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Abstract—Feature matching is an important problem and has extensive uses in computer vision. However, existing feature matching

methods support either a specific or a small set of transformation models. In this paper, we propose a unified feature matching

framework which supports a large family of transformation models. We call the family of transformation models the affine-function

family, in which all transformations can be expressed by affine functions with convex constraints. In this framework, the goal is to

recover transformation parameters for every feature point in a template point set to calculate their optimal matching positions in an input

image. Given pairwise feature dissimilarity values between all points in the template set and the input image, we create a convex

dissimilarity function for each template point. Composition of such convex functions with any transformation model in the affine-function

family is shown to have an equivalent convex optimization form that can be optimized efficiently. Four example transformation models

in the affine-function family are introduced to show the flexibility of our proposed framework. Our framework achieves 0.0 percent

matching errors for both CMU House and Hotel sequences following the experimental setup in [6].

Index Terms—Feature matching, object matching, convex optimization, convex composition

Ç

1 INTRODUCTION

THE problem of feature matching in 2D images can be
referred as matching a group of template feature points

to another group of image feature points. Each feature point
is associated with a position ðx; yÞ in the 2D image domain
and a feature vector describing the image’s local appearance
around that position. The matched image feature points
should maintain similar local appearances as well as rela-
tive spatial relationships of the template feature points. In
Fig. 1, we show a honeybee represented by a group of tem-
plate feature points (Fig. 1a), and an input image consisting
of thousands of detected image feature points (Fig. 1b).
Fig. 1c shows the matching result of this case using our pro-
posed method. Feature matching has extensive uses in
image registration [32], shape matching [15], object detec-
tion [23], object recognition [4], [11], image retrieval [26],
estimation of optical flow [5], [29], and 3D surface recon-
struction [25].

1.1 Background

In this section, we review some existing feature matching
methods. Because of our interest in transformation models
and constraints, we focus on what transformation models
or transformation invariants do the methods support.

Assuming a global transformation between the template
and the input image, one can estimate the transformation
parameters between them by different parameter fitting
methods, such as least squares, least-median-of-squares
(LMedS), RANdom SAmple Consensus (RANSAC) [13],
etc. Among them, the RANSAC and its variants [7], [24]
have the ability to tolerate a large amount of outliers and
are therefore widely used in different computer vision
applications. However, the major limitation of the fitting
methods is that they are only capable of handling global
transformations.

Graph matching methods have a long history [9] and
regained much attention since 2005 [4], [17]. In graph
matching methods, every feature point is modeled as a
graph node, and pairs of feature points in a same point set
are modeled as graph edges. For each edge, some geomet-
ric properties are calculated from its pair of feature points.
Two most common pairwise geometric properties are the
distance and the direction between a pair of feature points.
The former geometric property is invariant to a rigid trans-
formation of the two points, while the latter one is invari-
ant to simultaneous translation or scaling of the two
points. In graph matching, one can determine how well an
edge in one graph matches an edge in another graph by
comparing the two edges’ geometric properties. Berg et al.
[4] modeled the graph matching problem as a integer qua-
dratic programming (IQP) model, where linear terms and
quadratic terms of the objective function represent node-
to-node and edge-to-edge affinities between the two
graphs, respectively. The IQP model is then relaxed into a
continuous domain and solved. The continuous result is
truncated back to the domain of integers to obtain node-
to-node correspondences. Leordeanu and Hebert [17]
encoded all the above affinity information into a matrix,
where diagonal and off-diagonal entries record node-
to-node and edge-to-edge affinities, respectively. The
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correspondences are obtained by mapping the principal
eigenvector of the matrix to the discrete solution space
using a greedy algorithm. To automatically set the weights
of different terms in the affinity matrix, supervised [6] and
unsupervised [18] learning methods optimizing the
weights were proposed. Cour et al. [8] proposed a spectral
relaxation method for the graph matching problem that
incorporates one-to-one or one-to-many mapping con-
straints, and presented a normalization procedure for
existing graph matching scoring functions that can dra-
matically improve the matching accuracy. Torresani et al.
[28] proposed a dual decomposition method to decompose
the original graph matching problem into “easier” subpro-
blems. Lower bounds provided by solving the subpro-
blems are then maximized to obtain a global solution.
Most recently, Liu and Yan [21] proposed an algorithm to
discover all common visual patterns within two sets of fea-
ture points. It optimizes the same objective function as that
of [17] but with different constraints. It showed its effec-
tiveness in recovering visual common patterns no matter
whether the matchings between them are one-to-one or
many-to-many. Torki and Elgammal [27] presented a
novel two-step graph matching method. Given two groups
of feature points with pairwise intra-group and inter-
group affinities, the two groups of feature points were first
embedded into a unified Euclidean space via Laplacian
Embedding. A bipartite graph matching was then applied
to the embedded feature points to efficiently recover
point-to-point correspondences. One disadvantage of
graph matching methods is their high computation
complexity.

Another disadvantage of graph matching methods is that
the most commonly used second-order edges (edges con-
necting two nodes) in graph matching methods can encode
a limited number of geometric invariants. Zass and Shashua
[31] for the first time tried to solve the feature matching
problem via hypergraph matching, whose high-order edges
can encode more complex geometric invariants. The meth-
od’s output is a probabilistic result rather than traditional
node-to-node results. In this way, they were able to model
the problem as a convex optimization problem and to obtain
a global minimum. Duchenne et al. [10] encoded affinities
between two hypergraphs into a tensor and proposed a
power iteration method to effectively recover the tensor’s
principal eigenvector with sparse prior. Mapping the eigen-
vector to the discrete solution space generates desired node-
to-node correspondences. Similar to graph matching meth-
ods, hypergraph matching methods implicitly integrate

geometric invariants into the objective function. But their
hyperedges are able to encode more complex geometric
invariants. For instance, a third-order hyperedge can pro-
vide similarity invariant using angles of the triangle defined
by its three nodes; a fourth-order hyperedge can provide
affine invariant by calculating the ratio between the areas of
any two of the triangles defined by its four nodes. Although
the hypergraph matching methods can provide geometric
invariants to more complex transformation, these methods
have even higher computation complexity compared with
graph matching methods.

Dynamic programming also showed its effectiveness in
matching tasks. Felzenszwalb and Huttenlocher [12] pre-
sented the first dynamic programming based matching
method. Dynamic programming was utilized to optimize a
tree model, where each node represents the best position of
a pictorial part. In [16], Jiang et al. proposed a novel formu-
lation to explicitly solve scaling and rotation parameters for
all template feature points using Linearly Augmented Tree
(LAT) constraints. Due to the LAT’s special structure, the
proposed formulation was then solved by dynamic pro-
gramming. This method can handle global similarity trans-
formations if the cost function is associative and the
adjacency graph has no loops.

