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Abstract—Fisher’s linear discriminant analysis (FLDA) is an
important dimension reduction method in statistical pattern
recognition. It has been shown that FLDA is asymptotically Bayes
optimal under the homoscedastic Gaussian assumption. However,
this classical result has the following two major limitations: 1)
it holds only for a fixed dimensionality D, and thus does not
apply when D and the training sample size N are proportionally
large; 2) it does not provide a quantitative description on how
the generalization ability of FLDA is affected by D and N . In
this paper, we present an asymptotic generalization analysis of
FLDA based on random matrix theory, in a setting where both
D and N increase and D/N −→ γ ∈ [0, 1). The obtained lower
bound of the generalization discrimination power overcomes both
limitations of the classical result, i.e., it is applicable when D
and N are proportionally large and provides a quantitative
description of the generalization ability of FLDA in terms of
the ratio γ = D/N and the population discrimination power.
Besides, the discrimination power bound also leads to an upper
bound on the generalization error of binary-classification with
FLDA.

Index Terms—Fisher’s linear discriminant analysis, asymptotic
generalization analysis, random matrix theory

I. INTRODUCTION

Fisher’s linear discriminant analysis (FLDA), first developed
by Fisher [1] for binary classification and then extended
by Rao [2] to the multiclass scenario, is one of the most
representative dimension reduction techniques in statistical
pattern recognition. It selects a low dimensional subspace
by simultaneously maximizing the between-class scatter and
minimizing the within-class scatter. By projecting samples
into the low dimensional subspace with the maximum dis-
crimination power, FLDA helps improve the accuracy and the
robustness of a decision system [3] [4] [5] [6]. During the past
decades, FLDA has been applied to a wide range of areas, from
speech/music classification [7] [8], face recognition [9] [10]
[11] to financial data analysis [12] [13].

An important property of FLDA is its asymptotic Bayes
optimality under the homoscedastic Gaussian assumption [14]
[15] [16] , which is a corollary of classical results from
multivariate statistics [17]. Actually, as training sample size N
goes to infinity, both the within-class scatter matrix Σ̂ (sample
covariance) and the between-class scatter matrix Ŝ converge
to their population counterparts Σ and S. Therefore, the em-
pirically optimal projection matrix Ŵ of FLDA, obtained by
generalized eigendecomposition over Σ̂ and Ŝ, also converges
to its population counterpart W. Thanks to the asymptotic
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Bayes optimality, we can expect an acceptable performance
of FLDA as long as N is sufficiently large. However, this
classical result, i.e., the asymptotic Bayes optimality, suffers
from two major limitations:

1) It is obtained by fixing the dimensionality D and letting
only N increase to infinity. But in practice, D and N
can be proportionally large, which makes the classical
result inapplicable.

2) It does not provide quantitative description on the per-
formance of FLDA, especially, how the generalization
ability of FLDA is affected by D and N .

A. The Contribution of this Paper

To address aforementioned limitations of the classical result,
in this paper, we present an asymptotic generalization analysis
of FLDA. Our analysis is superior from two aspects. First,
we modify the setting of analysis by allowing both D and
N to increase and assuming the dimensionality to training
sample size ratio γ = D/N has a limit in [0, 1). This
makes our result applicable in the case where D and N are
proportionally large. Second, we quantitatively examine the
generalization ability of FLDA. Denoting by ∆(Σ,S|Ŵ) the
generalization discrimination power of FLDA, we intend to
bound it from the lower side in terms of D and N , with respect
to the population discrimination power ∆(Σ,S|W). Taking a
binary-class problem, for example: suppose ∆(Σ,S|W) = λ
and γ = D/N , then our asymptotic generalization bound
shows that ∆(Σ,S|Ŵ) is almost surely larger than

cos2(arccos(
√

λ/(λ + γ)) + arccos(
√

1− γ))λ,

under mild conditions. Further, as a corollary of the discrimi-
nation power bound, we also obtain an asymptotic generaliza-
tion error bound for binary classification with FLDA.

Based on the obtained asymptotic generalization bound, we
can get better insight of FLDA. It is commonly known that the
performance of covariance estimation has a severe influence
to the generalization ability of FLDA. By assuming a suffi-
cient population discrimination power so as to eliminate the
influence from between-class matrix estimation, we show that
the mere influence from covariance estimation is proportional
to the ratio γ = D/N < 1, i.e., due to the imperfection
of covariance estimation, ∆(Σ,S|Ŵ) is about 1 − γ times
of ∆(Σ,S|W). It is worth noticing that such result holds
independent of the covariance Σ. Besides, the bound shows
that the performance of FLDA is substantially determined by
the ratio γ = D/N , given a fixed population discrimination
power ∆(Σ,S|W). Therefore, N only needs to scale linearly
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with respect to D for an acceptable generalization ability of
FLDA, although a quadratic number of parameters are to be
estimated in the sample covariance.

B. Tools

The technical tools used in our asymptotic generalization
analysis are from random matrix theory (RMT) [18] [19] [20]
[21], the main goal of which is to provide understanding of
the statistics of eigenvalues of matrices with entries drawn
randomly from various probability distributions. RMT was
originally motivated by applications in nuclear physics in
1950’s, and then it was intensively studied in mathematics and
statistics. It also found successful applications in engineering
fields, e.g., wireless communications [22], recently. In this
paper, we make use of two important results from RMT. The
first one is the Marčenko-Pastur Law [20], which states that
the empirical spectral distribution of a Wishart random matrix
converges almost surely to a deterministic distribution Fγ(λ)
as lim γ = D/N ∈ [0, 1). The second one is the almost
sure convergence of the extreme singular values of a large
Gaussian random matrix [21]. We formulate these two results
in following propositions.

Proposition 1: Given G ∈ RD×N , whose entries are
independently sampled from standard Gaussian distribution
N (0, 1), then as both D and N −→ ∞ and D/N −→ γ ∈
[0, 1), the empirical distribution of the eigenvalues of 1

NGGT ,
i.e.,

FN (λ) =
1

D

D∑
i=1

1
{
λi
( 1

N
GGT

)
≤ λ

}
, λ ≥ 0, (1)

where 1{·} is the indicator function, converges almost surely
to a deterministic limit distribution Fγ(λ) with density

dFγ(λ) =

√
(λ+ − λ)(λ− λ−)

2πγλ
dλ, (2)

where
λ+ = (1 +

√
γ)2 and λ− = (1−√γ)2. (3)

Proposition 2: Letting G ∈ RD×m with i.i.d. entries sam-
pled from N (0, 1), then as m/D −→ γ ∈ [0, 1),

1√
D
σmax(G)

a.s.−→ 1 +
√
γ, (4)

and
1√
D
σmin(G)

a.s.−→ 1−√γ. (5)

C. Notations

Throughout this paper, we will use the following notations.
Bold lower case letter a denotes a vector. Bold upper case
letter A denotes a matrix. RD denotes a D-dimensional vector
space. RD1×D2 denotes the set of all D1 by D2 matrices.
Aii or {A}ii denotes the i-th diagonal entry of a symmetric
matrix A. Ai denotes the i-th column of A. A1:c denotes the
matrix composed by the first c columns of A. SD−1 denotes
the D-dimensional unit sphere located on the original point.
SD×D++ denotes the set of all D by D positive definite matrices.
‖a‖ denotes the `2 norm of a. σmax(A) and σmin(A) are

the extreme singular values of A. ‖A‖ = σmax(A) denotes
the operator norm of A. λi(A) denotes the i-th eigenvalue
of A, sorted in a descent order. Λ(A) denotes the diagonal
matrix composed of the eigenvalues of A, with the eigenvalues
sorted in a descent order. R(A) denotes an orthogonal basis
of the range or the column space of A. [e1, ..., eD] is the
canonical basis of RD. 1{·} is the indicator function, i.e.,
1{x0 ≤ x} = 1 if x ≥ x0 and 1{x0 ≤ x} = 0 if x < x0.

