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Abstract: Large variations in image background may cause partial matching and normalization problems for 

histogram-based representations, i.e. the histograms of the same category may have bins which are significantly 

different, and normalization may produce large changes in the differences between corresponding bins. In this paper, 

we deal with this problem by using the ratios between bin values of histograms, rather than bin values’ differences 

which are used in the traditional histogram distances. We propose a bin ratio-based histogram distance (BRD), which 

is an intra-cross-bin distance, in contrast with previous bin-to-bin distances and cross-bin distances. The BRD is 

robust to partial matching and histogram normalization, and captures correlations between bins with only a linear 

computational complexity. We combine the BRD with the 
1
 histogram distance and the 2  histogram distance to 

generate the 
1
 BRD and the 2  BRD, respectively. These combinations exploit and benefit from the robustness 

of the BRD under partial matching and the robustness of the 1  and 2  distances to small noise. We propose a 

method for assessing the robustness of histogram distances to partial matching. The BRDs and logistic 

regression-based histogram fusion are applied to image classification. The experimental results on synthetic datasets 

show the robustness of the BRDs to partial matching, and the experiments on seven benchmark datasets demonstrate 

promising results of the BRDs for image classification. 

Index terms: Histogram bin ratio, Histogram distance, Image classification 

1. Introduction 

Histogram-based representation is widely applied to many pattern recognition tasks, such as image or scene 

classification, visual appearance modeling, and visual action recognition, because of its simplicity and rich 
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discriminative information. In the bag-of-words model [8, 9, 23, 35, 38, 43], an image is represented using a 

histogram of the visual words obtained by quantizing visual patches, where each bin value in the histogram 

represents the probability of observing the corresponding word. Then, these histograms are used for image 

classification, object detection, and action recognition, etc. An efficient and effective measure of the distance 

(dissimilarity) between histograms plays an important role in histogram-based applications. 

1.1. Related work 

Currently, there exist several histogram distances [11, 21, 23, 24, 25, 35, 36, 43] which can be classified into 

bin-to-bin distances and cross-bin distances. 

The bin-to-bin distances between two histograms are based on the differences of the corresponding bins in the 

histograms. Let 1{ }n

i ih h  be a histogram for occurrence statistics with n bins where 
ih  represents the value of 

the i-th bin. The 
1
 and 

2
 distances between two histograms A

h  and B
h  are 

1

A Bh h  and 
2

A Bh h , 

respectively, where 
1

.  and 
2

.  are, respectively, the vector 
1
 and 

2
  norms. The histogram intersection [34] 

between two histograms A
h  and B

h  is 
1
min( , )

n A B

i ii
h h

  [13, 17, 22, 40]. When the areas of the two histograms 

are equal, the histogram intersection is equivalent to the 
1
 distance. The 2  distance [29] between two 

histograms A
h  and B

h  is [8, 23, 24, 35, 43]: 

2

2

1

( )
( , ) 2

A Bn
A B i i

A B
i i i

h h
d

h h






h h .                                  (1) 

The Bhattacharyya coefficient ( , )A BB h h  between histograms  A
h  and B

h  is 

1

( , )
n

A B A B

i i

i

B h h


h h .                                     (2) 

The Bhattacharyya distance ( , )A B

BD h h  between A
h  and B

h  is defined as: ( , ) ln( ( , ))A B A B

BD B h h h h . The 

Jeffrey divergence ( , )A B

JdD h h  between histograms A
h  and B

h  is defined as: 

1

2 2
( , ) ln ln

A Bn
A B A Bi i

Jd i iA B A B
i i i i i

h h
D h h

h h h h

    
           
h h  .                        (3) 

These bin-to-bin distances are widely used, because they are simple, efficient, and easy to implement. 

The cross-bin distances [14, 20, 27, 30] allow cross bin comparison between two histograms to gain a more 

robust measure of their similarities. Rubner et al. [30] proposed a cross-bin distance, called the earth mover’s 

distance (EMD), which is the first order Wasserstein distance. It reduces distance calculation to a transportation 

problem. Zhang et al. [43] showed that the EMD has an outstanding performance on various datasets. However, the 

time complexity of the EMD is 3( log( ))O n n , which is very high. When the dimension of the feature vectors is large, 

the number of temporary variables required to compute the EMD is so large that internal memory overflows may be 

produced. As a result, performance of the EMD cannot be tested on large image datasets. 
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Although the existing histogram distances, either the bin-to-bin distances or the cross-bin distances, are 

effective in many applications, they still have limitations which are discussed as follows. 

The first limitation is the effect of partial matching on bin values. The histograms of two images of the same 

category may have bins whose values are significantly different, due to various amounts of background clutter which 

are irrelevant to the foreground object or due to occlusions of the foreground object by other objects. Histograms are 

often normalized in visual recognition to adapt to large scale changes. However, normalization may produce large 

changes in the differences between corresponding bins in these histograms. As a result, it may be difficult to classify 

images using histograms. Fig. 1 shows an example of the partial matching problem. In the figure, (a) and (b) are 

histograms of two images in the same category, (c) is a reference histogram with a uniform distribution, and (d), (e), 

and (f) are the normalized histograms corresponding to (a), (b), and (c), respectively. While bins 1 to 4 are exactly 

the same in the histograms shown in (a) and (b), bin 5 is significantly different due to a large amount of background 

clutter in the image from which histogram (b) is computed. The table (g) shows that, before normalization, the 

distance between the histograms shown in (a) and (b) is smaller than the distance between the histograms shown in 

(a) and (c). The table (h) shows that, after normalization, the typical bin-to-bin distances, i.e., the 
1
 distance, the 

histogram intersection, the 2  distance, the Bhattacharyya distance, and the Jeffrey divergence, indicate that the 

histograms shown in (d) and (f) are more similar than the histograms shown in (d) and (e). The EMD is also strongly 

affected by partial matching and histogram normalization, because it depends on bin difference values. As a result, 

the partial matching problem influences the measures of similarities between images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. An example of the effects of partial matching on the distances between histograms: (a), (b) and (c) show three histograms before 

normalization, where histograms in (a), (b), and (c) are [1, 3, 14, 1, 0], [1, 3, 14, 1, 25], and [10, 10, 10, 10, 10], respectively; (d), (e), 

and (f) are the corresponding normalized histograms; (g) shows the 
1
 distances between histograms shown in (a) and (b) and between 

histograms shown in (a) and (c) before normalization; (h) shows the distances between histograms shown in (d) and (e) and between 

histograms shown in (d) and (f), calculated using the 
1
 distance, the histogram intersection, the 2  distance, the Bhattacharyya 

distance, the Jeffrey divergence, the EMD, and the BRD. 

