
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014. 1

Discriminatively Trained And-Or Graph Models
for Object Shape Detection
Liang Lin, Xiaolong Wang, Wei Yang, and Jian-Huang Lai

Abstract—In this paper, we investigate a novel reconfigurable part-based model, namely And-Or graph model, to recognize object
shapes in images. Our proposed model consists of four layers: leaf-nodes at the bottom are local classifiers for detecting contour
fragments; or-nodes above the leaf-nodes function as the switches to activate their child leaf-nodes, making the model reconfigurable
during inference; and-nodes in a higher layer capture holistic shape deformations; one root-node on the top, which is also an or-node,
activates one of its child and-nodes to deal with large global variations (e.g. different poses and views). We propose a novel structural
optimization algorithm to discriminatively train the And-Or model from weakly annotated data. This algorithm iteratively determines
the model structures (e.g. the nodes and their layouts) along with the parameter learning. On several challenging datasets, our model
demonstrates the effectiveness to perform robust shape-based object detection against background clutter and outperforms the other
state-of-the-art approaches. We also release a new shape database with annotations, which includes more than 1500 challenging
shape instances, for recognition and detection.

Index Terms—Object Detection, Grammar Model, And-Or Graph, Structural Optimization.

F

1 INTRODUCTION

As psychophysics experiments suggested, humans can
successfully identify objects in images using contour
fragments alone [38]. In computer vision, recognizing
object shapes from salient contours is an active research
area. Several methods [32], [21], [13], [10] have demon-
strated that the contours (silhouettes) are robust against
variations of illumination, color, and texture. However,
there are two long-standing difficulties in the current
research.
• Unreliable edge map extraction and contour tracing.

Some key contours can be missing or connected to
their background, making it difficult for accurately
localizing shapes against surrounding clutter.

• Large variations within an object category, e.g. dif-
ferent object poses, views, occlusions, and defor-
mations. Without using appearance or texture in-
formation, this challenge might be more serious, as
shape contours are somewhat ambiguous and less
discriminative.

Some recently proposed approaches addressed the
two issues by learning hierarchical and compositional
models, and achieved substantial progresses [28], [32],

This work was supported by the National Natural Science Foundation of
China (no. 61173082, no. 61173084), Guangdong Science and Technology
Program (no. 2012B031500006), Guangdong Natural Science Foundation
(no. S2013050014548), Special Project on Integration of Industry, Edu-
cation and Research of Guangdong Province (no. 2012B091000101, no.
2012B091100148), and Fundamental Research Funds for the Central Uni-
versities (no. 13lgjc26).
Copyright (c) 2014 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending an email to pubs-permissions@ieee.org.

• The authors are with Sun Yat-sen University, Guangzhou 510006, P. R.
China, and L. Lin and J. H. Lai are with the SYSU-CMU Shunde Interna-
tional Joint Research Institute, Shunde, China. E-mail: linliang@ieee.org.

[14]. These models represent an object shape in terms of
the parts (i.e. local contours) and the inter-part relations.
However, their model structures (e.g. the number of
parts and the ways of composition) are often fixed,
consequently limiting the performances on complex sce-
narios.

In this work, we develop a novel reconfigurable part-
based model in the form of an And-Or graph repre-
sentation, which is discriminatively trained from weakly
annotated training data (i.e. without annotating the ob-
ject parts). Our model achieves superior performances
on the task of detecting and localizing shapes from
cluttered background, compared with other state-of-the-
art methods. Figure 1 shows an example of our And-
Or graph model. The key component of our model is
the “switch variable”, referred to the or-node, which in-
corporates the compositional alternatives and makes the
model reconfigurable. Specifically, the or-node specifies
the way of compositions by activating the child nodes,
to deal with the above-mentioned challenges in shape
detection. Our And-Or graph model consists of four
layers described as follows.

The leaf-nodes at the bottom represent a batch of local
classifiers that detect the salient contour fragments of
objects. Each leaf-node is defined within a divided block,
denoted by the red box in the bottom of Figure 1. Given
the edge map extracted from an image, a leaf-node takes
the contours fallen into its block as the inputs. Once
a long contour exceeds the block, it is automatically
truncated. This is actually a partial matching scheme
to handle the unreliable bottom-up edge tracing, i.e.
to avoid object contours connecting to the background.
Moreover, to capture the discriminability of contours,
we design a new contour feature that combines the
triangle-based descriptor [20] and the Shape Context

ar
X

iv
:1

50
2.

00
34

1v
1

 [
cs

.C
V

]
 2

 F
eb

 2
01

5

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014. 2

Part 1 Part 2 Part 3

Part 4 Part 6Part 5

or-node

leaf-node

and-node

root-node

View 1 View 2

Fig. 1. An example of our And-Or graph model. It
comprises four layers from bottom to top: the leaf-nodes
(denoted by the solid circles) at the bottom for localizing
local contour fragments, the or-nodes (denoted by the
dashed blue circles) over the bottom specifying the ac-
tivations of their child leaf-nodes, the and-nodes (denoted
by the solid squares) encoding the holistic (view-based)
variances, and the root-node (denoted by the dashed blue
squares) on the top to switch the selection of its child
and-nodes. The horizontal links incorporate contextual
interactions among parts. Note that the leaf-nodes inherit
the links that are defined between the layer of or-nodes.
The nodes and links in red indicate the activation of leaf-
nodes during the detection.

descriptor [3].
The or-nodes defined as the switch variables that spec-

ify the activation of their child leaf-nodes, denoted by the
dashed blue circles in Figure 1. During detection, each
or-node activates one of its child lead-nodes and also
selects the contour fragment detected by the activated
leaf-node. The or-nodes thus represent the parts of an
object shape, while the leaf-nodes capture all of the
local variabilities. As Figure 1 illustrates, our model can
capture not only the local variations (e.g. part 2 of the
example), but also the inconsistency caused by missing
or broken edges (e.g. part 3 of the example).

The collaborative edges in our model impose the con-
textual information among shape contours, denoted by
the horizontal links between the leaf-nodes in Figure 1.
Some of the existing compositional shape models ignore

the contextual relations among contours, or simplify the
relations by calculating the co-occurrence frequencies of
neighbor contours [16]. In contrast, we utilize informa-
tive spatial layout features to define the edges, motivated
by the methods for contextualized object detection [5],
[40].

The and-nodes aggregate the local shape contours that
have been selected via the or-nodes. Each and-node is
defined as a potential function that captures the holistic
shape deformations and distortions. Once the contour
fragments are localized, The and-nodes further verify
them as a whole to improve the discriminability of our
model.

The root-node at the top functions as a switch to
choose its child and-nodes, accounting for the large
global variations (e.g. different views of shapes). It is
defined exactly in the same way as the or-nodes. For
example, two horses may appear diversely under dif-
ferent views, so that our model can adaptively activate
different and-nodes for detecting them.

From the bottom to the top, our model is hierarchically
constructed into an “And-Or-And-Or” structure. Note
that the leaf-nodes in our model can also be viewed as
the and-nodes, as they are defined in the same way. This
structure is very expressive and general to model object
variations. The “And” symbol indicates the combination
of sub-parts while the “Or” symbol indicates the switch
between possible configurations. We introduce the latent
variables to make our model reconfigurable. In particu-
lar, the latent variables include the activation states of
the or-nodes and the root-nodes, and the locations of
contour fragments. The leaf-nodes and the and-nodes
are defined as classification functions whose coefficients
are treated as the observable model parameters. With the
latent variables, the graph nodes and edges are explicitly
mapped with the discriminative classification function of
our model. Figure 4 provides an intuitive illustration of
our And-Or graph model, which will be discussed later
on. We regard our model as a general extension of the
pictorial and deformable part-based models [9], [1], [7],
as it incorporates not only the hierarchical decomposi-
tions, but also the explicit structural alternatives.