II. MAIN RESULT

A. Bounding Generalization Discrimination Power

Suppose we have c+1 classes, represented by homoscedas-
tic Gaussian distributions in a high-dimensional space RD,
Ni(µi,Σ), i = 1, 2, ..., c + 1, with class means µi ∈ RD
and the common covariance matrix Σ ∈ SD×D++ . Assuming
the classes have equal prior probability 1

c+1
1, the following

matrix S, which is referred to as the between-class scatter
matrix, gives a measure of class separation,

S =
1

c+ 1

c+1∑
i=1

(µi − µ)(µi − µ)T , with µ =
1

c+ 1

c+1∑
i=1

µi.

(6)
Suppose the eigendecomposition of Σ−1S has (at most) c
nonzero eigenvalues λi, i = 1, 2, ..., c, and associated eigen-
vectors W = [w1, ..,wc]. FLDA uses W as a projection
matrix to obtain a low-dimensional data representation, and
according to Fisher’s criterion, the discrimination power in
the dimension reduced space is given by [23]

∆(Σ,S|W) = Tr
(
(WTΣW)−1WTSW

)
=

c∑
i=1

λi. (7)

In practice, we do not have access to population parameters
Σ and S, but their estimates, i.e., the sample covariance Σ̂ and
the sample between-class scatter matrix Ŝ via sample class
means µ̂i. Denoting by Ŵ the empirical projection matrix
obtained from generalized eigendecomposition of Σ̂ and Ŝ,
the generalization discrimination power of FLDA is given by

∆(Σ,S|Ŵ) = Tr
(

(ŴTΣŴ)−1ŴTSŴ
)
, (8)

which measures how the classes are separated in the dimension
reduced space. When data dimensionality D is fixed and
training sample size N goes to infinity, the generalization
discrimination power (8) will converge to its population coun-
terpart (7), since Ŵ converges to W. However, such classical
result is invalid when D increases proportionally with N .
Regarding this, the following theorem gives a new asymptotic
result on FLDA’s generalization ability, in a setting where D
and N increase to infinity proportionally.

Theorem 1: Suppose the population discrimination power
∆(Σ,S|W) =

∑c
i=1 λi. The generalization discrimination

power ∆(Σ,S|Ŵ) can be factorized as

∆(Σ,S|Ŵ) =

c∑
i=1

δiλi (9)

1For the convenience of expression, we assume an equal prior probability.
This does not substantially change the analysis throughout this paper.
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(b) Upper Bound of Binary Classifi-
cation Error

Fig. 1. Asymptotic Generalization Bound of Fisher’s Linear Discriminant
Analysis.

where 0 ≤ δi ≤ 1. Further, as both the dimensionality D and
the training sample size N increase (N > D) and D/N −→
γ ∈ [0, 1), it holds asymptotically

δiλi ≥ max2
{

cos(arccos(
√
λi/(λi + γ))

+ arccos(
√

1− γ)), 0
}
λi, a.s. (10)

Theorem 1 gives an asymptotically lower bound on the
generalization ability of FLDA, in terms of the population
discrimination power λi and the dimensionality to training
sample size ratio γ = D/N . An important feature of the bound
is that it is determined by the ratio γ = D/N rather than
the dimensionality D. In other words, a good generalization
performance of FLDA only requires a training sample size
that scales linearly with respect the dimensionality, although
there are a quadratic number of parameters to be estimated in
the sample covariance. Figure 1 (a) gives an illustration of the
bound under different values of the ratio γ = D/N .

Besides, according to (10), the influence of the ratio
γ = D/N to the lower bound comes from two aspects,
each through the term

√
λi/(λi + γ) and the term

√
1− γ.

Note that
√
λi/(λi + γ) allows a tradeoff between λi and

γ, i.e., when λi is sufficiently large, arccos(
√
λi/(λi + γ))

approaches 0 and thus vanishes from the lower bound (10).
The second term

√
1− γ only depends on γ, and later proofs

reveal that it measures how covariance estimation influences
the generalization of FLDA. Assuming a sufficient large λi
such that

√
λi/(λi + γ) ≈ 1, we have

δiλi ≈ (1− γ)λi, (11)

which shows that the loss of discrimination power due to the
imperfection of covariance estimation is approximately pro-
portion to γ. To the best of our knowledge, this is the simplest
quantitative result on the influence of covariance estimation to
FLDA, compared with related studies in the literature [15] [24]
[25]. It is worth noticing that, as long as Σ ∈ SD×D++ , the result
is independent of the spectrum of the population covariance
Σ, e.g., the extreme eigenvalues λmin(Σ) and λmax(Σ), or
the conditional number λmax(Σ)/λmin(Σ).

B. Bounding Generalization Error of Binary Classification

In binary-class case, FLDA can also be regarded as a
linear classifier, where the hyperplane of the linear classifier
is perpendicular to the one-dimensional projection vector ŵ1

of dimension reduction. Without loss of generality, suppose
ŵT

1 (µ1 − µ2) ≥ 0, the generalization error P of binary
classification with FLDA can be calculated analytically by [26]

P = 0.5Φ

{
−ŵT

1 µ1 − 0.5ŵT
1 (µ̂1 + µ̂2)√

ŵT
1 Σŵ1

}

+ 0.5Φ

{
−0.5ŵT

1 (µ̂1 + µ̂2)− ŵT
1 µ2√

ŵT
1 Σŵ1

}
, (12)

where Φ(·) is the cumulative distribution function (CDF) of the
standard Gaussian. If we replace ŵ1 and µ̂i by its population
counterpart w1 and µi, then (12) gives the Bayes error PBayes,
i.e.,

PBayes = Φ

{
−0.5wT

1 (µ1 − µ2)√
wT

1 Σw1

}
= Φ

{
−

√
wT

1 Sw1

wT
1 Σw1

}
= Φ

(
−
√
λ1

)
. (13)

Below, we present a corollary of Theorem 1, which gives an
asymptotic upper bound of P in terms of PBayes and γ =
D/N .

Corollary 1: For binary classification with equal prior
probabilities, suppose the population discrimination power
∆(Σ,S|w1) = λ1, then if both dimensionality D and training
sample size N increase (N > D) and D/N −→ γ ∈ [0, 1),
the generalization error P of FLDA can be upper bounded
asymptotically by

P ≤ Φ
(
−%
√

λ1

)
, a.s. (14)

where

% = max
{

cos(arccos(
√
λ1/(λ1 + γ))+arccos(

√
1− γ)), 0

}
.

