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Abstract

For most problems in science and engineer-
ing we can obtain data that describe the
system from various perspectives and record
the behaviour of its individual components.
Heterogeneous data sources can be collec-
tively mined by data fusion. Fusion can fo-
cus on a specific target relation and exploit
directly associated data together with data
on the context or additional constraints. In
the paper we describe a data fusion approach
with penalized matrix tri-factorization that
simultaneously factorizes data matrices to
reveal hidden associations. The approach
can directly consider any data sets that can
be expressed in a matrix, including those
from attribute-based representations, ontolo-
gies, associations and networks. We demon-
strate its utility on a gene function prediction
problem in a case study with eleven di↵erent
data sources. Our fusion algorithm compares
favourably to state-of-the-art multiple kernel
learning and achieves higher accuracy than
can be obtained from any single data source
alone.

1. Introduction

Data abounds in all areas of human endeavour. Big
data (Cuzzocrea et al., 2011) is not only large in vol-
ume and may include thousands of features, but it
is also heterogeneous. We may gather various data
sets that are directly related to the problem, or data
sets that are loosely related to our study but could
be useful when combined with other data sets. Con-
sider, for example, the exposome (Rappaport & Smith,
2010) that encompasses the totality of human endeav-

our in the study of disease. Let us say that we ex-
amine susceptibility to a particular disease and have
access to the patients’ clinical data together with data
on their demographics, habits, living environments,
friends, relatives, and movie-watching habits and genre
ontology. Mining such a diverse data collection may
reveal interesting patterns that would remain hidden if
considered only directly related, clinical data. What if
the disease was less common in living areas with more
open spaces or in environments where people need to
walk instead of drive to the nearest grocery? Is the
disease less common among those that watch come-
dies and ignore politics and news?

Methods for data fusion can collectively treat data sets
and combine diverse data sources even when they di↵er
in their conceptual, contextual and typographical rep-
resentation (Aerts et al., 2006; Boström et al., 2007).
Individual data sets may be incomplete, yet because of
their diversity and complementarity, fusion improves
the robustness and predictive performance of the re-
sulting models.

Data fusion approaches can be classified into three
main categories according to the modeling stage
at which fusion takes place (Pavlidis et al., 2002;
Schölkopf et al., 2004; Maragos et al., 2008; Greene &
Cunningham, 2009). Early (or full) integration trans-
forms all data sources into a single, feature-based ta-
ble and treats this as a single data set. This is theo-
retically the most powerful scheme of multimodal fu-
sion because the inferred model can contain any type
of relationships between the features from within and
between the data sources. Early integration relies on
procedures for feature construction. For our exposome
example, patient-specific data would need to include
both clinical data and information from the movie
genre ontologies. The former may be trivial as this
data is already related to each specific patient, while
the latter requires more complex feature engineering.

Note: Please refer to the extended version of this paper published in the IEEE Transactions on Pattern
Analysis and Machine Intelligence (10.1109/TPAMI.2014.2343973). 
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Early integration neglects the modular structure of the
data.

In late (decision) integration, each data source gives
rise to a separate model. Predictions of these models
are fused by model weighting. Again, prior to model
inference, it is necessary to transform each data set
to encode relations to the target concept. For our ex-
ample, information on the movie preferences of friends
and relatives would need to be mapped to disease asso-
ciations. Such transformations may not be trivial and
would need to be crafted independently for each data
source. Once the data are transformed, the fusion can
utilize any of the existing ensemble methods.

The youngest branch of data fusion algorithms is in-
termediate (partial) integration. It relies on algorithms
that explicitly address the multiplicity of data and fuse
them through inference of a joint model. Intermediate
integration does not fuse the input data, nor does it de-
velop separate models for each data source. It instead
retains the structure of the data sources and merges
them at the level of a predictive model. This particular
approach is often preferred because of its superior pre-
dictive accuracy (Pavlidis et al., 2002; Lanckriet et al.,
2004b; Gevaert et al., 2006; Tang et al., 2009; van Vliet
et al., 2012), but for a given model type, it requires the
development of a new inference algorithm.

In this paper we report on the development of a new
method for intermediate data fusion based on con-
strained matrix factorization. Our aim was to con-
struct an algorithm that requires only minimal trans-
formation (if any at all) of input data and can fuse
attribute-based representations, ontologies, associa-
tions and networks. We begin with a description of
related work and the background of matrix factoriza-
tion. We then present our data fusion algorithm and
finally demonstrate its utility in a study comparing it
to state-of-the-art intermediate integration with multi-
ple kernel learning and early integration with random
forests.