The training of the And-Or graph model is another
innovation of this work. The challenges lie in two as-
pects. First, multiple parameters in different layers need
to be optimized along with the latent variables, and the
objective function for optimization is non-convex, which
cannot be solved directly with the traditional methods
such as the support vector machines (SVMs). Second, it
is non-trivial to automatically discover the model struc-
tures in the model learning, as the training examples are
not annotated into object parts. In the literature, learning
And-Or graph models (or other reconfigurable models)
usually relies on elaborative annotations or initializa-
tions [45], [46], [15]. To cope with these two problems,
we propose a novel learning method, called Dynamical
Structural Optimization (DSO), which is inspired by the
recently proposed optimization methods [7], [43], [42].

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014. 3

This algorithm iteratively optimizes the model structures
together with the multi-layer parameter learning, which
includes three main steps. (i) Apply current model on the
training examples while estimating the latent variables
for each example. (ii) Discover new model structures. As
the model structures are mapped with the discriminative
function of our model (see Figure 4), refactoring (rear-
ranging) the feature vectors of training examples can
lead to new structures. In brief, we perform clustering
on the sub-feature-vectors corresponding to different
nodes, and generate new structures according to the
clustering results. For example, at one part of the shape,
if the corresponding sub-feature-vectors are clustered
into three groups, then we create three leaf-nodes accord-
ingly to detect the local contours. (iii) Learn the model
parameters with the newly generated structures.

Shape detection using the And-Or graph model is
realized by searching over a image pyramid. We first
accomplish two testing steps to generate several hy-
potheses of detection, and each hypothesis represents a
configuration comprising detected contour fragments. (i)
Local testing uses all leaf-nodes to detector contour frag-
ments within the edge map. (ii) Binding testing imposes
the collaborative edges among the contour fragments
to further weigh the hypotheses. Afterwards, the and-
nodes re-score each hypothesis by measuring the contour
fragments as a whole. The root-node decides the final
detection by selecting the most possible hypothesis.

The remainder of this paper is organized as follows.
Section 2 provides a brief review of related work. Then
we present the model representations in Section 3 and
follow with a description of the inference procedure in
Section 4. Section 5 focuses on discussing the learning
algorithm. The experimental results and comparisons are
exhibited in Section 6. Section 7 concludes this paper.

2 RELATED WORK

In this section, we review the extant techniques for shape
(or contour) matching and shape model learning.

Many methods treat shape detection as a task of
matching contours with certain distance measures, and
they mostly utilized hand-drawn reference templates [3],
[8], [47], [2], [20], [25], [21]. To handle diverse shape
deformations and distortions, a number of robust shape
(or contour) descriptors have been extensively dis-
cussed, such as Shape Context [3], Geodesic-Intensity
Histogram [18], Contour Flexibility [39], and Local An-
gle [25], [20]. Based on these shape features, several effec-
tive matching schemes [14], [34], [2] have been proposed
to deal with the various challenges. For example, the
inner-distance matching algorithm [18] was presented to
handle the articulated shape deformations. Tu et al. [34]
presented an efficient data-driven EM algorithm to iter-
atively optimize shape alignment and matching corre-
spondences. Felzenszwalb et al. [8] proposed to hierar-
chically match shapes using the dynamic programming
algorithm, demonstrating good potential in capturing

large shape deformations. An MCMC-based sampling
algorithm was discussed in [14] to solve multi-layer
shape matching. To overcome the problems caused by
incomplete or noisy contours, Zhu et al. [47] presented
a many-to-many contour matching algorithm using a
voting scheme. Riemenschneider et al. [25] solved the
partial shape matching by identifying matches from
fragments of arbitrary length to the reference contours.

An alternative to shape detection is addressed by
learning shape models for a given category of shape
instances. These methods represent shapes as a loose
collection of local contour fragments or an ensemble of
pairwise constraints [28], [16], [32]. They usually involve
the construction of a codebook of contour fragments
(e.g. Groups of Adjacent Contours (GAS) [10]) and train
the shape models by supervised leaning. For example,
the boosting methods were employed to train the dis-
criminative classifiers with contour-based features [28],
[24]. Maji et al. [22] incorporated the Hough transform
into a discriminative learning framework, in which the
contour words and their spatial layout were optimized
jointly. Kokkinos and Yuille [13] suggested hierarchically
parsing shapes with the bottom-up and top-down com-
putations, and adopted the multiple instance learning
algorithm for model training. Another type of shape
template is the active basis model proposed by Wu
et al. [35], which was trained with a shared sketch
algorithm.

Very recently, major progress has been made in
appearance-based object recognition using the latent
structure models [44], [7], [36], in which the latent
variables effectively enrich the representations. These
methods owe their success to their ability to cope with
deformations, occlusions, and variations. Based on these
methods, Srinivasan et al. [32] trained the descriptive
contour-based detector by using the latent-SVM algo-
rithm, Song et al. [31] integrated the context information
with the SVM-based learning, and Schnitzspan et al. [27]
further combined the latent discriminative learning with
conditional random fields using multi-types of shape
features.

The And-Or graph was originally explored by Zhu
and Mumford [46] for modeling complex visual pat-
terns. Its key idea, using And/Or nodes to account for
structure reconfigurations and variabilities in hierarchi-
cal composition, has been extensively applied in several
vision tasks such as object and scene parsing [45], [37],
[15] and event analysis [29]. However, these approaches
often require elaborate annotations or manual initializa-
tions. Si and Zhu [30] recently presented a framework for
unsupervised learning of the And-Or image template,
and demonstrated very promising results on modeling
complex object categories. Our approach is partially mo-
tivated by these works, and we target on an alternative
way to discriminatively train the And-Or graph model
with the non-convex optimization. Our preliminary at-
tempts along this path have been discussed in [36], [17].

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014. 4

3 REPRESENTATIONS

In this section, we define all the components of our And-
Or graph models, including the shape features and the
potential functions for graph nodes and edges.

3.1 Contour Descriptor

First, we introduce our contour descriptor for charac-
terizing local contour fragments. As Figure 2 illustrates,
this feature combines the triangle-based descriptor [20]
and the Shape Context [3], capturing local contour defor-
mations with the surrounding contexts. For any contour
fragment we extract a sequence of sample points Ω,
and for each point in Ω, its triangle-based descriptor
and Shape Context descriptor are both computed and
concatenated into a vector. Then we pool the vectors of
all the sample points into a histogram.

T T

A

B

(a) (b)

Fig. 2. Illustration of the proposed contour descriptor.
This feature combines the Shape Context descriptor in (a)
and the triangle-based descriptor in (b) to characterize a
local contour fragment.

Given a point T ∈ Ω for a contour, we collect triangles
that are formed by T and any other two A,B in Ω. Note
that each triangle is constructed by three different points.
As Figure 2(b) illustrates, the triangle-based descriptor
for T is a 3-D histogram, denoted by Ht(T), which con-
tains the angle values (e.g. ∠BTA) and the two distances
TA and TB in each dimension, respectively. We use the
clockwise orientation to determine the triangle ∠BTA,
and the distances TB and TA are normalized by the
average distance between the points in Ω. The Shape
Context descriptor, denoted by Hb(T), is constructed by
T and all other points in Ω.

In our implementation, the number of sample points
for each contour fragment is fixed at 20 , and the

distances between adjacent points in Ω are equal. For
each point T , (20−1)∗(20−2)/2 = 171 triangles are thus
collected. We define the 3-D histogram Ht(T) including
2 bins for TA, 2 bins for TB, and 6 bins for angle
∠BTA ranging from 0 to π. We transform Ht(T) into
a 2 × 2 × 6 = 24-bin 1-D feature vector. For the Shape
Context descriptor Hb(T), we use 2 bins for lengths and 6
bins for polar angles ranging from 0 to 2π, then its length
is 2×6 = 12. By concatenating these two descriptors, we
obtain the feature vector of T including (24 + 12) = 36
bins. Thus, the contour fragment is represented by a
feature vector of 36 ∗ 20 = 702 bins.