 

Current histogram distances do not consider the correlations between pairs of bins in a histogram. These bin 
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correlations capture co-occurrences of visual words in the bag-of-words model. For example, the visual words “eye” 

and “mouth” usually appear together in face images, and the ratio of the frequencies of the visual words “eye” and 

“mouth” remains stable. Many techniques [1, 2, 16, 19, 21, 31, 33, 39] take into account joint word distributions and 

model the spatial co-occurrence of visual words. For instance, Agarwal and Triggs [1] proposed a hyper-feature 

which exploits spatial co-occurrence statistics of features. Li et al. [19] proposed a Markov stationary feature which 

uses Markov chain models to characterize the spatial co-occurrence of histogram patterns. Both Ling et al. [21] and 

Nguyen et al. [49, 50, 52] took into account the spatial distribution of code words by modeling the weak geometric 

context of images. They encoded the spatial co-occurrence statistics into the bag-of-features model by defining the 

proximity distribution kernel of quantized local features. Specifically, the co-occurrence statistics were encoded at 

low level with respect to the detected key points. The key-points-based features have an advantage over the 

conventional ones, e.g. Gabor features, because they are invariant to many geometric distortions and transformations. 

Other novel and robust image descriptors were also developed in [51, 53] for applications to visual recognition tasks. 

Inspired by the use of co-occurrence statistics in low level feature extraction in Ling and Soatto’s work and Nguyen 

et al.’s work, we regarded that it is interesting to encode co-occurrence correlations between the different bins of a 

histogram in a non-parametric way in a histogram similarity measure. Fig. 1 is an example of co-occurrence 

correlations between different bins: the histogram bin correlations between the first four bins in histogram (a) are 

repeated in histogram (b). These histogram bin correlations are useful to produce a more accurate measure of 

similarity between histograms. The Mahalanobis distance, which is covariance-based, encodes correlations between 

different bins of a histogram. It is scale-invariant. But, when the dimension of the feature vectors is large, the 

covariance matrix is usually singular and does not have an inverse. The Moore-Penrose pseudo-inverse matrix may 

be used as an approximation. But its computation is very costly. 

1.2. Our work 

In this paper, we address the above challenges, and propose a bin-ratio-based histogram distance [41]. Bin ratios 

are defined as the ratios between histogram bin values. Given an n-bin histogram nh , we define its ratio matrix 

as ( / ) n n

i jH h h   . It contains the ratios defined by all the pairs of bins in the histogram. Given two histograms, 

we define their bin ratio-based distance (BRD) as the sum of the squared normalized differences over all the 

elements of their ratio matrices. The BRD is combined with the 
1
 distance and the 2  distance, to form two new 

measures: the 
1
 BRD and the 2  BRD. These BRDs (i.e., the BRD, the 1  BRD, and the 2  BRD) are 

applied to image classification. Logistic regression, which is a type of probabilistic statistical fusion model, is used 

to fuse multiple histogram distances for improving the accuracy of image classification. 

The main contributions of our work are summarized as follows: 

 The bin-ratio information in histograms is used to construct a new histogram distance, the BRD. In 

contrast with the existing histogram distances, the BRD is more robust to the effects of partial matching 
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resulting from background clutter and occlusions, as bin ratios of histograms describing the same object 

have a higher similarity. As an example, in Fig. 1(h) the BRD between the histograms in (d) and (e) is less 

than the BRD between the histograms in (d) and (f). The bin ratios capture correlations between pairs of 

bins. The BRD includes cross-bin information about the same histogram and forms a new type of 

histogram distance: the intra-cross-bin distance. The BRD has a linear computational complexity 

comparable to the complexity of the bin-to-bin distances, and much lower than the complexity of the 

cross-bin distances. 

 The BRD is flexible and can be easily combined with other histogram measures to benefit from their 

advantages. In particular, we propose the 
1
 BRD and the 2  BRD which combine the properties of the 

BRD and the properties of the 
1
 distance and the 2  distance. 

 We propose a method for assessing the robustness of histogram distances to partial matching. We also 

propose image classification methods based on the BRDs and the logistic regression fusion. 

Extensive experimental results show the robustness of the BRDs to partial matching, and illustrate very promising 

results when the 
1
 BRD and the logistic regression-based histogram fusion are used to classify natural images. 

The rest of the paper is organized as follows: Section 2 proposes the BRD. Section 3 presents the 
1
 BRD and 

the 2  BRD. Section 4 describes the assessment of the robustness of histogram distances to partial matching. 

Section 5 describes kernel-based image classification using the BRDs and logistic regression, and reports the 

experimental results. Section 6 concludes the paper. 

2. Bin Ratio-Based Histogram Distance 

Histogram bin ratios are unchanged by normalization although bin values are changed. It is intuitive that the 

ratios of bins for the foregrounds in the images in the same category are overall stable. The bin correlations, i.e., joint 

frequencies of visual words, are included in the ratios between bins. These observations motivate the construction of 

a new histogram distance based on the ratio relations between bins, in order to yield more robust image classification 

results. 

The 2  normalization and the 1  normalization are two typical histogram normalization methods. If the 

Euclidean distance measure or the cosine distance measure is used, the 2  normalization is more appropriate. If the 

1
 distance measure or the 2  distance measure is used, the 

1
 normalization is more appropriate. While the 

1
 

normalization is popular for histogram statistics, the 2  histogram normalization is widely used in the computer 

vision community. For example, Felzenszwalb et al. [42] explicitly pointed out that the  2  histogram 

normalization was applied to the HoG (Histogram of Oriented Gradients) feature [37]. We use the 
2

 histogram 

normalization and the square distance measure to define the BRD. 
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An 
2  

normalized histogram with n bins is a column vector nh , such that 

2 2

2
1

1
n

k

k

h


 h .                                        (4) 

To capture pairwise relations between bins, we define the ratio matrix n nH   of h: 

31 2

11 1 1 1

31 2

2 2 2 2 2

1 ,

31 2

T

n

T
n

j

i i j n

T
n

n n n n n

h hh h

hh h h h

h hh h
h

h h h hH h
h

h hh h

h h h h h

 

  
   

  
  

     
       
         

  
  

   
   

h

h

h

                              (5) 

where each matrix element /j ih h  is the ratio of a bin value 
jh  to another bin value 

ih . These bin ratios are 

usually stable for histograms describing the same object. 