2. Background and Related Work

Approximate matrix factorization estimates a data
matrix R as a product of low-rank matrix factors that
are found by solving an optimization problem. In two-
factor decomposition, R = Rn⇥m is decomposed to a
product WH, where W = Rn⇥k, H = Rk⇥m and
k ⌧ min(n, m). A large class of matrix factoriza-
tion algorithms minimize discrepancy between the ob-
served matrix and its low-rank approximation, such
that R ⇡WH. For instance, SVD, non-negative ma-
trix factorization and exponential family PCA all min-

imize Bregman divergence (Singh & Gordon, 2008).
The cost function can be further extended with vari-
ous constraints (Zhang et al., 2011; Wang et al., 2012).
Wang et al. (2008) (Wang et al., 2008) devised a
penalized matrix tri-factorization to include a set of
must-link and cannot-link constraints. We exploit this
approach to include relations between objects of the
same type. Constraints would for instance allow us
to include information from movie genre ontologies or
social network friendships.

Although often used in data analysis for dimension-
ality reduction, clustering or low-rank approximation,
there have been few applications of matrix factoriza-
tion for data fusion. Lange et al. (2005) (Lange
& Buhmann, 2005) proposed an early integration by
non-negative matrix factorization of a target matrix,
which was a convex combination of similarity matri-
ces obtained from multiple information sources. Their
work is similar to that of Wang et al. (2012) (Wang
et al., 2012), who applied non-negative matrix tri-
factorization with input matrix completion.

Zhang et al. (2012) (Zhang et al., 2012) proposed a
joint matrix factorization to decompose a number of
data matrices Ri into a common basis matrix W and
di↵erent coe�cient matrices Hi, such that Ri ⇡WHi

by minimizing
P

i ||Ri �WHi||. This is an interme-
diate integration approach with di↵erent data sources
that describe objects of the same type. A similar ap-
proach but with added network-regularized constraints
has also been proposed (Zhang et al., 2011). Our work
extends these two approaches by simultaneously deal-
ing with heterogeneous data sets and objects of di↵er-
ent types.

In the paper we use a variant of three-factor matrix
factorization that decomposes R into G 2 Rn⇥k1 , F 2
Rm⇥k2 and S 2 Rk1⇥k2 such that R ⇡ GSFT (Wang
et al., 2008). Approximation can be rewritten such
that entry R(p, q) is approximated by an inner product
of the p-th row of matrix G and a linear combination of
the columns of matrix S, weighted by the q-th column
of F. The matrix S, which has relatively few vectors
compared to R (k1 ⌧ n, k2 ⌧ m), is used to represent
many data vectors, and a good approximation can only
be achieved in the presence of the latent structure in
the original data.

We are currently witnessing increasing interest in the
joint treatment of heterogeneous data sets and the
emergence of approaches specifically designed for data
fusion. These include canonical correlation analy-
sis (Chaudhuri et al., 2009), combining many inter-
action networks into a composite network (Mostafavi
& Morris, 2012), multiple graph clustering with linked

Note: Please refer to the extended version of this paper published in the IEEE Transactions on Pattern
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matrix factorization (Tang et al., 2009), a mixture of
Markov chains associated with di↵erent graphs (Zhou
& Burges, 2007), dependency-seeking clustering algo-
rithms with variational Bayes (Klami & Kaski, 2008),
latent factor analysis (Lopes et al., 2011; Luttinen
& Ilin, 2009), nonparametric Bayes ensemble learn-
ing (Xing & Dunson, 2011), approaches based on
Bayesian theory (Zhang & Ji, 2006; Alexeyenko &
Sonnhammer, 2009; Huttenhower et al., 2009), neural
networks (Carpenter et al., 2005) and module guided
random forests (Chen & Zhang, 2013). These ap-
proaches either fuse input data (early integration) or
predictions (late integration) and do not directly com-
bine heterogeneous representation of objects of di↵er-
ent types.

A state-of-the-art approach to intermediate data in-
tegration is kernel-based learning. Multiple kernel
learning (MKL) has been pioneered by Lanckriet et
al. (2004) (Lanckriet et al., 2004a) and is an additive
extension of single kernel SVM to incorporate mul-
tiple kernels in classification, regression and cluster-
ing. The MKL assumes that E1, . . . , Er are r di↵erent
representations of the same set of n objects. Exten-
sion from single to multiple data sources is achieved
by additive combination of kernel matrices, given by
⌦ =

�Pr
i=1 ✓iKi

��8i : ✓i � 0,
Pr

i=1 ✓
�
i = 1,Ki ⌫ 0

 
,

where ✓i are weights of the kernel matrices, � is a pa-
rameter determining the norm of constraint posed on
coe�cients (for L2, Lp-norm MKL, see (Kloft et al.,
2009; Yu et al., 2010; 2012)) and Ki are normal-
ized kernel matrices centered in the Hilbert space.
Among other improvements, Yu et al. (2010) ex-
tended the framework of the MKL in Lanckriet et al.
(2004) (Lanckriet et al., 2004a) by optimizing vari-
ous norms in the dual problem of SVMs that allows
non-sparse optimal kernel coe�cients ✓⇤i . The het-
erogeneity of data sources in the MKL is resolved by
transforming di↵erent object types and data struc-
tures (e.g., strings, vectors, graphs) into kernel ma-
trices. These transformations depend on the choice of
the kernels, which in turn a↵ect the method’s perfor-
mance (Debnath & Takahashi, 2004).