1.2 Our Proposed Method

Each feature matching method mentioned above supports
either a specific transformation model (e.g., the similarity
model in [16]) or a very small set of models (e.g., global
transformation models in RANSAC methods [7], [13],
[24]). In this paper, we present a unified feature matching
framework that supports a large family of transformation
models. We call this transformation family the affine-func-
tion family in which transformation models can be
expressed as affine functions. This family includes many
commonly used global models, such as global similarity
and affine transformations, many complex transforma-
tions, such as locally-affine, Thin-plate Spline (TPS) and
Free Form Deformation (FFD) models, and combinations
of the above models, e.g., global similarity þ local transla-
tion and so on. Some models in this family were never
explored by existing methods. In this paper, we demon-
strate our matching framework’s performance using four
transformation models in this family: 1) the global affine/
similarity þ local translation model, 2) two locally affine
transformation models, and 3) the articulated object’s
transformation model.

Fig. 1. (a) A group of template feature points representing a honeybee. (b) Thousands of image feature points representing the input image. (c) The
final matching result by our proposed method. SIFT features [22] are used in this example.
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Similar to other featurematchingmethods, feature dissim-
ilarity values between all pairs of template points and image
points are calculated before matching is performed. Our goal
is to recover each template point’s optimal transformation
parameters such that each template point’smatching position
is close to an image point with similar local appearance (low
dissimilarity value)whilemaintaining similar geometric rela-
tionships between the template points. For each template fea-
ture point, we create a convex dissimilarity function based on
the dissimilarity values between it and all image points.
Composition of such a convex feature dissimilarity function
with a transformationmodel in the affine-function family has
an equivalent convex optimization form. It can be efficiently
performed via convex optimization techniques. We explicitly
solve all template points’ transformation parameters using
an optimization scheme that iteratively shrinks each template
point’s destination region in the input image.

2 THE UNIFIED MATCHING FRAMEWORK

2.1 Problem Formulation

Let nt and ns represent the numbers of feature points in the
template point set and in the image point set, respectively.
pi ¼ ½xpi ; ypi �T ; i ¼ 1; . . . ; nt, and qj ¼ ½xqj ; yqj �T ; j ¼ 1; . . . ;
ns, denote the positions of the template feature points, and
the positions of the image feature points, respectively. Let
P ¼ fp1; . . . ;pnt

g and Q ¼ fq1; . . . ;qnsg be the set of all
template points’ positions and the set of all image points’
positions, respectively.

Unlike most feature matching methods which seek for
point-to-point results, we optimize transformation parame-
ters for each template point. Let TiðQÞ : Rn ! R2 represent
a transformation function that calculates the ith template
feature point pi’s matching position in the 2D input image
under certain transformation with parameters Q 2 Rn. The
result of the Tið�Þ function is a 2D position in the input
image. We illustrate the transformation function for the
affine transformation by calculating the matching position
of pi ¼ ½xpi ; ypi �T as

Ta
i ðQÞ ¼ a b

g d

� �
xpi

ypi

� �
þ f

’

� �
; (1)

where Ta
i : R6 ! R2 calculates the matching position of the

template point pi under an affine transformation with
parameters Q ¼ ½a;b; g; d;f;’�T 2 R6. Please note that each
template point pi’s coordinates, ½xpi ; ypi �T , are constants but
not variables of the transformation function TiðQÞ. There-
fore, we define nt transformation functions for nt template
points, and each template point’s matching position is cal-
culated by its corresponding Tið�Þ function. Fig. 2 illustrates
the Tið�Þ function using two template points.

Let TiðQÞ ¼ fiðQÞ giðQÞ½ �T , where fi : R
n ! R and

gi : R
n ! R are the functions calculating the x and y coordi-

nates of pi’s matching position in the input image. In this
paper, we focus on transformation models that can be
expressed by affine functions of the transformation parame-
ters, i.e., fiðQÞ and giðQÞ are affine functions with respect to
Q. Recall that a function is affine if it is a sum of a linear
function and a constant, i.e., if it has the form
fðQÞ ¼ aTQþ c, where a 2 Rn and c 2 R. One such exam-
ple is the above affine transformation model (1). We call the
set of such transformation models the affine-function family.

One objective of feature matching is to match each tem-
plate point pi to the 2D position TiðQÞ in the input image,
such that the local appearances of the pi and TiðQÞ are simi-
lar. Therefore, a function ciðqÞ : R2 ! R1 is needed to mea-
sure the appearance (feature) dissimilarity between the
template point pi and a 2D position q in the input image.
Since there are nt template points, we need nt feature dis-
similarity functions, cið�Þ, i ¼ 1; . . . ; nt, one for each template
point. Fig. 2 illustrates the usage of the cið�Þ function.

The overall objective is to find the optimal transforma-
tion parameters, Q̂1; . . . ; Q̂nt , for template feature points,
p1; . . . ;pnt

, to minimize the following objective function:

minimize
Q1;���;Qnt

Xnt
i¼1

ciðTiðQiÞÞ þRðQ1;Q2; . . . ;QntÞ;

subject to SjðQ1;Q2; . . . ;QntÞ � 0; j ¼ 1; . . . ; l;

(2)

where the term ciðTiðQiÞÞ calculates appearance dissimilarity
between the ith template point pi and its matching position
TiðQiÞ in the input image, RðQ1;Q2; . . . ;QntÞ is a convex
term regularizing transformation parameters, and
SjðQ1;Q2; . . . ;QntÞ � 0; j ¼ 1; . . . ; l are a series of convex
constraints. Both RðQ1;Q2; . . . ;QntÞ and SjðQ1;Q2; . . . ;QntÞ;
j ¼ 1; . . . ; l are convex because we formulate (2) as a convex
optimization problemwhich can be efficiently solved by con-
vex optimization techniques. Four different implementations
of the optimizationmodel (2) are introduced in Section 3.

The main obstacle is to properly define a feature dissimi-
larity function ci : R

2 ! R such that if the transformation
function Tið�Þ is in the affine-function family, the above opti-
mization model (2) can always be converted into an equiva-
lent convex optimization form and therefore be efficiently
optimized.

2.2 Discrete Feature Dissimilarity Function

Let Ci;j denote the feature dissimilarity between the ith tem-
plate feature point pi and the jth image feature point qj. In
this paper, we calculate Ci;j as the L2 distance between pi’s
and qj’s feature vectors.

Fig. 2. Illustration of the transformation function Tið�Þ and the feature dis-
similarity function cið�Þ using two template feature points p1 and p2. The
matching positions of p1 and p2 are calculated by their transformation
functions, T1ðQ1Þ and T2ðQ2Þ, respectively. Feature similarities between
p1 and T1ðQ1Þ, and between p2 and T2ðQ2Þ are calculated as c1ðT1ðQ1ÞÞ
and c2ðT2ðQ2ÞÞ, respectively.
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The feature similarities are all pre-calculated before the
matching is performed. For each template point pi; i ¼
1; . . . ; nt, we can define a discrete feature dissimilarity func-
tion ~ci : Q ! R:

~ci xq1 ; yq1
� �T� �

¼ Ci;1;

~ci xq2 ; yq2
� �T� �

¼ Ci;2;

..