(15)
Further since the Bayes error PBayes = Φ

(
−
√
λ1

)
, it holds

asymptotically

P ≤ Φ
(
%Φ−1 (PBayes)

)
, a.s. (16)

with

% = max

{
cos

(
arccos

(√
(Φ−1(PBayes))2

((Φ−1(PBayes))2 + γ

)
+ arccos(

√
1− γ)

)
, 0
}
. (17)

Similar to the discrimination power bound, Corollary 1
shows that, given a binary classification problem with Bayes
error PBayes, the generalization error of FLDA is also de-
termined by the dimensionality to training sample size ratio
γ = D/N . Figure 1 (b) gives an illustration of the general-
ization error bound under different values of γ.

C. Related Work

In recent years, asymptotic analysis on FLDA have also
been performed in the case where D > N . For example, [15]
found that when D increases faster than N the the pseudo-
inverse based FLDA approaches to a random guess and there-
fore suggested a “naive Bayes” approach in this situation. A
more detailed analysis on pseudo-inverse FLDA was given in
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[25] by investigating the estimation error of pseudo-inverse of
the sample covariance. Random matrix theory, e.g., Marčenko-
Pastur Law, was also utilized in [25], so as to bound the
expected estimation error in the asymptotic case. The result
in this paper provides a complementary theory of FLDA in
the setting of D < N , which shows that the generalization
ability of FLDA in such situation is mainly determined by the
ratio γ = D/N .

In contrast to asymptotic analysis, generalization bounds in
finite sample case were derived most recently in both linear
and kernel spaces, and by using random projection as regular-
ization if D > N [24] [27] [28]. The advantage of these results
is they provide explicit probability bounds for finite N and D,
while asymptotic results inherently require sufficient large N
and D. However, we would like to emphasize that the bounds
obtained in this paper have their own merit, by linking the
generalization discrimination power (or generalization error) to
the population discrimination power (or Bayes error) directly
in terms of the ratio γ = D/N . Besides, as shown by empirical
evaluation in later section IV, the bounds hold with high
probability (in the empirical sense) for moderate D and N ,
though they are obtained asymptotically.

III. PROOF OF MAIN RESULT

In this section, we present the proof of Theorem 1, which
are mainly based upon the asymptotic results on eigensystems
of the sample covariance and the sample between-class scatter
matrix.

A. On ∆(Σ,S|Ŵ)

We begin the proof by bounding the generalization dis-
crimination power ∆(Σ,S|Ŵ) in terms of eigenvalues and/or
eigenvectors of a normalized version of the sample covariance
and sample between-class scatter matrix.

Lemma 1: Given a problem with population discrimination
power ∆(Σ,S|W) =

∑c
i=1 λi, there is a nonsingular matrix

X that simultaneously diagonalizes Σ and S, i.e.,

XTΣX = I and XTSX = Λ0, (18)

where Λ0 = diag(λ1, ...,λc, 0, ..., 0).
Lemma 2: Given the normalized estimates Σ̂0 = XT Σ̂X

and Ŝ0 = XT ŜX, and their eigendecompositions Σ̂0 =
UΛ(Σ̂0)UT and Ŝ0 = VΛ(Ŝ0)VT , the generalization dis-
crimination power ∆(Σ,S|Ŵ) can be expressed as

∆(Σ,S|Ŵ) =

c∑
i=1

δiλi, (19)

where

δi =
∥∥RT(Λ−1(Σ̂0)UTV1:c

)
UTei

∥∥2. (20)

Lemma 3: Given Λ(Σ̂0) and V1:c from Lemma 2, it holds

δi ≥ max2
{

cos
(
arccos(‖VT

1:cei‖)

+ arccos

(
ξTΛ−1(Σ̂0)ξ

/√
ξTΛ−2(Σ̂0)ξ

))
, 0
}
. (21)

where ξ is a unit-length random vector uniformly distributed
on the unit sphere SD−1.

Lemma 2 and Lemma 3 show that the generalization dis-
crimination power of FLDA are determined by the eigen-
systems of the normalized estimates Σ̂0 and Ŝ0. Since Σ̂0

is actually an estimate of the identity covariance matrix
I, we have that given the population discrimination power
∆(Σ,S|W) =

∑c
i=1 λi, the generalization ability of FLDA,

i.e., ∆(Σ,S|Ŵ) =
∑c
i=1 δiλi, is independent of the popula-

tion covariance Σ. Next, we present properties on the eigen-
symstems of Σ̂0 and Ŝ0, which are necessary for evaluating
the lower bound of δi in (21).

B. Properties of Σ̂0

We have the following lemma on the eigensystem of the
normalized sample covariance Σ̂0.

Lemma 4: Given the eigendecomposition Σ̂0 =
UΛ(Σ̂0)UT , it holds

1) U and Λ(Σ̂0) are independent random variables;
2) U follows the Haar distribution, i.e., it is uniformly

distributed on the set of all orthonormal matrices in
RD×D;

3) denoting by FN (λ) the empirical spectral distribution of
the eigenvalues of Σ̂0, i.e.,

FN (λ) =
1

D

D∑
i=1

1{λi(Σ̂0) ≤ λ}, λ ≥ 0, (22)

then, as D/N −→ γ ∈ [0, 1),

FN (λ)
a.s.−→ Fγ(λ), (23)

where the limit distribution Fγ(λ) has the density

dFγ(λ) =
1

2πγ

√
(λ+ − λ)(λ− λ−)

λ
dλ, (24)

with

λ+ = (1 +
√
γ)2 and λ− = (1−√γ)2. (25)

The first and the second statements in Lemma 4 can be
understood by the fact that Σ̂0 is an empirical estimate of
I, whose probability density is invariant to any orthogo-
nal transformation. The last statement is a corollary of the
Marčenko-Pastur law, i.e., Proposition 1, which says that
the empirical spectral distribution of the matrix 1

NGGT ,
wherein G ∈ RD×N has i.i.d entries sampled from N (0, 1),
converges almost surely to the deterministic distribution Fγ(λ)
as D/N −→ γ ∈ [0, 1).

Further, we need the following lemma on the inverse of the
eigenvalues Λ(Σ̂0), which says that the energy of Λ−1(Σ̂0)
and Λ−2(Σ̂0) projected onto a random direction is almost
surely deterministic in the limit. It is worth noticing that the
results in Lemma 5 generalize the results on the expectations
E[
∑
i λ
−1
i (Σ̂0)] and E[

∑
i λ
−2
i (Σ̂0)] in [25].

Lemma 5: Suppose ξ is a unit-length random vector uni-
formly distributed on the unit sphere SD−1 and it is indepen-
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dent of Σ̂0, then as D/N −→ γ ∈ [0, 1),

ξTΛ−1(Σ̂0)ξ
a.s.−→

∫
λ−1dFγ(λ) =

1

1− γ
, (26)

and

ξTΛ−2(Σ̂0)ξ
a.s.−→

∫
λ−2dFγ(λ) =

1

(1− γ)3
. (27)

C. Properties of Ŝ0

We have the following lemma on the eigenvectors of Ŝ0.
Lemma 6: Given the eigendecomposition Ŝ0 =

VΛ(Ŝ0)VT , then as D/N −→ γ ∈ [0, 1),

lim
D/N−→γ

‖VT
1:cei‖2 ≥

λi
λi + γ

, a.s., i = 1, 2, ..., c, (28)

where λi is from the population discrimination power
∆(Σ,S|W) =

∑c
i=1 λi.