3. Data Fusion Algorithm

Our data fusion algorithm considers r object types
E1, . . . , Er and a collection of data sources, each relat-
ing a pair of object types (Ei, Ej). In our introductory
example of the exposome, object types could be a pa-
tient, a disease or a living environment, among others.
If there are ni objects of type Ei (oi

p is p-th object of
type Ei) and nj objects of type Ej , we represent the
observations from the data source that relates (Ei, Ej)

ε1

ε2

ε3

ε4

ε1 ε2 ε3 ε4

Figure 1. Conceptual fusion configuration of four object
types, E1, E2, E3 and E4. Data sources relate pairs of ob-
ject types (matrices with shades of gray). For example,
data matrix R42 relates object types E4 and E2. Some re-
lations are missing; there is no data source relating E3 and
E1. Constraint matrices (in blue) relate objects of the same
type. In our example, constraints are provided for object
types E2 (one constraint matrix) and E4 (two constraint
matrices).

for i 6= j in a sparse matrix Rij 2 Rni⇥nj . An exam-
ple of such a matrix would be one that relates patients
and drugs by reporting on their current prescriptions.
Notice that in general matrices Rij and Rji need not
be symmetric. A data source that provides relations
between objects of the same type Ei is represented by
a constraint matrix ⇥i 2 Rni⇥ni . Examples of such
constraints are social networks and drug interactions.
In real-world scenarios we might not have access to
relations between all pairs of object types. Our data
fusion algorithm still integrates all available data if an
underlying graph of relations between object types is
connected. Fig. 1 shows an example of a block config-
uration of the fusion system with four object types.

To retain the block structure of our system, we propose
the simultaneous factorization of all relation matrices
Rij constrained by ⇥i. The resulting system contains
factors that are specific to each data source and fac-
tors that are specific to each object type. Through
factor sharing we fuse the data but also identify source-
specific patterns.

The proposed fusion approach is di↵erent from treat-
ing an entire system (e.g., from Fig. 1) as a large single

Note: Please refer to the extended version of this paper published in the IEEE Transactions on Pattern
Analysis and Machine Intelligence (10.1109/TPAMI.2014.2343973). 



Data Fusion by Matrix Factorization

matrix. Factorization of such a matrix would yield fac-
tors that are not object type-specific and would thus
disregard the structure of the system. We also show
(Sec. 5.5) that such an approach is inferior in terms of
predictive performance.

We apply data fusion to infer relations between two
target object types, Ei and Ej (Sec. 3.4 and Sec. 3.5).
This relation, encoded in a target matrix Rij , will
be observed in the context of all other data sources
(Sec. 3.1). We assume that Rij is a [0, 1]-matrix that
is only partially observed. Its entries indicate a de-
gree of relation, 0 denoting no relation and 1 denot-
ing the strongest relation. We aim to predict unob-
served entries in Rij by reconstructing them through
matrix factorization. Such treatment in general ap-
plies to multi-class or multi-label classification tasks,
which are conveniently addressed by multiple kernel
fusion (Yu et al., 2010), with which we compare our
performance in this paper.

3.1. Factorization

An input to data fusion is a relation block matrix R
that conceptually represents all relation matrices:

R =

2
6664

0 R12 · · · R1r

R21 0 · · · R2r

...
...

. . .
...

Rr1 Rr2 · · · 0

3
7775 . (1)

A block in the i-th row and j-th column (Rij) of ma-
trix R represents the relationship between object type
Ei and Ej . The p-th object of type Ei (i.e. oi

p) and q-th

object of type Ej (i.e. oj
q) are related by Rij(p, q).

We additionally consider constraints relating objects of
the same type. Several data sources may be available
for each object type. For instance, personal relations
may be observed from a social network or a family tree.
Assume there are ti � 0 data sources for object type

Ei represented by a set of constraint matrices ⇥
(t)
i for

t 2 {1, 2, . . . , ti}. Constraints are collectively encoded
in a set of constraint block diagonal matrices ⇥(t) for
t 2 {1, 2, . . . , maxi ti}:

⇥(t) =

2
66664

⇥
(t)
1 0 · · · 0

0 ⇥
(t)
2 · · · 0

...
...

. . .
...

0 0 · · · ⇥
(t)
r

3
77775

. (2)

The i-th block along the main diagonal of ⇥(t) is zero
if t > ti. Entries in constraint matrices are positive for
objects that are not similar and negative for objects
that are similar. The former are known as cannot-link

constraints because they impose penalties on the cur-
rent approximation of the matrix factors, and the lat-
ter are must-link constraints, which are rewards that
reduce the value of the cost function during optimiza-
tion.

