values
are assumed to have mean values þ1:5 and �0:5 as can be
seen from the dashed lines. Without truncation, they would
be allowed to take negative values or to be within the mar-
gin, whereas after truncation, they are guaranteed to take
positive values and to be outside the margin, as can be seen
from the solid lines.

Initialization. Due to the large margin property intro-
duced to the classification part, it is better to start the algo-
rithm with parameters that satisfy the margin constraints
on F. We initialize the mean parameter to

mðfi
jÞ ¼ yij ui

j

��� ���þ n
� 

;

where j � j denotes the absolute value and ui
j is a standard-

ized normal random variable. The mean parameters of all
other normal random variables are initialized using the
standardized normal distribution. The covariance parame-
ters of all normal random variables are initialized to the
identity matrix.

Convergence. The inference mechanism sequentially
updates the approximate posterior distributions of the
latent variables and the corresponding priors until conver-
gence, which can be checked by monitoring the lower
bound in (1). The first term of the lower bound corresponds
to the sum of exponential-form expectations of the distribu-
tions in the joint likelihood. The second term is the sum of
negative entropies of the approximate posteriors in the
ensemble. The only nonstandard distribution in these terms
is the truncated normal distribution used for the latent out-
puts, and the truncated normal distribution has a closed-
form formula also for its entropy.

Computational complexity. The most time-consuming oper-
ations of the update equations are covariance calculations
because they need matrix inversions. The time complexity of
the covariance updates for the projection matrices in (2) is
OðR maxðN3

x ; N
3
z ÞÞ, and we can cache

PPx
m¼1 Kx;mK

>
x;m andPPz

n¼1 Kz;nK
>
z;n before starting the inference to reduce the

computational cost. The covariance updates for the kernel-
specific components in (3) require inverting diagonal matri-
ces. The time complexity of the covariance updates for the
kernel weights and the composite components in (4) and (5)
is OðmaxðP 3

x ; P
3
z ÞÞ. The other calculations in these updates

can be done efficiently using matrix-matrix and matrix-vec-
tor multiplications. Finding the posterior expectations of the
latent outputs only requires evaluating the standardized
normal cumulative distribution function and the standard-
ized normal probability density. In summary, the total time
complexity of each iteration in our variational approxima-
tion scheme is OðR maxðN3

x ; N
3
z Þþ maxðP 3

x ; P
3
z ÞÞ, which

makes the algorithm more efficient than standard pairwise
kernel approaches [22] that require calculating a kernel
matrix over pairs and training a kernel-based classifier using
this kernel, resulting inOðN3

xN
3
z Þ complexity.

Fig. 3. Effect of the truncated normal distribution on target output values.
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Prediction. Given an unseen test pair ðxx$; zz
Þ, we need to
predict the corresponding score f$


 or target label y$

 .

We first replace the posterior distributions of Ax, Az, eex,
and eez with their approximate posterior distributions qðAxÞ,
qðAzÞ, qðeexÞ, and qðeezÞ. Using the approximate distributions,
we obtain the predictive distributions of the kernel-specific
and composite components. The predictive distribution of
the target label can finally be formulated as

p
�
y$

 ¼ þ1jfkkx;m;$;Kx;mgPxm¼1; fkkz;n;
;Kz;ngPzn¼1;Y

�
¼
�
Z$



��1

F



mðf$


 Þ � n

Sðf$

 Þ

�
(6)

where Z$

 is the normalization coefficient calculated for the

test pair and Fð�Þ is the standardized normal cumulative
distribution function.

5 MODEL VARIANTS

In this section, we provide details about three variants of
our method. The variants (i) learn the subspace dimension-
ality using ARD, (ii) use a single kernel function on each
domain instead of the multiple kernels, and (iii) predict
real-valued outputs instead of the binary outputs.

Learning subspace dimensionality using automatic relevance
determination. We optimize the dimensionality of the latent
components using a Bayesian model selection procedure. In
detail, the same set of precision priors is shared by the pro-
jection matrices, and the dimensionality is determined using
ARD [39]. A similar strategy has previously been used to
perform model selection in nonnegative matrix factorization
models [40].