.

~ci xqns
; yqns

h iT� 	
¼ Ci;ns ;

(3)

where Q is the set containing all image feature points’ posi-
tions. The domain of this function denotes that the template
point pi can only be matched to image feature points’ posi-
tions, qj ¼ ½xqj ; yqj �T ; j ¼ 1; . . . ; ns, with feature dissimilarity
values determined by function ~cið�Þ. This is because the cal-
culation ofCi;j requires feature vectors from the input image,
and they are only extracted at feature points’ positions.Mini-
mization of ~cið�Þ results in the best matched position in the
input image for the ith template point pi. One illustrative
example of this discrete function is shown in Fig. 3a. How-
ever, the ~cið�Þ functions are discrete and non-convex. Opti-
mizing (2) with the discrete feature dissimilarity functions
(3) and some convex regularization terms is difficult (please
see Section 3, for examples).

2.3 Convex Feature Dissimilarity Functions

To solve this problem, we relax each ~cið�Þ function and cre-
ate a continuous and convex feature dissimilarity function
cið�Þ which can be efficiently optimized. The above discrete
functions are viewed as 3D point clouds. For the template
point pi, all image feature points’ locations, and the similari-
ties between pi and all image points can be viewed as a 3D
(ns � 3) point cloud, where the third dimension represents
feature dissimilarity:

xq1 yq1 Ci;1

xq2 yq2 Ci;2

..

. ..
. ..

.

xqns
yqns Ci;ns

2
6664

3
7775: (4)

In Fig. 3a, we illustrate the discrete feature dissimilarity
function in a 1D translation + 1D feature dissimilarity space.

We create the convex feature dissimilarity function cið�Þ
by defining it as the lower convex hull of the ith 3D point
cloud with respect to the feature dissimilarity dimension.
The lower convex hull can be mathematically defined as fac-
ets in the convex hull whose normal vectors’ 3rd compo-
nents are less than 0 (i.e., those facets’ normal vectors point
downward along the dissimilarity dimension). In Fig. 3b,
we illustrate the convex feature function created based on
that in Fig. 3a in the 1D translation þ 1D feature dissimilar-
ity space. Let ei denote the number of facets on pi’s lower
convex hull, and zk ¼ rkxþ skyþ tk, for k ¼ 1; . . . ; ei, be the
plane functions defined by these facets, where rk, sk, and tk
are coefficients of the kth plane function and are related to
the plane’s normal direction. The convex feature dissimilar-
ity function ci : R

2 ! R can be defined as

ci ½x; y�T
� �

¼ max
k

rkxþ skyþ tkð Þ; k ¼ 1; . . . ; ei: (5)

It denotes that the ith template point now can be matched to
any location ½x; y�T in the 2D image domain with a feature
dissimilarity value cið½x; y�T Þ. Minimization of cið�Þ no lon-
ger matches the ith template point to only image point loca-
tions but any location in the 2D input image. Although
optimizing (5) looks difficult, it is equivalent to a linear pro-
gram in essence:

minimize
x; y

ci ½x; y�T
� �

, minimize
ui; x; y

ui

subject to rkxþ skyþ tk � ui;

k ¼ 1; . . . ; ei;

(6)

where ui is an auxiliary variable representing the upper
bound of cið½x; y�T Þ. By transforming the optimization of
cið½x; y�T Þ into the equivalent linear program, it can be effi-
ciently optimized.

The lower convex hull technique has an intuitive inter-
pretation (Fig. 3). The lower convex hulls are lower bounds
of the discrete feature dissimilarity functions. They are
more likely to include image points with lower similarities
compared with their neighbors. However, when features
are not distinctive, this technique may not generate

Fig. 3. Illustration of discrete and convex feature dissimilarity functions in a 1D translation + 1D feature dissimilarity space. (a) A discrete feature dis-
similarity function ~cið�Þ for a template point pi. The ~cið�Þ function is only defined at image points’ locations (shown as black dots). (b) The convex fea-
ture dissimilarity function cið�Þ (solid blue lines) created for that in (a). The cið�Þ function is the maximization of all line functions. Please note that 3D
facets in (5) become 2D lines in the 2D space.
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satisfactory lower bounds. We will introduce an iterative
technique to empirically and gradually obtain tighter lower
bounds in Section 4.

2.4 Composition with Transformation Models in the
Affine-Function Family

Instead of directly searching for point-to-point correspond-
ences, we prefer calculating template points’ matching posi-
tions using some geometric transformation models and
determining their feature dissimilarities using (5).

Recall that TiðQÞ : Rn ! R2 calculates the template point
pi’s matching position using an affine-function model with
parameters Q 2 Rn. ciðTiðQiÞÞ is the composition of the con-
vex feature dissimilarity function cið�Þ with the template
point’s transformation function, TiðQiÞ, with pi’s parame-
ters Qi. It measures the feature dissimilarity between the
template point pi and its matching position TiðQiÞ in the
input image. One important property of the ciðTiðQiÞÞ is
that its minimization can always be reformulated into an
equivalent convex optimization model with respect to the
transformation parameters Qi.

It is easy to show this property. Recall TiðQiÞ ¼
½fiðQiÞ giðQiÞ�T . Substituting x and y in (6) with fiðQiÞ and
giðQiÞ leads to the following optimization model equivalent
to minimizing ciðTiðQiÞÞwith respect to Qi:

minimize
Qi

ci TiðQiÞð Þ ,minimize
ui;Qi

ui

subject to rkfiðQiÞ þ skgiðQiÞ
þ tk � ui � 0;

k ¼ 1; . . . ; ei:

(7)

Since both fiðQÞ and giðQÞ are affine functions of Qi,
rkfiðQiÞ þ skgiðQiÞ þ tk � ui for k ¼ 1; . . . ; ei are also affine
functions of ui and Qi. Therefore, (7) is a convex optimiza-
tion problem.

It indicates that ciðTiðQiÞÞ can be efficiently optimized via
convex optimization techniques. We show how the compo-
sition is done with the affine transformation (1): substituting
fiðQÞ ¼ axpi þ bypi þ f and giðQÞ ¼ gxpi þ dypi þ ’ into (7)
leads to an actual optimization model using global affine
transformation models. In the remaining part of this paper,
we write minimization of ciðTiðQiÞÞ directly to simplify the
notation. Please keep in mind it can be efficiently optimized
as (7).

2.5 The Overall Objective Function

Since ciðTiðQiÞÞ can be reformulated into an equivalent
convex form, (2) can be converted into a convex form.
The optimal transformation parameters for all template
points, Q̂1; . . . ; Q̂nt , can then be obtained by minimizing
the model (2).

One advantage of the above objective function is that it
no longer requires template points being matched to only
image points’ positions. Instead, it can be matched to any
position in the 2D input image. This property is very useful
when some template points’ corresponding feature points
are not detected in the input image. For those template
points, their transformation parameters can be inferred by
the parameters of their neighbors. However, if template

points are only allowed to be match to image points’ posi-
tions, our method still can obtain such a result with a subse-
quent step (see Section 4).

