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Autonomous Document Cleaning—
A Generative Approach to Reconstruct
Strongly Corrupted Scanned Texts

Zhenwen Dai, Member, IEEE and Jorg Lucke, Member, IEEE

Abstract—We study the task of cleaning scanned text documents that are strongly corrupted by dirt such as manual line strokes,
spilled ink, etc. We aim at autonomously removing such corruptions from a single letter-size page based only on the information the
page contains. Our approach first learns character representations from document patches without supervision. For learning, we use a
probabilistic generative model parameterizing pattern features, their planar arrangements and their variances. The model’s latent
variables describe pattern position and class, and feature occurrences. Model parameters are efficiently inferred using a truncated
variational EM approach. Based on the learned representation, a clean document can be recovered by identifying, for each patch,
pattern class and position while a quality measure allows for discrimination between character and non-character patterns. For a full
Latin alphabet we found that a single page does not contain sufficiently many character examples. However, even if heavily corrupted
by dirt, we show that a page containing a lower number of character types can efficiently and autonomously be cleaned solely based on
the structural regularity of the characters it contains. In different example applications with different alphabets, we demonstrate and

Index Terms—Probabilistic generative models, document cleaning, scanned text, unsupervised learning, expectation maximization,
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discuss the effectiveness, efficiency and generality of the approach.
variational approximation, expectation truncation

1 INTRODUCTION

basic form of human communication, written text,
consists of planar arrangements of reoccurring and
regular patterns. While in modern forms of text these pat-
terns are characters or symbols for words (e.g., Chinese
texts), early forms consisted of symbols resembling objects.
Written text became a successful form of communication
because it exploits the readily available capability of the
human visual system to learn and recognize regular pat-
terns in visual data. In recent years, computer vision and
machine learning became increasingly successful in analyz-
ing visual data. Much progress has been made, for instance,
by probabilistic modeling approaches that aim at capturing
the statistical regularities of a given data set. Examples are
image denoising by Markov Random Fields [1], [2], [3] or
sparse coding models [4], [5], [6]. For many types of data,
modeling approaches hereby have to address the problem
that regular visual structures often appear at arbitrary posi-
tions. Sparse coding approaches indirectly address this
problem by replicating a learned structure (e.g., a Gabor
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wavelet) at different positions of images. Other approaches
go one step further and explicitly model pattern positions
using additional hidden variables [7], [8], [9], [10], [11].
Such approaches allow for representations of patterns that
are independent of their spatial positions. However, the
combinatorics of pattern identity and position introduces
major computational challenges because for each pattern
class all positions ideally have to be considered.

In this paper we apply a probabilistic generative
approach with explicit position encoding to clean strongly
corrupted scanned text documents. The principle idea is
very straight-forward: If characters are the salient regular
patterns of text, an appropriately structured probabilistic
model should be able to learn character representations as
regular arrangements of features. In contrast, dirt is much
more irregular. Coffee spots, spilled ink, or line-strokes
scratching-out text share similar features with printed char-
acters but such corruptions are, on average, much more ran-
dom combinations of feature patterns. Based on this
observation, the autonomous identification and recovery of
characters from a corrupted text document should thus be
possible. But how difficult is such a task? Or how robust
can a solution of such a task be if the data is heavily cor-
rupted by dirt? Would the information contained on a sin-
gle page of a dirty document, for instance, be sufficient to
identify the characters containing it? And if yes, can this be
used to ‘self-clean’ the document? Such questions can, of
course, not be answered by a clear ‘yes’ or ‘no” because they
will, e.g., depend on the type and degree of dirt or on the
amount of available character information on a page.
However, we will show that a self-cleaning of heavily
corrupted documents is, indeed, possible, e.g., for relatively
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low numbers of different character types. The only
prerequisite will hereby be the characters’ regular feature
arrangements. No information about the character shapes
has to be available, which makes the approach applicable to
entirely unknown character types. The problem addressed
here is thus very different from the one aimed at by optical
character recognition (OCR) methods that use supervised
pretraining on known characters [12].

The idea of restoring scanned documents by removing
corruptions and degradations using statistical information
has previously been explored in literature. In the following
we briefly review related earlier contributions: Markov
source models (e.g., [13], [14]) have been proposed and
applied for learning character representations, modeling
relative locations among characters and restoring docu-
ments. An approach by Bern and Goldberg (2000) [15] clus-
ters instances of the same symbol and computes super-
resolved representatives for improving document images.
A method by Zheng and Kanungo (2001) [16] estimates the
parameters of a degradation model and constructs a lookup
table for restoring the degraded image. Both of these two
approaches [15], [16] focus on sub-regions of characters and
are, e.g., applicable to line stroke corruptions. Recent work
by Likforman et al. (2011) [43] combines total variation reg-
ularization and non-local means filtering for enhancing his-
torical printed document images. Another recent approach
by Moghaddam and Cheriet (2011) [17] divides a document
image into a collection of patches, which are then individu-
ally corrected based on similar patches, before the corrected
patches are used to build up a restored image; and work by
Benerjee et al. (2009) [18] defines a Markov Random Field
over sub-regions of characters, and restores a corrupted
document image via a maximum a-priori (MAP) estimate.