For the ARD, the precision matrices Lx and Lz are
replaced with a common precision vector ��. The distribu-
tional assumptions of the modified model are

�s � Gð�s;a�;b�Þ 8s
aix;sj�s � N

�
aix;s; 0; �

�1
s

�
8ði; sÞ

ajz;sj�s � N
�
ajz;s; 0; �

�1
s

�
8ðj; sÞ;

where we can set the gamma priors accordingly, e.g.,
ða�;b�Þ ¼ ð0:001; 1000Þ, to eliminate unnecessary columns
of projection matrices, leading to automatic model selection.

We can use the inference algorithm given in Section 4
with slight modifications. First, we need to replace qðLxÞ
and qðLzÞ with qð��Þ. Then, the parameter update equations
of the approximate posterior distributions become

að�sÞ ¼ a� þNx=2þNz=2

bð�sÞ ¼ 1=b� þ gaa>x;saax;s=2þ gaa>z;saaz;s=2� �1

Sðaax;sÞ ¼ e�sIþ
XPx
m¼1

s�2
g Kx;mK

>
x;m

 !�1

mðaax;sÞ ¼ Sðaax;sÞ
XPx
m¼1

s�2
g Kx;m

g�
ggsx;m

�>
Sðaaz;sÞ ¼ e�sIþ

XPz
n¼1

s�2
g Kz;nK

>
z;n

 !�1

mðaaz;sÞ ¼ Sðaaz;sÞ
XPz
n¼1

s�2
g Kz;n

g�
ggsz;n
�>

:

Kernelized Bayesian matrix factorization with twin kernels.
We formulate a simplified probabilistic model, called ker-
nelized Bayesian matrix factorization with twin kernels
(KBMF2K), for the case with a single kernel function for
each domain. Fig. 4 shows the graphical model of KBMF2K
with latent variables and their corresponding priors.

The distributional assumptions of the simplified model
are

�i
x;s � G

�
�i
x;s;a�;b�

�
8ði; sÞ

aix;sj�i
x;s � N

�
aix;s; 0;

�
�i
x;s

��1� 8ði; sÞ
gsx;ijaax;s; kkx;i � N

�
gsx;i; aa

>
x;skkx;i; s

2
g

�
8ðs; iÞ

fij jggx;i; ggz;j � N
�
fi
j ; gg

>
x;iggz;j; 1

�
8ði; jÞ

yijjfi
j � d

�
yij; f

i
jy

i
j > n

�
8ði; jÞ:

As short-hand notations, all hyper-parameters in the
model are denoted by zz ¼ fa�;b�; sg; ng, all prior variables
by J ¼ fLx;Lzg, and the remaining random variables by
Q ¼ fAx;Az;F;Gx;Gzg. We again omit the dependence on
zz for clarity. We can write the factorized variational approx-
imation as

pðQ;JjKx;Kz;YÞ � qðQ;JÞ
¼ qðLxÞqðAxÞqðGxÞqðLzÞqðAzÞqðGzÞqðFÞ

and define each factor in the ensemble just like its full condi-
tional:

qðLxÞ ¼
YNx

i¼1

YR
s¼1

G
�
�i
x;s;a

�
�i
x;s

�
;b
�
�i
x;s

��
qðAxÞ ¼

YR
s¼1

Nðaax;s;mðaax;sÞ;Sðaax;sÞÞ

qðGxÞ ¼
YPx
m¼1

YNx

i¼1

Nðggx;i;mðggx;iÞ;Sðggx;iÞÞ

qðFÞ ¼
YNx

i¼1

YNz

j¼1

TN
�
fi
j ;m
�
fi
j

�
;S
�
fij
�
; rðfij

��
:

The approximate posterior distribution parameters of the
ensemble can be found as

að�i
x;sÞ ¼ a� þ 1=2

bð�i
x;sÞ ¼

�
1=b� þ

gðaix;sÞ
2=2
��1

Sðaax;sÞ ¼ diagðf��s
xÞ þ s�2

g Kx;mK
>
x;m

� �1

Fig. 4. Graphical model of kernelized Bayesian matrix factorization with
twin kernels.
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mðaax;sÞ ¼ Sðaax;sÞs�2
g Kx

gðggsxÞ>
Sðggx;iÞ ¼ s�2

g Iþ gGzG
>
z

� �1

mðggx;iÞ ¼ Sðggx;iÞ s�2
g
gA>

x kkx;i þ fGz
gðffiÞ>

� 
SðfijÞ ¼ 1

mðfijÞ ¼ fgg>x;ifggz;j
rðfijÞ , fijy

i
j > n:

Kernelized Bayesian matrix factorization with twin multiple
kernel learning for real-valued outputs. We modify our pro-
posed model for binary-valued outputs to also handle real-
valued outputs. Fig. 5 illustrates the graphical model of the
modified KBMF2MKL with latent variables and their corre-
sponding priors.

The distributional assumptions of the modified
KBMF2MKL model are

�i
x;s � G

�
�i
x;s;a�;b�

�
8ði; sÞ

aix;sj�i
x;s � N

�
aix;s; 0;

�
�i
x;s

��1� 8ði; sÞ
gsx;m;ijaax;s; kkx;m;i � N

�
gsx;m;i; aa

>
x;skkx;m;i; s

2
g

�
8ðm; s; iÞ

hx;m � Gðhx;m;ah;bhÞ 8m
ex;mjhx;m � N

�
ex;m; 0; h

�1
x;m

�
8m

hs
x;ijfex;m; gsx;m;ig

Px
m¼1 � N hs

x;i;
XPx
m¼1

ex;mg
s
x;m;i; s

2
h

 !
8ðs; iÞ

yijjhhx;i; hhz;j � N
�
yij;hh

>
x;ihhz;j; s

2
y

�
8ði; jÞ;

where sy denotes the noise level used for the target
outputs.

As short-hand notations, all hyper-parameters in the
model are denoted by zz ¼ fah;bh;a�;b�; sg; sh; syg, all prior
variables byJ ¼ fhhx; hhz;Lx;Lzg, and the remaining random
variables by Q ¼ fAx;Az; eex; eez; fGx;mgPxm¼1; fGz; ngPzn¼1;Hx;
Hzg. We again omit the dependence on zz for clarity. We can
write the factorized variational approximation as

pðQ;JjfKx;mgPxm¼1; fKz;ngPzn¼1;YÞ � qðQ;JÞ
¼ qðLxÞqðAxÞqðfGx;mgPxm¼1ÞqðhhxÞqðeexÞqðHxÞ

qðLzÞqðAzÞqðfGz;ngPzn¼1ÞqðhhzÞqðeezÞqðHzÞ

and define each factor in the ensemble just like its full condi-
tional:

qðLxÞ ¼
YNx

i¼1

YR
s¼1

G
�
�i
x;s;a

�
�i
x;s

�
;b
�
�i
x;s

��
qðAxÞ ¼

YR
s¼1

Nðaax;s;mðaax;sÞ;Sðaax;sÞÞ

qðGx;mÞ ¼
YNx

i¼1

Nðggx;m;i;mðggx;m;iÞ;Sðggx;m;iÞÞ 8m

qðeexÞ ¼ N ðeex;mðeexÞ;SðeexÞÞ

qðhhxÞ ¼
YPx
m¼1

Gðhx;m;aðhx;mÞ;bðhx;mÞÞ

qðHxÞ ¼
YNx

i¼1

Nðhhx;i;mðhhx;iÞ;Sðhhx;iÞÞ:

The approximate posterior distribution parameters of the
ensemble can be found as

að�i
x;sÞ ¼ a� þ 1=2

bð�i
x;sÞ ¼

�
1=b� þ

gðaix;sÞ
2=2
��1

Sðaax;sÞ ¼ diagðf��s
xÞ þ

XPx
m¼1

s�2
g Kx;mK

>
x;m

 !�1

mðaax;sÞ ¼ Sðaax;sÞ
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s�2
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SðeexÞ ¼
�
diagð ehhxÞ þ h s�2
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mðeexÞ ¼ SðeexÞ s�2
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x;m
fHx