2.6 Related Work

Our work is most related to the linear programming based
matching methods [14], [15], [19], [32]. These methods
look for a matching function m : P ! Q that maps every
template point pi 2 P to an image feature point qj 2 Q.
The matching function mð�Þ is modeled as a series of linear
variables. Jiang et al. [14] formulated the matching prob-
lem as

minimize
m

Xnt
i¼1

~ciðmðpiÞÞ þ �
X
j2Npi

R


pi;pj;mðpiÞ; mðpjÞ

�0
@

1
A;

(8)

where ~cið�Þ is the discrete feature dissimilarity function
defined in (3), R is a geometric regularization term that
measures the geometric similarity between the vector
pj ! pi and the vector mðpjÞ ! mðpiÞ, and pj 2 N pi is a
pre-defined neighbor of pi. The regularization term is
defined based on 2D vectors specified by pairs of neighbor-
ing template points. Such 2D vectors are only invariant to
simultaneous translations of their pairs of feature points.
Jiang and Yu [15] followed this linear programming frame-
work and utilized the same 2D vectors. Global rotation
and scaling are solved for all 2D vectors simultaneously to
achieve global similarity invariant. Li et al. [19] represented
each template point pi as an affine combination of its
neighbors N pi , i.e., kpi �

P
pj2N pi

wij pjk1 ¼ 0; 8pi 2 P,
where

P
pj2N pi

wij ¼ 1. Locally-affine invariants can be
obtained by reconstructing matched image points using
the same affine combination coefficients wij. The recon-
struction errors were used to define the geometric regulari-
zation term:

minimize
m

Xnt
i¼1

 
~ciðmðpiÞÞ þ �

�����mðpiÞ �
X

pj2N pi

wij mðpjÞ
�����
1

!
:

(9)

In our proposed method, instead of seeking for a match-
ing function that specifies point-to-point correspondences,
we model all template points’ matching positions by Tið�Þ
functions and solve their transformation parameters. The
previous methods [14], [15], [19] used lower convex hulls
to choose candidate matching points from the image set
for each template point. The number of variables in the lin-
ear program can be significantly reduced in this way.
Although inspired by them, our method uses the lower
convex hull in an essentially different way. We treat it as
relaxation of the discrete dissimilarity function. More
importantly, because we optimize each template point’s
transformation parameters, we compose it with affine-
function transformations to support a large family of trans-
formations. We also showed that the composition can
always be converted into an equivalent convex optimiza-
tion form.
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3 FOUR TRANSFORMATION MODELS IN THE

AFFINE-FUNCTION FAMILY

In this section, we present four transformation models in the
affine-function family to show the flexibility of our proposed
framework: 1) the global affine/similarityþ local translation
model, 2) two locally affine transformation models, and 3)
the articulated object’s transformation model. For different
models, different geometric regularization terms and convex
constraints are used in (2). Note that transformation models
are not limited to the ones we mention here. Any model in
the affine-function family can be used in our framework.

3.1 The Global Affine/Similairty + Local Translation
Model

Our global transformation model assumes a global affine
or similarity transformation and additional small local
deformations between template points and their matched
positions. Therefore, all template points should share a
common set of global transformation parameters. To model
local deformations and to better fit the input image locally,
each matched point is allowed to translate individually for
a small distance. We make small changes to Ta

i ðQÞ function
in (1) and calculate the matching position for template
point pi as

Tg
i ðQiÞ ¼ a b

g d

� �
xpi

ypi

� �
þ f

’

� �
þ fi

’i

� �
(10)

¼ Api þ bþ di; (11)

where A represents the 2� 2 global transformaton matrix, b
is the 2� 1 global translation vector, and di ¼ ½fi;’i�T is pi’s
local translation vector. The template point pi’s transforma-
tion parameters Qi therefore consist of common global
transformation parameters, A and b, and an individual local
translation vector di (Fig. 4). To penalize local deformations
that are too large, the square of the distance by which each
matched point translates locally, kdik22, is regularized. The
above transformation model and regularization terms result
in the following optimization model,

minimize
A;b;d1;...;dnt

Xnt
i¼1

ciðApi þ bþ diÞ þ wgkdik22
� �

; (12)

subject to a ¼ d; b ¼ �g;

ðwhen the global transformation is similarity transformationÞ
(13)

where wg is the parameter that weighs the feature dissimi-
larity terms and the local translation regularization terms,
and a, b, g, d are the four elements of the Amatrix as defined
in (10). The constraint (13) is applied when the transforma-
tion is global similarity instead of affine. The above optimi-
zation model provides more robust matching results when
template points are known to undergo mostly an affine or
similarity transformation.

3.2 Locally Affine Transformation Model I

If the template points undergo complex transformations
that cannot be described by the global affine or similarity
transformation model, we propose to approximate the tem-
plate points’ transformation with a locally affine transfor-
mation model.

The first locally affine model achieves locally affine

invariance by assuming an affine transformation for every

three neighboring template points. We first use Delaunay

Triangulation to obtain a triangulated mesh from the 2D

template points. Then every three points defining a triangle

on the mesh share a same affine transformation, in other
words, every three template points in a triangle share a

common set of affine transformation parameters (Fig. 5). Let

m denote the number of triangles in the triangulated mesh,

G1; G2; . . . ; Gm denote the m sets consisting of the points in

the 1st, 2nd; . . . ;mth triangles, and QGv 2 R6 denote the

affine transformation parameters for template points in the

vth triangle. If the vth and the wth triangles share a common

edge, we call them two neighboring triangles and denote
them as v 2 N w; w 2 N v.

One template point might be in several triangles. To
make sure one template point’s matching positions calcu-
lated by different triangles’ transformation parameters are
the same position, the following equality constraints need
to be added into the optimization model:

Ta
i ðQGvÞ ¼ Ta

i ðQGwÞ; for all i ¼ 1; . . . ; nt;

for all v; w ¼ 1; . . . ;m;
(14)

where pi 2 Gv and pi 2 Gw:

Fig. 4. Illustration of the global affine/similarity þ local translation model.
After a global transformation with parametersA and b, the three matched
positions individually translate for di, dj, and dk to better fit the input
image.

Fig. 5. Illustration of the locally affine transformation model I using four
points (p1, p2, p3, p4) in two triangles (G1 and G2). To maintain the mesh
topology after matching, the equality constraints (14) on p2 and p3

should be satisfied as Ta
2 ðQG1

Þ ¼ Ta
2 ðQG2

Þ, and Ta
3 ðQG1

Þ ¼ Ta
3 ðQG2

Þ.
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The above equality constraints are illustrated in Fig. 5
with four points, p1;p2;p3;p4; in two triangles, G1 ¼
fp1;p2;p3g and G2 ¼ fp2;p3;p4g. The equality constraints
should be applied to p2 and p3 as Ta

2 ðQG1
Þ ¼ Ta

2 ðQG2
Þ,

Ta
3 ðQG1

Þ ¼ Ta
3 ðQG2

Þ.
The mesh formed by the matched points should maintain

its smoothness. The differences between neighboring tri-
angles’ transformation parameters are penalized as regular-
ization terms in the optimization model. The final objective
function for the locally affine model can be expressed as

minimize
QG1

;...;QGm

 Xm
v¼1

X
pi2Gv

ciðTa
i ðQGvÞÞ þ wl

Xm
v¼1

X
u2N v

kQGv �QGwk1
!
;

subject to The Equality Constraints in ð14Þ;
(15)

where wl is the parameter that weighs the feature dis-
similarity terms and the mesh smoothness regularization
terms. The above model can approximate very complex
transformations.

