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Abstract—A proper temporal model is essential to analysis tasks involving sequential data. In computer-assisted surgical training,

which is the focus of this study, obtaining accurate temporal models is a key step towards automated skill-rating. Conventional learning

approaches can have only limited success in this domain due to insufficient amount of data with accurate labels. We propose a novel

formulation termed Relative Hidden Markov Model and develop algorithms for obtaining a solution under this formulation. The method

requires only relative ranking between input pairs, which are readily available from training sessions in the target application, hence

alleviating the requirement on data labeling. The proposed algorithm learns a model from the training data so that the attribute under

consideration is linked to the likelihood of the input, hence supporting comparing new sequences. For evaluation, synthetic data are

first used to assess the performance of the approach, and then we experiment with real videos from a widely-adopted surgical training

platform. Experimental results suggest that the proposed approach provides a promising solution to video-based motion skill evalua-

tion. To further illustrate the potential of generalizing the method to other applications of temporal analysis, we also report experiments

on using our model on speech-based emotion recognition.

Index Terms—Relative hidden markov model, relative learning, temporal model, emotion recognition, surgical skill

Ç

1 INTRODUCTION

HUMAN capability in mastering body motion is the key
in domains such as sports, rehabilitation, surgery and

dance. Computer-based approaches have been developed
over the years for facilitating acquiring (e.g., training in
sports and surgery) or regaining (e.g., in rehabilitation)
such motion-related skills by human subjects. One central
task faced by systems using such approaches is the analysis
of motion skills based on some temporal sensory data. With
such analysis, skill metrics may be extracted and assigned
to a given movement and feedback may accordingly be pro-
vided to the subjects for taking actions to improve the
underlying skill. For example, [1] utilized control trajecto-
ries and motion capture data for human skill analysis, [2]
reported motion skill analysis in sports using data from
motion sensors, [3] studied computational skill rating in
manipulating robots, and [4] considered hand movement
analysis for skill evaluation in console operation.

Among others, surgery-related applications have
attracted increasing interests, where motion expertise is
the primary concern. To improve their motion expertise,
surgeons often have to go through lengthy training pro-
cesses. In recent years, simulation-based surgical training
platforms have been developed and widely applied in
surgical education. One prominent example is the Funda-
mentals of Laparoscopic Surgery (FLS) Trainer Box
(www.flsprogram.org). With such platforms, it is possible
to develop computational approaches to provide objective

and quantifiable performance metrics, overcoming the
shortcomings in traditional training that relies on costly
practice of direct supervision by senior surgeons. Recog-
nizing the sequential nature of motion data, many analy-
sis approaches utilize state-transition models, such as the
Hidden Markov Model (HMM). For example, [5] pro-
vided an HMM-based method to evaluate surgical resi-
dents’ learning curve. The method first constructs
different HMMs for each different levels of expertise, and
then calculates a probability distance between the expert
and a novice resident. The magnitude of the probability
distance is used to rate the level of the novice resident.
HMM was also adopted in [6] to measure motion skills in
surgical tasks, where a recorded video is first segmented
into basic gestures based on velocity and angle of move-
ment, with segments of the gestures corresponding to the
states of an HMM. In [7], Hierarchical Dircichlet process
hidden Markov model (HDPHMM [8]) was utilized,
which relaxed the requirement of predefining the number
of the states for the model.