Recalling Lemma 1, the population counterpart of Ŝ0 is
actually the diagonal matrix Λ0 = XTSX. Therefore, we
expect the first c eigenvectors V1:c of Ŝ0 to be close to
I1:c = [e1, ..., ec]. Lemma 6 shows that the performance
of eigenvector estimation is determined by the λi and γ,
and in particular, as γ approaches 0 the estimation becomes
consistent.

D. Proof of Theorem 1

Now, we are ready to prove our main result Theorem 1,
which is a conclusion out of the combination of Lemmas 2,
3, 5 and 6.

Proof: By Lemma 5, we have

lim
D/N−→γ

ξTΛ−1(Σ̂0)ξ√
ξTΛ−2(Σ̂0)ξ

=

1
1−γ
1

(1−γ)1.5
=
√

1− γ, a.s. (29)

By Lemma 6, we have

lim
D/N−→γ

‖VT
1:cei‖ ≥

√
λi/(λi + γ), a.s. (30)

Then the proof is completed by substituting (29) and (30) into
Lemma 2 and Lemma 3.

IV. EMPIRICAL EVALUATIONS

A. On the Bound of Generalization Discrimination Power

According to Theorem 1, the generalization discrimination
power of FLDA for dimension reduction can be factorized as
∆(Σ,S|Ŵ) =

∑c
i=1 δiλi, where λi measures the popula-

tion discrimination power, and each component δiλi of the
generalization discrimination power can be lower bounded by

δiλi ≥ max2
{

cos(arccos(
√

λi/(λi + γ))

+ arccos(
√

1− γ)), 0
}
λi.

We evaluate this result on both simulated and real datasets by
comparing δiλi with the lower bound above.

For simulated data, we fix the ratio γ = D/N = 0.5,
with D = 50 and N = 100. Note the settings give moderate
size problems; however, due to the asymptotic characteristic

of the bound, which inherently fits to large size problem,
the evaluation on moderate size problems is more critical.
We generate 1,000 experiments, each having 5 classes with
randomly generated population covariance Σ and class means
µi, i = 1, ..., 5. The population discrimination power λi,
i = 1, ..., 4, are calculated via eigendecomposition of Σ−1S,
where S is the between-class scatter matrix. For the general-
ization discrimination power δiλi, the factor δi has a close
form formulation as shown by Lemma 2, i.e.,

δi = ‖RT (Λ−1(Σ̂0)UTV1:c)U
Tei‖2,

where Λ(Σ̂0) and U are the eigensystems of Σ̂0 and V1:c are
the first c eigenvectors of Ŝ0, with Σ̂0 = XT Σ̂X and Ŝ0 =
XT ŜX being the normalized sample covariance and between-
class scatter matrix and X simultaneously diagonalizing Σ
and S. Since a larger discrimination power means a better
separation between classes, we expect that on most of the
experiments the generalization discrimination power of FLDA
can be bounded from the lower side by the generalization
bound. Indeed, as shown by Figure 2, the bound holds with
an overwhelming probability in the empirical sense (i.e., on
more than 990 out of the 1,000 experiments).
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Fig. 2. Evaluation of the Generalization Discrimination Power Bound with
Simulated Data.

We further evaluate the bound of generalization discrim-
ination power on four benchmark datesets from the UCI
machine learning repository [29]: 1) the image segmentation
(ImageSeg) dataset 2, which contains 7 classes and in total
2,310 examples from R18; 2) the Landsat dataset, which
constants 6 classes and in total 6,435 examples from R36;
3) the optical recognition of handwritten digits (Optdigits)
dataset, which contains 10 classes and in total 5,620 examples
from R60; and 4) the USPS handwritten digits dataset, which
contains 10 classes and in total 9,298 examples from R256.
Note that for real dataset, the population parameters Σ and

2The original dataset has 19 features; however the 3rd feature is a constant
for all examples, and therefore is discarded in the experiments.
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Fig. 3. Evaluation of the Generalization Discrimination Power Bound with
Real Data.

S are unknown. Thus, we use the entire dataset to get their
estimates and treat them as population parameters. Again,
we fix the ratio γ = D/N = 0.5, i.e., we randomly select
examples twice of the dimensionality as the training data.
The generalization discrimination powers over 1,000 random
experiments are shown in Figure 3. On the panel for each
dataset, the columns of the scatters correspond to different
components of the generalization discrimination power δiλi,
and the horizontal axis location of each column equals the
population discrimination power λi (the column number is
class number minus 1). On three out of the four datasets,
including LandSat, Optdigits and USPS, the generalization
discrimination power is properly bounded by the lower bound,
with a high probability in the empirical sense. On the Image-
Seg dataset, the bound does not hold with high probability as
on the other three datasets. The major reason is that the size of
the problem is considerably small, with D = 18 and N = 36,
while the bound favors large or moderate size problems.

B. On the Bound of Generalization Errors

According to Corollary 1, suppose the Bayes error of a
binary classification problem is PBayes, then the generalization
error P of FLDA can be boudned by

P ≤ Φ(%Φ−1(PBayes)),

where Φ(·) is the CDF of the standard Gaussian distribution
and

% = max

{
cos

(
arccos

(√
(Φ−1(PBayes))2

((Φ−1(PBayes))2 + γ

)
+ arccos(

√
1− γ)

)
, 0
}
. (31)

To evaluate this result, we perform binary classification
with FLDA on 1,000 experiments, with randomly generated

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5
D=50, N=100

Bayes Error

G
e

n
e

ra
liz

a
ti
o

n
 E

rr
o

r

Fig. 4. Evaluation of the Generalization Error Bound with Simulated Data.
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Fig. 5. Evaluation of the Generalization Error Bound with Real Data.

covariance matrix and class means. The same as in previous
simulation, we fix the ratio γ = D/N = 0.5, with D = 50 and
N = 100. Figure 4 shows the result, where the generalization
error of FLDA is properly bounded by the upper bound.

In addition, we run experiments on the previous four real
datasets to evaluate the generalization error bound. We ran-
domly select class pairs from each dataset to perform binary
classification. We hold out 10% data as the evaluation set,
which is used to estimate the “Bayes” error and generalization
error. The “Bayes” classifier is obtained by training FLDA on
the rest 90% data, and the empirical classifier is trained with
a subset of the rest data, such that N = 2D, namely fixing
the ratio γ = D/N = 0.5. On each dataset, 1,000 random
experiments are performed, with the result shown in Figure
5. Similar to the result in Figure 3, on three out of the four
datasets, the generalization error can be bounded by the upper
bound, while the bound does not dominate all the experiment
on the ImageSeg dataset due to the small size of the problem.