3.3 Locally Affine Transformation Model II

In locally affine model I, we create a mesh by computing a
Delaunay triangulation on the template feature points. In
some matching tasks, instead of having feature points as
nodes in the mesh, a triangulated mesh that better represents
the movements of the template points is given in advance
(see cases in Section 5.5). To take advantage of the pre-given
mesh, we present another locally affine model which trans-
forms a given triangulated mesh with feature points lying
within its triangles. We let all feature points in a same trian-
gle share a common set of affine transformation parameters
(Fig. 6). We reuse the notation in Section 3.2 without causing
confusion. In addition, let pi0 represent the ith node point on
the pre-given mesh, and Ta

i0 ðQÞ calculates its matching posi-
tion using affine transformation with parameters Q.

The locally affine model II is illustrated in Fig 6. Equality
constraints similar to (14) are now applied to mesh points
that are in several triangles simultaneously. The final opti-
mization model for locally affine model II is the same as (19)
except that the equality constraints are now applied to mesh
points pi0 .

3.4 Articulated Object’s Transformation Model

There are many types of objects, e.g., human bodies, have
several connected parts that undergo rigid transformations

relative to their neighbors in the object’s kinematic tree. Let
m denote the number of rigid parts in an object,
G1; G2; . . . ; Gm denote the m sets consisting of the points in
the 1st, 2nd; . . . ;mth parts, and QGv 2 R6 denote the param-
eters for the transformation of template points in the vth
part.

For every pair of connected parts v and w, we model a
junction point ovw denoting the connecting point between
the two parts. During the matching process, it is deformed
according to both parts’ transformation parameters to
Ta
ovw

ðQGvÞ and Ta
ovw

ðQGwÞ, where Ta
ovw

ðQÞ is the matched
position of ovw calculated by an affine transformation with
parameters Q. To maintain connectivity of the two parts v
and w, the squared distance between the two matched junc-
tion points, kTa

ovw
ðQGvÞ � Ta

ovw
ðQGwÞk22, should be minimized

and is used as a regularization term. The transformation
model for a two-part articulated object is illustrated in
Fig. 7. The final optimization model for the transformation
model of a general articulated object is then defined as

minimize
QG1

;���;QGm

Xm
v¼1

X
pi2Gv

ciðTa
i ðQGvÞÞ þ wa

X
ovw

��Ta
ovw

ðQGvÞ � Ta
ovw

ðQGwÞ
��2
2

 !
;

subject to aGv ¼ dGv ; bGv
¼ �gGv

;

ðif the vth part undergoes similarity transformation)

(16)

where wa is the parameter that weighs the feature dissimi-
larity terms and the part connectivity regularization terms,
AGv is the vth part’s 2� 2 transformation matrix defined
similarly to that in (11), and aGv , bGv

, gGv
, dGv are its four

elements.

4 NUMERICAL SCHEME AND ANALYSIS

The convex feature dissimilarity functions cið�Þ are created
by relaxing the discrete functions cið�Þ. When features are
distinctive, i.e., the feature similarities of most template
points to their corresponding image point locations are
significantly lower than those to other image points, the
lower convex hull relaxation provides satisfactory lower
bounds to the discrete functions cið�Þ. However, when fea-
tures are not distinctive, the relaxation may generate func-
tions with “broad” low-cost regions. To solve this
problem, we use a technique similar to that in [14]. We
iteratively create these convex feature functions using
fewer and fewer image feature points and gradually obtain
tighter lower bounds.

Fig. 6. Illustration of the locally affine transformation model II using three
template feature points (p1, p2, p3), and four mesh points (p10 , p20 , p30 ,
p40 ) in two triangles (G1 and G2). To maintain the mesh topology after
matching, the equality constraints on p20 and p30 should be satisfied as
Ta
20 ðQG1

Þ ¼ Ta
20 ðQG2

Þ, and Ta
30 ðQG1

Þ ¼ Ta
30 ðQG2

Þ.

Fig. 7. Illustration of the articulated object’s transformation model with a
2-part object. o12 is the junction point between parts G1 and G2. The
squared distance between the transformed junction points Ta

o12
ðQG1

Þ
and Ta

o12
ðQG2

Þ is used for regularization.
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In the first iteration, for each template point, we use all
image feature points’ positions and feature similarities as in
(4) to create its convex feature dissimilarity function cið�Þ.
Those convex functions are then used in our proposed opti-
mization model (2), and template points are matched to
positions calculated with the optimal transformation
parameters Q̂

ð1Þ
1 ; . . . ; Q̂ð1Þ

nt
, where Q̂

ðkÞ
i denotes the optimized

transformation parameters for pi in the kth iteration. In
Fig. 8a, yellow dots represent that all feature points in the
input image are chosen to create the cið�Þ function for pi.

In the second iteration, for each template point pi, we set
a “trust region” centered at the first iteration’s optimal
matching position TiðQ̂ð1Þ

i Þ ¼ ½fiðQ̂ð1Þ
i Þ giðQ̂ð1Þ

i Þ�T in the 2D
input image. Mathematically, pi’s trust region in the second
iteration is defined as

D
ð2Þ
i ¼

n
½x; y�T 2 R2



fi
Q̂ð1Þ
i

�� lð2Þ=2 � x � fi


Q̂

ð1Þ
i

�
þ lð2Þ=2; gi



Q̂

ð1Þ
i

�� lð2Þ=2 � y � gi


Q̂

ð1Þ
i

�þ lð2Þ=2
o
;

(17)

where lð2Þ is the side length of the trust regions in the second
iteration. Each trust region is smaller than the entire image
and therefore includes fewer image points. We can then
generate convex feature dissimilarity functions cið�Þ using
only those image points inside the trust regions and obtain
tighter lower bounds for the discrete ~cið�Þ functions. In
Fig. 8b, the shaded area illustrates the template point pi’s
trust region centered at TiðQ̂ð1Þ

i Þ (the red dot), where only
image points (yellow dots) inside it are used to create the
convex feature dissimilarity function. Similar operations are
performed in the subsequent iterations, where feature dis-
similarity functions are created based on smaller and
smaller trust regions centered at the previous iterations’
results (Fig. 8c).