One practical difficulty in these approaches is that they
require the skill labels for the training data since the HMMs
are typically learned from sets of data streams with corre-
sponding skill levels. Labeling the skill of a trainee is cur-
rently done by senior surgeons, which is not only a costly
practice but also one that is subjective and less quantifiable.
Thus it is difficult, if not impossible, to obtain a large amount
of data with sufficiently reliable skill labels for HMM train-
ing. This problem has also been encountered in other fields
such as image classification. For example, in [9], it was
argued that using binary labels to describe images is not
only too restrictive but also unnatural and thus relative
visual attributes were used and classifiers were trained
based on such features. Relative information has also been
used in other applications, e.g., distance metric learning [10],
face verification [11], and human-machine interaction [12].
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In this paper, we propose a novel formulation termed
Relative Hidden Markov Model and develop an algorithm for
obtaining a solution under this model. The proposed
method utilizes only relative ranking (based on certain attri-
bute of interest, or motion skill in the surgical training appli-
cation) between pairs of inputs, which is easier to obtain
and often more consistent. This is especially useful for
applications like video-based surgical training, where the
trainees go through a series of training sessions with their
skills improving over time, and thus the time of the sessions
would already provide natural relative ranking of the skills
at the corresponding time. The proposed algorithm effec-
tively learns a model from the training data so that the attri-
bute under consideration (i.e., the motion skill in our
application) is linked to the likelihood of the inputs under
the learned model. The learned model can then be used to
compare new data pairs. For evaluation, we first design syn-
thetic experiments to systematically evaluate the model and
the algorithm, and then experiment with real data captured
on a commonly-used surgical training platform. The experi-
mental results suggest that the proposed approach provides
a promising solution to the real-world problem of motion
skill evaluation from video.

The key contribution of the work lies in the novel formu-
lation of learning temporal models using only relative infor-
mation and the proposed algorithm for obtaining solutions
under the formulation. Discussion of its relationship to the
latent support vector machine is also provided to assist
the understanding of why the proposed formulation is suit-
able for the proposed scenarios. Additional contributions
include the specific application of the proposed method to
the problem of video-based motion skill evaluation in surgi-
cal training, which has seen increasing importance in recent
years. An earlier exposition of the proposed method can be
found in [13]. This current paper represents a full explora-
tion of the method, including a new learning algorithm that
is more efficient, new comparative analysis of the method,
and new and updated experiments. In particular, to illus-
trate that the proposed model is general in nature but not
confined to video-based skill analysis, we report its applica-
tion to a different problem, emotion recognition using
speech. To facilitate further exploration and validation by
other researchers, source code accompanying this paper has
been made publicly available.1

In the remainder of this paper, we first review some of
the related work in Section 2 and describe basic notations of
the HMM in Section 3. The proposed method is then pre-
sented in Section 4, including a new algorithm for obtaining
solutions in Section 4.3 and discussion of its relationship to
latent support vector machine in Section 4.4. The proposed
method is evaluated on three types of data in Section 5,
including synthetic data (Section 5.1) and videos from surgi-
cal simulation systems (Section 5.2), and speech data
(Section 6). The paper is concluded in Section 7. In this
paper, we use upper-case bold font (e.g., X) for matrices,

lower-case bold font (e.g., x) for vectors. We useXi to repre-

sent ith sequence,X
i
t for the tth frame of sequenceXi.

2 RELATED WORK

In this section, we first review two categories of existing
work, discriminative learning for hidden Markov models
and learning based on relative information, which are most
related to our approach. Distinction between our proposed
method and the reviewed work will be briefly stated. We
also briefly discuss a few more related efforts on skill evalu-
ation in surgery.

Discriminative learning for HMM. Maximum-likelihood
methods for learning HMM (e.g., the forward-backward
algorithm) in general do not guarantee the discrimination
ability of the learned models. To this end, several discrimi-
native learning methods for HMM have been proposed. In
[14], a discriminative training method for HMM was pro-
posed based on perceptron algorithms. The methods iter-
ates between the Viterbi algorithm and the additive update
of the models. Hidden Markov support vector machine
(HM-SVM) was proposed in [15], which combines SVM
with HMM to improve the discrimination power of the
learned model. These methods are “supervised” in nature,
and thus the labeling of the state sequence is required for
the training data, which limits their practical use. In [16],
another discriminative learning method for HMM was pro-
posed, which only requires the labels of the training sequen-
ces. The method initializes the HMMs with maximum-
likelihood method and then updates the models with SVM.
One drawback is that, the updated models do not always
lead to valid HMMs, which could be problematic for a
physics-driven problem where the model states have real
meanings (like the gesture elements in [6]). Our proposed
method requires neither the labeling of the states nor the
class label for the training sequences, which are difficult to
obtain or even not accessible in many applications. Instead,
only a relative ranking of the training data is used, and the
resultant model is a valid HMM.