3.2 And-Or Graph Model
Our model is defined in the form of an And-Or graph
G = (V, E), where V includes four levels of nodes and
E includes the graph edges. The root-node is indexed as
0, indicating the switch among different shape views,(or
other different global variations, by analogy). The and-
nodes are indexed by r = 1, ...,m, with each repre-
senting one global classifier. For each and-node, there
are a number of z or-nodes arranged in a layout of
b1 × b2 blocks to represent several object parts, and we
index all of the or-nodes as j = m + 1, ..., (z + 1) ∗ m.
The leaf-nodes in the fourth layer are indexed by i =
(z + 1) ∗ m + 1, ..., (z + 1) ∗ m + 1 + n, where n is the
number of leaf-nodes. For notation simplicity, we define
m′ = (z + 1) ∗ m + 1, n′ = (z + 1) ∗ m + 1 + n, and
i ∈ ch(j) indicating a child node of node j. The details
of the model G are described as follows.

Leaf-node: Each leaf-node Li is a local classifier for
detecting partial shape contours. We denote the location
of leaf-node Li as pi, which is determined by its parent
or-node. Given the extracted edge map X , we treat
contour fragments within the observed block as the
inputs of Li. For a contour c, we denote φl(pi, c) as
its feature vector using the proposed contour descriptor,
and only the part of c that has fallen into the block will
be considered. Note that we can prune some very short
contours as noises in practice. The response of classifier
Li located at pi is defined as:

Rl
i(X, pi) = max

c∈X
ωl
i · φl(pi, c), (1)

where ωl
i is a parameter vector that is set to zero if

the corresponding leaf-node Lj is nonexistent. We can
thus localize the contour representing the shape part
by ci = argmaxc∈Xω

l
i · φl(pi, c). This partial detecting

scheme enables to partition true object contours from
cluttered background.

Or-node: The or-node Uj , j = m + 1, ..., (z + 1) ∗ m
specifies one of its child leaf-nodes, and also the contour
detected by the leaf-node. Every or-node is allowed to
slightly perturb their locations with respect to the root
in order to capture the inter-part deformations.

For each or-node Uj , we define the deformation fea-
ture, φs(p0, pj) = (dx, dy, dx2, dy2), where (dx, dy) en-
codes the displacement of the or-node position pj to the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014. 5

expected position p0 determined by the root-node. The
cost of locating Uj at pj is:

Dj(p0, pj) = ωs
j · φs(p0, pj), (2)

where ωs
j is a 4-dimensional parameter vector corre-

sponding to φs(p0, pj).
For each leaf-node Li associated with Uj , we introduce

an indicator variable vi ∈ {0, 1} representing whether it
is activated by Uj or not. We also define an auxiliary
vector for Uj , vj = {vi}i∈ch(j), where ||vj || = 1 or 0. Note
that ||vj || = 1 only when one of the leaf-nodes under
Uj is activated. In this way, the or-node can adaptively
activate the different leaf-nodes to capture the diverse
local shape variance. It is worth mentioning that the cost
of locating the or-node is independent of the selected
leaf-nodes because we assume the leaf-nodes belong to
the same part (i.e. or-node) act a nearby location.

Thus, the response of the or-node Uj is defined as,

Ru
j (X, p0, pj ,vj)=

∑
i∈ch(j)

Rl
i(X, pj) · vi−Dj(p0, pj). (3)

Anti-clockwise

Near

Far

Fig. 3. The spatial contextual features defined for the
collaborative edges.

And-node: The and-node, Ar, performs a global ver-
ification for the whole shape. For each and-node, we
have a set of contour fragments, Cr = {c1, c2, ..., cz},
which are determined by its child or-nodes. Then we
adopt the Shape Context descriptor [3] to describe these
contours as a whole, φa(Cr). Thus, we define the and-
node’s response as,

Ra
r(Cr) = ωa · φa(Cr), (4)

where ωa is the corresponding parameter vector.
Collaborative Edge: We impose contextual interac-

tions among shape parts based on the collaborative
edges. Given any two different or-nodes associated with
the same and-node, we link an edge between them and
their child leaf-nodes inherit the edge. We define the
collaborative edges using the spatial contextual features,
as Figure 3 illustrates.

Suppose one edge connects two leaf-nodes (Li, Li′)
are located at pi and pi′ respectively. We collect a 4-
bin feature ψ(pi, pi′) for the two leaf-nodes according to
their spatial layout. Each bin of ψ(pi, pi′) represents one
of the four relations of (Li, Li′): clockwise, anti-clockwise,
near, and far. In Figure 3, the bold rectangle in the center
indicates the location of Li, which is connected to the red
bold rectangle indicating the location of Li′ . The dashed

line represents the initial layout of the two leaf-nodes,
and the red solid line is the adjusted actual layout in
detection. Specifically, we define the relations as

• Near and Far: If Li′ falls into the outer dashed
rectangle, it is near to Li, i.e. the bin of near is
activated (i.e. being set as 1); otherwise it is far from
Li.

• Clockwise and Anti-clockwise: One of the two relations
is activated (i.e. being set as 1) according to the angle
between the dashed line and the solid red line.

These relations intuitively encode the spatial contexts
of two leaf-nodes (Li, Li′). Let {vj} represent the acti-
vation variables of the leaf-nodes, and we denote P as
a vector of the positions of all or-nodes Uj . P also spec-
ifies the locations {pi} of the activated leaf-nodes. The
response of the collaborative edge is then parametrized
as

Re
r(P, {vj}) =

∑
j∈ch(r)

∑
i∈ch(j)

∑
i′∈∂(i)

ωe
(i,i′) ·ψ(pi, pi′) · vi · vi′ ,

(5)
where ∂(i) represents the set of neighbor leaf-nodes of
Li, and each neighbor has a different parent node with
Li. ωe

(i,i′) is the corresponding weight. vi and vi′ are the
activation indicators for Li and Li′ , respectively, as the
edges are imposed only for the activated leaf-nodes.

Root-node: The root-node on the top alternatively
activates one of its child and-nodes, whose definition is
similar with that of the or-node. Also, we use a variable
vr ∈ {0, 1} to specify the activation of each and-node Ar,
and the indicator vector for the root-node is v0 = {vr}mr=1

and ||v0|| = 1, i.e. only one child is selected.
Let P imply the part-based deformation with or-

nodes, and V = (v0, {vj}) imply the selection of and-
nodes and leaf-nodes, the overall response of our model
is then defined as:

RG(X,P, V) =
m∑
r=1

vr ·(
∑

j∈ch(r)

Ru
j (X, p0, pj ,vj)+Re

r(P, {vj})+Ra
r(Cr)).

(6)

In this model, H = (P, V) are the latent variables
that will be adaptively estimated in testing. For notation
simplicity, our model in Equation (6) can be re-written
as :

RG(X,H) = ω · φ(X,H), (7)

where φ(X,H) represents the concatenated feature vec-
tor for all nodes and edges in the model, and ω includes
all of the parameters corresponding to φ(X,H). Figure 4
illustrates our And-Or graph model mapped with the
discriminative function.

We summarize the symbols used in our model in Table
1.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014. 6

U
j

A
r

L
i

Fig. 4. Mapping the latent And-Or graph with the discriminative function defined in Equation 6. Different layers of
nodes in our model are associated with certain bins in the feature vector φ(X,H) (at the bottom). The activated leaf-
nodes are highlighted in red, and the feature bins are set to zeros for the other inactivated nodes. The embedded
latent variables H = (P, V) make our model reconfigurable during detection.

Symbol Meaning

{Ar}mr=1 The and-nodes.
{Uj}

(z+1)·m
j=m+1 The or-nodes.