� h iPx
m¼1

Sðhhx;iÞ ¼ s�2
h Iþ s�2

y
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mðhhx;iÞ ¼ Sðhhx;iÞ
XPx
m¼1

s�2
h gex;m gggx;m;i þ s�2

y
fHzðyyiÞ>

 !
:

6 APPLICATION SCENARIOS

We motivate our algorithm with the bipartite graph infer-
ence scenario, but the method extends easily to other appli-
cations. We explicate three scenarios: (i) multilabel
classification, (ii) multiple output regression, and (iii) learn-
ing with an incomplete label matrix.

Multilabel classification. In multilabel classification, each
sample xxi is associated with a set of class labels yyi 2 f�1gL,
where L is the number of labels, instead of just a single one.
This setup can be cast into our formulation as follows: Sam-
ples and labels are assumed to come from domains X and
Z, respectively. The class membership matrix that contains
the class labels of all training samples corresponds to the

Fig. 5. Graphical model of kernelized Bayesian matrix factorization with
twin multiple kernel learning for real-valued outputs.
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target label matrix Y to be factorized in our model. After
learning the model parameters, predictions for an unseen
test point xx$ can be done as out-of-matrix predictions for a
complete row in the target label matrix yy$ using (6). Note
that our model needs only kernel values between training
samples for inference (i.e., inductive learning not transduc-
tive), and we can use the model parameters to make predic-
tions for test samples using kernel values between training
and test samples.

Our method allows us to integrate side information
about samples and labels in the form of kernel matrices. For
example, we can exploit the correlation between labels by
integrating a kernel calculated over them into the model.

Multiple output regression. In multiple output regression,
similarly to multilabel classification, each sample is associ-
ated with a set of real-valued target outputs. This setup has
also been studied under the namesmultivariate regression and
multitask learning. Multiple output regression can be cast into
our framework using the formulation given in Section 5.

Learning with an incomplete label matrix. Up to this
point, we assume that the target label matrix Y is fully
observed. When there are missing entries in Y, we have
to modify the update equations for the composite com-
ponents because they are the only random variables
within the Markov blanket of Y. Let I be the index set
that contains the indices of observed entries in Y. The
approximate posterior distribution parameters of the
composite components can be found as

Sðhhx;iÞ ¼


s�2
h Iþ

X
ði;jÞ2I

ghhz;jhh
>
z;j

��1

mðhhx;iÞ ¼ Sðhhx;iÞ

XPx

m¼1

s�2
h gex;m gggx;m;i þ

X
ði;jÞ2I

ghhz;j
efi
j

�
;

where the approximate posterior distribution of each object
now has a different covariance matrix parameter, leading to
increased computational complexity. The same extension
can also be applied to single kernel and regression scenar-
ios, as explained in Section 5.

7 EXPERIMENTS

We first run our method on a toy data set to illustrate its ker-
nel learning capability. We then test its performance in a
biomedical application with experiments on two drug-pro-
tein interaction data sets. One of them is a standard data set
with a single view for each domain and the other one is a
larger multiview data set. We also perform supervised and
semi-supervised classification experiments on 14 bench-
mark multilabel data sets in order to show the suitability of
our matrix factorization framework with side information
in multilabel classification scenario. We finally perform
multiple output regression experiments on a yeast cell cycle
data set. Our Matlab and R implementations are available at
http://research.ics.aalto.fi/mi/software/kbmf/.

7.1 Toy Data Set

We create a toy data set consisting of samples from two
domains and real-valued outputs for object pairs. The data
generation process is:

xmi � N
�
xmi ; 0; 1

�
8ðm; iÞ

znj � N
�
znj ; 0; 1Þ 8ðn; jÞ

yijjxxi; zzj � N
�
yij;x

1
i z

3
j þ x4

i z
8
j þ x7i z

10
j ; 1

�
8ði; jÞ;

where ðNx; NzÞ ¼ ð40; 60Þ, the samples from X and Z are
generated from 15- and 10-dimensional isotropic normal
distributions with unit variance (i.e., m 2 f1; . . . ; 15g and
n 2 f1; . . . ; 10g), respectively, and the target outputs are
generated using only three features from each domain.
Note that this data set has not been generated from our
probabilistic model.