Learning with relative information. Several methods for
learning with relative information have been proposed
recently. In [10], a distance metric is learned from relative
comparisons. Considering the limited training examples
for object recognition, [17] proposes an approach based on
comparative objective similarities, where the learned
model scores high for objects of similar categories and
low for objects of dissimilar categories. In [11], compara-
tive facial attributes were learned for face verification. The
method of [9] learns relative attributes for image classifi-
cation and the problem is formulated as a variation of
SVM. Similar idea was also been used in [12] for the pur-
pose of human-machine interaction. In [18], relative attri-
bute feedback, e.g., “Shoe images like these, but sportier”,
is used to improve the performance of image search. Rela-
tive information between scene categories has also been
used to enhance the performances of scene categorization
in [19]. These approaches are mostly for image-based
attributes, whereas our current task is on modeling
sequential data, for which it is natural to assume that the
most relevant attributes (e.g., motion skills) are embedded
in a temporal structure. This is what our proposed
method attempts to address. Efforts has been observed for
estimating the true continuous label of the data from a set
of pairwise ranking of training data [20], [21]. However,1. The code is available at www.public.asu.edu/~bli24/Code

SoftwareDatasets.html.
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those methods do not directly learn a model for ranking/
labeling new data.

Skill evaluation for surgical simulations. Objective evalua-
tion of surgical skills has been a topic of research for many
years. The authors of [22], [23] used the time of each data,
total path traveled and the number of hand movements to
rate the surgical skills. It is evident that some of the criteria
recommended in these studies (e.g., time of completion)
may be relatively easily measured with proper sensory
data, while some others cannot be (e.g., respect for tissues).
A technique proposed in [24] called task deconstruction
was implemented in a recent system by [25]. They used
Markov Models to model a sequence of force patterns or
positions of the tools. They showed that their Markov Mod-
els were suitable for decomposing a task (such as suturing)
into basic gestures, and then the proficiency of the complex
gesture could be analyzed. While this study offered an
intriguing approach to expertise analysis, it required an
expert surgeon to provide specifications for building the
topology of the model; hence it cannot be easily generalized
to new procedures. A similar idea was also utilized in [26].
Jun et al. [27] proposed to segment the training data into
modular sub-procedures or therbligs and performance is
measured over each sub-procedure.

3 BASIC NOTATIONS OF HMM

In this section, we briefly describe HMM and introduce
some basic notations that will be used later. An HMM
can be defined by a set of parameters: the initial transition
probabilities p 2 RK�1, the state transition probabilities A 2
RK�K and the observation model ffkgKk¼1, where K is the
number of states. There are two central problems in HMM:
1) learning a model from the given training data; and 2) eval-
uating the probability of a sequence under a given model,
i.e., the decoding problem.

In the learning problem, one learns the model (u) by maxi-
mizing the likelihood of the training data (X):

u� : max
u

Y
Xi2X

pðXijuÞ � max
u

X
Xi2X

log pðXijuÞ; (1)

where X is the set of i.i.d. training sequences.
One efficient solution to the above problem is the well-

known Baum-Welch algorithm [28]. Another scheme,
namely the segmental K-means algorithm [29], may also be
used to seek a solution, and it has been shown that the likeli-
hoods under models estimated by either of the two algo-
rithms are very close [29]. When the training data include
sequences of multiple categories, multiple models would be
learned and each model will be learned from data of each
category independently.

In the decoding problem, given a hidden Markov model,
one needs to determine the probability of a given sequence
X being generated by the model. Generally we are more
interested in the probability associated with the optimal
state sequence (z�), i.e., pðX; z�juÞ ¼ maxzpðX; zjuÞ. The opti-
mal state path can be found via the Viterbi algorithm. To
use HMM in classification, we first compute the probability
of the given sequence drawn from each model, then we
choose the model yielding the maximal probability.