In each iteration, each template point’s candidate
matching positions are divided into two areas, its trust
region and the trust region’s complement. There are 2nt

possible combinations in total but only one combination
was tested, where nt is the number of template feature
points. Although a globally optimal solution is not guaran-
teed in this way because the other 2nt � 1 combinations in
each iteration are not tested, this scheme gains much more
in lowering computation complexity while keeping empir-
ically high matching accuracy. The running speed of our
method depends mainly on the number of template points

and depends much less on the number of image points.
For a matching case with a 100-point template, our method
usually needs no more than eight iterations and each itera-
tion takes no more than 2 s using a MATLAB implementa-
tion with CVX on a computer with a 3:0 GHz Core 2 Duo
CPU.

The gap between the optimal solution and our method’s
solution depends on the distinctiveness of the feature
points. When the feature points are very distinctive, the
relaxation of discrete dissimilarity function using the lower
convex hull is tight, whereas the relaxation could bring
large errors if template feature points are very indistinctive.
Although we cannot provide a quantitative bound on the
gap here, we observed in our experiments (see the third
experiment in Section 5.1) that the chance of getting large
errors due to the relaxation is very small.

Although our method calculates each template point’s
optimal transformation parameters, if a point-to-point
result is desired, we propose to exhaustively search for
the best matched image point, q̂pi

, for each template
point pi after its optimal transformation parameters Q̂i is
obtained:

q̂pi
¼ arg min

qj

ðkqj � TiðQ̂iÞk2 þ wh~ciðqjÞÞ: (18)

The above function denotes that the best matched image
point q̂pi

for pi should be close to the optimal matching
result obtained from (2) as well as having a small feature
dissimilarity value with pi. wh is the parameter that weighs
the feature dissimilarity and the distance to the optimal
result obtained from (2).

5 EXPERIMENTS

In this section, we present experiments to test the perfor-
mance of our method. Except for the experiments in Sec-
tions 5.1 and 5.2, where Shape Context [3] with its default
parameter settings is used as features, SIFT [22] feature
points are used for all other experiments. For each experi-
ment, we tested three weight values, 0:1, 1 and 5, as the
weight factor between the feature dissimilarity terms and
regularization terms; the weight resulting in the best match-
ing result was chosen. In all our experiments, we empiri-
cally and gradually shrink each template point’s trust
region from the image size to a 15� 15 square.

Fig. 8. (a) In the first iteration, for template point pi, all image points (yellow dots) in the input image are used to create the cið�Þ function. (b) In the sec-
ond iteration, trust region D

ð2Þ
i with side length lð2Þ is centered at previous iteration’s result TiðQ̂ð1Þ

i Þ (the red dot). Only image points in D
ð2Þ
i (yellow

dots) are used to create the cið�Þ function. (c) Similar operations as those in the second iteration (b) are performed in latter iterations.
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5.1 Synthetic Data

To compare with the method in [15], we slightly changed
the experimental setup in [15] and created random-point
matching cases with Shape Context [3] features. The global
similarity model was used in this comparison. To generate
each matching case, we first used points randomly spread
in the region ½100; 500� � ½100; 500� as template feature
points. Then, to generate image points from the template
points, we randomly deleted h%� nt points from the
image point set to simulate the effect of failing to detect
some feature points, and added h%� nt randomly spread
points in ½0; 600� � ½0; 600� as outliers. The average L2 dis-
tance between the transformed template points and their
known corresponding image points is calculated as the
matching error for each matching case. One matching case
with 50 percent outliers and 50 percent mis-detection using
our method is shown in Fig. 9a. For each 10, 20, 30, 40 and
50 percent outlier and mis-detection level, we created 100
matching cases and matched them using our global similar-
ity þ local translation model (12) and the method in [15].
The statistics of errors on the matching cases using the two
methods are compared in Table 1. Our model (12) provides
more constraints for this task and therefore is able to toler-
ate more outliers and missing points.

To compare with the method in [19], we randomly set
feature dissimilarity values between all pairs of template
and image points. The global affine model was used in this
comparison. For each matching case, we randomly gener-
ated 50 points in ½100; 300� � ½100; 300� as the template point
set. To generate an image point set from the template point
set, we first transformed the template point set under affine
transformations with shear parallel to the x dimension. We

tested three shear values: 0:5, 1:0 and 1:5. The transformed
template points with 250 additional random points in
½0; 400� � ½0; 400� were then used as the image point set. One
example of such a matching case with 1:0 shear is shown in
Figs. 9b and 9c. Since we know the correspondences
between template points and image points, we set the fea-
ture similarities between non-corresponding points to lie
randomly in the range of ½0:5; 1:0�, and set feature similari-
ties between corresponding points randomly in the ranges
of ½0:2; 0:7�, ½0:3; 0:8�, or ½0:4; 0:9� to simulate three levels of
feature distinctiveness. For each shear value and dissimilar-
ity level combination, we generated 100 random matching
cases as described above. L2 distances between known cor-
responding points after matching are calculated as errors.
As shown in Table 2, our method generates smaller errors
than the LP method in [19]. However, both methods have
larger chances to fail when the corresponding points’ fea-
ture dissimilarities are in the range of ½0:4; 0:9�.

To determine the robustness of our method against
occlusion, we combined the setup of the previous two
experiments. For each matching case, we randomly gener-
ated 50 points in ½100; 300� � ½100; 300� as template points.
To generate an image point set, we first sorted the template
point set according to their x coordinates in the descending
order. The first h%� nt points, which are the right portion
of the point set, are deleted after sorting. We then trans-
formed the remaining points under affine transformations
with 1:0 shear parallel to the x dimension. Finally, trans-
formed points with 250 additional random points in

Fig. 9. (a) An example point matching case using Shape Context [4] as features with 50%� nt deleted template points and 50%� nt outlier points.
Red circles and blue dots represent template points and image points, respectively. (b)-(c) An example point matching case using randomly set fea-
ture dissimilarity values described in the second paragraph of Section 5.1. Red circles represent template feature points. Blue and green dots repre-
sent corresponding and non-corresponding image feature points, respectively. (b) The matching case before matching. (c) The matching case after
matching.