{Li}n
′

i=m′ The leaf-nodes.
X The edge map of an image.
P = {p0, pj , pi} The locations of the root-node p0, or-nodes pj , and leaf-nodes pi.
Rl

i(X, pi) The response of the classifier associated with leaf-node Li located at pi.
Ru

j (X, p0, pj ,vj) The response of the or-node. vj indicates the selection of its child leaf-nodes.
Ra

r (Cr) The response of the and-nodes, which provides a global verification for the shape Cr .
Re

r(P, {vj}) The response of the collaborative edges. {vj} indicates the selection of the leaf-nodes.
RG(X,P, V) The response of the whole model, where P and V represent the latent variables.
H = (P, V) All latent variables (including positions P and activation variables V) of our model.

TABLE 1
Notation summary of this work.

!

!

(a) (b) (c)

Fig. 5. Illustration of the inference procedure. (a) shows local testing for detecting contour fragments within the edge
map; the blue dashed boxes represent perturbed blocks associated with the leaf-nodes. (b) shows a hypothesis of
detection including candidates (indicated by the red boxes) proposed by all or-nodes, in which the collaborative edges
are imposed. (c) shows the global verification, in which the ensemble of contours are measured as a whole.

4 INFERENCE

Given the edge map X extracted from the image, the
inference task is to detect the optimal contour fragments
within the detection window scanned over an image
pyramid. The detection is a search procedure to acti-
vate nodes from bottom to top, in which a number of
hypotheses are generated and each one specifies a con-

figuration of detected contour fragments. We verify the
hypotheses and prune the unlikely ones by maximizing
the model response defined in Equation (7).

We conduct the inference algorithm with the following
steps. An example illustrating the inference procedure
using our model is presented in Figure 5.

Local testing: We use all of the leaf-nodes (i.e. the local
contour classifiers) to search for optimal contour frag-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014. 7

ments within the edge map X . Assume that one or-node
Uj , associated with a partitioned block in the detection
window, contains a number of leaf-nodes {Li, i ∈ ch(j)},
and that the initial position of Uj is p′j . Each Uj is allowed
to slightly perturb its location. At each location p′j+δ, we
treat all of the contours that have fallen into the block
as the inputs to every leaf-node of Uj , as Figure 5(a)
illustrates. By maximizing the response in Equation (1),
each leaf-node Li ∈ ch(j) can find an optimal contour at
a certain location. Recall that each or-node can activate
only one of the child leaf-nodes. Thus, the possibility
of different leaf-node selections can generate a batch of
detection hypotheses. In particular, we denote Ĥ as the
latent variables for one hypothesis, and denote (v̂j , p̂j)
for a possible activation of Uj , where v̂j indicates the
leaf-node selection and p̂j is the location. The cost of
(v̂j , p̂j) is then measured by the function Ru

j defined in
Equation (3).

Binding testing: The hypotheses from the local test-
ing are further weighed and filtered by imposing the
collaborative edges. In each hypothesis, each or-node
proposes one leaf-node, and any two leaf-nodes derived
from different or-nodes are connected by an edge. We
measure the score by the potential function in Equation
(5).

In this way, each detection hypothesis is scored by the
two testing steps, as,

Sl
r(X, Ĥ) =

∑
j∈ch(r)

Ru
j (X, p0, p̂j , v̂j) +Re

r(P̂ , {v̂j}), (8)

where P̂ = {p̂j} denotes the locations of all of the or-
nodes. In practice, we can prune some of the hypotheses
by setting a threshold on the score.

Global verification: In this step, we apply the and-
nodes to re-score the hypotheses of detection. For any
hypothesis, we obtain an ensemble of contours, Ĉr =
{ĉ1, ĉ2, . . . , ĉz}, each of which is proposed by one or-
node. We can measure the contours as a whole by
Sg
r (X, Ĥ) = Ra

r(Ĉr) in Equation (4), as Figure 5(c)
illustrates.

Afterwards, the root-node determines the optimal de-
tection by selecting the maximum aggregated score, as

H∗ = arg max
Ĥ

m∑
r=1

(Sl(X, Ĥ) + Sg
r (X, Ĥ)) · v̂0, (9)

where ||v̂0|| = 1 constrains only one of the and-nodes
selected by the root-node.

The overall inference procedure appears in Algorithm
1.

5 AND-OR GRAPH LEARNING

We formulate the And-Or graph model learning as a
joint optimization task of model structures and param-
eters. To achieve this goal, we present a novel struc-
ture learning algorithm extended from the existing non-
convex optimization methods [43], [36]. This algorithm

Algorithm 1: Inference with the And-Or graph rep-
resentation

Input:
X : the edge map extracted from the test image.

Output:
H∗: the optimal detection with the maximal detection score
RG(X,H∗).

Local testing:
1. Apply leaf-nodes to detect all possible local contour fragments.
2. Generate a batch of detection hypotheses via the or-nodes.
Binding testing:
1. Impose the collaborative edges between leaf-nodes in each
detection hypothesis.
2. Score the hypotheses by Equation (8).
3. Prune unlikely hypotheses by thresholding the score.
Global verification:
1. For each hypothesis, the local contours are measured as a whole
via the and-nodes.
2. Aggregate all potentials via the root-node in Equation (9).
3. Merge results by non-maximum suppression over all image
positions and scales.

optimizes the objective in a dynamical manner: the latent
structures H = (P, V) are iteratively determined along
with the parameter learning in each step. For example,
new leaf-nodes are created or removed to better adapt
to the training data by adjusting the latent variables.
One instance of our learning procedure is illustrated in
Figure 6: from (a) to (b), a leaf-node associated with U1

is removed and a new leaf-node under U6 is created in
(c).

5.1 Optimization Formulation
Suppose we have a set of positive and negative training
samples (X1, y1),...,(XN , yN), where X is the edge map
and y = ±1 is the label indicating positive and negative
samples. We assume that the samples indexed from 1 to
K are the positive samples, and that the feature vector
for each sample (X, y) is,

φ(X, y,H) =

{
φ(X,H) if y = +1
0 if y = −1

, (10)

where H represents the latent variables and φ(X,H) the
overall feature vector of the And-Or graph model. Then
we pose the And-Or graph learning as optimizing model
parameters along with the latent structures,

ω = argmaxy,H(ω · φ(X, y,H)). (11)

We further transfer this target into a maximum margin
formulation,

min
ω

1

2
‖ω‖2 + λ

N∑
k=1

[max
y,H

(ω · φ(Xk, y,H) + L(yk, y,H))

−max
H

(ω · φ(Xk, yk, H))], (12)

where λ is a penalty weight (set as 0.005 empirically),
and L(yk, y,H) is the loss function. In our implemen-
tation, we define that L(yk, y,H) = 0 if yk = y, and 1
otherwise.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014. 8

(a) (b) (c)

… … … … … …

Fig. 6. Illustration of the structure reconfiguration. Parts of the model, two or-nodes (U1, U6), are visualized in three
intermediate steps. (a) The initial structure, i.e. the regular layout of an object. Two new structures are dynamically
generated during the iterations. (b) A leaf-node associated with U1 is removed. (c) A new leaf-node is created and
assigned to U6.

The target energy in Equation (12) is non-convex mak-
ing it difficult to be solved analytically. In this work, we
propose the Dynamical Structural Optimization (DSO)
method to iteratively optimize this objective based on
the Concave-Convex Procedure (CCCP) method [43].

5.2 Dynamical Structural Optimization
Following the CCCP method [43], we convert the objec-
tive function in Equation (12) into a convex and concave
form as,

min
ω

[
1

2
‖ω‖2 + λ

N∑
k=1

max
y,H

(ω · φ(Xk, y,H) + L(yk, y,H))]

− [λ

N∑
k=1

max
H

(ω · φ(Xk, yk, H))] (13)

= min
ω

[f(ω)− g(ω)], (14)

where f(ω) represents the first two terms, and g(ω)
represents the last term in (13). Assume ωt is the solution
for the t-th iteration. The solution ωt+1 for the next
iteration can be solved by subjecting it to

∇f(ωt+1) = ∇g(ωt). (15)

A geometric explanation of CCCP is presented in Fig-
ure 7, where ∇g(ωt) can be regarded as a hyperplane
(the red line) at ωt (the black spot) to upper bound
−g(ω). ∇g(ωt) can be solved analytically once H is fixed.
Then, the ωt+1 can be estimated accordingly by mini-
mizing f(ωt+1). Please refer to [43] for the theoretical
background.