V. CONCLUSION

FLDA is an important statistical model in pattern recogni-
tion. The result obtain in this paper enriches the existing theory
of FLDA, by showing that the generalization ability of FLDA
is mainly determined by the dimensionality to training sample
size ratio γ = D/N , given D and N are reasonably large and
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N > D. Important conclusions from this result include: 1)
to ensure FLDA performing well, training sample size only
needs to scale linearly with respect to data dimensionality,
although a quadratic number of parameters are to be estimated
in the sample covariance; and 2) the generalization ability of
FLDA (with respect to the Bayes optimum) is independent of
the spectral structure of the population covariance, given its
nonsingularity and above conditions.

VI. PROOFS

We provide below the detailed proofs of Lemmas in Section
III and Corollary 1 in Section II.

A. Proof of Lemma 1
It is a direct result of the simultaneous diagonalization

theorem for a pair of semidefinite matrices [23].

B. Proof of Lemma 2
The proof is divided into two steps.

i) Since X in Lemma 1 is nonsingular, there exists some Q ∈
RD×c such that Ŵ = XQ. Then,

∆(Σ,S|Ŵ) = Tr((ŴTΣŴ)−1ŴTSŴ)

= Tr((QTXTΣXQ)−1QTXTSXQ)

= Tr((QTQ)−1QTXTΛQ)

= Tr((QTQ)−1QT
1 Λ1Q1)

= Tr(Q1(QTQ)−1QT
1 Λ1)

=

c∑
i=1

δiλi,

(32)

where Q1 contains the first c rows of Q and Λ1 is the upper-
left c× c submatrix of Λ, and clearly,

δi = {Q1(QTQ)−1QT
1 }ii. (33)

ii) In FLDA, Ŵ are the eigenvectors of Σ̂
−1

Ŝ, and we can
restrict the scale of Ŵ such that

ŴT Σ̂Ŵ = Ic and ŴT ŜŴ = Λ̂1, (34)

where Λ̂1 is some c × c diagonal matrix. Substituting Ŵ =
XQ into (34) and recalling Σ̂0 = XT Σ̂X and Ŝ0 = XT ŜX,
we get

QT Σ̂0Q = Ic and QT Ŝ0Q = Λ̂1. (35)

Given the eigendecomposition Σ̂0 = UΛ(Σ̂0)UT , we have
from the first equation in (35) that there must exist some
orthogonal matrix O ∈ RD×c, OTO = Ic, such that

Q = UΛ−
1
2 (Σ̂0)O. (36)

Further, given the eigendecomposition Ŝ0 = VTΛ(Ŝ0)V, we
get from the second equation in (35) that

OTΛ−
1
2 (Σ̂0)UTVΛ(Ŝ0)VTUΛ−

1
2 (Σ̂0)O = Λ̂1. (37)

In addition, since Ŝ0 has rank c, we can rewrite (37) as

OTΛ−
1
2 (Σ̂0)UTV1:cΛ

1
2
1 (Ŝ0)Λ

1
2
1 (Ŝ0)VT

1:cUΛ−
1
2 (Σ̂0)O = Λ̂1,

(38)

where Λ1(Σ̂0) is the upper-left c×c submatrix of Λ(Σ̂0). (38)
implies the columns of O must be the left singular vectors
of Λ−

1
2 (Σ̂0)UTV1:cΛ

1
2
1 (Ŝ0). Thus, O spans the range space

of Λ−
1
2 (Σ̂0)UTV1:cΛ

1
2
1 (Ŝ0) and therefore the range space of

Λ−
1
2 (Σ̂0)UTV1:c. Then, there must exist some matrix A ∈

Rc×c such that Λ−
1
2 (Σ̂0)UTV1:c = OA, and thus

O = Λ−
1
2 (Σ̂0)UTV1:cA

−1, (39)

where the nonsingularity of A is implied by the nonsingularity
of Λ−

1
2 (Σ̂0)UT .

By (36) and (39), we have

Q = UΛ−1(Σ̂0)UTV1:cA, (40)

and
Q1 = IT1:cUΛ−1(Σ̂0)UTV1:cA. (41)

Therefore,

{Q1(QTQ)−1Q1}ii =

eTi UΛ−1(Σ̂0)UTV1:c(V
T
1:cUΛ−2(Σ̂0)UTV1:c)

−1

VT
1:cUΛ−1(Σ̂0)UTei.

(42)

Letting R = R(Λ−1(Σ̂0)UTV1:c), then

RRT =

Λ−1(Σ̂0)UTV1:c(V
T
1:cUΛ−2(Σ̂0)UTV1:c)

−1VT
1:cUΛ−1(Σ̂0),

(43)

which together with (42) gives

{Q1(QT
` Q`)

−1Q1}ii = eTi URRTUTei = ‖RTUTei‖2

= ‖RT (Λ−1(Σ̂0)UTV1:c)U
Tei‖2.

(44)
This completes the proof.

C. Proof of Lemma 3

Recall Lemma 2 that δi =
‖RT (Λ−1(Σ̂0)UTV1:c)U

Tei‖2. Denote by
](UTei,R(Λ−1(Σ̂0)UTV1:c)) the angle between vector
UTei and subspace RT (Λ−1(Σ̂0)UTV1:c), we have

δi = cos2(](UTei,R(Λ−1(Σ̂0)UTV1:c))). (45)

Two basic facts that hold for arbitrary vector a1, a2 and
subspace A are

](a1,A) ≤ ](a1,a2) + ](a2,A). (46)

and
](a1,A) ≤ ](a1,a), if a ∈ A. (47)

Then, by using (46) and (47), we get

](UTei,R(Λ−1(Σ̂0)UTVi))

≤](UTei,U
TV1:cV

T
1:cei)

+ ](UTV1:cV
T
1:cei,R(Λ−1(Σ̂0)UTV1:c))

≤](UTei,U
TV1:cV

T
1:cei)

+ ](UTV1:cV
T
1:cei,Λ

−1(Σ̂0)UTV1:cV
T
1:cei)

=θ1 + θ2.

(48)
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Denoting θ = θ1 + θ2, since cos(x) is positive and
decreasing on [0, π/2], x2 is increasing on [0, 1], and δi is
nonnegative, we have

δi ≥
{

cos2(θ), θ ≤ π
2

0, else

= max2{cos(θ), 0}.
(49)

It remains to calculate θ1 and θ2. For θ1, We have

cos2(θ1) =
|eiVT

1:cUUTV1:cei|2

‖UTV1:cVT
1:cei‖2

=
|eTi V1:cV

T
1:cei|2

eTi V1:cVT
1:cei

= ‖VT
1:cei‖2,

(50)

which gives
θ1 = arccos(‖VT

1:cei‖). (51)

For θ2, as rescaling does not change the direction of a vector,
we can rewrite θ2 as

θ2 = ](UT ζ,Λ−1(Σ̂0)UT ζ), (52)

where

ζ =
V1:cV

T
1:cei

‖V1:cVT
1:cei‖

. (53)

Note that ζ is a unit-length random vector and is independent
of U due to the independency between V1:c and U. Then, we
have

cos2(θ2) =
|ζTUΛ−1(Σ̂0)UT ζ|2

‖Λ−1(Σ̂0)UT ζ‖2

=
(ζTUΛ−1(Σ̂0)UT ζ)2

ζTUΛ−2(Σ̂0)UT ζ
.