The i-th row /T

ihh  in the ratio matrix represents the ratios of all the bin values to the value of the i-th bin. A 

squared distance  ,d p q  between two 
2

 normalized histograms p and q is defined as: 

 
2 2

2

2
1 1 12

,
n n n

j j

i i ji i i i

q p
d P Q

q p q p  

 
      

 
 

q p
p q                          (6) 

where P and Q are the ratio matrices for p and q, respectively. The distance between two histograms is thus 

computed as the squared 
2
 norm of the differences between their ratio matrices. 

The distance shown in (6) is unstable when 
ip  or 

iq   are zero or close to zero: very small changes in the 

value of  
ip  or 

iq  can produce large differences in the distance. To avoid this problem, we propose to introduce a 

normalization term 1/ 1/i iq p  into (6). On dividing by this normalization term, the influence of the denominators 
 

ip  and 
iq  in (6) is reduced. Thus, the bin ratio-based squared distance of the i-th row between p and q is defined 

by: 

 

22

2

,

1 1

2

,
1 1 1 1

j j

n n
i j j ii i i i

BRD i

j j i i

i i i i

q p

p q p qq p q p
d

p q

q p q p
 

 
         

     
 

 

q p

p q .                     (7) 

Using this normalization, dividing by ip  or iq  is replaced with multiplying by ip  or ip . The numerator 

i j j ip q p q  still represents ratio difference, and the denominator i ip q  is similar to the normalization term in the 

2  distance. Using (7), we define the squared bin ratio-based distance (BRD)  ,BRDd p q  between histograms p 

and q as: 

   
2

,

1 1 1

, ,
n n n

i j j i

BRD BRD i

i i j i i

p q p q
d d

p q  

 
   

 
 p q p q .                          (8) 
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In contrast to the 
1
 and 

2
 distances between n-dimensional vectors, the BRD is defined using n n

 
ratio 

matrices of vectors. It thus contains more information than the 
1
 and 

2
 distances [2, 6, 18]. The assumption in 

the BRD is that the ratio relations between histogram bins are overall kept for images in the same category. The 

BRD criterion is effective for dealing with the noise (deformation or perturbation) which does not completely 

destroy bin ratio relations. 

The calculation of  ,BRDd p q , as given by (8), has quadratic computational complexity 2( )O n . As shown in 

Annex 1, the BRD ( , )BRDd p q  can be reformulated as: 

 
 

2

22
1

,
n

i i

BRD

i i i

p q
d n

p q

  


p q p q .                            (9) 

Using (9), the BRD is calculated in a linear time complexity ( )O n , because both the terms 
2

2
p q  and 

 
2

1

n
i i

i i i

p q

p q 
                                        (10) 

on the right hand side of (9) have linear complexity, and the combination of these two items takes only a constant 

time. It is noted that the 
1
 normalization can be used for the BRD. But if so, the corresponding computational 

complexity is 2( )O n . It is noted that (10) is a reweighted correlation measure between two histograms. It is 

interesting that it contains the terms 
i ip q  which are also included in the Battacharrya distance and it contains the 

terms i ip q  which are included in the 2  distance as normalization terms. 

While the above BRD is robust to partial matching and histogram normalization, it can be unstable if there are 

noisy bins with small values. When one of 
ip  or 

iq  is zero and the other is small (usually corresponding to small 

noise)  , , 1BRD id p q . When both 
ip  and 

iq  are zero,  , ,BRD id p q  is undefined in that it corresponds to “0/0”. 

These effects show that the BRD is sensitive to small noise. By contrast, many classical histogram measures handle 

small noise effectively, as they are essentially based on differences between bins. Therefore, we combine the BRD 

with other histogram distance measures, in order to improve its stability to small noise. 

3. The 1  BRD and 2  BRD 

In contrast with the multiple-kernel methods [10, 15] which use multiple histogram distances, we explore 

different combination between histogram distance measures. We first combine the BRD with the widely used 
1
 

distance, which is known to be robust to outliers and small noise but sensitive to partial matching. Two common 

combination rules are sum and product. We choose the product as the combination rule, because the sensitivity of the 

BRD to small noise arises from the denominator, and multiplying a term to the BRD may reduce the effect of the 

denominator in the BRD. The 
1
 BRD of the i-th row between histograms p and q is defined as: 
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 
 

1

2

, , 2 2
,

i i i i

BRD i i i BRD i i i

i i

p q p q
d p q d p q

p q



     


p q p q                        (11) 

where Equation (E) in Annex 1 is substituted into (11). The 
1
 BRD between p and q is defined as: 

   
 

1 1

2

, 21 2
1 1

, ,
n n

i i i i

BRD BRD i

i i i i

p q p q
d d

p q
 

 


   


 p q p q p q p + q .                    (12) 

It is seen from (12) that when bin value 
ip  or 

iq  is zero, the product of the BRD and the 
1
 distance reduces to 

the 
1
 distance which is robust to small noise. This ensures that the 

1
 BRD which is naturally better suited to 

partial matching than the 
1
 distance is more robust than the original BRD in the presence of small noise. 

Similarly, the 2  distance is combined with the BRD to generate the 2  BRD. The 2  BRD of the i-th row 

between p and q is defined as: 

 
 

 2

2

,,
, 2 ,

i i

BRD iBRD i
i i

p q
d d

p q 





p q p q .                             (13) 

The 2  BRD between p and q is then given by: 

 
 

   
 

 
2 2

2 2

2

, 32
1 1

, 2 , , 2
n n

i i i i i i

BRD iBRD
i ii i i i

p q p q p q
d d d

p q p q
 

 

 
   

 
 p q p q p q p q             (14) 

where  

 
 

2

2

1
, 2

n i i

i
i i

p q
d

p q 





p q                                    (15) 

is the 2  distance between p and q. 

It is noted that the 
1
 BRD and the 2  BRD still have linear computational complexity ( )O n . This makes 

them suitable for large scale tasks. 

4. Robustness to Partial Matching 

In the following, we address the evaluation of the robustness of histogram distances to partial matching using 

synthetic data. 

We use three histograms A
h , B

h , and C
h : 

 The first histogram A
h  is obtained from an ideal object model. For example, for object recognition, A

h  

is the histogram of visual words generated from an image containing nothing but the foreground object, i.e., 

A
h  is not affected by background clutter and occlusion. 

 The second histogram B
h  is obtained from an image that contains both the foreground object and 

background clutter. In addition, parts of the object may be occluded. 