During the training procedure, the model parameters
ωt and latent structures Ht are iteratively updated. To
discover the models structures, we add one step called
model reconfiguration in each iteration. Recall that the
model structures (e.g. graph nodes) are mapped with

the feature vectors, as Figure 4 illustrates. In this step,
from the feature vectors of all positive training examples,
we first extract the sub-vectors that are corresponding
to different nodes (i.e. and-nodes or leaf-nodes), and
each node, we perform clustering on these sub-vectors,
respectively. Then, according to the clustering results, we
rearrange each feature vector by placing the sub-vectors
back into the feature vectors (e.g. re-assigning contour
fragments to leaf-nodes). Consequently, the new model
structures can be generated. Our DSO method iteratively
performs with three following steps: (i) estimate the
latent variables of training samples; (ii) reconfigure the
model structures; (iii) update model parameters for the
new structures.

t
ω

1+t
ω

)(wf

)(wg

)(tg wÑ

)(1+
Ñ

tf w

Fig. 7. Geometric illustration of the CCCP procedure. The
target energy is decomposed into two functions, f(ω) and
g(ω). At each step of iteration, a hyperplane (represented
by the red line) is calculated as the upper-bound at ωt for
optimizing ωt+1.

(I) The model parameters ωt in the previous iteration

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014. 9

are fixed. We find a hyperplane qt to upper bound −g(ω)
in Equation (14),

− g(ω) ≤ −g(ωt) + (ω − ωt) · qt,∀ω. (16)

The optimal latent variables H∗k are specified for each
positive training example by,

H∗k = argmaxH(ωt · φ(Xk, yk, H)). (17)

Note that we only take the positive training examples
into account as φ(Xk, yk, H) = 0 when yk = −1. That
is, we apply the current model to perform detections on
the training samples, and the hyperplane is constructed
as

qt = −λ
N∑

k=1

φ(Xk, yk, H
∗
k). (18)

(II) In the second step, we optimize the model struc-
tures based on the estimated latent variables H∗. All
graph nodes in our model are mapped with several
feature bins (i.e. sub-vectors) of φ(Xk, yk, H

∗
k) for all of

the training samples, as Figure 4 illustrates. Hence, we
achieve the model reconfiguration process by rearrang-
ing φ(Xk, yk, H

∗
k). For example, we can remove leaf-node

Lj by setting the corresponding bins for Lj into zeros.
Specifically, two sub-steps are sequentially performed to
generate and-nodes and leaf-nodes, respectively.

(i) Global structure reconfiguration. In the layer of
and-nodes, we perform clustering on the feature vectors
corresponding to the and-nodes, i.e. the global shape
features defined in Equation (4). Note that each vector
is a part of φ(Xk, yk, H

∗
k). The training object shapes

detected by the same and-node are initially grouped
into one cluster. We then perform clustering on all of
the feature vectors by using ISODATA with Euclidean
distance. Based on the clustering result, we rearrange
the feature vectors mapping with the and-nodes. For
example, if one vector is grouped into a new cluster
Ωr, we shall move it into the bins corresponding to
And-node Ar, and set its original bins as zeros. In our
implementation, we fix the number of and-nodes as m,
to simplify the computation.

(ii) Local structure reconfiguration. After the global
structure reconfiguration, each and-node is associated
with a group of training examples. Suppose the and-
node Ar includes a number of or-nodes, and every or-
node Uj , j ∈ ch(r) further derives its child leaf-nodes
Lj , i ∈ ch(j). In this step, we configure the part-level
structures rooted by Uj . Note that this step processes
each or-node and its leaf-nodes separately.

Each or-node Uj specifies one part of the whole object
shape. Given the training examples associating with Ar,
we extract the local contour features from φ(Xk, yk, H

′
k),

which are corresponding to the shape part of Uj . Then
we perform clustering on these vectors, and rearrange
these vectors in φ(Xk, yk, H

′
k), similarly as the operation

on the and-nodes. In our implementation, the number of
leaf-nodes is not fixed, as the local variances of shapes
are usually unpredictable. Thus, there are two specific

operators to generate the leaf-nodes according to the
clustering.
• One new leaf-node is created if an extra cluster is

generated.
• One leaf-node is removed if there are very few

samples in the corresponding cluster.
We present a toy example in Figure 8 to illustrate the

structure reconfiguration. For the sample X3, a part of
its feature vector < φ5, . . . , φ8 > is grouped from one
cluster into another while the values of the feature bins
are moved from < φ5, . . . , φ8 > to < φ1, . . . , φ4 >.

After the reconfiguration, the latent variables for each
training example can be re-calculated, and denoted by
Hd

k , in accordance with the arranged feature vectors
(refer to Equation (17)). We denote the feature vectors for
all examples by φd(Xk, yk, H

d
k). Then, the hyperplane is

transformed accordingly, qdt = −D
∑N

k=1 φ
d(Xk, yk, H

d
k).

Cluster 1

Cluster 2

Cluster 1

Cluster 2

(a)

(c) (b)

(1, 2, 3, 4, 5, 6, 7, 8)

Fig. 8. A toy example for structure reconfiguration. We
consider 4 samples, X1, . . . , X4, for training the structure
of Ui (or Ar). (a) shows the feature vectors φ of the
samples associated with Ui (or Ar), and the intensity of
the feature bin indicates the feature value. (b) illustrates
the clustering performed with φ′. The vector 〈φ5, · · · , φ8, 〉
of X2 is grouped from cluster 2 to cluster 1. (c) shows the
adjusted feature vectors according to the clustering. Note
that the model structure reconfiguration is realized by the
rearrange of feature vectors, as we discuss in the text.
This figure should be viewed in electronic form.

(III) The newly generated model structures can be
represented by the feature vectors φd(Xk, yk, H

d
k), and

the model parameters can then be learned by solving
Equation (14),

ωd
t = argminω[f(ω)− g(ω)] (19)

By substituting −g(ω) with the upper bound hyperplane
qdt , this optimization task can be transferred as,

min
ω

1

2
‖ω‖2 +D

N∑
k=1

[max
y,H

(ω · φ(Xk, y,H) + L(yk, y,H))

− ω · φd(Xk, yk, H
∗
k)]. (20)

We solve it as a standard structural SVM problem, as,

ω∗ = D
∑
k,y,H

α∗k,y,H∆φ(Xk, y,H), (21)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014. 10

where ∆φ(Xk, y,H) = φd(Xk, yk, H
∗
k) − φ(Xk, y,H). We

calculate α∗ by maximizing the dual form in standard
SVM, and we apply the cutting plane method [11] to
solve it.

With the estimated parameters ωd
t , the energy E(ωd

t)
can be calculated for the new model, and we then
compare it with the previous energy E(ωt) to verify
the new model structures. If E(ωd

t) < E(ωt), we accept
the new model structures and have ωt+1 ← ωd

t . Other-
wise, we keep the model structures as in the previous
iteration and optimize the model parameters without
the structure reconfiguration, i.e. by using qt instead:
ωt+1 = argminω[f(ω) + ω · qt].

In this way, we ensure that the optimization objective
in Equation (14) continues to decrease in iterations.
Thus, the algorithm keeps iterating until the objective
converges.

5.3 Initialization
At the beginning of model training, our model can be
initialized as follows. For each training example, whose
contours have been extracted, we partition it into a
regular layout of partitioned blocks, and each block is
corresponding to one or-node. The contours that fall
into the block are treated as the inputs, and we initially
select the one with the largest length if more than
one contour are within there. Then, the leaf-nodes are
initially generated by clustering the selected contours
without any constraints. The and-nodes are initialized
by the similar way. We thus obtain the initial feature
vectors for all training examples.