4 PROPOSED METHOD

Based on the previous discussion, we are concerned with a
new problem of learning temporal models using only rela-
tive information. This is a problem arising naturally in
many applications involving motion or video data. In the
case of video-based surgical training, the focus is on learn-
ing to rate/compare the performance of the trainees from
recorded videos capturing their motion. To this end, in rec-
ognition of some fruitful trials of HMMs in this application
domain, we propose to formulate the task as one of learning
a Relative Hidden Markov Model, which not only maximizes
the likelihood of the training data, but also maintains the
given relative rankings of the input pairs. In its most basic
form, the proposed model can be formally expressed as (fol-
lowing the notations defined in Eqn. (1))

u : max
u

Y
Xi2X

pðXijuÞ

s:t: F ðXi; uÞ > F ðXj; uÞ; 8ði; jÞ 2 E;

(2)

where F ðX; uÞ is a score function for data X given by model
u, which is introduced to maintain the relative ranking of

the pair Xi and Xj and E is the set of given pairs with prior
ranking constraint. Different score functions may be
defined, e.g., data likelihood and data likelihood ratio, as
described in the following sections in Section 4.1 and
Section 4.2.

From this formulation, the difference between the pro-
posed method and any of the existing HMM-based methods
is obvious. In an existing HMM-based method, a set of mod-
els is trained using the training data of each category inde-
pendently. That is, explicit class labels are required for each
training sequence. The proposed model has the following
unique features:

� The model does not require explicit class labels.
What needed is only a relative ranking.

� The model explicitly considers the ranking con-
straint between given data pairs, whereas
independently-trained HMMs in existing methods
cannot guarantee it.

� Only one model is learned for the entire set of data.
There are two benefits: more data for training and
less computation during testing.

Our method is also different from the existing work on
learning with relative attributes in that it models sequential
data and the relative ranking information is capsulated in a
temporal dynamic model of HMM (albeit new algorithms
are thus called for), which has demonstrated performance
in modeling physical phenomena like human movements.

In the following sections, we present two instantiations
of the general model expressed in Eqn. (2), and develop the
corresponding algorithms in each case. It will become clear
that the first model (Section 4.1), while being intuitive, has
some practical difficulties, which motivated us to develop
the improved model of Section 4.2. Both models/algorithms
are presented (and evaluated later in Section 5) for the pro-
gressive nature of the methods and for facilitating the
understanding of the improved model and algorithm of
Section 4.2, which is the recommended solution.
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4.1 The Baseline Model

While one may use different score functions for F in Eqn. (2)
for comparing the input pairs, upon successful training the
likelihoods of the sequences should reflect the original rank-

ing. Hence we may set F ðXi; uÞ ¼ pðXijuÞ. With this, the for-
mulation in Eqn. (2) can be rewritten as

u : max
u

Y
Xi2X

pðXijuÞ

s:t: pðXijuÞ > pðXjjuÞ; 8ði; jÞ 2 E:

(3)

It has been proven in [30] that, the marginal likelihood is
dominated by the likelihood with the optimal path and their
difference decreases exponentially with the length (number
of frames) of a sequence. This idea was used in segmental
K-means algorithm and similarly we can approximate the
marginal data likelihood pðXjuÞ by the likelihood with opti-
mal path pðX; z�juÞ (when there is no ambiguity, we will
use z for z�), which can be written as:

log pðX; zjuÞ ¼ log pðX1jfz1
Þ þ log pðz1Þ

þ
XT
t¼2

log pðXtjfzt
Þ þ log Aðztjzt�1Þ

� � (4)

For some observation models, e.g., multinomial (more
details in Appendix A), we can write log pðXi; zijuÞ ¼
uThðXi; ziÞ. Accordingly, Eqn. 3 can be finally written as

u : max
u2V

uT
X

i:Xi2X
hðXi; ziÞ

s:t: uThðXi; ziÞ � uThðXj; zjÞ þ r; 8ði; jÞ 2 E;

(5)

where r � 0 defines the required margin between the loga-
rithms of likelihood for a pair of data and V defines the set
of valid parameters for the hidden Markov model, i.e.:

uðiÞ 	 0 ;
X

i:uðiÞ2logðpÞ
euðiÞ ¼ 1;

X
i:uðiÞ2logðAjÞ

euðiÞ ¼ 1 ;
X

i:uðiÞ2logðfjÞ
euðiÞ ¼ 1;

(6)

where i : uðiÞ 2 logðAjÞ is the set of the indexes which corre-
sponds to the jth row of matrix A.