TABLE 1
Means and Standard Deviations of Errors for Matching Synthetic
Data Using Our Proposed Method and the Method in [15] with

Shape Context Features

Errors by [15] Errors by Our
Method

h% ¼ 10% 1:34� 4:06 0:00� 0:00
h% ¼ 20% 4:37� 11:29 0:10� 1:08
h% ¼ 30% 6:59� 13:01 0:53� 2:03
h% ¼ 40% 10:23� 13:88 3:27� 6:23
h% ¼ 50% 19:94� 21:66 18:72� 17:81

TABLE 2
Means and Standard Deviations of Errors for Matching Synthetic
Data Using Our Proposed Method and the Method in [19] with

Randomly Set Feature Dissimilarity Values

Dissimilarities Shear Errors by [19] Errors by Our
Method

0:5 0:00� 0:00 0:00� 0:00½0:2; 0:7�
1:0 0:00� 0:00 0:00� 0:00
1:5 0:40� 3:29 0:00� 0:00
0:5 0:34� 2:30 0:01� 0:09½0:3; 0:8�
1:0 2:36� 8:20 0:01� 0:03
1:5 12:42� 23:61 1:35� 6:72
0:5 20:21� 27:38 8:03� 16:92½0:4; 0:9�
1:0 37:14� 35:17 19:80� 29:54
1:5 62:10� 46:92 37:40� 36:66

LI ET AL.: FEATURE MATCHINGWITH AFFINE-FUNCTION TRANSFORMATION MODELS 2415



½0; 400� � ½0; 400� were used as the image point set. Similar
to the previous experiment, we set the feature similarities
between non-corresponding points to lie randomly in the
range of ½0:5; 1:0�, and set feature similarities between cor-
responding points randomly in the range of ½0:3; 0:8�. We
also created baseline matching cases by randomly deleting
template points in the first step instead of deleting sorted
template points. Randomly deleting points can simulate
the effect that some template points’ corresponding ones
are not detected in the input image. We then used the
global affine model to solve both matching cases. For
h% ¼ 10%, 20%, 30%, 40% and 50%, we create 100 match-
ing cases at each level. L2 distances between known corre-
sponding points after matching are calculated as errors.
Fig. 10 shows one matching case and its baseline matching
case. As shown in Table 3, our method would generate
greater errors if the “missing” points aggregate. With the
same number of missing points, our method is more vul-
nerable to occlusion than randomly mis-detected points.

5.2 CMU House and Hotel Sequences [2], [1]

We followed the experimental setup in [6] and tested our
method’s performance on the CMUHouse andHotel sequen-
ces. Shape Context [3] is used as features. The two sequen-
ces consist of 111 and 101 frames, respectively. Each frame
is manually labeled with the same 30 landmarks.1

Example frames of the two sequences with their man-
ual labeling are shown in Fig. 11. We created matching
cases by taking two frames in a same sequence but sepa-
rated by a specific number of in-between frames. The
separation number was increased from 10 to 110 for the
house sequence and from 10 to 100 for the hotel sequence.
Note that the highest frame separation level contains
only 1 image pair for each sequence.

The two image sets are created by viewing objects from
different view points. We chose the locally affine model I
to handle the two image sets. However, in this experi-
ment, the prior knowledge that each template point must
be matched to one and only one image point can be used
to better constrain the matching result. Additional varia-
bles and constraints are therefore needed. We first define
an additional binary variable matrix X 2 f0; 1g30�30, whose
entry at its ith row and jth column, Xi;j, represents the
matching result between the template point pi and the
image point qj being either “Yes” (1) or “No” (0). The con-
straint, 8pi 2 Gv : T

a
i ðQGvÞ ¼

P30
j¼1 Xi;jqj


 �
; for all G1;

G2; . . . ; Gm, denotes that each template point, pi, must be
matched to the position of the image point specified by
the binary matrix X as

P30
j¼1 Xi;jqj. Let 130 represents a

vector of 30 “1”s. To make sure each template point being
matched to one and only one image point, the two con-
straints X130 ¼ 130 and XT130 ¼ 130 are also added. Please
note that similar one-to-one constraints are also used in
[19]. With the additional variables and constraints, the

Fig. 10. An example point matching case with aggregated missing corresponding points (a) before matching, (b) after matching, and (c) its baseline
matching case’s result. Red circles represent template feature points. Blue and green dots represent corresponding and non-corresponding image
feature points, respectively.

TABLE 3
Means and Standard Deviations of Errors for Matching Synthetic Data to Determine the Robustness of the Proposed Method

against Occlusion

h% 10% 20% 30% 40% 50%

Errors of Simulated Occlusion Cases 0:54� 2:46 1:19� 3:56 4:30� 0:67 7:44� 11:29 10:74� 14:99
Errors of Simulated Mis-detection Cases 0:18� 0:94 0:37� 1:45 1:75� 0:59 4:49� 11:61 6:95� 14:51

Fig. 11. Example frames with manual labeling from the CMU house and hotel sequences. (a) The first, (b) the 56th, and (c) the 111st frames in the
house sequence. (d) The first, (e) the 51st, and (f) the 101st frames in the hotel sequence.

1. The manual labeling can be obtained from http://tiberio-

caetano.com/data/.
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locally affine model I is modified to

minimize
QG1

;���;QGm
;X

 Xm
v¼1

X
pi2Gv

ciðTa
i ðQGvÞÞ þ wl

Xm
v¼1

X
u2N v

kQGv �QGwk1
!
;

subject to The Equality Constraints in ð14Þ;
X 2 ½0; 1�30�30; X130 ¼ 130; XT130 ¼ 130;

8pi 2 Gv : T
a
i ðQGvÞ ¼

X30
j¼1

Xi;jqj


 �
; for all G1; G2; . . . ; Gm;

(19)

where the binary constraints, X 2 f0; 1g30�30, are relaxed to
the continuous domain, ½0; 1�30�30, to convert the integer
programming problem into a convex form. In each iteration,
if an image point qj is outside a template point pi’s trust
region, we force Xi;j ¼ 0. For instance, if image points, q2,
q3, q4 are outside p2’s trust region, we fix the values of the
entries, X2;2; X2;3, and X2;4, to 0. To recover point-to-point
correspondences between each pair of point sets, we use the
method in (18) with wh ¼ 0.

Three state-of-the-art methods, Balanced Graph Match-
ing [8], the learning-based graph matching method [6] and
the LP with a locally affine invariant method [19] were used
for comparison. Fig. 12 shows the percentages of wrong
matchings for our method and other compared ones. The
horizontal axis is the frame separation number and the ver-
tical axis is the percentage of wrong matchings. Our method
with locally affine model I results in 0:0 percent matching
errors for both sequences and outperforms all other meth-
ods on the two data sets. Some methods [27], [28] utilized a
slightly different experimental setup. Fifteen frames (every
seven frames) are sampled from the Hotel sequence,
which gives 105 pairs of images to match. The two methods
[28], [27] reported mis-matching percentages of 0:19 and
4:44 percent, respectively. Our method also achieves 0:0
percent errors with this experimental setup.

The mis-matching rates obtained by our method without
the one-to-one constraints are also included in Fig. 12. The
error rates are very high because the feature points in the
two data sets are very sparse (only 30 points). When trust
regions of some template points are shrunk to include only

three image points. The dissimilarity functions of the tem-
plate points become “planes”. The template points would
thus favor being matching to the input image boundary and
result in unsatisfactory matching results. Therefore, the
one-to-one constraints are necessary for this experiment.
Note that such constraints are also used in [19] for the same
data sets. For real-world applications, a large number of fea-
ture points would be detected in natural images. Including a
few “plane-shape” dissimilarity functions does not affect
the matching results much.