The block matrix R is tri-factorized into block matrix
factors G and S:

G =

2
6664

Gn1⇥k1
1 0 · · · 0

0 Gn2⇥k2
2 · · · 0

...
...

. . .
...

0 0 · · · Gnr⇥kr
r

3
7775 ,

S =

2
6664

0 Sk1⇥k2
12 · · · Sk1⇥kr

1r

Sk2⇥k1
21 0 · · · Sk2⇥kr

2r
...

...
. . .

...

Skr⇥k1
r1 Skr⇥k2

r2 · · · 0

3
7775 .

(3)

A factorization rank ki is assigned to Ei during infer-
ence of the factorized system. Factors Sij define the
relation between object types Ei and Ej , while factors
Gi are specific to objects of type Ei and are used in
the reconstruction of every relation with this object
type. In this way, each relation matrix Rij obtains its
own factorization GiSijG

T
j with factor Gi (Gj) that

is shared across relations which involve object types Ei

(Ej). This can also be observed from the block struc-
ture of the reconstructed system GSGT :

2
6664

0 G1S12G
T
2 · · · G1S1rG

T
r

G2S21G
T
1 0 · · · G2S2rG

T
r

...
...

. . .
...

GrSr1G
T
1 GrSr2G

T
2 · · · 0

3
7775 . (4)

The objective function minimized by penalized matrix
tri-factorization ensures good approximation of the in-
put data and adherence to must-link and cannot-link
constraints. We extend it to include multiple con-
straint matrices for each object type:

min
G�0

||R�GSGT || +

maxi tiX

t=1

tr(GT⇥(t)G), (5)

where || · || and tr(·) denote the Frobenius norm and
trace, respectively.

For decomposition of relation matrices we derive
updating rules based on the penalized matrix tri-
factorization of Wang et al. (2008) (Wang et al., 2008).

The algorithm for solving the optimization problem in
Eq. (5) initializes matrix factors (see Sec. 3.6) and im-
proves them iteratively. Successive updates of Gi and
Sij converge to a local minimum of the optimization
problem.

Note: Please refer to the extended version of this paper published in the IEEE Transactions on Pattern
Analysis and Machine Intelligence (10.1109/TPAMI.2014.2343973). 
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Multiplicative updating rules are derived from Wang
et al. (2008) (Wang et al., 2008) by fixing one matrix
factor (i.e. G) and considering the roots of the par-
tial derivative with respect to the other matrix factor
(i.e. S, and vice-versa) of the Lagrangian function.
The latter is constructed from the objective function
given in Eq. (5). The update rule alternates between
first fixing G and updating S, and then fixing S and
updating G, until convergence. The update rule for S
is:

S (GT G)�1GT RG(GT G)�1 (6)

The rule for factor G incorporates data on constraints.
We update each element of G at position (p, q) by
multiplying it with:

vuut (RGS)+(p,q) + [G(SGT GS)�](p,q) +
P

t((⇥
(t))�G)(p,q)

(RGS)�(p,q) + [G(SGT GS)+](p,q) +
P

t((⇥
(t))+G)(p,q)

.

(7)

Here, X+
(p,q) is defined as X(p, q) if entry X(p, q) � 0

else 0. Similarly, the X�
(p,q) is �X(p, q) if X(p, q)  0

else it is set to 0. Therefore, both X+ and X� are
non-negative matrices. This definition is applied to
matrices in Eq. (7), i.e. RGS, SGT GS, and ⇥(t) for
t 2 {1, 2, . . . , maxi ti}.

3.2. Stopping Criteria

In this paper we apply data fusion to infer relations
between two target object types, Ei and Ej . We hence
define the stopping criteria that observes convergence
in approximating only the target matrix Rij . Our con-
vergence criteria is:

||Rij �GiSijG
T
j || < ✏, (8)

where ✏ is a user-defined parameter, possibly refined
through observing log entries of several runs of the fac-
torization algorithm. In our experiments ✏ was set to
10�5. To reduce the computational load, the conver-
gence criteria was assessed only every fifth iteration
only.

3.3. Parameter Estimation

To fuse data sources on r object types, it is necessary
to estimate r factorization ranks, k1, k2, . . . , kr. These
are chosen from a predefined interval of possible
values for each rank by estimating the model quality.
To reduce the number of needed factorization runs
we mimic the bisection method by first testing rank
values at the midpoint and borders of specified
ranges and then for each rank value selecting the
subinterval for which better model quality was
achieved. We evaluate the models through the

explained variance, the residual sum of squares (RSS)
and a measure based on the cophenetic correlation
coe�cient ⇢. We compute these measures from
the target relation matrix Rij . The RSS is com-
puted from observed entries in Rij as RSS(Rij) =P

(oi
p,oj

q)2A(Ei,Ej)

⇥
(Rij �GiSijG

T
j )(p, q)

⇤2
, where

A(Ei, Ej) is the set of known associations between
objects of Ei and Ej . The explained variance for
Rij is r2(Rij) = 1 � RSS(Rij)/

P
p,q[Rij(p, q)]2.