Statistical models of scanned text documents can exploit
statistical properties at different scales. Approaches focus-
ing on small scale regularities are relatively general. For
instance, sparse coding approaches can learn dictionaries of
image patches in order to remove noise such as speckle
noise, etc. [6]. However, for more structured noise, which
shares features with the characters itself, more of the statisti-
cal structure of written text has to be captured. Models that
focus on character sub-regions (e.g., [15], [16], [18]) can
remove more structured noise such as line strokes that are
sufficiently dissimilar to character parts [15], [16]. The
approach presented in this paper goes one step further by
statistically learning to represent whole characters as planar
relations of pattern features. Such a higher-level character
representation can allow for a removal of corruptions even
if the sub-regions of corrupting patterns (line strokes) are
similar to character sub-regions. At the same time, corrup-
tions such as speckle noise or cuts and breaks in historical
documents can be removed. However, the larger the scale
(the patch size) and complexity of the statistical model, the
more challenging the inference and training problem
becomes. Larger scale regularities other than representa-
tions of whole characters can also be captured. The
approaches by Kopec and Chou [13], [14] learn whole char-
acters and exploit the statistical property of text, but their
learning algorithm requires the transcriptions of target
documents (supervision information), which is different
from the unsupervised approach followed here.
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The generative model we apply for modeling character
patterns is similar to models for visual objects suggested
by Williams and Titsias [11], [19] and Jojic and Frey [20]
(known as sprite models). Sprite models are generative
models of visual scenes allowing for arbitrary planar posi-
tions of objects but they assume a fixed order in depth
(an object always has the same distance from the camera).
With such models, explicit representations of objects can
be learned from data. Many extensions have been made
to further enhance the model, e.g., with a deformable
model of objects [21], [22], allowing affine transformations
[23], and speeding up with various techniques [24]. Sprite
models have also been suggested for video layer decom-
position and optical flow, where the accuracy of segmen-
tation and motion estimation are of importance, e.g., [25],
[26], [27], [28]. Besides layered models, epitomic image
analysis [29] is another related generative approach,
which, instead of building explicit object representations,
summarizes an image into a miniature, condensed version
containing the essence of the textural and shape proper-
ties of the image. The extracted epitome can be used for
different inference tasks such as image segmentation,
motion estimation as well as location recognition [30]
(after post-processing). As the data points we will have to
process are image patches of corrupted text documents,
these previous models are not applicable because they
require a static background, do not provide a mechanism
to discriminate characters from irregular patterns, and are
based on pixel image representations which can make
learning less robust. In contrast, we (1) will have to allow
for varying fore- and background patterns (to take cor-
ruptions into account), (2) will introduce a mechanism for
character versus non-character discrimination, and (3)
will consider general feature vector representations of the
data. Together with a novel non-greedy training scheme
in the form of truncated variational EM [31], the derived
method will provide the required robustness and effi-
ciency for the task.

2 A PROBABILISTIC GENERATIVE MODEL
FOR CHARACTERS

The probabilistic model we consider generates small image
patches of size D = (D, Dy). A pixel at position d of the
patch is represented by a feature vector %; with I entries.
For now ; can be thought of as a color vector at pixel posi-
tion d in RGB space (F' = 3). Later on, we will use higher-
dimensional feature vectors that more robustly encode local
image information. A patch Y = (41,1),...,¥%,,p,)) is mod-
eled to contain one pattern of class c at an arbitrary position
Z of the patch. The generative model is introduced step-by-
step below, Fig. 1 shows its corresponding graphical model,
and Fig. 2 illustrates an example of patch generation.

For the generation of a patch Y/, we first choose a pattern
class c using a standard mixture model with 7 = (74, ..., 7¢)
denoting the mixing proportions and with C' denoting the
total number of classes:

c
p(c|7) =, with Znn =1. (1)
c=1
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Fig. 1. Graphical representation of the generative model.

The pattern position within the patch, ©e€D,D =
{1,...,D1} x{1,..., D5}, is a 2D vector which is chosen
independently of the class from a uniform distribution over
the entire patch:

p(Z) = p(z1)p(z2)
1 (2)

= Uniform(1, D) x Uniform(1, Dy) = Do
1D2

The shapes of different patterns are modeled by a set
of binary latent variables, namely the pattern mask: m =
(m@yay, .-, mp,py), where mz € {0,1}. For a value m; = 1,
a feature of the corresponding pattern is chosen as the
generated feature at position i, while for m;= 0, the fea-
ture is chosen from a background distribution. The pat-
tern size P = (P, P,) can hereby be different from the

#=[0.2,0.2,0.2,0.2,0.2]"
| B AlBlCID]E]
@] I
) Uniform Background
Distribution Distribution
T = [12._ l'[]]
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image patch size P, < D;, P, < D to account for the fact
that the patches will be chosen significantly larger than
the characters they contain. Given a pattern class ¢, the
mask variables are drawn from Bernoulli distributions:

(Pr.P2)
p(mi e, A) H p(my|c, A)
i=(1,1)
3
(Pr.1%) . - ®)
_ H ((X;) ms; <1 _ a?) mi’
i=(1,1)
where A = (A',..., A%) with A° = (af, ..., a(p, p,) are the

parameters of the mask distribution. For the area where
the image patch is outside the pattern, the mask variables
are always assigned to zero: p(m»— 1 | ¢, A)=pmy=1)=0
Vig PwithP={1,....,P} x{1,..., P2}

From the deﬁmtlon of masks, a background distribu-
tion is required for all those features not belonging to a
pattern (m; = 0). A possible choice is a flat Gaussian dis-
tribution (compare [11]). However, for data such as
patches from corrupted text documents, the distribution
values are often very different for the different feature
vector entries, and for the dirty background are often
observed to be non-Gaussian. To appropriately model the
background features, we therefore construct a probability
density function Hp by computing the histogram of dif-
ferent feature values across the image patches. The proba-
bility densities for the individual feature vector entries
will be modeled individually (see Fig. 4a for histograms
of R, G, and B channel). The histograms are computed
across all the image patches including the features that
are potentially later identified as being part of the learned
patterns. Nevertheless, the computed histograms are usu-
ally very similar to the true background distributions
(compare Fig. 4a). Once computed we therefore leave the
histograms fixed throughout learning. Having defined the
background distribution Hp and given pattern class c,

1) A pattern class is chosen, e.g., the class with
pattern “B”.

2) The mask variable m is drawn for the dis-
tribution of the chosen class (3).

3) The internal representation of the pattern
(without background) is sampled from the
corresponding Gaussian distribution.

4) The pattern parameters and mask variable
are translated by a random position & drawn
from a uniform distribution.

5) The background is sampled from the his-
togram distribution of background.

6) The final image patch is generated by com-
bining the internal representation of the pat-
tern with the background according to the
mask variable.

(b)

Fig. 2. (a) An illustration of the generation process. (b) Summary of the generation process.
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mask 17, and pattern position #, the distribution of patch
features is given by

(Dy,Ds)
= = _ . = .7 c.
p(Y|Cv m,x, ®> - H m(dfz)N< a 7w(*7i~>aq)(d75))
d=(1.1) (4)
+(1 =) a7,

where @ is the mean of the Gaussian distribution and ®* is
the dlagonal convariance matrix: ®% = diag((o% e 1)2, ceey
(of e F) ). The mean @ parameterlzes the mean feature vec-
tor of pattern c at posmon i relative to the pattern position
7. The variance vector ® parameterizes the feature vector
variances (different variance per vector entry). The shift of a
pattern ¢ is implemented by a change of the position indices
i by i using cyclic boundary positions:

d=(i+1)

= ((i1 4 #1) mod Dy, (i 4+ x3) mod Dy)". )

The cyclic boundary condition is used mainly for
computational convenience. Otherwise, the search space
for translations will increase dramatically (about eight
times bigger), which will significantly increase the compu-
tational cost.