5.3 Static Image Pairs

We obtained six static image pairs from [20] and matched
them using SIFT [22] points and our locally affine transfor-
mation model I. The first five cases in Fig. 13 are surfaces
undergoing perspective or very complex local deforma-
tions. By approximating them using the locally affine model
I, our method satisfactorily matched the first four cases,
with some small errors near the boundaries of surfaces
where features are more degenerated. In the fifth (flag) case,
the left half of the flag was matched satisfactorily but the
right half was not because its very large deformation
adversely affected the performance of SIFT features. The
last case in Fig. 13 shows matching an object in a blurry
image to its instance after some deformations in a sharp
input image. Both the body and the belt parts of the object
were successfully matched although they have undergone
large deformations.

5.4 Objects Undergoing Global and Locally Affine
Transformations

We captured two video clips (Spectrum and Computer) by
ourselves and obtained two clips (honeybee and butterfly)
from the internet. The object templates were matched to the
instances of objects in the videos frame by frame. Fig. 14a
shows the four object templates, and Fig. 14c shows exam-
ple matching results from the four videos.

For different video clips, we chose the most appropriate
optimization model from our four transformation models,
which best describes the object’s transformation and

Fig. 12. Matching errors by different methods with varying frame separation levels on (left) the CMU house sequence and (right) the CMU hotel
sequence. The results by methods in [6], [8] are obtained from [6]. Note that the highest frame separation level contains only one image pair for each
sequence. Our method with locally affine model I generates 0:0 percent matching errors for both the house and the hotel sequences and outperforms
all other methods.
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Fig. 13. Experiments on static image pairs. (From left to right) six different matching cases. (First row) Template feature points. (Second row) Input
images. (Third row) All feature points detected in the input images. (Fourth row) Matching results on input images using the locally affine model I.

Fig. 14. Example matching results for the four videos by our proposed method and the method in [19]. (a) Template feature points. (b) Input images.
Dots represent all detected feature points. (c) The matching results by our proposed method. (d) The matching results by the method in [19].

2418 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 12, DECEMBER 2014



provides as many geometric constraints as possible. The
method in [19] was used for comparison. The first object
(Fig. 14(1)) is an IEEE Spectrum magazine mainly undergo-
ing global transformation. We chose to model its transfor-
mation using the global affine þ local translation model.
The second object is a computer magazine undergoing
mostly similarity transformation in the first half of the video
and local deformations in the second half. We chose to use
the locally affine model I to match this object. The third and
fourth objects are a butterfly and a honeybee working on a
flower. The real-world objects undergo complex transfor-
mations, and therefore we again used the locally affine
model I to approximate their transformations. Figs. 14c and
14d show the comparison between our results and the
results obtained by [19]. It is obvious that our results are
more robust to feature point mis-detection. Sample match-
ing results of the four video clips are shown in Fig. 15.

5.5 Planar Surfaces with Given Template Meshes

We also obtained six video clips (cloth, cloth-folds, tshirt,
cushion, bed-sheet, and paper-bend) recording different planar
surfaces undergoing complex transformations from [25].
Meshes describing these template surfaces’ shapes are pro-
vided in the data (Fig. 16). Correspondences between the
template surfaces (Fig. 16) and input images (Fig. 17) can
be used to recover planar surfaces’ 3D shapes by algo-
rithms like [25]. We propose to utilize the locally affine
model II to solve this matching problem and match the
template surfaces to their instances in the video frame by
frame. The cushion, bed-sheet, and paper-bend were satisfacto-
rily matched with small errors near boundaries of the sur-
faces. Some larger matching errors were observed in some
frames of the cloth, cloth-folds, and tshirt, but most frames
were satisfactorily matched. Sample matching results of
the six sequences are shown in Fig. 17. The results

Fig. 15. Sample matching results by our method from (1) the Spectrum magazine sequence, (2) the Computer sequence, (3) the butterfly magazine
sequence, and (4) the honeybee sequence. All detected feature points are marked in blue in the background.

Fig. 16. Template feature points (green dots) and pre-given meshes (yellow lines) for six planar surfaces.
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demonstrate the potential of our method to recover 3D
shapes of planar surfaces from single images.

5.6 Articulated Objects

We created another video by ourselves, which records a toy
worm being bent by a person. We chose to use the articu-
lated object’s transformation model (16) to approximate its
complex transformations. We modeled the toy worm as a
template consisting of four connected parts undergoing sep-
arate affine transformations. Fig. 18 shows template feature
points belonging to the four parts. For better visualization,
we only show the four parts’ bounding boxes in the results.
Fig. 19 shows four example matching results from the video
sequence. Although the toy undergoes very complex

transformations, our proposed articulated object’s model
(16) was able to match it satisfactorily.

6 DISCUSSION AND CONCLUSION

6.1 Other Transformation Models

Aswementioned in Section 1.2, other transformationmodels
in the affine-function family, such as the TPS model and the
FFDmodel, can also be used in our proposed framework.

6.2 Occlusion Handling

In Section 5.1, we showed that our method’s performance
degrades dramatically when a large portion of template
points’ corresponding image points are occluded. One

Fig. 17. Sample matching results by our method from (1) the cloth sequence, (2) the cloth-folds sequence, (3) the tshirt sequence, (4) the cushion
sequence, (5) the bed-sheet sequence and (6) the paper-bend sequence. Transformed meshes and transformed template points are drawn as yel-
low lines and green dots, respectively.

Fig. 18. (Left) The template image of the toy worm. (Right) Four parts’ template feature points are colored differently. Boxes are drawn for better visu-
alization in the matching results.
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possible solution is an EM-like scheme similar to that of
[30]. We can set a weight wi for each template point pi to
represent its distinctiveness. The objective function (2) then
becomes

Xnt
i¼1

wiciðTiðQiÞÞ þRðQ1; . . . ;QmÞ: (20)

The weights and the transformation parameters are then
optimized iteratively and alternatively. In the first iteration,
all template points’ weights are fixed and set to the same
value. Transformation parameters are optimized as
described in Section 4. In the second iteration, each point
pi’s transformation parameters Q

ð1Þ
i obtained from the first

iteration are fixed. wi is decreased if the ith transformed
point TiðQð1Þ

i Þ’s dissimilarity value ciðTiðQð1Þ
i ÞÞ is high, and

is increased if ciðTiðQð1Þ
i ÞÞ is low. Similar operations are per-

formed in latter iterations until the change of transforma-
tion parameters fall below a pre-given threshold.

6.3 Trust-Region Sizes

In our experiments, we empirically chose trust regions’
sizes at each iteration. Developing a systematic way to
choose them might be a future research direction.

In summary, we presented a unified feature matching
framework which supports the affine-function family of
transformation models. For each template point, a convex
feature dissimilarity function is created by relaxing its orig-
inal discrete feature dissimilarity function. The composi-
tion of such a convex function with any transformation
model in the affine-function family has an equivalent con-
vex optimization form. We proposed four transformation
models in this family to solve different matching problems.
By solving each template point’s transformation parame-
ters explicitly, we can better constrain objects’ transforma-
tions based on some prior knowledge. Experiments on
different transformation models and comparison with pre-
vious methods demonstrate the flexibility of our proposed
framework.
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