For the model in Eqn. (3), we assumed that every pair-
wise ranking constraint provided in the data is correct (or
valid). However, in real data, there may be outliers in such
training pairs. To handle this, we further introduce some
slack variables � and h, and accordingly Eqn. (5) can be writ-
ten as following:

u : max
u2V

uT
X
Xi2X

hðXi; ziÞ � g
X

ði;jÞ2E
�ij

s:t: uT ½hðXi; ziÞ � hðXj; zjÞ� þ �ij � r; 8ði; jÞ 2 E

�ij � 0;

(7)

where g is the weight for the penalty term
P

ði;jÞ2E �ij. For
initialization, we can set �ij ¼ 0. We will defer the optimiza-
tion algorithm for Eqn. (7) to Section 4.3. After the model is
learned, it can be used to a testing pair: For each sequence

we evaluate the data likelihood via the Viterbi algorithm
and use the logarithm of the data likelihood as the score of
the data. By definition, the obtained scores can be used to
compare the pair.

4.2 The Improved Model

In the model described in Eqn. (7), we compare the loga-
rithm of the data likelihood, which is, according to Eqn. (4),
roughly proportional to the length of the data. Thus a shorter
sequence is likely to have a larger score. This means that the
learned model would be biased towards shorter sequences.
If the observation describes a long, periodic event, e.g.,
repeating an action multiple times within a sequence, we
may consider normalizing the logarithm of the data likeli-
hood by the number of frames of the observation. However,
this cannot be applied directly for non-periodic observations
like sequences from surgical simulation, where the length of
a sequence (corresponding to the time taken for completing
a task) is one of the skill metrics.

To overcome the above practical problem, we consider
an improved version. Recall that in HMM, we classify a
sequence based on the model with which the sequence gets
the maximal likelihood, i.e., it is the ratio of data likelihood
with different models that decides the label of the data. For
example, if log pðX;ẑju1Þ

pðX;~zju2Þ > 0, then we assign X to Model u1.
Thus we propose to use the ratio of the data likelihoods of

two HMMs as the score function, i.e., F ðX; uÞ ¼ log pðX;ẑju1Þ
pðX;~zju2Þ,

where we “partition” the original model into two models
(or, effectively, we train a pair of HMMs simultaneously).
This results in the following improved model:

u1; u2 : max
u1;u2

X
i2X1

log pðXi; ẑiju1Þ þ
X
j2X2

log pðXj; ~zjju2Þ

� g
X

ði;jÞ2E
�ij

s:t: log
pðXi; ẑiju1Þ
pðXj; ~zjju2Þ

� log
pðXj; ẑjju1Þ
pðXj; ~zjju2Þ

þ �ij � r

�ij � 0;

(8)

where X1 is the set of data associated with Model u1 (X2 for

Model u2), ẑ
i is the optimal path for sequence xi with Model

u1 and ~zi for optimal path with Model u2.

With log pðXi;ẑiju1Þ
pðXj;~zjju2Þ

¼ uT1 hðXi; ẑiÞ � uT2 hðXi; ~ziÞ, we can

rewrite the model in Eqn. (9) (similar to Eqn. (7)):

u : max
u2V

uT

P
i2X1

hðXi; ẑiÞP
j2X2

hðXj; ~zjÞ

" #
� g

X
ði;jÞ2E

�ij

s:t: uT
hðXi; ẑiÞ � hðXj; ẑjÞ
hðXj; ~zjÞ � hðXi; ~ziÞ

" #
þ �ij � r

�ij � 0;

(9)

where u ¼ ½uT1 ; uT2 �T . The optimization algorithm for Eqn. (9)

will be presented in Section 4.3. After we learn the model

with the improved algorithm, we can apply it to a given

pair by first computing their likelihoods with respect to the
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”sub-models” given by u1 and u2 (with the Viterbi algo-

rithm), and then we use the logarithm of the ratio of the

data likelihoods as the score to rank/compare the pair.

The learned models u1 and u2 serve as a unified model to
rank the data. We may view them as the centers of two clus-
ters, where the distances of the data to those two centers
can be related to the ranking score.