Equations (1) to (5) define the generative model for
image patches. The parameters of the model are given
by 0 = (W(I) A7) with W= W°.... WY and W°=
(W, 1) - -+ Wp, p,), and together with the histograms for
the background dlstrlbutlon Fig. 2 shows schematically
how a patch is generated for a given set of parameters.

3 EFFICIENT LIKELIHOOD MAXIMIZATION

For a given set of image patches Y = (Y ... Y(M)) we
seek the parameters that best model the data set. One
approach of learning the parameters is to maximize the data
likelihood:

0" = arg max{L£(0)},
© (6)
£(0) =log(p(y™,...,YV|0)).

A frequently used method to find the parameters ©" is
Expectation Maximization (EM), which iteratively opti-
mizes a lower bound of the likelihood F(0O,q) w.r.t. the
parameters ® and a distribution ¢. Given the data and
the current model parameters ©, ¢ is an approximation to
the posterior distribution over the hidden variables [32].
With ), denoting a summation across the joint space of all

hidden variables V' = (c, m, Z) the lower-bound is given by
N
=3 D7 an(V:6) b (Y V| 0)
n=1
(7)

N

_qunve log (¢.,(V,0")),

n=1

1953

where ©' denotes the parameters from the previous
iteration.'

M-step. Parameter update rules are canonically derived
by setting the derivatives of F w.r.t. the parameters to zero.
For the model (1)-(5), we obtain

me= 3 R ), 0

™ (o D™ (e 1| e &
ag: an 7 Po (C x)pe (m |C,£E’)7 (9)

>, ey (e 7

L en (@l (=11 e, 7

L e e D my=1] e, )

i = @) 1() ZZP(" z)
S Y Pe (6 E)pg (my=1]c, @) T F

% 5 me = 1] e, D) (% - 1) (- 7)o 1,

W

; (10)

(11)

where we wuse the abbreviations: pg) (myle, @) =
p(my| e, @, Y™, @), pi(c, ) := p(c,#| Y, 0), and where
® denotes pointwise matrix multiplication (in this case
with the unit matrix 1). For the derivations of the M-step
equations we refer to Appendix A, which can be found on
the Computer Society Digital Library at http://doi.ieee-
computersociety.org/10.1109/TPAMI.2014.2313126.

E-step. The crucial and computationally expensive part
of EM is the computation of the expectation values w.r.t.
the posterior. For each data point, this involves summa-
tions of probabilities for all combinatorics of the hidden
variables ¢, m and Z. However, the combinatorics can be
simplified. By exploiting the standard assumption of inde-
pendent observed variables (compare, e.g., [4], [5]) given
the latents in (4), the posterior distribution over i can be
decomposed into a product of the posteriors over individ-
ual binary masks as follows:

Py.Py)

IT »0m

i=(L1)

ple,m, T]Y,0) = ( Ic,f,K@)))p(c,fK@)-
(12)
The posterior distribution over individual binary masks
can then be computed according to

p(g(f+j)a m; ‘ ¢, fa ®)

- 7,Y,0) = .
p(mz | ¢, 2,Y,0) S PG| 0, 0)

(13)

The summation in the denominator can be computed
efficiently as it only contains two cases: my; = 0 and m; =
The posterior distribution over ¢ and & can be computed
as follows:

1. As, in the following text, only the notation of the parameters from
previous iteration has been used, we omit the notation ®' and use O to
indicate the parameters from previous iteration.
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(P1.Ps)
ple, Z]Y,0) [ H (Zp Uiz mrle, T ®))] (1)

S(L)
x p(Z]O)p(c|O).

With such a decomposition (compare [11]), the compu-
tational complexity decreases from exponential to poly-
nomial, which makes the computation tractable in
principle. However, the computational complexity still
grows very fast with the size of patterns and image
patches, O(CD;DyP,P,). For realistic image sizes (e.g.,
usually hundreds of thousands of pixels), it still exceeds
currently available computational resources.

To further improve efficiency, we therefore approximate
the computation of expectation values using variational EM
(e.g., [33]). Source of the large computation is the demand of
evaluating all possible pattern positions for all classes. To
reduce the number of hidden states that have to be evalu-
ated, we apply a recent variational EM approach (Expecta-
tion Truncation, [31]) which is directly applicable to discrete
hidden variables. The used approach is not based on the
usual factored form of ¢ but on a truncated variational
approximation to the posterior. Applied to the posterior in
(14), it is given by

p(C, Z| Y(n)’ @) ~ qn(c, 7;0)
p(c, 7Y™ | 0) )
— - Y(c,T) € Ky,
> (e, P, YT ]O)

(15)

and zero otherwise. The variational distribution g, approx-
imates the true posterior with high precision if the set C,
contains those classes and positions that carry most
posterior mass for a given data point Y. This means that
we have to find, for each patch, the most likely pattern
classes together with their most likely positions in order to
obtain a hlgh quahty approximation. Therefore, we define
a function S (c Z) that assigns a score to each class and
position pair (c z):

8. @) =] [N(gf;if) 35, %) p(my = 1] ©)

=
+Hp(i5,, )p(ma = 0]©)]p(E | O)p(c] ©),
(16)

with P/, C P. This scoring (or selection) function (compare
[31]) gives high values to all those positions that are con-
sistent with features in the set P.. The set P/ is in turn
defined to contain the A most reliable features of pattern
c. We define these features as those with the highest mask
parameters of. A small A results in a very efficiently com-
putable function SO (¢c,%). Based on the selection func-
tion, we now define the set of the most likely class and
position pairs to be

K. ={(¢,Z)| (¢, %) has one of the (K C D D)

largest values of Sin(j)(f)}, (17)
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1) Reliable features of learned character representations.

A B C D E

2) For each reliable feature in a given input, likely feature
positions and character classes can be selected.