In order to have multiple kernel functions for each
domain, we calculate a separate linear kernel for each fea-
ture of the data points, i.e., ðPx; PzÞ ¼ ð15; 10Þ. We then learn
our model, intended to work as a predictive model that
identifies the relevant features for the prediction task and
has a good generalization performance. We use uninforma-
tive priors for the projection matrices and the kernel weights
by setting ðah;bh;a�;b�Þ ¼ ð1; 1; 1; 1Þ. The standard devia-
tions are set to ðsg; sh; syÞ ¼ ð0:1; 0:1; 1Þ. The subspace
dimensionality is arbitrarily set to five (i.e., R ¼ 5).

Fig. 6 shows the found posterior means of the kernel
weights. We see that our method correctly identifies the rel-
evant features for each domain (i.e., the first, fourth, and
seventh features for X and the third, eighth, and 10th fea-
tures for Z). The root mean square error between the target
and predicted outputs is 0.99 in accordance with the level of
noise added.

7.2 Drug-Protein Interaction Data Sets

As the first case study, we analyze a drug-protein interaction
network of humans, involving enzymes in particular. This
drug-protein interaction network contains 445 drugs, 664
proteins, and 2,926 experimentally validated interactions
between them. The data set consists of the chemical similar-
ity matrix between drugs, the genomic similarity matrix
between proteins, and the target matrix of known interac-
tions provided by [23]. The similarity matrices are used as
kernel matrices. In the target interaction matrix, existing
interactions are denoted by þ1, and missing interactions are
denoted by�1.

We compare one baseline and three matrix factorization
methods: (i) Baseline simply calculates the target output

Fig. 6. Posterior means of the kernel weights found by our method on the
toy data set.
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averages over each column or row as the predictions, (ii)
kernelized probabilistic matrix factorization (KPMF) method of
[20] with real-valued outputs, (iii) our kernelized Bayesian
matrix factorization (KBMF) method with real-valued outputs,
and (iv) KBMFwith binary outputs.

The experimental methodology is as follows: For KPMF,
the standard deviation sy is set to one. For both KBMF var-
iants, we use uninformative priors for the projection matri-
ces and the kernel weights, i.e., ðah;bh;a�;b�Þ ¼ ð1; 1; 1; 1Þ,
and the standard deviations ðsg; shÞ are set to ð0:1; 0:1Þ. For
KBMF with real-valued outputs, the standard deviation sy is
set to one. For KBMFwith binary outputs, the margin param-
eter n is arbitrarily set to one. We perform simulations with
eight different numbers of components, i.e., R 2 f5; 10; . . . ;
40g. We run five replications of five-fold cross validation
over drugs (i.e., leaving 20 percent of drugs out at each fold
and making out-of-matrix prediction for them) and report
the average area under ROC curve (AUC) over the 25 results
as the performance measure. We also perform simulations
using our variant with ARD to see whether it can select the
model order automatically. We set R ¼ 40 because our
results showed that the performance stabilizes before 40
components with the original algorithms.

In the results, C and G mark the chemical similarity
between drugs and the genomic similarity between pro-
teins, respectively, whereas N marks the similarity between
proteins calculated from the interaction network. It is
defined as the ratio between (i) the number of drugs that are
interacting with both proteins and (ii) the number of drugs
that are interacting with at least one of the proteins, (i.e., the
Jaccard index).

The results in Fig. 7 reveal that KPMF is above the base-
line when the number of components is larger than 5, and
both variants of KBMF for all component counts. Both var-
iants of our new KBMF outperform the earlier KPMF for all
types of inputs. The difference is not due to KPMF having
been introduced only for real-valued outputs, as even the
real-output variant of KBMF is better. The difference is not
due to the inability of the current version of KPMF to handle
multiple data views either, as the single-kernel KBMF out-
performs it. Hence the differences in the performance are
due to the differences in the inference: MAP point estimates

versus fully Bayesian inference. The best results are
obtained with the binary-output KBMF when using all data
sources. We can also say that our variant with ARD is able
to select the model orders automatically because the results
with the selected model orders are very close to the best per-
formance values obtained.