It needs to be emphasized that the improved model is
not equivalent to a supervised HMM with two classes. In a
2-class HMM setting, two models will be independently
trained with their respective training sets. Here, the pro-
posed model trains two ”sub-models” jointly with only rela-
tive ranking constraints. Specifically, if there is no further
information for X, we could assume that X1 ¼ fijði; jÞ 2
E; 8jg and X2 ¼ fjjði; jÞ 2 E; 8ig, and thus there could be
overlaps between X1 and X2 (which will become clear in the
experiment with synthetic data in Section 5). This situation
is not even allowed by a supervised HMM setting. We do
not require any extra properties for X1 and X2.

4.3 Algorithms for Updating the Model

One important step of both the baseline algorithm and the
improved algorithm is updating the models, as formulated
in Eqn. (7) and Eqn. (9) accordingly. It is a nonlinear pro-
gramming problem (due to the nonlinear equality con-
straint). In our previous paper, we solved it by the primal-
dual interior point method, which is of dimension
Kð1þK þDÞ þ jEj (or 2Kð1þK þDÞ þ jEj) with 2jEj þ
Kð1þK þDÞ (or 2jEj þ 2Kð1þK þDÞ) linear inequality
constraints and 1þK þD (or 2ð1þK þD)) nonlinear
equality constraints for the baseline model (or the improved
model). Although the Hessian matrix is diagonal, the
computational cost could be still very high when there are a
large number of training pairs. In this section, we propose a
new algorithm by utilizing the special structure of the prob-
lems in Eqn. (7) and Eqn. (9).

Eqn. (7) (similarly for Eqn. (9)) can be written in the fol-
lowing form:

u; � : min
u;�

fT u þ g1T �

s:t: : Au þ � 	 r

Ceu ¼ 1

u 	 0 ; � � 0:

(10)

For example, for Eqn. (7), we have f ¼ �P
Xi2X hðXi; ziÞ, A

andC are constructed according to Eqns. (7) and (6).
Eqn. (10) is a nonlinear programming problem (due to

the nonlinear equality constraint). To solve this problem,
we first introduce a slack variables f, where log f ¼ u. Then
Eqn. (10) can be rewritten into the following problem:

u; �;f : min
u;�;f

fT u þ g1T �

s:t: : Au þ � 	 r

Cf ¼ 1

log f ¼ u

u 	 0; � � 0; 0 	 f 	 1:

(11)

According to Eqn. (11), f will be a valid hidden Markov
model (or hidden Markov model pairs ½f1;f2� for the
improved model). We then apply the Augmented Lagrange
multiplier method to the equality constraint log f ¼ u of the
problem in Eqn. (11):

u; �;f : min
u;�;f

fT u þ g1T �þ

< �; u � log f > þm

2
ku � log fk22

s:t: : Au þ � 	 r

Cf ¼ 1

u 	 0; � � 0; 0 	 f 	 1;

(12)

where � is the Lagrange multiplier and m is some nonnega-
tive constant. In Eqn. (12), the nonlinear equality constraint
is removed.

Eqn. (12) can be solved via block coordinate descent by
iterating between the following two sub-problems:

Sub-problem 1: fix f to solve u and �, which is

u; � : min
u;�;f

fT u þ g1T �þ

< �; u � log f > þm

2
ku � log fk22;

s:t: : Au þ � 	 r

u 	 0; � � 0:

(13)

It is a quadratic programming problem with linear inequal-
ity constraints.

Sub-problem 2: fix u and � to solve f, which is

f : min
f

< �; u � log f > þm

2
ku � log fk22

Cf ¼ 1

0 	 f 	 1:

(14)

It is a nonlinear problem with linear constraints.
Given the special structures ofC, where each column has

one and only one element being nonzero (recall Eqn. (6)),
Sub-problem 2 can be separated into a set of smaller
problems:

fk : min
fk

< �k; uk � log fk > þm

2
kuk � log fkk22

1Tfk ¼ 1

0 	 fk 	 1;

(15)

where k is the set of indexes of columns, whose values are
nonzero at the kth row of C. Those smaller problems are
again a nonlinear problem with linear constraint, whose
dimensions are only K (number of states) or D (number of
feature dimensions).