Algorithm 2 summarizes the overall algorithm of
learning the latent And-Or graph.

6 EXPERIMENTS

To validate the advantage of our model, we present
a new shape database, SYSU-Shapes1, which includes
elaborately annotated shape contours. Compared with
the existing shape databases, this database includes more
realistic challenges in shape detection and localization,
e.g. cluttered background, large intraclass variation, and
different poses/views, in which part of the instances
were originally used for appearance-based object detec-
tion. We also validate our model on two other public
databases: UIUC-People [33] and INRIA-Horse [12] and
show the superior performances over other state-of-the-
art methods.

Implementation setting. We extract clutter-free object
contours for the positive samples, and the edge maps for
the negative samples are extracted using the Pb edge de-
tector [23] with an edge link algorithm. For each contour
as the input of the leaf-node, we sample 20 points and
compute the contour descriptor for each point. During
detection, the edge maps of test images are extracted

1. http://vision.sysu.edu.cn/projects/discriminative-aog/

Algorithm 2: Learning latent And-Or graph model
Input:

positive and negative training samples,
{Xk, yk}+

⋃
{Xk′ , yk′}−, k = 1..K, k′ = K + 1..N .

Output:
The trained And-Or graph model.

Initialization:
1 Initialize the model structure (the arrangement of nodes).
2 Initialize the latent variables H and model parameters ω.

repeat
1 Estimate the latent variables H∗ on each positive example

(Xk, yk) with the current model parameters ωt.
2 Generate the new graph structures.

(a) Localize the contour fragments for all examples using the
current latent variables H∗k , and obtain the feature vectors
φ(Xk, yk, H

∗
k).

(b) In the layer of and-nodes, perform clustering on the global
shape features, and rearrange the feature vectors.

(c) For each or-node Ui, perform clustering on the feature
vectors of all its child leaf-nodes.

(d) Operate on the leaf-nodes to generate a new structure, and
the latent variable is updated to Hd

k with the rearranged
feature vectors φd(Xk, yk, H

d
k).

3 Update the model parameters ωt+1 .
(a) Estimate the parameters ωd

t with the newly generated
structures.

(b) IF E(ωd
t) < E(ωt),

Accept the new model structures, and ωt+1 ← ωd
t .

ELSE
Calculate ωt+1 while keeping the structures in the

previous iteration.
until The target function defined in Equation (14) converges.

SYSU-Shapes UIUC-People INRIA-Horses
and-nodes m = 3 m = 2 m = 1
or-nodes z = 6 z = 8 z = 6

leaf-nodes n ≤ 4 n ≤ 4 n ≤ 4

TABLE 2
Numbers of nodes in the and-or graph models for

different databases.

as for the negative training samples. The objects are
searched by sliding windows over 6 different scales
and 2 per octave, and detections are reported by non-
maximum suppression. We adopt the testing criterion
defined in the PASCAL VOC challenge: a detection is
counted as correct if its overlap with the groundtruth
bounding-box is greater than 50%.

Our model is able to flexibly adapt to the data by
setting the numbers of nodes in each layer: m for and-
nodes, z for or-nodes, and n for leaf-nodes. Recall that
each or-node in our model indicates a part of object
shape, so that we can set the number of or-nodes accord-
ing to the sizes (scales) of the shape categories. The leaf-
nodes are produced during the iterative training, and
their numbers can be determined automatically. In the
experiments, to reduce computational cost, we fix the
number for and-nodes and set an upper limit for the
number of leaf-nodes. Table 2 summarizes the numbers
of nodes on the three databases. In the model training,
the initial layout for each sample is a regular partition

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014. 11

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
airplane

recall

p
re

ci
si

on

AOG (full)

 AOG (3−layers)

DPMs

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
boat

recall

p
re

ci
si

on

AOG (full)

 AOG (3−layers)

DPMs

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
bicycle

recall

p
re

ci
si

on

AOG (full)

 AOG (3−layers)

DPMs

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
car

recall

p
re

ci
si

on

AOG (full)

 AOG (3−layers)

DPMs

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
motorbike

recall

p
re

ci
si

on

AOG (full)

 AOG (3−layers)

DPMs

Fig. 9. Precision-Recall (PR) curves on the SYSU-Shape dataset.

Method Airplane Bicycle Boat Car Motorbike MeanAP
AOG (full) 0.520 0.623 0.419 0.549 0.583 0.539
AOG (3-layers) 0.348 0.482 0.288 0.466 0.333 0.383
DPMs 0.437 0.488 0.365 0.509 0.455 0.451

TABLE 3
Detection accuracies on the SYSU-Shape dataset.

(e.g. 2× 4 blocks for the UIUC-People dataset and 3× 2
for the other two datasets).

If we keep only one and-node (i.e. m = 1), our model
is simplified into a 3-layer structure that is rooted by
the and-node. The training procedure (i.e. Algorithm. 2)
for this structure is kept, but we discard the step of
generating and-nodes.

We conduct the experiments on a workstation with
Core Duo 3.0 GHZ CPU and 16GB memory. On average,
it takes 4 ∼ 8 hours to train a shape model, depending
on the numbers of training examples, and the time cost
for detection on an image is around 1 ∼ 2 minutes.

Experiment I. We first conduct the experiment on the
SYSU-Shape database, which is collected from the Inter-
net and other vision databases. There are 5 categories,
i.e. airplanes, boats, cars, motorbikes, and bicycles, and
each category contains 200 ∼ 500 images. The shape
contours are carefully labeled by a professional team
using the LabelMe toolkit [26]. It is worth mentioning
that each image has at least but not limited to one object
of a given category. For each category, half of the images
are randomly selected as positive samples and the rest
for testing. The images from the other categories are
randomly split into two halves as negative samples for
training and testing.

For comparison, we apply the well acknowledged de-
formable part-based models (DPMs) [7] on this database,
where we modify the released code by replacing the in-
put feature with our shape descriptor, and keep the other
settings. In this implementation, 3 DPMs are merged
into a mixture, which accounts for different object views.
Moreover, we simplify the model into a 3-layer config-
uration by setting m = 1, and test its performances.
Figure 9 shows the Precision-Recall curves for all 5
categories, and the Average Precision values are reported
in Table 3. Our complete model achieves the best mean
AP and the best APs for all 5 categories, and the results
clearly demonstrate the benefit of using the layered And-
Or structures. Several representative detection results are
exhibited in Figure 10.

Experiment II. The UIUC-People dataset contains 593
images (346 for training, 247 for testing) that are very
challenging due to large shape variations caused by
different views and human poses. Most of the images
contain people playing badminton. The existing meth-
ods [37], [4] that are tested on this dataset usually rely on
rich appearance-based image features and/or manually
labeled prior models. To the best of our knowledge, this
work is the first shape-based detector to achieve compa-
rable performances on this dataset. Figure 11(a) shows

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014. 12

Fig. 10. A few typical object shape detections generated by our approach on the SYSU-Shape dataset. The localized
contours are highlighted in black, and the green boxes and red boxes indicate detected shapes and their parts,
respectively.

or-node

and-node

leaf-node

root-node U1

U2

U3

U4

U5

U6

U7

U8L9 L10 L17 L23 L28 L31

L33

(a) (b)

U2 U4 U6 U8

U1 U3 U5 U7

Fig. 11. The trained And-Or graph model with the UIUC-People dataset. (a) Visualizes the model of 4 layers. (b)
Exhibits leaf-nodes associated with or-nodes, U1, . . . , U8. A real detection case with the activated leaf-nodes are
highlighted in red.