 The third C
h  is a reference histogram which contains the least information for the application. It can be 

the average histogram of the samples. Ideally, the average histogram is just the uniform histogram. 
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Given a histogram distance measure  .,.d , we check whether    , ,A B A Cd dh h h h
 
for each sample. Using 

experimental datasets, the probability that    , ,A B A Cd dh h h h  is computed. This probability is used to estimate 

the robustness of distance  .,.d . In the method, comparison for each sample is carried out first, and then the 

statistics of the comparison results are calculated and used to describe the robustness of a histogram distance. 

We simulate the following different cases of partial matching to test the robustness of histogram distances: 

 We randomly generate the histogram of the foreground object and the histogram of the background to 

simulate pure background clutter without any occlusions, i.e., homogeneous background noise. 

 The foreground and background histograms are generated to simulate random histogram contamination. 

 A new image is synthesized by combining a foreground object image and a background image according to 

a random occlusion relation such that partial matching occurs between the histogram of the foreground 

object image and the histogram of the synthetic image. 

These cases cover synthetic histogram data and the histograms data extracted from synthesized images. The 

histogram data are useful for exploring the properties of histogram distances. In the first case, we supply a simplified 

theoretical analysis and a partially theoretical motivation to support the claim that the BRDs are robust to partial 

matching. The use of simulated data in the second case is useful because a very large number of samples are 

produced to test the robustness of histogram distances. The third case in which real images are used to simulate 

partial matching can partially reveal the properties of histogram distances obtained from real images, although the set 

of the real images only cover partially the histogram space. 

In the following, we consider first synthetic histograms which are generated in the first and second cases, and 

then the histograms of synthetic background images. 

4.1. Synthetic histograms 

We evaluate the robustness of the histogram distances in the context of background clutter, but without 

occlusion. The following three simple four-bin histograms are defined: 

 

 

 

1 0

1

1 1 1 1

A

B

C

u v

u v e

 



 

h

h

h

                                      (16) 

where the parameters u, v, and e satisfy 1 u v  and 0 e . In (16), the values of the first three bins in A
h  are kept 

in B
h . The fourth bin simulates the effects of background noise. 

Let    , ,A C A BS d d h h h h . Our aim is to find out how S changes when background noise e  increases. The 

1
 histogram normalization is used for the 

1
 distance and the 2  distance. The 

2
 normalization is used for the 

BRD, the 
1
 BRD, and the 2  BRD. Annex 2 gives the explicit formulae for the considered distances. 

From the derivations in Annex 2, it is seen that for each fixed pair  ,u v ,  ,A Bd h h  increases, whatever the 
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chosen distance d, when background noise e increases, and  ,A Cd h h  is independent of e. It follows that 

   , ,A C A BS d d h h h h  is strictly monotonically decreasing when e increases. This indicates that the more the 

background noise, the less accurate the match to the foreground object. 

Let 
De  be the root of the equation 0S   in which e acts as a variable. Because S  is strictly monotonically 

decreasing, when 
De e , 0S  , i.e.    , ,A C A Bd dh h h h , and when 

De e , 0S   i.e.    , ,A C A Bd dh h h h . 

Therefore, we can use the value of 
De  to estimate the robustness of the histogram distance to partial matching. Let 

1de  and 
2de  be, respectively, the roots of 0S   for the distance 

1d  and the distance 
2d . If 

1 2d de e , 
1d  is more 

robust to partial matching than 
2d . 

We calculated the values of 
De  for different histogram distances with different pairs  ,u v , where 

1 100u v   . Table 1 shows the probability of 
1 2d de e  for distances 

1d  and 
2d  among different values of u 

and v. We compared the proposed BRDs with the 
1
 distance and the 2  distance. For the one dimensional 

histograms used in the experiments, the histogram intersection is equivalent to the 
1
 distance [34]. Similarly, when 

there is not any prior information on the cost matrix of the EMD, the EMD is also equivalent to the 
1
 distance. 

Therefore, the observations in the experiments can be generalized to the EMD and the histogram intersection. 

Among all the 5050 pairs of  ,u v  excluding (1,1), the values of 
De  for the BRD are always larger than those for 

other distances. This means that the BRD is more robust to homogeneous background noise than other distances. 

This is because the BRDs embed bin correlation information which remains stable against background clutter. 

Table 1. The results of comparison between different histogram distances for simulated homogeneous background noise: in each row 

one of the distances is compared with other distances 

 >
1
 >

2  >BRD >
1
 BRD >

2  BRD 

1
 N/A 61.07% 0 2.24% 3.74% 

2  38.93% N/A 0 0.34% 2.30% 

BRD 99.98% 99.98% N/A 99.98% 99.98% 

1
 BRD 97.76% 99.66% 0 N/A 27.29% 

2  BRD 96.26% 97.70% 0 72.71% N/A 

 

In real applications, the background clutter may include occlusion, and the background noise is often very 

complex, influencing the values of a number of bins. So, we explore partial matching when the histograms are 

randomly corrupted. 

We assume that the background corrupts the foreground object randomly, e.g., with occlusion. Let the vector 

1 2( )b b b b
back i nh h h hh  be the histogram of the background, where n is the number of bins and   is 

a parameter controlling the influence of background information. We define the histogram A
h  of the foreground 

object, the histogram B
h  of the image, and the reference histogram C

h  as follows: 
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 

 

1 2

1 1 1 1

A A A A A

i n

B A

back

C

h h h h 


 
 


h

h h h

h

                               (17) 

Each bin value in A
h  and backh  is randomly sampled from a uniform distribution over [0, 1]. Because in real 

applications only a part of the histogram bins are strongly perturbed by background data, we randomly set some bin 

values in backh  to zero. Let r[0, 1] be the fraction of the bins influenced by background. When r=1, the 

background contains all types of visual words and influences every bin in A
h . Given   and r , each pair A

h  and 

backh  are randomly generated, and it is checked whether the inequality , ) ( , )A B A Cd d(h h h h  holds for distance d. 

This process is repeated for a number of times, and the probability that the inequality holds is calculated and used as 

a measure of the robustness of d. Many probabilities can be recorded when   and r change. 