To solve this problem we can use the primal-dual interior
point method, whose gradient and hessian are computed as

J ¼ ��k þ mklog fk � mkuk

fk
;

H ¼ L
�k � m log fk þ muk þ m

fk 
 fk

� �
;

where Lð
 
 
Þ converts a vector to a diagonal matrix. In addi-
tion, we can compute the starting point of the problem in
Eqn. (15) as: by taking the gradient of the objective function
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with regard to log fk, we have ��k þ mðlog fk � ukÞ ¼ 0, i.e.,

fk ¼ eðu
kþ�k

m Þ. The linear constraint can be solved simply by

projection, i.e., fk ¼ 1
N eðu

kþ�k
m Þ, whereN ¼ P

eðu
kþ�k

m Þ.

Algorithm 1. Algorithm for the Baseline (Improved)
Model

Input: X, E, r, g, s (, X1 and X2)
Output: f
Initialization: Initialize f (or f1 and f2) via ordinary HMM

learning algorithm, � ¼ logu
juj2 and m ¼ 1:25

juj2 ;
while not converged do
Compute the optimal path z (or ẑ and ~z) for each sequence
with f (or f1 and f2);
solve Sub-problem 1;
solve Sub-problem 2;
update � ¼ �þ mðu � log fÞ and m ¼ m� s;
check convergence;

end while

Finally, we briefly summarize the algorithms for the
baseline model (Eqn. (7)) and the improved model (Eqn. (9))

below (noting the similarity in form of the algorithms and
thus putting them compactly together):

According to [31], the proposed method will converge to
the local minimum of the problem in Eqn. (10). And for
convergence, we check ku�log fk2

kuk2 . If it is smaller than some

value, e.g., 10�6, the algorithm will be terminated. In initiali-
zation, juj2 is the vector L2 norm of of u.

Remarks on the Parameters. The parameter g controls the
weight of the penalty term with the slack variables, which is
similar to the functionality of C in support vector machines
[32]. The parameter r controls the desired gap of the score

of two data points, i.e., pðXi;zi juÞ
pðXj;zjjuÞ � er 8ði; jÞ 2 E in the base-

line model and pðXi;ẑiju1Þ
pðXi;~ziju2Þ

pðXi;~zjju2Þ
pðXi;ẑjjuÞ � er 8ði; jÞ 2 E in the

improved model. In Section 5.1, we will evaluate different
parameter settings (Fig. 2), which leads us to set g ¼ 1; 000
and r ¼ 10 in our final experiments. The parameter s con-
trols the convergence speed of the algorithm, which should
be a positive number larger than 1. s is typically within
1:1� 1:5, and 1:25 is used in this paper.

The proposed algorithm, compared with the one used in
[13], has lower computational cost, due to the removal of

Fig. 2. The accuracy of the improved method: (a) with different g (r is
fixed to 10), which controls the weight of the penalty term with slack vari-
ables; (b) with different r (g is fixed to 1; 000), which controls the margin
of the learned models.

Fig. 1. The experiment result with different numbers of states: (a) the
computational time (blue solid curve) and number of iterations needed
for convergence (green dashed curve); (b) the accuracy of the improved
method. The X-axis is the number of states.
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the nonlinear equality constraint with augmented Lagrange
multiplier. For Sub-problem 1, the quadratic term is a diago-
nal matrix and many solvers (e.g., CPLEX) can solve it quite
efficiently. Sub-problem 2 is a nonlinear minimization prob-
lem with linear equality constraints; however, it can be
decomposed into several smaller problems.

A comparison between the method in [13] and the pro-
posed method for updating the baseline model is shown in
Table 1. In Section 5.1, we will also compare the computa-
tional time of those two methods under varying E on syn-
thetica data (Fig. 6).