(54)

We have known, from Lemma 4, U is uniformly distributed
on the set of all orthonormal matrices in RD×D, and ζ is a
unit-length random vector independent of U. Thus, ξ = UT ζ
must be a unit-length random vector uniformly distributed on
the unit sphere SD−1. Finally, (54) gives

θ2 = arccos

(
ξTΛ−1(Σ̂0)ξ

/√
ξTΛ−2(Σ̂0)ξ

)
. (55)

This completes the proof.

D. Proof of Lemma 4

Since Σ̂0 = XT Σ̂X is a normalized sample covariance,
wherein XTΣX = I, we have

Σ̂0 =
1

N

c+1∑
i=1

n∑
j=1

(xij − x̄i)(x
i
j − x̄i)

T , (56)

where xij is sampled from some N (µi, I) and x̄i is the sample
mean. Letting zij = xij−µi, which implies zij is sampled from
the standard Gaussian distribution N (0, I), and z̄i = x̄i−µi,
then Σ̂0 can be rewritten as

Σ̂0 =
1

N

c+1∑
i=1

n∑
j=1

(zij − z̄i)(zij − z̄i)T , (57)

One property of Σ̂0 in (57) is that, as a random variable, its
distribution is invariant to orthogonal similarity transforma-

tion, i.e., Σ̂0 and OΣ̂0O
T , wherein UTU = I, have the same

distribution. This is due to the fact that OT Σ̂0O corresponds
to (57) in the case of replacing zij by Ozij while Ozij has
the same distribution with zij , i.e., the standard Gaussian
distribution N (0, I). Then, according to Theorem 3.2 in [30],
the invariant property to orthogonal similarity transformation
implies that the distribution of Σ̂0 is independent of its
eigenvectors U but only depends on its eigenvalues Λ(Σ̂0),
and U is a random matrix uniformly distributed on the set of
all possible orthonormal matrices in RD×D. This completes
the statements 1) and 2) in Lemma 4.

Further, (57) can be rewritten as

Σ̂0 =
1

N

c+1∑
i=1

n∑
j=1

zijz
iT
j −

1

c+ 1

c+1∑
i=1

z̄iz̄iT

=
1

N

c+1∑
i=1

n∑
j=1

zijz
iT
j −

1

(c+ 1)n

c+1∑
i=1

√
nz̄i
√
nz̄iT

=
1

N
G1G

T
1 −

1

N
G2G

T
2 = T1 + T2.

(58)

where G1 ∈ RD×N and G2 ∈ RD×(c+1). For the first term
T1 = 1

NG1G
T
1 , by Proposition 1, we know that the empirical

distribution of its eigenvalues converges almost surely to
Fγ(λ) with density,

dFγ(λ) =

√
(λ+ − λ)(λ− λ−)

2πγλ
dλ, (59)

where γ = limD/N and

λ+ = (1 +
√
γ)2 and λ− = (1−√γ)2. (60)

For the second term T2 = 1
NG2G

T
2 , clearly it has finite rank

c + 1. According to [31], a finite rank perturbation does not
effect the convergence of the empirical spectral distribution,
i.e., limFN (λ(T1 + T2)) = limFN (λ(T1)) = Fγ(λ). This
completes the proof.

E. Proof of Lemma 5

The condition that ξ is a unit-length random vector uni-
formly distributed on the unit sphere SD−1 can be replaced by
ξ ∈ RD with entries independently sampled from N (0, 1/D).
This is because, in the later case, ξ/‖ξ‖ is uniformly dis-
tributed on SD−1, and ‖ξ‖2 a.s.−→ 1 due to the Strong Law of
Large Numbers.

For (26), we divide the proof into two steps. First, we show
that ξTΛ−1(Σ̂0)ξ

a.s.−→
∫
λ−1dFγ(λ), and then we calculate

the integral.
i) Recall λ− = (1 − √γ)2, and let Λ

−1
(Σ̂0) =

diag(min{λ−, λ−1i (Σ̂0)}), i.e., a truncated version of
Λ−1(Σ̂0) by clamping λ−1i (Σ̂0) to be λ−1− if λ−1i (Σ̂0) ≥ λ−1− .
Then, we divide the left-hand side of (26) into three terms

ξTΛ−1(Σ̂0)ξ − ξTΛ
−1

(Σ̂0)ξ, (61)

ξTΛ
−1

(Σ̂0)ξ − 1

D
Tr(Λ

−1
(Σ̂0)), (62)
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and
1

D
Tr(Λ

−1
(Σ̂0))−

∫
λ−1dFγ(λ). (63)

We show that all the three terms converge almost surely to
zero.

For the first term (61), we have

0 ≤ξT (Λ−1(Σ̂0)− Λ
−1

(Σ̂0))ξ

≤‖ξ‖2 max{0, λ−1min(Σ̂0)− λ−1− }.
(64)

By the same argument in the proof of Lemma 4, we know that

limλmin(Σ̂0) = limλmin

 1

N

c+1∑
i=1

n∑
j=1

zijz
iT
j


=

(
lim

1√
N
σmin(Z)

)2

,

(65)

where Z = [z11, ..., z
c+1
n ] ∈ RD×N , with entries indepen-

dently sampled from N (0, 1). By Proposition 2, we have
lim 1√

N
σmin(Z) = 1 − √γ, and thus λmin(Σ̂0)

a.s.−→ (1 −
√
γ)2 = λ−. Accordingly,

max{0, λ−1min(Σ̂0)− λ−1− }
a.s.−→ 0. (66)

Then, by ‖ξ‖2 a.s.−→ 1, (64) and (66), we have

ξTΛ−1(Σ̂0)ξ − ξTΛ
−1

(Σ̂0)ξ
a.s.−→ 0. (67)

For the second term (62), since ‖Λ−1(Σ̂0)‖ ≤ λ− for all
D, i.e., it is uniformly bounded, we apply Theorem 3.4 in [22]
and get

ξTΛ
−1
α (Σ̂0)ξ − 1

D
Tr(Λ

−1
α (Σ̂0))

a.s.−→ 0. (68)

For the third term (63), since dFγ(λ) is nonzero only on
[λ−, λ+], it is sufficient to examine

1

D
Tr(Λ

−1
(Σ̂0))−

∫
λ−1dFγ(λ)

=

∫ ∞
0

min(λ−, λ
−1)dFN (λ)−

∫ λ+

λ−

λ−1dFγ(λ)

=

∫ λ+

λ−

λ−1d(FN (λ)− Fγ(λ)) + λ−1−

∫ λ−

0

dFN (λ)

+

∫ ∞
λ+

λ−1dFN (λ).

(69)

Sine FN (λ)
a.s.−→ Fγ(λ) and λ−1 is bounded on [λ−, λ+], it

holds [32] ∫ λ+

λ−

λ−1d(FN (λ)− Fγ(λ))
a.s.−→ 0. (70)

Further, sine Fγ(λ−) = 0 and Fγ(λ+) = 1, it holds∫ λ−

0

dFN (λ) = FN (λ−)
a.s.−→ Fγ(λ−) = 0, (71)

and
0 ≤

∫ ∞
λ+

λ−1dFN (λ) ≤ λ−1+ (1− FN (λ+))

a.s.−→ λ−1+ (1− Fγ(λ+)) = 0.