In the experiments, the number of bins was set to 100. Given a value of   and a value of r , 10000 samples 

were used to check whether ( , ) ( , )A B A Cd dh h h h  holds, and then the probability of ( , ) ( , )A B A Cd dh h h h  was 

obtained. Fig. 2 shows the results for the 
1
 distance, the 2  distance, the Bhattacharyya distance, the Jeffrey 

divergence, the EMD, the BRD, the 
1
 BRD, and the 2  BRD. The figure reveals the following useful points: 

 When  =1, almost every histogram distance d yields a probability of 1 for ( , ) ( , )A B A Cd dh h h h . This 

means that when the background noise is small, all histogram distances give a correct classification. 

 When   increases above 1, the performance for all the histogram distances falls rapidly. This shows that 

large background noise has a strong negative effect on the accuracy of classification. 

 When r =1, the probability that ( , ) ( , )A B A Cd dh h h h  is a maximum for each distance d. When r=0.4 or 

0.6, the probability that ( , ) ( , )A B A Cd dh h h h  is low. This is mainly due to the histogram normalization. 

When r=1, all the bins of B
h  have larger values than the corresponding bins in A

h . Then after 

normalization, the distance between A
h  and B

h  decreases. When r=0.4, 40% of the bins in B
h  are 

larger than the corresponding bins in A
h  and the rest have the same values as the corresponding bins in 

A
h . After normalization, the 60% unchanged bins in B

h  are decreased and the 40% increased bins may 

be increased or decreased. The result is that the distance between A
h  and B

h  is relatively large and 

matching the histograms becomes less accurate. This situation is the most common in real applications, 

because the background usually does not contain all the visual words of the foreground object. 

 The 
1
 BRD and the 2  BRD are significantly more accurate than all other distances. This result is 

different from the results for the homogeneous background. This is because when the background corrupts 

the foreground object randomly, the sensitiveness of the BRD to small noise is exposed clearly. These 

results demonstrate the effectiveness of the bin level combination between the BRD and the 
1
 and 2  
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distances. 

 The different histogram distances have their own characteristics. For example, the BRD is robust to 

homogenous background noise and the 2  BRD is robust to random background noise. No distance 

measure can outperform all its competitors in all cases. 

 

 

 

 

 

 

 

 

(a)                                               (b) 

 

 

 

 

 

 

 

 

(c)                                               (d) 

 

 

 

 

 

 

 

 

                      (e) 

Fig. 2. The probabilities that ( , ) ( , )A B A Cd dh h h h  for each histogram distance d, given random histogram corruption for a range 

of r and  : (a) r=0.2; (b) r=0.4; (c) r=0.6; (d) r=0.8; (e) r=1. The x-coordinate indicates the values of  , and the y-coordinate 

indicates the probabilities expressed as percentages. 

 

4.2. Synthetic background images 

From a real image dataset which consists of object images and background images, object images and 

foreground images are selected and combined to produce synthetic images in the following two ways: 

 The background image is placed onto the foreground image such that the foreground object is partly 

occluded by the background image. 

 The foreground object image is placed randomly onto the background image, and then the background 

image is regarded as clutter. 
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The histogram A
h  of each foreground image and the histogram B

h  of each synthetic image are constructed. The 

reference histogram C
h  is set to the average histogram of all the foreground images. We calculate the probability 

that ( , ) ( , )A B A Cd dh h h h  for each distance function d using a large number of synthetic images. This probability 

is used to measure the robustness of d. 

In the simulation, we selected 320 object images with 16 categories from the Caltech256 dataset [12], where 

each category consists of 20 images and 467 background images. Each synthetic image was obtained by randomly 

combining a foreground image and a background image from the dataset. Half of the synthetic images were obtained 

by placing the background image onto the foreground image, as shown in Fig. 3 (a). The image size ratio   of the 

background image to the foreground object image was randomly chosen from [0.1, 0.3]. The foreground object 

image was fixed, and the background image was resized according to   and randomly placed onto the foreground 

image. The limited range for   ensures that there are no large occlusions. Half of the synthetic images were 

obtained by randomly placing the foreground object image onto the background image, as shown in Fig. 3 (b). The 

ratio   was randomly chosen from [1.5, 4] to avoid too large clutter. 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

(b) 

Fig. 3. Examples of synthetic images: (a) the foreground image is occluded by the background image; (b) the foreground image is placed 

randomly onto the background image. 

 

For each foreground image, we repeated the above synthetic process 100 times to construct 100 synthetic 

images. The classic bag-of-words model was used to map each image into a histogram. Scale invariant feature 

transform (SIFT) features were extracted from images. The k-means method was employed to cluster the feature 

vectors of the images into 200 clusters where each cluster corresponded to a visual word. For each image, the word 

the closest to each feature component was found and the frequency of each word was counted to form the word 

histogram. Then, the histogram A
h  of each foreground image, the histogram B

h  of each synthetic image, and the 

reference histogram C
h  were constructed. The probability that ( , ) ( , )A B A Cd dh h h h  for each distance function d 
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was calculated using the synthetic images. The results are shown in Fig. 4. It is seen that the 2  BRD has the most 

accurate results, and the 
1
 BRD has accuracy close to the 2  BRD. The BRDs yield much more accurate results 

than the 
1
 distance, the 2  distance, the Bhattacharyya distance, the Jeffrey divergence, and the EMD whose 

cost matrix was calculated using the 
2
 distances of codebook cluster centers. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The probabilities of ( , ) ( , )A B A Cd dh h h h  for each distance function d with a synthetic background experiment, where the 

x-coordinate indicates different histograms and the y-coordinate indicates the probabilities. 

 

In the above three simulations, as reported in Sections 4.1 and 4.2, the robustness of the different histogram 

distances to partial matching was thoroughly assessed. It is concluded that the BRDs are more robust to partial 

matching than the traditional five distances functions: the 
1
 distance, the 2  distance, the Bhattacharyya distance, 

the Jeffrey divergence, and the EMD. 

5. Kernel-Based Image Classification 

To use bin ratio-based histogram distances (BRDs) for image classification [4, 7, 28, 44, 45], we combine 

BRDs with the standard bag-of-words model. We follow the kernel-based framework in [43], i.e. we build the 

kernels of the BRDs using the extended Gaussian kernels [5]: 

   
1

, exp ,K d
A

 
  

 
p q p q                                   (19) 

where d(p, q) is a squared distance between p and q which are histograms of two images, and A is a scaling 

parameter that can be determined by cross-validation. In [43], it is shown that when A is the mean of all the distances 

between samples, the 1  distance, the 2  distance, and the EMD empirically perform most accurately. It is shown 

in our experiments that the BRD, the 
1
 BRD, and the 2  BRD perform empirically most accurately when A is set 

to twice the mean of all the distances between samples. Currently, it is not known if BRDs-based kernels are Mercer 

kernels. Nevertheless, in our experiments, these kernels have always produced positive definite Gram matrices. It is 

noted that some widely used kernels, e.g. the EMD-kernel, are also not known to be Mercer kernels [43]. Some 

non-Mercer kernels also work effectively in real applications [5]. 