Note that when we combine the genomic and network
similarities between proteins using our method, the result-
ing similarity measure for proteins is better than those of
single-kernel scenarios, leading to better prediction perfor-
mance. This shows that when we have multiple side infor-
mation sources about the objects, integrating them into the
matrix factorization model in a principled way improves
the results.

We study an additional drug-protein interaction net-
work of humans, containing 855 drugs, 800 proteins, and
4,659 experimentally validated interactions between them,
extracted from the drugs and proteins of the data set pro-
vided by [41]. We have two views consisting of two stan-
dard 3D chemical structure descriptors for drugs, namely,
1,120-dimensional Amanda [42] and 76-dimensional VolSurf
[43]. In order to calculate the similarity between drugs, we
use a Gaussian kernel whose width parameter is selected as
the square root of the dimensionality of the data points. In
the target interaction matrix, existing interactions are
denoted by þ1, and missing interactions are denoted by �1.

We repeat the same experimental procedure as in the
previous experiment with only one minor change. We per-
form simulations with 16 different numbers of components,
i.e., R 2 f5; 10; . . . ; 80g, due to the larger size of the interac-
tion network. However, this time, we set R ¼ 80 for our
simulations with ARD variant as the performance stabilizes
before 80 components with the original algorithms.

We compare four different ways of including the drug
property data. Amanda and VolSurf correspond to using a
single view when calculating the kernel between drugs.
Early corresponds to concatenating the two views, which
is known as early integration [25], before calculating the ker-
nel between drugs. MKL corresponds to calculating two dif-
ferent kernels between drugs and combining them with our
kernel combination approach, which is known as intermedi-
ate integration [25].

The overall ordering of the results of the different matrix
factorization methods is the same as in the previous case
study (Fig. 8). The KPMF outperforms Baseline after 20
components, whereas KBMF is consistently and significantly
better (by at least 4 percentage units) than KPMF for all sin-
gle-kernel scenarios. We again see that our variant with
ARD selects the model orders successfully. KBMF with five
components is already better than Baseline for all scenar-
ios. We do not report the results of KBMF with real-valued
outputs in order not to clutter the figure.

For KBMF with binary outputs, we see that Amanda and
VolSurf are significantly better than Baseline and obtain
similar prediction performances. Early outperforms
Amanda and VolSurf with a slight margin, whereas MKL

obtains consistently better results than all the other scenar-
ios after five components.

Our method can also be interpreted as a metric learning
algorithm since each kernel function can be converted into
a distance metric. We test this property on the task of

Fig. 7. Average prediction performances (area under ROC curve) on the
drug-protein data set of [23]. Gray solid line: Baseline; other solid
lines: KBMF with binary outputs; dotted lines: KBMF with real-valued out-
puts; dash-dotted lines: KPMF. Filled points show the model orders
selected by our ARD variant.

G€ONEN AND KASKI: KERNELIZED BAYESIAN MATRIX FACTORIZATION 2055



finding or retrieving drugs with similar functions. The idea
is that since the targets are centrally important for the
action mechanisms of drugs, a metric useful for predicting
targets could be useful for retrieval of drugs as well. As the
ground truth for relevance we use a standard therapeutic
classification of the drugs according to the organ or system
on which they act and/or their chemical characteristics (not
used during learning); drugs having the same class are con-
sidered relevant. Fig. 9 gives the precision at top-k retrieved
drugs, when each drug in turn is used as the query and the
rest of the 855 drugs are retrieved in the order of similarity
according to the learned metric. Early is better than
Amanda and VolSurf, and MKL is the best. This shows
that our method is able to learn a kernel function between
drugs that is better for retrieval than the kernels either on
single or concatenated views.