.= ABCDE

+ = A BCDE

3) The likely hidden states are obtained by considering
likely positions and classes of the reliable features.

| e | I'"" i'""
)
1)

‘R i)
B & L

1 ] 1 ] 1 1
——— L - | —— | S

Fig. 3. An illustration of the applied selection process. 1) Reliable fea-
tures can be defined based on the learned character representations
(red circles). 2) If such a feature is present in a given input, the most
likely classes and positions can be selected (different such classes and
position pairs for each feature). 3) The most likely classes and positions
for each feature can be combined to select a finally small number of pos-
sible class and position pairs. Note that the selection process has been
simplified to communicate the basic idea. The actual selection behaves
probabilistically by ranking the configurations of the posterior distribution
according to its scores instead of making deterministic decisions as
shown here.

r———

where K € [0, 1] is the fraction of the joint space of all classes
and positions (with size CD; D).

Note that, as shown in some examples of image patches
in Fig. 5a, usually only a small number of characters are
present in a patch compared to the total number of possi-
ble characters. Therefore, given an image patch, the proba-
bilistic mass in its posterior distribution will be
concentrated in small volumes of the joint hidden space
for cand Z. A prerequisite for the applicability of the trun-
cated variational approach [31] is thus fulfilled. To effi-
ciently find the places with high concentration of posterlor
mass, which is the goal of the selection function So (¢, @),
we exploit that often very good guesses about an objects
identity can be made based on partially observed informa-
tion. The selection function in (16) is defined to preselect
pattern classes and positions based on few but reliable pat-
tern features. The features are themselves depending on
the model parameters and evolve during learning. The
selection of regions /,, can hereby be generous as selected
hidden states without high probability mass do not nega-
tively effect the approximation (except of increased
computational demand). An illustrative example of the
selection process is given in Fig. 3.

Note that the principle idea of efficient inference through
preselection has been proposed and discussed in different
contexts before [34], [35], [36], [37] including character per-
ception [38]. In the context of probabilistic visual inference
Yuille and Kersten [37] have abstractly discussed the idea
using the example of character patterns. Approximate infer-
ence by preselection was then shown to correspond to a var-
iational Bayesian EM approach (Expectation Truncation,
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TABLE 1
Summary of the Learning Algorithm

—_

: choose approximation parameters K = 0.02 and A = 200

2: initialize features W with values of a pattern size region at a
random position of a randomly selected patch

3: initialize feature variances ® with the standard deviation of the
data set (each feature dimension individually)

4: initilize mask parameters A with values uniformly drawn from
the interval [0, 1]

5: while the parameters have not converged do

6 select the representative feature index set P,

for each pattern c
7: for each data pointn=1,...,N do

8: compute K, by evaluating S(E)m(c7 Z) on the
joint space of ¢ and Z using (16) and (17)

9: compute the approximate posterior distri-
bution (15) over the truncated set Ky,

10: end for

11: update the parameters in the M-step (11) using
the approximate posterior distributions
12: end while

[31]) which allowed for concrete derivations of efficient
inference and learning algorithms for generative models.
While the approach has successfully been applied for sparse
coding models (e.g., [31], [39]), the selection as used for our
model closely corresponds to the abstract example of infer-
ence for characters by Yuille and Kersten [37]. Using the
function (16), efficient selection is achieved by only checking
for the most reliable features of each pattern. Reliability is
hereby measured based on the mask parameters: only the A
features associated with the highest values of the mask
parameters are considered (see P, in (16)).

In principle, the approximation [31] can also be used to
constrain the number of states of mask variables. However,
the computational gain is negligible as the posterior w.r.t.
the mask can be computed efficiently (13). For the approxi-
mation, note that A and K parameterize the accuracy. The
higher the value of X is, the more reliable is the selection of
considered classes and positions. The higher the value of K
is, the larger is the considered area of the joint class and posi-
tion space. However, the larger both the A and K are, the
higher is the computational cost. For the highest possible
value of A the selection becomes optimal in the sense that
Sg’ >(c, ') becomes proportional to p(c,#|Y™,®).2 For the
highest possible value of K, K =1, all positions are
considered and the variational distribution (15) becomes
equal to the exact posterior. In numerical experiments we
observed that approximations with high accuracy and simul-
taneously low computational costs are obtained already for
relatively low numbers of A (e.g., A = 200 out of P, P> fea-
tures) and relatively low fractions of considered joint space
(e.g., K =0.02).

The overall procedure of the proposed learning algo-
rithm is summarized in Table 1. For each EM iteration,
the computation for each data point can be carried out
independently until the intermediate results are summed
together for the new parameters. Therefore, we parallel-
ized the computation by partitioning data points, evenly
distributing them across computer nodes/cores, and

2. 8% (¢, #) becomes equal to p(c,@|Y™ @)p(Y™|O) with
|

o
p(Y™ | ©) being a constant for the selection.
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Fig. 4. Experiment on artificial data. (a) The background for data genera-
tion (red curves) and constructed background histogram Hp (blue
regions). (b) Five samples of N = 1,000 generated image patches.
(c) The learned model parameters. The algorithm terminated after 71
iterations. The mask parameter A is visualized in gray-scale images, the
pattern feature W is visualized in RGB color space and the noise param-
eters o, o and o are visualized by heat maps.

gathering intermediate results at the end of each EM iter-
ation (see Appendix B, available in the online supple-
mental material).

4 LEARNING REPRESENTATIONS OF CHARACTERS

Equations (6) to (17) define an approximate EM algorithm
for learning character representations. It will be used to
clean corrupted documents as described later. Before, we
numerically evaluate the learning algorithm itself.

4.1 Artificial Data

Let us first consider artificial images for which ground
truth information is available. For the training data, we
generated N = 1,000 RGB image patches (F' = 3) of size
D = (50,50) according to the model (1) to (5). Each patch
contained one of five different character types with equal
probability (. = 0.2). The chosen colored characters were
generated from corresponding mask, mean and variance
parameters (see Fig. 2). The background color was drawn
from a Mixture of Gaussians as an example of multi-modal
distributions (compare Fig. 2a). Fig. 4b shows a random
selection of five generated data points. The derived EM
learning algorithm was applied to the data assuming C' =5
classes and P = D = (50,50). First, the background histo-
grams Hp was computed from the whole data set, and was
observed to model the true generating RGB-distributions
with high accuracy (the blue regions in Fig. 4a shows the
learned histograms compared to the true distributions in
red). The remaining model parameters were randomly ini-
tialized: the pattern mean W was independently and uni-
formly drawn from the RGB-color-cube [0,1]°; the pattern
variance & was set to the standard deviation of the data
set; and the initial mask parameters A were uniformly
drawn from the interval [0, 1].