The cophenetic correlation score was implemented as
described in (Brunet et al., 2004).

We assess the three quality scores through internal
cross-validation and observe how r2(Rij), RSS(Rij)
and ⇢(Rij) vary as factorization ranks change. We
select ranks k1, k2, . . . , kr where the cophenetic coef-
ficient begins to fall, the explained variance is high
and the RSS curve shows an inflection point (Hutchins
et al., 2008).

3.4. Prediction from Matrix Factors

The approximate relation matrix bRij for the target
pair of object types Ei and Ej is reconstructed as:

bRij = GiSijG
T
j . (9)

When the model is requested to propose relations for
a new object oi

ni+1 of type Ei that was not included
in the training data, we need to estimate its factorized
representation and use the resulting factors for predic-
tion. We formulate a non-negative linear least-squares
(NNLS) and solve it with an e�cient interior point
Newton-like method (Van Benthem & Keenan, 2004)
for minx�0 ||(SGT )T x�oi

ni+1||2, where oi
ni+1 2 R

P
ni

is the original description of object oi
ni+1 across all

available relation matrices and x 2 R
P

ki is its fac-
torized representation. A solution vector xT is added
to G and a new bRij 2 R(ni+1)⇥nj is computed using
Eq. (9).

We would like to identify object pairs (oi
p, o

j
q) for which

the predicted degree of relation bRij(p, q) is unusually
high. We are interested in candidate pairs (oi

p, o
j
q)

for which the estimated association score bRij(p, q) is
greater than the mean estimated score of all known
relations of oi

p:

bRij(p, q) >
1

|A(oi
p, Ej)|

X

oj
m2A(oi

p,Ej)

bRij(p, m), (10)

where A(oi
p, Ej) is the set of all objects of Ej related to

oi
p. Notice that this rule is row-centric, that is, given

an object of type Ei, it searches for objects of the other
type (Ej) that it could be related to. We can modify

Note: Please refer to the extended version of this paper published in the IEEE Transactions on Pattern
Analysis and Machine Intelligence (10.1109/TPAMI.2014.2343973). 
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the rule to become column-centric, or even combine
the two rules.

For example, let us consider that we are studying dis-
ease predispositions for a set of patients. Let the pa-
tients be objects of type Ei and diseases objects of type
Ej . A patient-centric rule would consider a patient and
his medical history and through Eq. (10) propose a
set of new disease associations. A disease-centric rule
would instead consider all patients already associated
with a specific disease and identify other patients with
a su�ciently high association score.

In our experiments we combine row-centric and
column-centric approaches. We first apply a row-
centric approach to identify candidates of type Ei and
then estimate the strength of association to a specific
object oj

q by reporting a percentile of association score
in the distribution of scores for all true associations
of oj

q, that is, by considering the scores in the q-ed

column of bRij .

3.5. An Ensemble Approach to Prediction

Instead of a single model, we construct an ensemble of
factorization models. The resulting matrix factors in
each model di↵er due to the initial random conditions
or small random perturbations of selected factorization
ranks. We use each factorization system for inference
of associations (Sec. 3.4) and then select the candidate
pair through a majority vote. That is, the rule from
Eq. (10) must apply in more than one half of factorized
systems of the ensemble. Ensembles improved the pre-
dictive accuracy and stability of the factorized system
and the robustness of the results. In our experiments
the ensembles combined 15 factorization models.

3.6. Matrix Factor Initialization

The inference of the factorized system in Sec. 3.1 is
sensitive to the initialization of factor G. Proper ini-
tialization sidesteps the issue of local convergence and
reduces the number of iterations needed to obtain ma-
trix factors of equal quality. We initialize G by sepa-
rately initializing each Gi, using algorithms for single-
matrix factorization. Factors S are computed from G
(Eq. (6)) and do not require initialization.

Wang et al. (2008) (Wang et al., 2008) and several
other authors (Lee & Seung, 2000) use simple random
initialization. Other more informed initialization algo-
rithms include random C (Albright et al., 2006), ran-
dom Acol (Albright et al., 2006), non-negative double
SVD and its variants (Boutsidis & Gallopoulos, 2008),
and k-means clustering or relaxed SVD-centroid ini-
tialization (Albright et al., 2006). We show that the

latter approaches are indeed better over a random ini-
tialization (Sec. 5.4). We use random Acol in our case
study. Random Acol computes each column of Gi as
an element-wise average of a random subset of columns
in Rij .