7.3 Multilabel Classification

We compare our algorithm KBMF with five state-of-the-art
multilabel classification algorithms, namely, (i) RankSVM

[44], (ii) ML-KNN [45], (iii) Tang’s [46], (iv) RML [47], and (v)
Zhang’s [48]. Note that [48] is also based onmultiple kernel
learning.We perform experiments on 14 benchmarkmultila-
bel classification data sets whose characteristics are given in
Table 1. Here, Ntrain, Ntest, D, and L denote the numbers of

training instances, test instances, features, and labels, respec-
tively. The first three data sets are obtained from http://
mulan.sourceforge.net/datasets.html and the remaining 11
from http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.
tar.gz. We use the provided train/test splits in order to have
comparable results with earlier studies.

We formulate multilabel classification as an out-of-
matrix prediction problem in our matrix factorization
framework as described in Section 6. The experimental
methodology is as follows: The similarities between sam-
ples are measured with five different Gaussian kernels
whose widths are selected as

ffiffiffiffiffiffiffiffiffi
D=4

p
,
ffiffiffiffiffiffiffiffiffi
D=2

p
,
ffiffiffiffi
D

p
,
ffiffiffiffiffiffiffi
2D

p
, andffiffiffiffiffiffiffi

4D
p

, whereas the similarity between labels is measured
with the Jaccard index over the labels of training samples.
We use uninformative priors for the projection matrices and
the kernel weights, i.e., ðah;bh;a�;b�Þ ¼ ð1; 1; 1; 1Þ, and the
standard deviations ðsg; shÞ are set to ð0:1; 0:1Þ. The margin
parameter n is arbitrarily set to one. The number of compo-
nents R is selected from f1; . . . ;minðL; 15Þg according to
training performance. We run a single replication using the
provided train/test splits and report the Hamming loss as
the performance measure.

Table 1 reports the classification results on multilabel
data sets. The figures for comparison algorithms are taken
from [48] and the best result for each data set is marked in
boldface. KBMF obtains the best results on 10 out of 14 data
sets and the second best results on the remaining four. In

Fig. 9. Average precision (over query drugs) of retrieval as a function of
number k of retrieved drugs. See the text for details.

TABLE 1
Classification Performances (i.e., Hamming Loss Values) on the Multilabel Classification Data Sets

Fig. 8. Average prediction performances (area under ROC curve) on the
drug-protein data set of [41]. Gray solid line: Baseline; solid lines:
KBMF with binary outputs; dash-dotted lines: KPMF. Filled points show
the model orders selected by our ARD variant.
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terms of average rank over 14 data sets, Zhang’smethod is
better than other comparison algorithms, whereas KBMF has
the best result. These results validate the suitability of our
framework to multilabel classification.

We also run semi-supervised classification experiments
on multilabel data sets with KBMF to show its capability of
learning with incomplete target label matrices (details in
Section 6). From each data set, we create four different semi-
supervised data sets by randomly removing 20, 40, 60, and
80 percent of the target label matrix entries of training sam-
ples. We follow the same experimental setup as in the previ-
ous set of experiments.

Fig. 10 shows the semi-supervised classification per-
formances of KBMF with different numbers of compo-
nents. We see that, on all data sets, Hamming loss values
decrease as we decrease the ratio of missing labels. As
an important observation, KBMF does not lose much from
its performance with 20 and 40 percent missing labels
compared to the fully supervised case. This is the case in
particular for the Emotions, Yeast, and Computers

data sets.

7.4 Yeast Cell Cycle Data Set

We perform multiple output regression experiments on a
biological data set, which consists of mRNA levels of 800
yeast genes within the eukaryotic cell cycle, provided by
[49]. The data set includes mRNA levels measured every 7
minutes for 119 minutes, with a total of 18 time points cov-
ering two cell cycles. These 800 genes are represented using
chromatin immunoprecipitation (ChIP) data, which contains
binding information for a total of 106 transcription factors,
provided by [50]. We use a subset of the original data set
studied by [51] after removing the genes with missing
mRNA levels or binding information, resulting in a data set
with 524 genes.