(72)

Thus,
1

D
Tr(Λ

−1
α (Σ̂0))−

∫
λ−1dFγ(λ)

a.s.−→ 0. (73)

ii) We now calculate the integral

I =

∫
λ−1dFγ(λ) =

∫ λ+

λ−

√
(λ+ − λ)(λ− λ−)

2πγλ2
dλ (74)

where λ+ = (1 +
√
γ)2 and λ− = (1−√γ)2.

Letting λ = 1 + γ − 2
√
γ cosx, x ∈ [0, π] and substituting

it into (74), we have

I =
2

π

∫ π

0

sin2 x

(1 + γ − 2
√
γ cosx)2

dx. (75)

Further, letting t = tan x
2 , we have

I =
2

π

∫ ∞
0

(
2t

1+t2

)2
(

1 + γ − 2
√
γ 1−t2
1+t2

)2 2

1 + t2
dt

=
16

π

∫ ∞
0

t2(
(1 + γ)(t2 + 1)− 2

√
γ(1− t2)

)2 1

1 + t2
dt

=
16

π

∫ ∞
0

t2(
(1 +

√
γ)2t2 + (1−√γ)2

)2 1

1 + t2
dt

=
16

π(1 +
√
γ)4

∫ ∞
0

t2(
t2 +

(
1−√γ
1+
√
γ

)2)2

1

1 + t2
dt.

(76)
Letting α =

1−√γ
1+
√
γ and by partial fraction, we have∫ ∞

0

t2

(t2 + α2)
2

1

1 + t2
dt =

∫ ∞
0

− 1
(1−α2)2

t2 + 1
dt+

∫ ∞
0

1
(1−α2)2

t2 + α2
dt+

∫ ∞
0

− α2

(1−α2)

(t2 + α2)2
dt.

(77)
Denoting by I1, I2 and I3 the terms in the righthand side of
(77), we have

I1 =

∫ ∞
0

− 1
(1−α2)2

t2 + 1
dt =

−1

(1− α2)2

∫ ∞
0

d arctan t

=
−π

2(1− α2)2
,

(78)

I2 =

∫ ∞
0

1
(1−α2)2

t2 + α2
dt =

1

α(1− α2)2

∫ ∞
0

d arctan
t

α

=
π

2α(1− α2)2
,

(79)

I3 =

∫ ∞
0

− α2

(1−α2)

(t2 + α2)2
dt

=
−1

2(1− α2)

∫ ∞
0

d
t

t2 + α2
+

−1

2(1− α2)

∫ ∞
0

1

t2 + α2
dt

= 0 +
−π

4α(1− α2)
=

−π
4α(1− α2)

.

(80)
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Combining (76) to (80) and noticing α =
1−√γ
1+
√
γ , we get

I =
16

π(1 +
√
γ)4

(
−π

2(1− α2)2
+

π

2α(1− α2)2
+

−π
4α(1− α2)

)
=

16

π(1 +
√
γ)4

π

4α(1 + α)2
=

1

1− γ
.

(81)
This completes the proof of (26).

For (27), by the same strategy as used in the proof of (26),
we have ξTΛ−2(Σ̂0)ξ

a.s.−→
∫
λ−2dFγ(λ). Below, we calculate

the integral.

I =

∫
λ−2dFγ(λ) =

∫ λ+

λ−

√
(λ+ − λ)(λ− λ−)

2πγλ3
dλ, (82)

where λ+ = (1 +
√
γ)2 and λ− = (1 − √γ)2. Letting λ =

1 + γ− 2
√
γ cosx, x ∈ [0, π] and substituting it into (74), we

have

I =
2

π

∫ π

0

sin2 x

(1 + γ − 2
√
γ cosx)3

dx. (83)

Further, letting t = tan x
2 , we have

I =
2

π

∫ ∞
0

(
2t

1+t2

)2
(

1 + γ − 2
√
γ 1−t2
1+t2

)3 2

1 + t2
dt

=
16

π

∫ ∞
0

t2(
(1 + γ)(t2 + 1)− 2

√
γ(1− t2)

)3 dt
=

16

π

∫ ∞
0

t2(
(1 +

√
γ)2t2 + (1−√γ)2

)3 dt
=

16

π(1 +
√
γ)6

∫ ∞
0

t2(
t2 +

(
1−√γ
1+
√
γ

)2)3 dt.

(84)

Letting α =
1−√γ
1+
√
γ , we have∫ ∞

0

t2

(t2 + α2)
3 dt

=− 1

4

∫ ∞
0

d
t

(t2 + α2)2
+

1

4

∫ ∞
0

1

(t2 + α2)2
dt

=
π

16α3
.

(85)

Thus, by α =
1−√γ
1+
√
γ , we get I = 16

π(1+
√
γ)6

π
16α3 = 1

(1−γ)3 .
This completes the proof of (27).

F. Proof of Lemma 6

By Lemmas 1 and 2, Ŝ0 is an estimate of XTSX = Λ0 =
diag(λ1, ...,λc, 0, ..., 0). Suppose the original distributions of
the c+ 1 classes are N (µi,Σ) and the between-class scatter
matrix is S. Then, Λ0 should be the between-class scatter
matrix of an equivalent problem with distributions N (µ′i, I),
wherein µ′i = XTµi. Therefore, Λ0 = 1

c+1

∑c+1
i=1 (µ′i −

µ′)(µ′i − µ′)T , with µ′ = 1
c+1

∑c+1
i=1 µ

′
i. Letting M =

[µ′1, ...,µ
′
c+1] and E ∈ R(c+1)×(c+1) with all entries equal

to 1
c+1 , we have Λ0 = 1

c+1M(I − E)(I − E)TMT . Sim-
ilarly, we have Ŝ0 = 1

c+1M̂(I − E)(I − E)TM̂T , where

M̂ = [µ̂′1, ..., µ̂
′
c+1] and µ̂′1 is an estimate of µ′1. As there

are n training examples per class, we have M̂ = M + X,
where the entries of X ∈ RD×(c+1) are i.i.d. samples from
N (0, 1/n).

Note that the nonzero diagonal entries of Λ0 are λi,
i = 1, 2, ..., c, which are actually eigenvalues of Λ0, as-
sociated with eigenvectors ei, i = 1, 2, ..., c. Thus, Λ0 =
1
c+1M(I−E)(I−E)TMT implies that M(I−E) has singular
values

√
(c+ 1)λi, i = 1, 2, ..., c and left singular vectors

I1:c = [e1, ..., ec]. Denoting by Q ∈ R(c+1)×c the right
singular vectors of M(I−E), QTQ = Ic, we have

M(I−E)Q =
[√

(c+ 1)λ1e1, ...,
√

(c+ 1)λcec

]
. (86)

Consequently, by M̂ = M + X, we have

M̂(I−E)Q

=
[√

(c+ 1)λ1e1, ...,
√

(c+ 1)λcec

]
+ X(I−E)Q

=[ξ1, ..., ξc],

(87)

where

ξi =
√

(c+ 1)λiei + X(I−E)Qi, i = 1, 2, ..., c. (88)

Then, by Ŝ0 = 1
c+1M̂(I − E)(I − E)TM̂T , we have for the

first c eigenvectors V1:c of Ŝ0 that

V1:c = R(M̂(I−E)) = R(M̂(I−E)Q)

= R([ξ1, ..., ξc]).
(89)

Accordingly,

‖VT
1:cei‖2

=‖RT ([ξ1, ..., ξc])ei‖2 ≥ ‖RT (ξi)ei‖2 =
1

‖ξi‖2
|ξTi ei|2

=
|eTi
√

(c+ 1)λiei + eTi X(I−E)Qi|2

‖
√

(c+ 1)λiei + X(I−E)Qi‖2

≥
(c+ 1)λi + |eTi X(I−E)Qi|2 − 2

√
(c+ 1)λi|eTi X(I−E)Qi|

(c+ 1)λi + ‖X(I−E)Qi‖2 + 2
√

(c+ 1)λieTi X(I−E)Qi

.