We use logistic regression to fuse different histogram distances in a simple manner, and evaluate the associated 
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classification results. Let 
1 2( , , , )Ix s s s , where 

is (i=1,2,…,I) is the probability output of the i-th classifier 

and I is the number of classifiers. The logistic regression for information fusion is represented by: 

( * )

1
( )

1 w x
f x

e



                                      (20) 

where parameter vector w is estimated using the training samples. The label for each test sample is determined by the 

output of the logistic regression. We use logistic regression to fuse the results of the 1  BRD, the 2  distance, the 

Bhattacharyya distance, and the Jeffrey divergence for image classification. 

We used the following seven benchmark datasets to test the performance of the BRDs and the logistic 

regression-based histogram fusion for image and scene classification: the Scene-15 dataset [17], PASCAL VOC 

2008 [7], PASCAL VOC 2005 [8], PASCAL VOC 2011, 17 Oxford Flowers [24], 102 Oxford Flowers [25], and 

Caltech-256. In the following, we first give an initial description of the different datasets and their setups, then 

provide a global synthesis of all the experiments, and finally describe the local analysis on individual datasets. 

5.1. Datasets and setups 

1) Scene-15 dataset: This dataset [17] is a combination of several earlier datasets [9, 17, 26]. It contains 4485 

scene images from 15 categories, with 200 to 400 images per category. In [11], histogram intersection was used on 

this dataset and a kernel codebook technique was used in comparison with standard codebook. For fair comparison, 

we closely followed the experimental setup in [11]. For each image in this dataset, a SIFT descriptor was sampled on 

a regular grid with space of eight pixels between neighboring grids. Each SIFT feature component was calculated on 

a 16×16 patch. We applied the histogram intersection, the 2  distance, the 
1
 distance, and the proposed BRDs to 

the feature vectors of the images in this dataset. The dataset was randomly split into the training set and the test set. A 

codebook vocabulary was generated using k-means on the training set. Normal codebook (hard assign) and kernel 

codebook (allowing for code word uncertainty) were used respectively. For each type of codebook, the SVM was 

employed for the kernels. For multi-class classification, we used the one-versus-all scheme in the Libsvm. Five-fold 

cross-validation was applied to the training set to tune the parameters. The accuracy for classifying the test set was 

calculated by averaging the accuracies of each category. The classification process was repeated for 10 rounds. The 

average accuracies of the different distances over 10 rounds were reported. 

2) PASCAL visual object classes (VOC) 2008: This dataset [7, 8, 23] consists of twenty object categories with 

8465 images derived from the Internet. The backgrounds in the images are usually very complex. A single image 

may contain multiple objects, and thus have multiple labels. The whole dataset has 2111 training images, 2221 

validation images, and 4133 test images. Category labels are only released for the training and validation images. 

The labels of the test images are unknown to all the users. The results on the test set must be sent to the PASCAL 

organizers who report the accuracy of the results. We followed the framework of the winner of PASCAL 2008, Tahir 

et al. [35], except that we used the 
1
 BRD instead of the 2  distance in [35]. The feature vectors [32] of the 
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training images were clustered using k-means to generate a vocabulary of 4000 words. The 
1
 BRD was used to 

measure histogram distances. The extended Gaussian kernel and the SRKDA method in [3] were used to classify 

images. The parameters were estimated on the validation set and then used on the test set. 

3) PASCAL VOC 2005: We tested our method on the difficult classification test set (test 2) in the PASCAL 

VOC 2005 dataset [8]. This test set is similar to PASCAL VOC 2008, but it only contains the following four 

categories: motorbike, bicycle, car, and persons. There are 1543 images in the test set. An image may include persons 

and a motorbike, and thus may have multiple labels. The best score in the competition to classify the images in the 

test set was achieved by Zhang and Schmid [8] using the 2  distance with an extended Gaussian kernel. Later, 

Zhang et al. [43] obtained a similar result using the EMD distance. We followed Zhang and Schmid’s experimental 

setup in [8]. The Harris-Laplace detector and the SIFT descriptor were used to extract features. We obtained 1000 

visual words by clustering the training samples using k-means. For fair comparison, the standard codebook was 

employed instead of the kernel codebook. We used the 
1
 BRD instead of the 2  distance in [8]. As in [8], the 

extended Gaussian kernel and the SVM classifier [4] were used. The parameters of the SVM were determined using 

two-fold cross-validation on the training set. 

4) PASCAL VOC 2011: We used the 2011 version of the PASCAL VOC classification dataset to make the 

comparison. The PASCAL VOC 2012 classification dataset is the same as that used in 2011. No new data have been 

added. In the dataset there are 10994 images in 20 classes. The classification results must be uploaded to the 

PASCAL official website to obtain the information about their accuracy. We followed the experimental setup of the 

winner of the PASCAL VOC 2011 classification challenge. For each image, SIFT, LBP (Local Binary Pattern), and 

HOG features were extracted using dense sampling and the detector of points of interest. The features were then 

aggregated into the holistic Bag-of-Words (BoW) image representations. Various patch features were extracted using 

multiple image segmentations to form the image-level BoW representations. The detection features were obtained 

using the deformable part model for different object classes. The resulting detection kernel was combined with the 

visual feature kernel by weighted summation. Lasso prediction, the SVM, and the regression classifier were 

combined into one classifier. Kernel regression was utilized to fuse all the confidences from these three classifiers. 

5) 17 Oxford Flowers: This dataset [24] contains images from 17 flower categories. There are 80 images per 

category. For each category, 40 images were used for training, 20 images for validation and 20 images for testing 

[24]. We used the same experimental setup as for PASCAL 2008 except that we used the standard SVM instead of 

the SRKDA. Thirty channels of features were used and combined by averaging the histogram distances of each 

channel. For each feature, a kernel codebook of 4000 code words was used. We classified the images in this dataset 

in three independent experiments and reported the average accuracy and variance. 

6) 102 Oxford Flowers: This dataset [25] contains 8189 images from 102 flower categories with 40-250 

images per category. For each category, there are 10 training images and 10 validation images, and the remaining 
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images are the test images. We used the same experimental setup as for the above 17 Oxford flowers dataset, and this 

setup is also the same as that used by the winners of PASCAL 2008, Tahir et al. [35]. Specifically, the feature vectors 

of the training images were clustered to generate a vocabulary of 4000 words. Kernel codebook was used for vector 

quantization. The parameters were estimated on the validation set and further used for the test set. 