Method Accuracy
AOG model 0.708
Wang et al. [37] 0.668
Andriluka et al. [1] 0.506
Felz et al. [7] 0.486
Bourdev et al. [4] 0.458

TABLE 4
Comparisons of detection accuracies on the

UIUC-People dataset.

the trained And-Or model (AOG), which includes 2 and-
nodes and 8 or-nodes, and each or-node is associated
with 2 ∼ 4 leaf-nodes. Since most of the images contain

one person, we only consider the detection with the
highest score on an image for all of the methods. Table 4
reports the quantitative detection accuracies generated
by our method and the competing approaches [37], [1],
[4], [7]. The results (except ours) come from [37]. A num-
ber of representative detection results are presented in
Figure 12, where the localized contours are highlighted
in black, and the green boxes and red boxes indicate
detected human and parts, respectively. We also present
several inaccurate detections indicated by the blue boxes
in Figure 12. There are two main reasons for the fail-
ure cases: (i) False positives are sometimes created by
the background contours segments that appear like the
objects-of-interest very much. (ii) The object contours are

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014. 13

Fig. 12. A few typical object shape detections generated by our method on the UIUC-People database [33]. The
localized contours are highlighted in black, and the green boxes and red boxes indicate detected peoples and parts,
respectively. Two failure detections are indicated by the blue boxes.

Fig. 13. Results on the INRIA-Horse database. (a) shows several detected shapes by our method, where the localized
contours are highlighted in black, and two failure detections are indicated by the blue boxes. (b) shows the quantitative
results with the recall-FPPI measurement.

insufficiently discriminative for recognition, particularly
with unconventional object poses and views.

Experiment III. The INRIA Horse dataset comprise
170 horse images and 170 images without horses. The
challenges of this dataset arise from background clutter
and large deformations, and some of the images contain
more than one horse. Following the common experiment
setting, we use 50 positive examples and 80 negative
examples for training and the remaining 210 images for
testing.

Some typical shape detection results on the INRIA
Horse dataset are shown in Figure 13(a). Compared
with existing approaches, we use the recall-FPPI (false
positive per image) curves for evaluation, as Figure 13(b)
reports. It is shown that our approach (denoted as AOG)

substantially outperforms the competing methods. Our
model achieves detection rates of 89.6% at 1.0 FPPI; in
contrast, the results of competing methods are: 87.3% in
[41], 85.27% in [22], 80.77% in [10], and 73.75% in [6].

Empirical analysis. For further evaluation, we present
two empirical analysis under different model settings as
follows.

(I) We validate the benefit of the contextual collabo-
rative edges. Our model can be further transferred into
a tree structure by removing the interactions, which is
denoted as “And-Or Tree (AOT)”. On the UIUC-People
dataset, the detection accuracy of the AOT model is 0.69,
which is lower than the complete form of our model, but
it is also comparable to the state-of-arts. On the INRIA-
Horse dataset, we also present the results yielded by the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014. 14

AOT model in Figure 13(b). Based on these results, we
can observe that the collaborative edges effectively boost
the detection against disturbing surrounding clutter and
occlusions.

1 3 5 7 9
0.35

0.4

0.45

0.5

0.55

0.6

Iteration

A
P

UIUC people

AOT

AOG

1 3 5 7

0.65

0.7

0.75

0.8

0.85

Iteration

A
P

INRIA horse

AOT

AOG

Fig. 14. Model capabilities during the iterative training.
We plot the average-precision (AP) with the increasing
iterations: the intermediate performances of our models
in the iteration steps. We conduct the experiments on
the UIUC-People dataset (on the left) and INRIA Horse
dataset (on the right). The results of disabling the collab-
orative edges are also reported.

(II) To analyze the model capacity during the iterative
training, we output the intermediate performance mea-
sures of our models in the iteration steps.

We execute the experiments on the UIUC-People and
the INRIA-Horse databases. The quantitative results rep-
resented by average precisions (APs) are visualized in
Figure 14. We also report the results generated by the
models without collaborative edges, i.e. AOT models. We
observe that the discriminative capabilities of our model
increase proportinately with the iterations, and converge
after a few rounds.

7 CONCLUSION AND FUTURE WORK

In this paper, we have introduced, first, a hierarchical
and reconfigurable object shape model in the form of an
And-Or graph representation. Second, an efficient infer-
ence algorithm for shape detection with the proposed
model. Third, a principled learning method that itera-
tively determine the model structures while optimizing
multi-layer parameters. We demonstrated the practical
applicability of our approach by effectively detecting
and localizing object shapes from cluttered edge maps.
Our model effectively captured large shape variations
in deformation for different views and poses. Experi-
ments were implemented on several very challenging
databases, (e.g. SYSU-Shapes, UIUC-People, and INRIA-
Horse), and our model outperformed other current state-
of-the-art approaches.

There are several directions in which we intend to
extend this work. The first is to complement our contour-
based features with rich appearance information, thereby
adapting our model to more general object recognition.
The second is to generalize our model in the context of
multiclass recognition and investigate part-based struc-
ture sharing among classes. For example, the feet of

horse and sheep have similar appearances, and thus can
be detected by the same local classifier, that is, we can
make local classifiers (i.e. the leaf-nodes in our model)
shared across categories. Model sharing will keep the
model compact while representing multiple categories.
Moreover, the inference algorithm will be revised ac-
cordingly, to deal with a large number of candidate
compositions.

REFERENCES
[1] M. Andriluka, S. Roth, and B. Schiele, Pictorial structures revisited:

People detection and articulated pose estimation, In Proc. of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

[2] X. Bai, X. Yang, L. J. Latecki, W. Liu, and Z. Tu, Learning Context
Sensitive Shape Similarity by Graph Transduction, IEEE Trans. on
Pattern Analysis and Machine Intelligence, 32(5): 861-874, 2010.

[3] S. Belongie, J. Malik, and J. Puzicha, Shape Matching and Object
Recognition using Shape Contexts, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(1): 705-522, 2002.

[4] L. Bourdev, S. Maji, T. Brox, and J. Malik, Detecting people using
mutually consistent poselet activations, In Proc. of European Confer-
ence on Computer Vision (ECCV), 2010.

[5] C. Desai, D. Ramanan, and C. C. Fowlkes, Discriminative Models
for Multi-Class Object Layout, International Journal of Computer
Vision, 2011.

[6] V. Ferrari, F. Jurie, and C. Schmid, From Images to Shape Models
for Object Detection, International Journal of Computer Vision, 87(3):
284-303, 2010.

[7] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan,
Object Detection with Discriminatively Trained Part-based Models,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9):
1627-1645, 2010.

[8] P. Felzenszwalb, and J. D. Schwartz, Hierarchical Matching of
Deformable Shapes, In Proc. of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2007.

[9] Felzenszwalb, Pedro F., and Daniel P. Huttenlocher. Pictorial struc-
tures for object recognition, International Journal of Computer Vision,
61(1)55-79, 2005.

[10] V. Ferrari, L. Fevrier, F. Jerie, and C. Schmid, Groups of Adjacent
Contour Segments for Object Detection, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(1): 36-51, 2008.

[11] V. Franc and S. Sonnenburg, Optimized Cutting Plane Algorithm
for Support Vector Machines, In Proc. of International Conference on
Machine Learning (ICML), 2008.

[12] F. Jurie and C. Schmid, Scale-invariant Shape Features for Recog-
nition of Object Categories, In Proc. of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2004.

[13] I. Kokkinos, and A. Yuille, Inference and Learning with Hierar-
chical Shape Models, International Journal of Computer Vision, 93: 201-
225, 2011.

[14] L. Lin, X. Liu, and S.C. Zhu, Layered Graph Matching with
Composite Cluster Sampling, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32(8): 1426-1442, 2010.

[15] L. Lin, T. Wu, J. Porway, and Z. Xu, A Stochastic Graph Grammar
for Compositional Object Representation and Recognition, Pattern
Recognition, 42(7): 1297-1307, 2009.

[16] L. Lin, S. Peng, J. Porway, S.C. Zhu, and Y. Wang, An Empirical
Study of Object Category Recognition: Sequential Testing with
Generalized Samples, In Proc. of International Conference on Computer
Vision (ICCV), 2007.