The learning course of the parameters is illustrated in
Fig. 4c with iteration 0 showing the initial values. After iter-
ation 70, parameters had converged sufficiently. To visual-
ize pattern variances in Fig. 4c, they were organized as a
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Fig. 5. Experiment on a scanned text document. (a) 12 samples of N = 1,379 image patches. (b) The learning course of the parameters. The mask
parameter A is visualized in gray-scale images and the pattern feature W and the pattern noise parameter o are visualized by heat maps. For W and

o we only show the maximal values, e.g., W

matrix for each pattern and each feature dimension, e.g.,
oG = (U?LUJZR7 e 7(7’(31,1_’132)#&12). These variance matrices are
visualized as color images which are normalized individu-
ally. As can be observed, the algorithm successfully learned
the model parameters. For the experiment of Fig. 4 and
other repeated experiments, the learned parameters
diverged from the generating parameters by on average less
than 3.0 percent (excluding the cases converging to local
optima). Convergence to local optima has only been
observed in very few cases (one out of 10 runs).

4.2 Scanned Text Documents
Let us now apply the learning algorithm to data from a sin-
gle page of a scanned text document. Consider the cor-
rupted document displayed in Fig. 8 (left- hand—side) which
contains five character types, “a”, “b”, “e”, “s” and “y”. The
printed document was manually corrupted with dirt in the
form of line-strokes and with grayish spots. The data set for
training was created by a high-resolution scan of the docu-
ment (3,307 x 4,677 pixels) and by automatically cutting the
scan into small overlapping patches (120 x 165 pixels) with
fixed patch distances. Fig. 5a shows some examples of such
patches. The patch size was chosen to easily contain whole
characters and patches were cut along the writing direction
of the horizontally aligned text. White patches were auto-
matically discarded via thresholding. While an appropriate
working of the algorithm requires patch sizes large enough
for character patterns, a cutting along writing directions is
not required (see later discussions of experiments in Figs. 8
and 9). The cut-out patches are used to generate the actual
data points Y™ with vectorial features. Instead of RGB fea-
ture vectors as for the introductory example, we used fea-
ture vectors generated through Gabor filter responses.
Gabor features are robust and widespread in image process-
ing (see, e.g., [8], [40]) with high sensitivity to edge-like
structures and textures. Furthermore, they are tolerant
w.r.t. small local deformations and brightness changes. For
the small patches we computed a Gabor feature with 40
entries (five scales and eight directions) at every third pixel
[8], which resulted in 2D arrays of D; x Dy = 40 x 55 Gabor
feature vectors.

The learning algorithm was applied to this data set
assuming C =6 classes. The pattern mean W was

= maxf(Wzsf), to enable a compact visualization.

initialized by randomly selecting C' patches from the data
set and cutting out a segment of the pattern size at ran-
dom positions. The remaining parameters were initialized
in the same way as for the artificial data. To increase
computational efficiency we, furthermore, assumed with
P = (30,40) a pattern size smaller than the patch size but
still larger than the size of any characters. Parameter opti-
mization (44 EM iterations) took about 25 minutes on a
cluster with 15 GPUs (Nvidia GTX 480). More implemen-
tation details about the algorithm’s parallelization can be
found in Appendix B, available in the online supplemen-
tal material.

Fig. 5b visualizes the time-course of the learning algo-
rithm. As can be observed, the parameters converged to
appropriately represent the five character types. They are
represented by different mask parameters, mean features
and feature variances of the different classes. As only five
classes are required to represent all the characters, one
class converged to an average of some patterns and dirt
(see Pattern 4 in Fig. 5b). In numerical experiments on
this and other documents, the classes not representing
characters had either much lower values for learned
mask parameters (compare Fig. 5b) or much lower values
for learned mixing proportions m.. We exploited this
observation to automatically identify character classes
(see Section 6.1 for details). In this way we further
increase the robustness of the learning procedure by (1)
repeating the learning algorithm multiple times with dif-
ferent randomly chosen initial conditions and (2) by
selecting the parameters of a run with the highest number
of character classes.

5 CHARACTER DETECTION AND IDENTIFICATION

Based on a character representation learned as described
above, characters in a given corrupted document can be
detected and identified. We screen through the whole
document from upper-left to lower-right patch by patch.
Our first aim is to identify in each patch Y™ the position
and the class of the pattern most similar to that of a
learned character. To identify the type and position of
this best fitting pattern, we compute the maximum a-
posteriori (MAP) estimate of the approximate posterior:
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Fig. 6. (a) An illustration of the match quality. The first column shows the
patches with the MAP estimate (red rectangle); the second column
shows the mask parameters of the matched pattern class; the third col-
umn shows the corresponding posterior probability of the mask varia-
bles; the forth column shows the difference between the mask
parameters and posterior; the fifth column states the resulting quality
measure (see Section 5 for details). (b) Visualization of the number of
reliable features for each pattern and the threshold used for selecting
character representations (dashed red line). (c) The clean representa-
tions of each pattern with their bounding box for reconstruction.

(¢", @) = arg max {q¢.(c,7;0)}
(e, B)eky, (18)
~ argmax{p(e, 7| Y, 0)},

with ¢,(c,Z;0) and K, defined as in Section 3. In anal-
ogy to template matching ([8], [41] and many more) we
refer to the result of the MAP estimate (18) as the match
for the image patch, to 2* as the matched position and to
c* as the matched class.