7) Caltech-256: The classical benchmarked Caltech-256 dataset, which was used to evaluate the robustness of 

the BRDs to partial matching, was also used to evaluate image classification performance. As suggested by the 

builders of the dataset, for each category 30 samples were selected for training, and 25 samples were selected for 

testing. A dense sampling was used to generate local patches where each patch corresponds to a point of interest. 

Then, each image patch was further represented by the RGB-SIFT descriptor. Three different image division modes 

were used to represent each image: the whole image without subdivision (1x1), 4 image parts obtained by dividing 

the image into 4 quarters (2x2) and 3 image parts obtained by dividing the image into three horizontal bands (1x3). 

The lengths of the feature vectors for the three division modes are 2000, 6000, and 8000, respectively. A kernel was 

constructed for each division mode, and the average of the three kernels was input to the SVM-based classifier. For 

each image category, a vocabulary of 2000 words was generated by clustering and a binary classifier was designed. 

A total of 256 binary classifiers were obtained. 

5.2. Global synthesis 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Classification results for the various histogram distances on the Scene-15 dataset over different vocabulary sizes and codebook 

types. The terms “Hard” and “Unc” refer to hard assignment and uncertain assignment. 

 

Fig. 5 shows the results, on the Scene-15 dataset, of the 2  distance, the 
1
 distance, the BRD, the 2  

BRD, the 
1
 BRD, and the histogram intersection with the following codebook sizes: 200, 400, and 800, and with 

normal codebook (hard assign) or kernel codebook (code word uncertainty). Table 2 compares the classification 

precision of our method on the test set of the PASCAL VOC 2008 dataset with those of Tahir et al.’s method [35] and 

with the highest classification precisions for each image category from all the competitors of PASCAL 2008. Table 3 

compares the results, on the PASCAL VOC 2005 data, of our 1  BRD and logistic regression with the results of the 

Bhattacharyya distance, the Jeffrey divergence and the Mahalanobis distance, and the results of the state-of-the-art 
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methods in [8, 21, 43], where the logistic regression fuses the 
1

 BRD, the 2  distance, the Bhattacharyya distance, 

and the Jeffrey divergence. Table 4 shows the results, on the PASCAL VOC 2011 dataset, of the methods based on 

the 
1
 BRD kernel, and the 2  distance kernel, the Bhattacharyya distance kernel, and the Jeffrey divergence 

kernel, and the result of the winner of the challenge. Table 5 summarizes the recognition accuracies, on the 17 

Oxford flowers dataset, of the 
1

 BRD-based method, the 2  distance-based method, the Bhattacharyya 

distance-based method, the Jeffrey divergence-based method, and the Mahalanobis distance-based method, the 

top-down attention-based method [46], the excellent methods in [24, 25, 36], and the logistic regression-based 

method. Table 6 shows the recognition rates, on the 102 Oxford flower dataset, of the 
1
 BRD-based method, the 

methods based on the competing histogram distances, the logistic regression-based method, and Nilsback and 

Zisserman’s method [25]. Table 7 shows the results, on the Caltech256 dataset, of the 
1

 BRD, the competing 

histogram distances, the logistic regression, the method in [12], the method based on the dictionary learning on 

single manifold (DLSM) in [47], the method based on the dictionary learning on multiple manifolds (DLMM) in 

[47], and the method in [11]. The experimental setups for the different histogram distances are exactly the same to 

avoid bias. From these tables and figure, the following global properties are revealed: 

 The results of the 
1

 BRD are more accurate than or comparable to the state-of-the-art results in all the 

datasets.  

 Our 
1

 BRD yields more accurate results than the 2  distance, the Bhattacharyya distance, the Jeffrey 

divergence, and the Mahalanobis distance. 

 The logistic regression-based information fusion overall improves the classification accuracies of the 

individual histogram distances. So, there is room for improvement of the accuracy of the 
1
 BRD. 

 The Mahalanobis distance yields much less accurate results. This is because the feature vectors are very 

sparse, and the covariance matrix is unable to describe the distribution of the features. 

 The results clearly show the effectiveness of the 
1
 BRD. 

5.3. Local analysis on individual datasets 

1) Scene-15 dataset: On this dataset, the results from our re-implementation of the histogram intersection are 

close to the results in [11]. The performance of the BRD by itself is comparable to the performance of histogram 

intersection, although the BRD is sensitive to small noise. This indicates that bin-ratios contain rich discriminative 

information. The 1  BRD yields the largest average classification rates over each vocabulary size and each 

codebook type. This demonstrates the effectiveness of the combination of the BRD and the 1  distance. The BRD 

and the 2  BRD are robust to different types of background, but for complex backgrounds in the set of real images, 

the 1  BRD yields more accurate results. 
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2) PASCAL VOC 2008: It is shown that the 
1
 BRD outperforms the winner’s method in 14 out of 20 

categories, and it has a better average performance. Since we strictly followed the winner’s method except for the 

histogram distance, the results on the PASCAL 2008 dataset clearly demonstrate the superiority of the proposed bin 

ratio-based distance. In 11 out of the 20 categories, the precisions of our method are higher than the best precisions 

obtained by all the competitors. In 9 out of 20 categories, the 
1
 BRD did not achieve the best results. This is 

because the best results for different image categories may be due to particular choices of features and classification 

strategies, and the features used in our method and the assumption of the BRD may not be most suitable for these 9 

categories. 

Table 2. Precisions of the winner’s method, the best precisions per category among all competitors of PASCAL 2008, and the precisions 

of our method on the test set of PASCAL 2008. 