4. Experiments

We considered a gene function prediction problem
from molecular biology, where recent technological ad-
vancements have allowed researchers to collect large
and diverse experimental data sets. Data integration
is an important aspect of bioinformatics and the sub-
ject of much recent research (Yu et al., 2010; Vaske
et al., 2010; Moreau & Tranchevent, 2012; Mostafavi &
Morris, 2012). It is expected that various data sources
are complementary and that high accuracy of predic-
tions can be achieved through data fusion (Parikh &
Polikar, 2007; Pandey et al., 2010; Savage et al., 2010;
Xing & Dunson, 2011). We studied the fusion of eleven
di↵erent data sources to predict gene function in the
social amoeba Dictyostelium discoideum and report on
the cross-validated accuracy for 148 gene annotation
terms (classes).

We compare our data fusion algorithm to an early in-
tegration by a random forest (Boulesteix et al., 2008)
and an intermediate integration by multiple kernel
learning (MKL) (Yu et al., 2010). Kernel-based fu-
sion used a multi-class L2 norm MKL with Vapnik’s
SVM (Ye et al., 2008). The MKL was formulated as a
second order cone program (SOCP) and its dual prob-
lem was solved by the conic optimization solver Se-
DuMi1. Random forests from the Orange2 data min-
ing suite were used with default parameters.

4.1. Data

The social amoeba D. discoideum, a popular model or-
ganism in biomedical research, has about 12,000 genes,
some of which are functionally annotated with terms
from Gene Ontology3 (GO). The annotation is rather
sparse and only ⇠1, 400 genes have experimentally de-
rived annotations. The Dictyostelium community can
thus gain from computational models with accurate
function predictions.

We observed six object types: genes (type 1), ontology
terms (type 2), experimental conditions (type 3), pub-
lications from the PubMed database (PMID) (type 4),
Medical Subject Headings (MeSH) descriptors (type

1http://sedumi.ie.lehigh.edu
2http://orange.biolab.si
3http://www.geneontology.org

Note: Please refer to the extended version of this paper published in the IEEE Transactions on Pattern
Analysis and Machine Intelligence (10.1109/TPAMI.2014.2343973). 
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5), and KEGG4 pathways (type 6). Object types
and their observed relations are shown in Fig. 2. The
data included gene expression measured during di↵er-
ent time-points of a 24-hour development cycle (Parikh
et al., 2010) (R13, 14 experimental conditions), gene
annotations with experimental evidence code to 148
generic slim terms from the GO (R12), PMIDs and
their associated D. discoideum genes from Dictybase5

(R14), genes participating in KEGG pathways (R16),
assignments of MeSH descriptors to publications from
PubMed (R45), references to published work on asso-
ciations between a specific GO term and gene product
(R42), and associations of enzymes involved in KEGG
pathways and related to GO terms (R62).

To balance R12, our target relation matrix, we added
an equal number of non-associations for which there
is no evidence of any type in the GO. We constrain
our system by considering gene interaction scores from
STRING v9.06 (⇥1) and slim term similarity scores
(⇥2) computed as 0.8hops, where hops is the length of
the shortest path between two terms in the GO graph.
Similarly, MeSH descriptors are constrained with the
average number of hops in the MeSH hierarchy be-
tween each pair of descriptors (⇥5). Constraints be-
tween KEGG pathways correspond to the number of
common ortholog groups (⇥6). The slim subset of GO
terms was used to limit the optimization complexity
of the MKL and the number of variables in the SOCP,
and to ease the computational burden of early inte-
gration by random forests, which inferred a separate
model for each of the terms.

To study the e↵ects of data sparseness, we conducted
an experiment in which we selected either the 100 or
1000 most GO-annotated genes (see second column of
Table 1 for sparsity).

In a separate experiment we examined predictions of
gene association with any of nine GO terms that are
of specific relevance to the current research in the Dic-
tyostelium community (upon consultations with Gad
Shaulsky, Baylor College of Medicine, Houston, TX;
see Table 2). Instead of using a generic slim subset of
terms, we examined the predictions in the context of a
complete set of GO terms. This resulted in a data set
with ⇠2.000 terms, each term having on average 9.64
direct gene annotations.

4http://www.kegg.jp
5http://dictybase.org/Downloads
6http://string-db.org
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Figure 2. The fusion configuration. Nodes represent object
types used in our study. Edges correspond to relation and
constraint matrices. The arc that represents the target
matrix R12 and its object types are highlighted.

4.2. Scoring

We estimated the quality of inferred models by ten-
fold cross-validation. In each iteration, we split the
gene set to a train and test set. The data on genes
from the test set was entirely omitted from the train-
ing data. We developed prediction models from the
training data and tested them on the genes from the
test set. The performance was evaluated using an F1

score, a harmonic mean of precision and recall, which
was averaged across cross-validation runs.