[17] L. Lin, X. Wang, W. Yang, and J. Lai, Learning Contour-Fragment-
based Shape Model with And-Or Tree Representation, In Proc. of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

[18] H. Ling, and D.W. Jacobs, Shape Classification Using the Inner-
Distance, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 29(2):286-299, 2007.

[19] P. Luo, L. Lin, and H. Chao, Learning Shape Detector by Quan-
tizing Curve Segments with Multiple Distance Metrics, In Proc. of
European Conference on Computer Vision (ECCV), 2010.

[20] C. Lu, L. J. Latecki, N. Adluru, X. Yang, and H. Ling, Shape
Guided Contour Grouping with Particle Filters, In Proc. of Inter-
national Conference on Computer Vision (ICCV), 2009.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014. 15

[21] T. Ma and L. J. Latecki, From Partial Shape Matching through
Local Deformation to Robust Global Shape Similarity for Object
Detection, In Proc. of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2011.

[22] S. Maji and J. Malik, Object Detection using a Max-Margin Hough
Transform, In Proc. of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2009.

[23] D. Martin, C. Fowlkes, and J. Malik, Learning to detect natural
image boundaries using local brightness, color, and texture cues,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5):
530-549, 2004.

[24] A. Opelt, A. Pinz, and A. Zisserman, A Boundary-Fragment-
Model for Object Detection, Proceedings of the European Conference
on Computer Vision (ECCV), 2006.

[25] H. Riemenschneider, M. Donoser, and H. Bischof, Using Partial
Edge Contour Matches for Efficient Object Category Localization,
In Proc. of European Conference on Computer Vision (ECCV), 2009.

[26] B. C. Russell, A. Torralba, K. P. Murphy, W. T. Freeman, LabelMe:
a database and web-based tool for image annotation. International
Journal of Computer Vision, pages 157-173, Volume 77, Numbers 1-3,
May, 2008.

[27] P. Schnitzspan, M. Fritz, S. Roth, and B. Schiele, Discriminative
structure learning of hierarchical representations for object detec-
tion, In Proc. of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2009.

[28] J. Shotton, A. Blake, and R. Cipolla, Multi-Scale Categorical Object
Recognition Using Contour Fragments, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(7): 1270-1281, 2008.

[29] Z. Si, M. Pei, Z.Y. Yao, and S.C. Zhu, Unsupervised Learning
of Event And-Or Grammar and Semantics from Video, In Proc. of
International Conference on Computer Vision (ICCV), 2011.

[30] Z. Si, and S. C. Zhu, Learning And-Or Templates for Object
Modeling and Recognition, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2013.

[31] Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan, Contextualizing
Object Detection and Classification, In Proc. of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2010.

[32] P. Srinivasan, Q. Zhu, and J. Shi, Many-to-one Contour Matching
for Describing and Discriminating Object Shape, In Proc. of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2010.

[33] D. Tran and D. Forsyth, Improved human parsing with a full
relational model, In Proc. of European Conference on Computer Vision
(ECCV), 2010.

[34] Z. Tu, S. Zheng, and A. Yuille, Shape Matching and Registration
by Data-driven EM, Computer Vision and Image Understanding, 109(3):
290-304, 2008.

[35] Y. Wu, Z. Si, H. Gong, and S.C. Zhu, Learning Active Basis
Model for Object Detection and Recognition, International Journal
of Computer Visison, 90(2): 198-235, 2010.

[36] X. Wang, and L. Lin, Dynamical And-Or Graph Learning for
Object Shape Modeling and Detection, In Proc. of Advances in Neural
Information Processing Systems (NIPS), 2012.

[37] Y. Wang, D. Tran, and Z. Liao, Learning Hierarchical Poselets for
Human Parsing, In Proc. of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2011.

[38] J. De Winter and J. Wagemans. Contour-based object identification
and segmentation: stimuli, norms and data, and software tools,
Behavior Research Methods, Instruments, and Computers, 36(4): 604-624,
2004.

[39] C. Xu, J. Liu, and X. Tang, 2D Shape Matching by Contour Flexi-
bility, IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(1): 180-186, 2009.

[40] X. Yang and L. J. Latecki, Weakly Supervised Shape Based Object
Detection with Particle Filter, In Proc. of European Conference on
Computer Vision (ECCV), 2010.

[41] P. Yarlagadda, A. Monroy and B. Ommer, Voting by Grouping
Dependent Parts, In Proc. of European Conference on Computer Vision
(ECCV), 2010.

[42] C.-N. J. Yu, and T. Joachims, Learning structural svms with latent
variables, In Proc. of International Conference on Machine Learning
(ICML), 2009.

[43] A.L. Yuille, and A. Rangarajan, The Concave-Convex Procedure
(CCCP). Neural Computation, 15(4): 915-936, 2003.

[44] L. Zhu, Y. Chen, A. Yuille, and W. Freeman, Latent Hierarchical
Structural Learning for Object Detection, In Proc. of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2010.

[45] L. Zhu, Y. Chen, Y. Lu, C. Lin, and A. Yuille, Max Margin
AND/OR Graph learning for parsing the human body, In Proc. of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2008.

[46] S.C. Zhu and D. Mumford, A stochastic grammar of images,
Foundations and Trends in Computer Graphics and Vision, 2(4): 259-362,
2006.

[47] Q. Zhu, L. Wang, Y. Wu, and J. Shi, Contour Context Selection
for Object Detection: A Set-to-Set Contour Matching Approach, In
Proc. of European Conference on Computer Vision (ECCV), 2008.

Liang Lin is a full Professor with the School
of Advanced Computing, Sun Yat-Sen University
(SYSU), China. He received the B.S. and Ph.D.
degrees from the Beijing Institute of Technol-
ogy (BIT), Beijing, China, in 1999 and 2008,
respectively. From 2006 to 2007, he was a joint
Ph.D. student with the Department of Statistics,
University of California, Los Angeles (UCLA). He
was a Post-Doctoral Research Fellow with the
Center for Vision, Cognition, Learning, and Art
of UCLA. His research focuses on new models,

algorithms and systems for intelligent processing and understanding of
visual data such as images and videos. He has published more than 20
papers in highly ranked academic journals and more than 30 papers in
top tier conferences CVPR, ICCV, ECCV, ACM MM and NIPS. He was
supported by several promotive programs or funds for his works, such
as ”Program for New Century Excellent Talents” of Ministry of Education
(China) in 2012 and Guangdong Distinguished Young Scholar Fund in
2013. He was a recipient of Best Paper Runners-Up Award in ACM
NPAR 2010, Google Faculty Award in 2012, and Best Student Paper
Award in IEEE ICME 2014.

Xiaolong Wang received the BS degree from
the School of Information, South China Agricul-
tural University in 2011, and the MS degree in
Computer Science from Sun Yat-sen University
in 2014. His research interest include computer
vision and machine learning.

Wei Yang received the BS degree in Soft-
ware Engineering from Sun Yat-sen University
in 2011, and the MS degree in Computer Sci-
ence from Sun Yat-sen University in 2014. His
research interest include computer vision and
machine learning.

Jianhuang Lai received his M.Sc. degree in ap-
plied mathematics in 1989 and his Ph.D. in math-
ematics in 1999 from SUN YAT-SEN University,
China. He joined Sun Yat-sen University in 1989
as an Assistant Professor, where currently, he is
a Professor with the Department of Automation
of School of Information Science and Technol-
ogy and dean of School of Information Science
and Technology. His current research interests
are in the areas of digital image processing,
pattern recognition, multimedia communication,

wavelet and its applications.

	1 Introduction
	2 Related Work
	3 Representations
	3.1 Contour Descriptor
	3.2 And-Or Graph Model

	4 Inference
	5 And-Or Graph Learning
	5.1 Optimization Formulation
	5.2 Dynamical Structural Optimization
	5.3 Initialization

	6 Experiments
	7 Conclusion and Future Work
	References
	Biographies
	Liang Lin
	Xiaolong Wang
	Wei Yang
	Jianhuang Lai