As some of the patches may not contain any or any com-
plete character pattern (see, e.g., Fig. 6a, left-hand-side), we
introduce a quality measure to distinguish good matches
(to characters) from bad matches (to non-characters). Given
the patch Y™ with match (c*,7*), we define the quality of
the match as follows:

Q(c", 7, Y, 0) =
S @) e —p(my=1]c, 7Y™, 0)]

i=(1,1)
Yot ()

2

(19)

where p(m;=1|c*,7*, Y, 0) is the posterior distribution
of the binary mask in (13). The negative term in (19) is a nor-
malized distance measure between mask parameters and
mask posterior probabilities. Low values of () correspond to
poor matches and ) = 1 corresponds to a perfect match.
The definition of the match quality follows an observa-
tion that, for good matches, a large part of the image patch
is consistent with the corresponding character, while, for
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TABLE 2
The Flow of Document Cleaning

1: compute the histogram # p as the background distribution
2: learn pattern representations (Tab.1)

3: remove non-characters from the learned representations

4: compute bounding boxes for the character representations
5: select clean pixel representations for each character representa-

tion

6: repeat

7. for each patch of the document do

8: compute the best matching pattern class and

position (c*, *) using the MAP estimate in (18)
9: compute the quality Q of the match using (19)
10: if Q > Qo and the detected pattern is fully
inside the patch then
11: mark this match as accepted
12: paint the clean representation of pattern c*
at the detected position *
13: erase the reconstructed pattern from the
original document

14: end if
15: end for

16: until no more matches are accepted

bad matches, only a small part is consistent. To convert
such observation into a quantitative measure, we need to
define this consistency. As can be seen in Fig. 6a, the consis-
tency can be well formulated using the distance between
the mask parameters and mask posterior probabilities. Intu-
itively speaking, the mask parameters show which features
should be consistent in order to be considered as the pat-
tern and the mask posterior probabilities show which fea-
tures in the image patch are actually consistent with the
pattern (see the second and third columns in Fig. 6a). To
make the match quality Q(c*, 7, Y, 0) independent of
the pattern size, we added normalization weights (a;l*)y.
Besides this reason, we also noticed that, to determine a
good match, it is crucial whether the reliable features (oz%'*
close to 1) are well matched (p(m;=1]¢, Z, Y™, 0) close to
1), while other features are usually irrelevant. On the other
hand, to be tolerant w.r.t. corruptions in the surrounding
area, we should lower the weights of the distances over
unreliable features. Thus, we chose the normalization
weight (a;l*)y for such tuning with the parameter y. We
observed that y is not a sensitive parameter and that the
quality measure results in good separation for a larger
range of values. In all our experiments we used y = 10. To
provide some more intuition for (19), note that the quality
measure is proportional to the percentage of the pattern c¢*
that is being matched in a given patch if the mask parame-
ters are strictly binary, i.e., if a feature is either maximally
reliable (a;i: 1), or maximally unreliable (oz;l: 0). If for
instance a patch contains a complete and clean instance of
the pattern ¢* at position &, p(mz= 1| ¢*, ", Y™, @) is close
or equal to one for all reliable features and zero otherwise.
This implies that the distance measure is equal to zero and
Q(c*,#,Y™ 0) equal to one.

6 THE DOCUMENT CLEANING PROCEDURE

By making use of the learned character representation, char-
acter matching, and match qualities, we can now remove
corruptions from a given scanned text document (see the
flow of document cleaning in Table 2).
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6.1 Preparation

Before going into the details about the document cleaning
procedure, some preparations have to be made. Of all
learned pattern representations some may, for instance, not
represent characters and will have to be identified as such.
Furthermore, the cleaning procedure will require a clean
representation of each character for reconstruction.

The class number C assumed by the learning algorithm
may not be equal to the number of character types in the
training data set. A flexible approach is to set C' larger than
the actual number of character types and to try to identify
after learning those representations that do not correspond
to characters. In numerical experiments on different types
of data, we noticed that non-character representations usu-
ally have much lower values for learned mask parameters
(see Fig. 5b for an example). On the other hand, for the clas-
ses representing true characters, the mask parameters in the
center area (describing the character shape) are usually very
high (close to 1). Based on these observations, we define the
set of salient features for each class c as

B = {a;i | o> %}, (20)
where in all of our experiments the threshold «, = 0.85 is
used. With the definition of salient features, the classes of
true characters can be distinguished from non-character
ones by counting the number of salient features. In all of
our experiments, we observed a clear separation between
these two groups of classes (see Fig. 6b for an example).
With a simple threshold, e.g.,  of the highest salient feature
number (the threshold used in our experiments), they can
easily be separated. If multiple classes model the same char-
acter, these classes are identified according to the similarity
of features and masks with shift-invariant.

The next step is to compute a tight bounding box for each
character type, i.e., estimating for each represented charac-
ter a rectangular region that contains the character. The
bounding boxes will be used for the cleaning procedure
later on. The patch size used in our learning algorithm is
always much larger than the actual size of the characters as
we want every character in the document to be completely
inside at least one patch. One consequence is that the
learned mask parameters are not cleanly restricted to
the character shape as can be observed by considering the
learned representations (see, e.g., Fig. 5b). There are some
low value areas at the left and right side of the patch
because there is often more than one character inside a
patch. Therefore, each representation does contain not only
the modeled character but also the average of the characters
appearing at the left and right side. To find the region inside
of each representation that corresponds to a character, we
compute a bounding box around the reliable features (see
Fig. 6¢ for an example).

Finally, the document cleaning is achieved by replacing
each detected character of the corrupted document by a
clean character. As a fully unsupervised approach, we do
not have prior knowledge of the character shapes in the
document. The clean character representations have to be
found from the corrupted document without any label
information. Our model builds its internal representations
of characters in terms of Gabor wavelets, which do not
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generate images of characters directly. To obtain clean
character representations for reconstruction, we therefore
search the entire corrupted document for the best match of
each learned class. More precisely, we determine the best
match by the highest quality measure with y =0 and cut
out a segment the size of the characters bounding box
(Fig. 6c shows some examples). In case of a misclassifica-
tion, the reconstructed character will be significantly
different from the original one.

6.2 Document Cleaning

After the autonomous identification of classes representing
characters, their associated bounding boxes, and their clean-
est examples in pixel space, we can now clean a document
by reconstructing each possibly corrupted character by a
clean version (Fig. 8 shows an example). For reconstruction,
we screen through the corrupted document patch by patch
from upper left to lower right and with patches overlapping
by about 50 percent. For each patch we compute the match
(c*,7*) according to (18) and the match quality using (19). If
the matched position Z* corresponds to a pattern fully visi-
ble within the patch, and if the match quality is above the
threshold @)y = 0.5, we paint the best representation of class
c¢* at position Z* onto an initially blank reconstructed docu-
ment. Fig. 7 illustrates this procedure for a small area of the
example document.