4.3. Preprocessing for Kernel-Based Fusion

We generated an RBF kernel for gene expression mea-
surements from R13 with width � = 0.5 and the RBF
function (xi,xj) = exp(�||xi � xj ||2/2�2), and a
linear kernel for [0, 1]-protein-interaction matrix from
⇥1. Kernels were applied to data matrices. We used
a linear kernel to generate a kernel matrix from D.
discoideum specific genes that participate in pathways
(R16), and a kernel matrix from PMIDs and their as-
sociated genes (R14). Several data sources describe
relations between object types other than genes. For
kernel-based fusion we had to transform them to ex-
plicitly relate to genes. For instance, to relate genes
and MeSH descriptors, we counted the number of

Note: Please refer to the extended version of this paper published in the IEEE Transactions on Pattern
Analysis and Machine Intelligence (10.1109/TPAMI.2014.2343973). 
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publications that were associated with a specific gene
(R14) and were assigned a specific MeSH descriptor
(R45, see also Fig. 2). A linear kernel was applied
to the resulting matrix. Kernel matrices that incor-
porated relations between KEGG pathways and GO
terms (R62), and publications and GO terms were ob-
tained in similar fashion.

To represent the hierarchical structure of MeSH de-
scriptors (⇥5), the semantic structure of the GO graph
(⇥2) and ortholog groups that correspond to KEGG
pathways (⇥6), we considered the genes as nodes in
three distinct large weighted graphs. In the graph
for ⇥5, the link between two genes was weighted by
the similarity of their associated sets of MeSH descrip-
tors using information from R14 and R45. We consid-
ered the MeSH hierarchy to measure these similarities.
Similarly, for the graph for ⇥2 we considered the GO
semantic structure in computing similarities of sets of
GO terms associated with genes. In the graph for ⇥6,
the gene edges were weighted by the number of com-
mon KEGG ortholog groups. Kernel matrices were
constructed with a di↵usion kernel (Kondor & Laf-
ferty, 2002).

The resulting kernel matrices were centered and nor-
malized. In cross-validation, only the training part of
the matrices was preprocessed for learning, while pre-
diction, centering and normalization were performed
on the entire data set. The prediction task was de-
fined through the classification matrix of genes and
their associated GO slim terms from R12.

4.4. Preprocessing for Early Integration

The gene-related data matrices prepared for kernel-
based fusion were also used for early integration and
were concatenated into a single table. Each row in
the table represented a gene profile obtained from all
available data sources. For our case study, each gene
was characterized by a fixed 9,362-dimensional feature
vector. For each GO slim term, we then separately
developed a classifier with a random forest of classifi-
cation trees and reported cross-validated results.

5. Results and Discussion

5.1. Predictive Performance

Table 1 presents the cross-validated F1 scores the data
set of slim terms. The accuracy of our matrix factor-
ization approach is at least comparable to MKL and
substantially higher than that of early integration by
random forests. The performance of all three fusion
approaches improved when more genes and hence more
data were included in the study. Adding genes with

sparser profiles also increased the overall data sparsity,
to which the factorization approach was least sensitive.

The accuracy for nine selected GO terms is given in
Table 2. Our factorization approach yields consis-
tently higher F1 scores than the other two approaches.
Again, the early integration by random forests is in-
ferior to both intermediate integration methods. No-
tice that, with one or two exceptions, F1 scores are
very high. This is important, as all nine gene pro-
cesses and functions observed are relevant for current
research of D. discoideum where the methods for data
fusion can yield new candidate genes for focused ex-
perimental studies.

Our fusion approach is faster than multiple kernel
learning. Factorization required 18 minutes of runtime
on a standard desktop computer compared to 77 min-
utes for MKL to finish one iteration of cross-validation
on a whole-genome data set.

Table 1. Cross-validated F1 scores for fusion by matrix fac-
torization (MF), a kernel-based method (MKL) and ran-
dom forests (RF).

D. discoideum task MF MKL RF
100 genes 0.799 0.781 0.761
1000 genes 0.826 0.787 0.767
Whole genome 0.831 0.800 0.782

5.2. Sensitivity to Inclusion of Data Sources

Inclusion of additional data sources improves the ac-
curacy of prediction models. We illustrate this in
Fig. 3(a), where we started with only the target data
source R12 and then added either R13 or ⇥1 or both.
Similar e↵ects were observed when we studied other
combinations of data sources (not shown here for
brevity).

5.3. Sensitivity to Inclusion of Constraints

We varied the sparseness of gene constraint matrix ⇥1

by holding out a random subset of protein-protein in-
teractions. We set the entries of ⇥1 that correspond
to hold-out constraints to zero so that they did not
a↵ect the cost function during optimization. Fig. 3(b)
shows that including additional information on genes
in the form of constraints improves the predictive per-
formance of the factorization model.