Predicting mRNA levels of test genes using ChIP data
can be cast into our formulation as follows: Genes and time
points are assumed to be from domains X and Z, respec-
tively. The mRNA level measurements correspond to the
target output matrix Y in our model. After learning the
model parameters, we can do predictions for a test gene by
doing out-of-matrix prediction for a complete row in the tar-
get output matrix.

We compare one baseline and two matrix factorization
methods: (i) Baseline simply calculates the target output
averages over each time point as the predictions, (ii) KPMF
method of [20] with real-valued outputs, and (iii) KBMF

method with real-valued outputs.
The experimental methodology is as follows: The similar-

ities between genes are measured with the Gaussian kernel
whose width is selected as the square root of the dimension-
ality of the data points, whereas the similarity between time
points is selected as the correlation between mRNA level
measurements of training genes. For KPMF and KBMF, the
standard deviation sy is set to one. For KBMF, we use unin-
formative priors for the projection matrices and the kernel
weights, i.e., ðah;bh;a�;b�Þ ¼ ð1; 1; 1; 1Þ, and the standard
deviations ðsg; shÞ are set to ð0:1; 0:1Þ. We perform simula-
tions with 15 different numbers of components, i.e.,
R 2 f1; 2; . . . ; 15g. We run five replications of five-fold cross
validation over genes (i.e., leaving 20 percent of genes out at
each fold and making out-of-matrix prediction for them)
and report the average mean squared error (MSE) over the 25
results as the performance measure. We set R ¼ 15 because
our results showed that the performance stabilizes before 15
components with the original algorithm. Our variant with
ARD selects the model order as R ¼ 6, which obtains almost
the same average MSE with 15 components.

The results in Fig. 11 reveal that both KPMF and KBMF are
clearly better than the baseline even with one component.

Fig. 10. Semi-supervised classification performances of KBMF on the multilabel classification data sets.
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The ordering of the results of the two matrix factorization
methods is the same as in the drug-protein interaction case
studies. KBMF is consistently better than KPMF for all num-
bers of components.

7.5 Training Time and Convergence

We compare the training times of KPMF and KBMF on the
drug-protein interaction data set of [41]. Fig. 12 shows the
average training times over 25 replications. We can clearly
see the advantage of KBMF in terms of training time. As
detailed in Section 4, there is a clear linear trend in the train-
ing times of KBMF with respect to the number of compo-
nents. We observe similar behavior for all other data sets
used in this study (not shown). We also perform an addi-
tional set of experiments on randomly generated interaction
data sets containing from 500 to 3,000 objects in each
domain. We report the average training times of KBMF on
these data sets as a function of the number of components
in Fig. 13, which validates the computational complexity
analysis of Section 4 (i.e., cubic scaling with respect to the
number of objects).

In order to illustrate the convergence behavior of our
algorithm, we report the variational lower bound of KBMF
on the yeast cell cycle data set throughout 200 iterations
in Fig. 14. We see that KBMF is able to quickly converge
under three different settings before 50 iterations. We
observe the same behavior for all data sets used in this
study (not shown).

8 DISCUSSION

We introduce a kernelized Bayesian matrix factorization
method that can make use of multiple side information
sources about the objects (both rows and columns) and be
applied in various scenarios including recommender sys-
tems, interaction network modeling, multilabel classifica-
tion, and multiple output regression. Our two main
contributions are: (i) formulating an efficient variational
approximation scheme for inference with the help of a novel
fully conjugate probabilistic model and (ii) coupling matrix
factorization with multiple kernel learning to integrate mul-
tiple side information sources into the model. In contrast to
the earlier kernelized probabilistic matrix factorization
method of [20], for our probabilistic model, it is possible to
derive a computationally feasible fully Bayesian treatment.
We also extend our model towards Bayesian model selec-
tion using automatic relevance determination and towards
semi-supervised learning setup for partially observed out-
put case. We illustrate the usefulness of the method on one
toy data set, two molecular biological interaction data sets,
14 multilabel classification data sets, and one yeast cell cycle
data set.
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