Category Winner [35] Best achieved [7] 
1
 BRD 

Aeroplane 79.5% 81.1% 79.7% 

Bicycle 54.3% 54.3% 56.3% 

Bird 61.4% 61.6% 61.1% 

Boat 64.8% 67.8% 66.5% 

Bottle 30.0% 30.0% 30.6% 

Bus 52.1% 52.1% 56.5% 

Car 59.5% 59.5% 58.9% 

Cat 59.4% 59.9% 58.1% 

Chair 48.9% 48.9% 49.4% 

Cow 33.6% 33.6% 34.9% 

Dining table 37.8% 40.8% 43.5% 

Dog 46.0% 47.9% 47.0% 

Horse 66.1% 67.3% 67.5% 

Motorbike 64% 65.2% 62.9% 

Person 86.8% 87.1% 86.6% 

Potted plant 29.2% 31.8% 33.2% 

Sheep 42.3% 42.3% 42.7% 

Sofa 44.0% 45.4% 45.7% 

Train 77.8% 77.8% 76.2% 

TV/monitor 61.2% 64.7% 64.8% 

Mean accuracy 54.9% N/A 56.1% 

 
Table 3. Correct classification rates at equal error rates on test set 2 in the PASCAL challenge 2005 

 
Motor Bike Person Car Average 

Winner [8] 79.8% 72.8% 71.9% 72% 74.1% 

Winner (EMD) [43] 79.7% 68.1% 75.3% 74.1% 74.3% 

Ling and Soatto [21] 76.9% 70.1% 72.5% 78.4% 74.5% 

1
 BRD 79.1% 75.4% 73.9% 78.2% 76.7% 

Bhattacharyya 75.3% 74.1% 72.6% 78.5% 75.1% 

Jeffrey divergence 76.5% 73.5% 74.3% 74.2% 74.6% 

Mahalanobis 41.3% 71.9% 62.2% 75.5% 62.7% 

Logistic regression 77.3% 72.5% 75.5% 83.2% 77.1% 

 

3) PASCAL VOC 2005: On this dataset, our method obtains the most accurate result in one of the four 

categories. For other categories, the results of the 1  BRD are comparable to the best results. This indicates that the 
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proposed 
1
 BRD is not sensitive to different image categories. In contrast with Ling and Soatto’s method [21] in 

which the spatial co-occurrence statistics are considered in the feature extraction stage, the 
1
 BRD obtains more 

accurate results in the categories of Motor, Bike, and Person by more than 1.4%, but very slightly less accurate 

results on the category of Car with a decrease of only 0.2%. The 
1
 BRD improves on the average classification of 

Ling and Soatto’s method by 2.2%. This indicates that our method is effective to consider correlations between pairs 

of histogram bins. It is noted that the 
1
 BRD does not yield the most accurate results for some image categories. 

One of the reasons is that if the noise completely destroys the bin ratio relations in the histograms of the images in 

the same category, the 
1
 BRD may not be accurate enough to compute the distances between histograms. 

4) PASCAL VOC 2011: Although many non-trivial adjustments [48] used by the winner cannot be duplicated 

by us, the result of the 
1
 BRD-based method, which is more accurate than the results of the 2  distance-based 

method, the Bhattacharyya distance-based method, and the Jeffrey divergence-based method, is still comparable to 

the winning result of the PASCAL VOC 2011 challenge. 

Table 4. The average precisions of different methods on the PASCAL VOC 2011 dataset 

Methods Recognition rate 

1
 BRD 77.17% 

2  distance 76.82% 

Bhattacharyya 72.50% 

Jeffrey divergence 76.61% 

Winner 78.56% 

 

5) 17 Oxford Flowers: The 
1
 BRD yields a larger average recognition rate and a smaller standard deviation 

than the method in [25], which is in turn more accurate than the methods in [24, 36]. The result of the top-down 

attention-based method [46] is slightly higher than that of our BRD-based method. This is because, in the top-down 

attention-based method, the hue features were included in the process of producing bag of words based on the SIFT 

features. When the logistic regression was used to fuse different histogram distances, an average recognition rate 

which is larger than that of the top-down attention-based method was obtained. 

Table 5. The average recognition rates of different methods on the 17 Oxford flowers dataset 

Methods Recognition rate (%) 

Nilsback and Zisserman [24] 71.76±1.76 

Varma and Ray [36] 82.55±0.34 

Nilsback and Zisserman [25] 88.33±0.3 

Top-down attention [46] 91.00 
2  87.45±1.13 

1
 BRD 89.02±0.60 

Bhattacharyya 87.05±3.47 

Jeffrey divergence 87.75±3.06 

Mahalanobis 24.61±1.36 

Logistic regression 91.47±2.04 
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6) 102 Oxford Flowers: It is seen that our 1  BRD-based method yields a higher recognition rate than the 

method of Nilsback and Zisserman who produced the dataset. Logistic regression explicitly improves the 

classification accuracies of the individual distances. 

Table 6. The average recognition rates of different methods on the 102 Oxford flower dataset. 

Methods Recognition rate 

Nilsback and Zisserman [25] 72.80% 
2  79.68% 

1
 BRD 80.45% 

Bhattacharyya 79.01% 

Jeffrey divergence 79.43% 

Mahalanobis 17.30% 

Logistic regression 81.60% 

 

7) Caltech-256: The result of the 
1

 BRD is comparable to the recently published results. The logistic 

regression yields the most accurate result. 

Table 7. The average recognition rates of different methods on the Caltech-256 dataset 

Methods Recognition rate 

1
 BRD 45.57% 

2  distance 44.89% 

Bhattacharyya 44.02% 

Jeffrey divergence 45.46% 

Mahalanobis 23.16% 

Logistic regression 46.43% 

Method in [12] 34.10% 

DLSM [47] 35.12% 

DLMM [47} 36.22% 

Result in [11] 27.20% 

 

6. Conclusion 

In this paper, we have proposed a group of bin ratio-based histogram distances, i.e., the BRD, the 
1
 BRD, and 

the 2  BRD. These are new types of histogram distance, namely intra-cross-bin distances, while previous 

histogram distances have been bin-to-bin distances or cross-bin distances. These BRDs contain the correlations 

between pairs of histogram bins, while maintaining a linear computational complexity. They are robust to partial 

matching and histogram normalization. The 
1
 BRD and the 2  BRD can overcome the sensitiveness of the BRD 

to small bin values or noise. The robustness of the BRDs to partial matching is demonstrated using synthetic datasets. 

We have compared BRDs experimentally with several state-of-the-art histogram distance measures on seven 

benchmark datasets for image classification. Among these histogram distances, the 
1
 BRD overall generates the 

most accurate results in the benchmark datasets. 
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Annex 1: Simplification of the BRD 

In this annex, we reformulate the BRD to show that it can be calculated in a linear time complexity. Starting from (7) in the main 

text, 
,BRD id  is rewritten as: 
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Using Equation (E), the BRD ( , )BRDd p q  is written as 
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Using (F), the BRD is calculated in a linear time complexity ( )O n . 

 

Annex 2: Explicit representation of histogram distances in Section 4.1 

For conciseness in the notation, we define 1 1w u v    and 
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