(90)
It can be verified that as N = (c+ 1)n −→∞

|eTi X(I−E)Qi| ≤ ‖eTi X‖ =

√√√√c+1∑
j=1

X2
ij

a.s.−→ 0, (91)

where the inequality is due to ‖(I − E)Qi‖ ≤ ‖(I −
E)‖‖Qi‖ ≤ 1 and the limit is because Xij follows the
distribution N (0, 1

n ).

In addition, by Proposition 2 and letting G =
√
nX, we

have

‖X‖ =
1√
n
‖G‖ a.s.−→

√
D

n
=

√
(c+ 1)D

N
−→

√
(c+ 1)γ.

(92)
Thus,

‖X(I−E)Qi‖ ≤ ‖X‖
a.s.−→

√
(c+ 1)γ. (93)
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Combining (90), (91) and (93), we obtain

lim
D/N−→γ

‖VT
1:cei‖2 ≥

λi
λi + γ

, a.s. (94)

This completes the proof.

G. Proof of Corollary 1

Recall that

P = 0.5Φ

{
−ŵT

1 µ1 − 0.5ŵT
1 (µ̂1 + µ̂2)√

ŵT
1 Σŵ1

}

+ 0.5Φ

{
−0.5ŵT

1 (µ̂1 + µ̂2)− ŵT
1 µ2√

ŵT
1 Σŵ1

}
, (95)

assumed ŵT
1 (µ1 − µ2) ≥ 0. First, we have

− ŵT
1 µ1 − 0.5ŵT

1 (µ̂1 + µ̂2)√
ŵT

1 Σŵ1

=− 0.5
ŵT

1 (µ1 − µ2)√
ŵT

1 Σŵ1

+ 0.5
ŵT

1 ((µ̂1 + µ̂2)− (µ1 + µ2))√
ŵT

1 Σŵ1

=−

√
ŵT

1 Sŵ1

ŵT
1 Σŵ1

+ 0.5
ŵT

1 ((µ̂1 + µ̂2)− (µ1 + µ2))√
ŵT

1 Σŵ1

=−
√

δ1λ1 + 0.5T,
(96)

and similarly

− 0.5ŵT
1 (µ̂1 + µ̂2)− ŵT

1 µ2√
ŵT

1 Σŵ1

=− 0.5
ŵT

1 (µ1 − µ2)√
ŵT

1 Σŵ1

− 0.5
ŵT

1 ((µ̂1 + µ̂2)− (µ1 + µ2))√
ŵT

1 Σŵ1

=−
√

δ1λ1 − 0.5T,
(97)

As long as T a.s.−→ 0, we have by Theorem 1 that

P = Φ(−
√

δ1λ1) ≤ Φ(−%
√
λ1) (98)

with

% = max
{

cos(arccos(
√

λi/(λi + γ))+arccos(
√

1− γ)), 0
}
.

(99)

Below, we verify that it indeed holds

T =
ŵT

1 ((µ̂1 − µ1) + (µ̂2 − µ2))√
ŵT

1 Σŵ1

a.s.−→ 0. (100)

By using similar strategy in the proof of Lemma 2, in particu-
lar (40), we have ŵ1 = Xq, wherein X satisfies XTΣX = I
and

q = aUTΛ−1(Σ̂0)UXT (µ̂1 − µ̂2), for some a 6= 0,
(101)

since X(µ̂1 − µ̂2) is the first eigenvector of the normalized
sample between-scatter matrix Ŝ0 = XT ŜX. Substituting
(101) into T , we have

T =
(µ̂1 − µ̂2)TXUTΛ−1(Σ̂0)UXT ((µ̂1 − µ1) + (µ̂2 − µ2))√

(µ̂1 − µ̂2)TXUTΛ−2(Σ̂0)UXT (µ̂1 − µ̂2)
.

(102)
For the numerator, we have

(µ̂1 − µ̂2)TXUTΛ−1(Σ̂0)UXT ((µ̂1 − µ1) + (µ̂2 − µ2))

=(µ̂1 − µ1)TXUTΛ−1(Σ̂0)UXT (µ̂1 − µ1)

− (µ̂2 − µ2)TXUTΛ−1(Σ̂0)UXT (µ̂2 − µ2)

+ (µ1 − µ2)TXUTΛ−1(Σ̂0)UXT ((µ̂1 − µ1) + (µ̂2 − µ2))

=T1 − T2 + T3.
(103)

Due to the normalization, we know that ξ1 = UXT (µ̂1−µ1)
follows the multivariate Gaussian distribution N (0, 1

nI), with
n = N/2 being the training data number per class. Then, by
Lemma 5 and ‖ξ1‖2

a.s.−→ 2γ, we have

T1 = ξT1 Λ−1(Σ̂0)ξ1 = ‖ξ1‖2
ξT1
‖ξ1‖

Λ−1(Σ̂0)
ξ1
‖ξ1‖

a.s.−→ 2γ

1− γ
.

(104)
Similarly, letting ξ2 = UXT (µ̂2 − µ2), the same argument
gives T2

a.s.−→ 2γ
1−γ . Denoting ξ3 = Λ−1(Σ̂0)UXT (µ1 − µ2)

and recalling Lemma 5, we have

‖ξ3‖2 = (µ1 − µ2)TXUTΛ−2(Σ̂0)UXT (µ1 − µ2)

a.s.−→ ‖X
T (µ1 − µ2)‖2

(1− γ)3
<∞.

(105)

Then, since ξ follows N (0, 1
nI) and ξ3 has bounded entries

due to (105), we have

ξT3 ξ1
a.s.−→ 0. (106)

Similarly, ξT3 ξ2
a.s.−→ 0. Thus,

T3 = ξT3 (ξ1 + ξ2)
a.s.−→ 0. (107)

Therefore, we have the numerator T1 − T2 + T3
a.s.−→ 0.

For the dominator, letting ζ = UXT (µ̂1 − µ̂2), we have√
(µ̂1 − µ̂2)TXUTΛ−2(Σ̂0)UXT (µ̂1 − µ̂2)

=‖ζ‖

√
ζT

‖ζ‖
Λ−2(Σ̂0)

ζ

‖ζ‖
a.s.−→ lim ‖ζ‖

(1− γ)3/2
.

(108)

Note that lim ‖ζ‖ > 0, because µ̂1 6= µ̂2 almost surely. Thus,
the dominator must be positive. Therefore, we have T in (100)
has limit 0.
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