As can be observed, not all the matches are accepted for
reconstruction because some matches correspond to pat-
terns not entirely visible (e.g., the second patch at iteration
1) or because match qualities are too low (e.g., the last patch
at iteration 2). The quality threshold prevents dirt from
being reconstructed as characters. As for each patch just one
match is computed, not all characters are reconstructed at
first. For a complete reconstruction we therefore erase each
successfully reconstructed character in the original docu-
ment by painting a blank rectangle (of the same size as the
corresponding bounding box) and apply the procedure
again. Patterns that previously were not identified because
of competition with other patterns can now be found and
correctly reconstructed. The reconstruction procedure ter-
minates once no more matches are accepted.

In Fig. 7 two iterations through the document are suffi-
cient to successfully reconstruct the word “bayes”. The
entire document in Fig. 8 is perfectly reconstructed after
three iterations. The more a document is corrupted by dirt,
the less perfect we can expect the reconstruction to be. In
examples with dirt fully occluding parts of the document,
we do thus obtain many false negative errors. False positive
errors are, on the other hand, obtained if, e.g., a random
combination of manual line strokes coincides with the fea-
ture arrangement of a learned pattern (see Appendix C,
available in the online supplemental material). Although
error rates for imperfect reconstructions can be decreased
by fine tuning the threshold @), we left the parameter
unchanged at )y = 0.5 for all examples to demonstrate the
generality of the approach.

6.3 Quantitative Comparison
To give a quantitative evaluation of our algorithm we com-
puted the recognition rate (the percentage of the characters
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Fig. 7. An illustration of the cleaning procedure. The first column shows the original document (using a small area as an example) and the recon-
structed document (initially blank). The second column shows patches of the original document. Using the learned character representations, the
MAP estimate of the character class ¢* and position #* is visualized for each patch as a red rectangle. For each match the match quality @ is com-
puted and given on the right-hand-side. The match is accepted if the match quality is above a threshold @), and if the matched character is completely
inside the patch. The characters of the accepted matches are reconstructed by painting clean characters at the matched positions while the character
is erased from the original document (third column). As not all characters can be reconstructed at once, the reconstruction process is iterated until no
more characters are accepted for reconstruction (after two iterations for this example).

from the original document being correctly recognized) and
the number of false positives (FP) (the number of wrongly
recognized characters which do not exist in the original doc-
ument). Recognition rates and numbers of false positives
can be computed for any alphabet, which makes them an
appropriate measure for our approach. Quantitative evalua-
tions of other approaches (e.g., [15], [16], [17], [18], [43])
required well-known alphabets (such as the Latin alphabet)
because they were based on improvements of OCR before
and after the application of the respective image enhance-
ment method. As a baseline comparison, we also applied a
state-of-art commercial OCR software (FineReader, [44]) to
the same scanned documents used for our approach. The

OCR algorithm is only applied to the corrupted documents
for comparison because recognition rates (and false posi-
tives) for the reconstructed documents would essientially
correspond to those of our algorithm (in the case of stan-
dard Latin alphabets).

Besides the document shown in Fig. 8a, we made (as
briefly mentioned above) several experiments on different
types of other documents. For a comparison with conven-
tional approaches, the document cleaning has been per-
formed on a document image consisting of characters of a
historical newspaper [42] (see Fig. 8b). Additionally we per-
formed document cleaning on documents with more char-
acter types (nine or 12 character types) and on a document
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Fig. 8. Examples of documents cleaned by the described procedure. Top: the corrupted documents. Bottom: the cleaned document. (a) A
part of the document used in Section 4.2. (b) A part of the document with characters of an historical newspaper [42]. Five different instances
of each character type (in total ten character types) have been used, and the characters were randomly placed on a background that mim-

icked the texture of historical paper.
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Fig. 9. Quantitative comparison of our algorithm to state-of-art OCR
software [44]. Top: The recognition rates (percentages of characters
from the original document being correctly recognized) are given for
different examples. Bottom: The numbers of false positives (wrongly
recognized characters which do not exist in the original document).
For each example document we show a small patch in the bottom
row. The full documents are shown in the Appendix C, available in
the online supplemental material.
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with an unusual character set (Klingon was used as an
extreme case) to highlight that our approach is not using
prior knowledge about character shapes. To highlight that
no knowledge about text alignment is used, we furthermore
show results on a document with randomly placed and
rotated characters. Finally, to show false positives and failed
reconstructions of some characters, we performed an exper-
iment on a document containing dark ink spots and ambig-
uous patterns (compare Appendix C, available in the online
supplemental material).

The results of our algorithm and the OCR algorithm are
quantitatively evaluated by computing the recognition
rate (the percentage of the characters from the original
document being correctly recognized) and the number of
false positives (the number of wrongly recognized charac-
ters which do not exist in the original document).? For the
document in Fig. 8a, for instance, FineReader recognized
56.5 percent of the characters correctly (essentially those
that are segmentable) and corruption by dirt caused 297
false positives. On the same data, our approach detected
100 percent of the characters correctly with no false posi-
tives. Fig. 9 shows the results for Fig. 8b and summarizes
results for other examples. The poorest performance of
FineReader in all the examples is observed for documents
with non-standard characters or unusual character orien-
tations. For the documents with Klingon and randomly
placed rotated characters, for instance, FineReader
resulted in recognition rates of 0 percent (231 FP) and 0.8
percent (86 FP), respectively. For comparison, our
approach detected 100 percent (no FP) and 100 percent (3
FP), respectively. Typical cases for false positives and mis-
classifications of our algorithm are highlighted in Appen-
dix C, available in the online supplemental material,
(Figs. 14, 16, 21 and others). One example shows misclas-
sifications caused by high similarities between characters.