5.4. Matrix Factor Initialization Study

We studied the e↵ect of initialization by observing the
error of the resulting factorization after one and af-
ter twenty iterations of factorization matrix updates,

Note: Please refer to the extended version of this paper published in the IEEE Transactions on Pattern
Analysis and Machine Intelligence (10.1109/TPAMI.2014.2343973). 
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Table 2. Gene ontology term-specific cross-validated F1 scores for fusion by matrix factorization (MF), a kernel-based
method (MKL) and random forests (RF).

GO term name Term identifier Namespace Size MF MKL RF
Activation of adenylate cyclase activity 0007190 BP 11 0.834 0.770 0.758
Chemotaxis 0006935 BP 58 0.981 0.794 0.538
Chemotaxis to cAM 0043327 BP 21 0.922 0.835 0.798
Phagocytosis 0006909 BP 33 0.956 0.892 0.789
Response to bacterium 0009617 BP 51 0.899 0.788 0.785
Cell-cell adhesion 0016337 BP 14 0.883 0.867 0.728
Actin binding 0003779 MF 43 0.676 0.664 0.642
Lysozyme activity 0003796 MF 4 0.782 0.774 0.754
Sequence-specific DNA binding TFA 0003700 MF 79 0.956 0.894 0.732
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Figure 3. Adding new data sources (a) or incorporating more object-type-specific constraints in ⇥1 (b) both increase the
accuracy of the matrix factorization-based models.

the latter being about one fourth of the iterations re-
quired for factorization to converge. We estimate the
error relative to the optimal (k1, k2, . . . , k6)-rank ap-
proximation given by the SVD. For iteration v and
matrix Rij the error is computed by:

Errij(v) =
||Rij � G

(v)
i S

(v)
ij (GT

j )(v)|| � dF (Rij , [Rij ]k)

dF (Rij , [Rij ]k)
,

(11)

where G
(v)
i , G

(v)
j and S

(v)
ij are matrix factors obtained

after executing v iterations of factorization algorithm.
In Eq. (11) dF (Rij , [Rij ]k) = ||Rij � Uk⌃kV

T
k || de-

notes the Frobenius distance between Rij and its k-

rank approximation given by the SVD, where k =
max(ki, kj) is the approximation rank. Errij(v) is a
pessimistic measure of quantitative accuracy because
of the choice of k. This error measure is similar to the
error of the two-factor non-negative matrix factoriza-
tion from (Albright et al., 2006).

Table 3 shows the results for the experiment with 1000
most GO-annotated D. discoideum genes and selected
factorization ranks k1 = 65, k2 = 35, k3 = 13, k4 = 35,
k5 = 30 and k6 = 10. The informed initialization
algorithms surpass the random initialization. Of these,
the random Acol algorithm performs best in terms of

Note: Please refer to the extended version of this paper published in the IEEE Transactions on Pattern
Analysis and Machine Intelligence (10.1109/TPAMI.2014.2343973). 
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Table 3. E↵ect of initialization algorithm on predictive power of factorization model.

Method Time G(0) Storage G(0) Err12(1) Err12(20)
Rand. 0.0011 s 618K 5.11 3.61
Rand. C 0.1027 s 553K 2.97 1.67
Rand. Acol 0.0654 s 505K 1.59 1.30
K-means 0.4029 s 562K 2.47 2.20
NNDSVDa 0.1193 s 562K 3.50 2.01

accuracy and is also one of the simplest.

5.5. Early Integration by Matrix Factorization

Our data fusion approach simultaneously factorizes in-
dividual blocks of data in R. Alternatively, we could
also disregard the data structure, and treat R as a
single data matrix. Such data treatment would trans-
form our data fusion approach to that of early in-
tegration and lose the benefits of structured system
and source-specific factorization. To prove this exper-
imentally, we considered the 1,000 most GO-annotated
D. discoideum genes. The resulting cross-validated
F1 score for factorization-based early integration was
0.576, compared to 0.826 obtained with our proposed
data fusion algorithm. This result is not surprising
as neglecting the structure of the system also causes
the loss of the structure in matrix factors and the
loss of zero blocks in factors S and G from Eq. (3).
Clearly, data structure carries substantial information
and should be retained in the model.

6. Conclusion

We have proposed a new data fusion algorithm. The
approach is flexible and, in contrast to state-of-the-art
kernel-based methods, requires minimal, if any, pre-
processing of data. This latter feature, together with
its excellent accuracy and time response, are the prin-
cipal advantages of our new algorithm.

Our approach can model any collection of data sets,
each of which can be expressed in a matrix. The gene
function prediction task considered in the paper, which
has traditionally been regarded as a classification prob-
lem (Larranaga et al., 2006), is just one example of
the types of problems that can be addressed with our
method. We anticipate the utility of factorization-
based data fusion in multiple-target learning, associ-
ation mining, clustering, link prediction or structured
output prediction.
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