3. Note that the numbers of false positives for the OCR algorithm
are only rough estimates because its character segmenter often cuts a
characters into multiple segments or groups multiple characters into
one segment.
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For instance, in documents containing “m” and “n” char-
acters, our approach can interpret a patch containing an
“m” pattern as a corrupted “n”. To further improve per-
formance, cases such as classifications of character sub-
pattern can explicitly be addressed. Other cases such as
strong occlusions represent more principled limitations.
The reason behind the poor performance of conventional
OCR algorithm is that it first needs to segment characters
out based on the statistical information of text alignment,
and then recognize those characters based on pre-trained
character classifiers. In the problem of document cleaning,
the document is corrupted, e.g., with line strokes consisting
of the same type of basic features as characters. Such a cor-
ruption severely affects the character segmentation process-
ing and poses considerable challenges to the character
classifiers, which results in a poor performance in the docu-
ment cleaning task. Note, however, that a comparison of an
OCR algorithm to our approach on these data is not fair.
The only reason for the comparison is to provide a baseline
performance of the most related approach. OCR software is
not intended for the task addressed here, as it is not trained
on the corrupted data and as it does not aim for cleaning a
document independent of the alphabet. Vice versa, our
algorithm would not perform well on typical OCR tasks.

7 DiISCUSSION

We have studied an unsupervised approach to clean cor-
rupted scanned documents. Our approach relies on the
learning of character representations using a probabilistic
generative model with explicit position encoding. Similar to
other probabilistic approaches, e.g., image denoising, we
followed the general principle of capturing the regularities
of the data, and removed unwanted data parts after identi-
fying them as deviations from the learned regularities.
However, in contrast to approaches for noise removal, we
learned explicit high-level representations of specific image
components, i.e., of characters. Having an explicit notion of
feature arrangements per character allows for a discrimina-
tion of irregular patterns versus characters even though
these irregular patterns can consist of the same features
(line strokes) as the characters themselves. Methods not
representing characters explicitly (e.g., [29]) are, therefore,
not applicable or would, at the least, require additional
mechanisms to identify characters and to discriminate them
against irregular patterns. The idea of using statistical infor-
mation from patches of corrupted/degraded document in
order to improve them has been explored before. Such doc-
ument patches contains redundant information about the
characters of the document and, therefore, can be used to
solve tasks at various levels: from denoising the document
image, over enhancing/recovering the document image
[17], [18], [43], to learning of character representations for
their identification and reconstruction (our approach). Our
method distinguishes itself from previous approaches in
the following aspects: (1) we work with larger patches
which can contain multiple characters; (2) we explicitly
learn character representations, which provides an explicit
separation between meaningful characters and severe cor-
ruptions/degradations even if characters and corruptions
share many features; (3) our approach can directly identify
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characters, which is as powerful as an OCR algorithm with-
out having to be trained on labeled data; (4) we take advan-
tage of sophisticated image features and are robust to small
distortions and degradations.

By applying our approach we have shown in this
study that even under difficult conditions a perfect recon-
struction of a text document is possible with solely the
information on a single page. The result of the cleaning
procedure depended on factors like the severity of the
corruption, the number of character instances per charac-
ter type, and on the similarity between character patterns
and corrupting patterns. Very simple characters like “1”,
“X”, “N” or “C” are, for instance, easier to confuse with
random line strokes than more complex characters; and
regular line strokes (same orientation and thickness) may
be learned as foreground objects. Furthermore, the more
character types a document contains the more challenging
the discrimination between characters becomes, especially
for strongly corrupted data. This is true for learning as
well as for character identification. Regarding required
data, we usually observed good result in our experiments
for more than 200 character instances per character type.
Performance significantly decreased for less than 100
instances, primarily due to less appropriate learning of
the character representations. The example of Fig. 8 con-
tains about 250 instances per character type (1,251 charac-
ters in total). For the same number of characters, text
with 12 character types (about 100 instances per type)
could still be processed with low error rates (compare
“12chars’ example). A similar page with text consisting of
the full alphabet of letters, even if constrained to just
lower or upper case, would not provide sufficiently many
character examples for self-cleaning, however. A natural
extension of the addressed task to more character types
would, therefore, require several pages. If we assume that
about 200 examples per character type are needed and if
a page contains 1,000 characters in total, we would
require about six pages to learn a full Latin alphabet of
lower-case letters. For the general type-set of all letters
and numbers (excluding special characters), we would
require about 13 pages. If we, furthermore, consider that,
e.g., only just 0.074 percent of all characters in the English
language are of type ‘z’ [45], then the number of required
pages would increase to about 270. To execute the clean-
ing procedure described in this work, processing of 270
pages amounts to unreasonably long computation times
(even using parallel implementations). The computational
effort and the limitation in the size of alphabets is also a
clear distinction to above discussed alternative
approaches [13], [14], [15], [16], [17], [18]. Because of these
limitations, such previously approaches are still clearly
preferable for concrete applications including the
enhancement of historical documents or the improvement
of OCR approaches.

In future work the performance of our approach can be
further improved by exploiting further regularities of words
and text. The regular arrangement of characters along a line
(compare [46]) could be used to predict the positions of
characters, and linguistic regularities (e.g., probabilistic lan-
guage models) could be used to predict character types
from context. Using probabilistic generative approaches,

1961

such prior knowledge can be integrated into the model by
constructing or by learning more sophisticated prior distri-
butions p(c,Z|©). Also on the algorithmic side further
improvements can be made, e.g., by using a multiple-cause
structure (e.g., [47], [48]) to recognize multiple patterns in a
patch simultaneously, or by using image features with scale
invariance and contrast normalization (e.g., SIFT [49], HOG
[50]). Different font sizes of characters can be handled by
modeling them as different patterns, by estimating font
sizes with heuristic mechanisms, or by adding scaling trans-
formations to the model. An extended set of transforma-
tions would, however, further increase the hidden state
space and the associated computational demand. The effi-
ciency of the learning algorithm could be further improved
by exploiting the techniques in object detection literature. In
our E-step, brute-force sliding window computation has
been avoided by selecting a small number of candidate
translations according to a subset of features. Beyond that,
invariant features [9] or techniques like coarse-to-fine search
can, in principle, be used for speeding up the selection pro-
cedure. Such techniques could dramatically reduce the
search space but would imply a coarse-to-fine pyramid
structure of character representations, which is much more
complicated than our current grid representation. There-
fore, it is beyond the scope of this work.

To summarize, by applying the probabilistic approach
described in this work, we have shown that it is in principle
possible to autonomously clean text documents which are
heavily corrupted by irregular patterns. Future develop-
ments can further improve the cleaning performance by
exploiting regularities of words and sentences, or they can
extend the application domain of the approach.
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