4.4 Relationship to Existing Methods

The proposed method is related to latent support vector
machine [33]. Given a training set of input-output pairs
fðxi; yiÞgni¼1, where yi 2 f�1; 1g, Latent SVM tries to learn a
predictor of the form:

fwðxÞ ¼ max
z

wTCðx; zÞ; (16)

where w is the parameter of the predictor, Cðx; zÞ is the fea-
ture mapping function and z is the latent variable. The train-
ing stage of Latent SVM can be formulated as the following
problem:

min
w

1

2
kwk22 þ C

X
i

maxð0; 1� yifwðxiÞÞ: (17)

Latent SVM is a non-convex problem, as the latent variable
is unknown, and the coordinate descent approach is used
for solving this problem.

Given a training set fðxi; yiÞgni¼1, where xi ¼ ðxL
i ;x

R
i Þ is a

pair of sequences and yi 2 f�1; 1g is the ranking of the pair,
by defining the feature mapping function as Cðxi; ziÞ ¼
½hðxL

i ; z
L
i Þ � hðxR

i ; z
R
i Þ�, with the latent variable zi ¼ ðzLi ; zRi Þ

being a pair of state sequences for the pair xi ¼ ðxL
i ;x

R
i Þ, we

have

min
w

1

2
kwk22 þ C

X
i

�i

s:t: yi max
zL
i
;zR
i

wT
�
h
�
xL
i ; z

L
i

�� h
�
xR
i ; z

R
i

��� 	þ �i � 1

�i � 0:

(18)

We can find that Eqn. (18) is similar to our baseline
model (Eqn. (7)), except for the following differences.

1) In Eqn. (18), the L2 norm is applied to the parame-
ter of the predictor w (which is related to the mar-
gin). In the proposed methods we require w to be a

valid hidden Markov model while defining a fixed-
margin, i.e., r. Thus the proposed method can
always guarantee the learned model is a valid hid-
den Markov model.

2) In Eqn. (18), the two state sequences z (i.e., the latent
variables) are optimized jointly, where no known
efficient solution is available. In the proposed
method, the two state sequences are optimized sepa-
rately with regarding to the likelihood, which can be
solved efficiently via dynamic programming (i.e.,
the Viterbi algorithm);

3) Given the model learned by the latent SVM, we can
only rank a pair of sequences. However, the model
learned by the proposed method is capable of not
only ranking a pair of sequences but also assigning a
score for each sequence.

Those differences make the proposed method (both the
baseline model and the improved model) more suitable for
modeling the sequential data, e.g., video, speech.

5 EXPERIMENTS

In this section, we evaluate the proposed methods, includ-
ing the baseline method and the improved method, using
both synthetic data (Section 5.1) and realistic data collected
from the surgical training platform FLS box (Section 5.2).
The performance of the proposed methods is compared
with a supervised 2-class HMM. (Lacking a comparative
approach in the literature that is both unsupervised and
works with only relative rankings, this is believed to be a
reasonable way of generating a reference point to assess the
proposed methods.)

Since we do not have the label information for the train-
ing data, we train the HMM as follows. For the HMM algo-
rithm, we initialize the two sets as X1 ¼ fijði; jÞ 2 E; 8jg and
X2 ¼ fjjði; jÞ 2 E; 8ig. Each of the sets is then used to train a
HMM. Note, the data generated from data-generating Mod-
els u2 � u5 could be included in both X1 and X2. Thus exist-
ing discriminative learning methods for HMM could not be
applied here.

5.1 Evaluation with Synthetic Data

To evaluate the proposed method, we generate synthetic
data as follows. We first generate six different HMMs (u1 to
u6, referred as data-generating models), from each of which
we draw 200 sequences, with the length being uniformly
distributed between 80 to 120. Each data-generating model
has five states. For the sequences from each data-generating
model, we randomly assign 50 of them to the training set

TABLE 1
Comparing the Method in [13] and the Proposed Method for Updating the Baseline Model, with

Regarding to the Problem Size, Number of Linear Constraints and Nonlinear Constraints

Method in [13]
Proposed Method

Sub-problem 1 Sub-problem 2

Problem Size Kð1þK þDÞ þ jEj Kð1þK þDÞ þ jEj K(or D)
# Linear Const. 2jEj þKð1þK þDÞ 2jEj þKð1þK þDÞ 1+2K(or 1+2D)
# Nonlinear Const. 1þK þD 0 0

For Sub-problem 2 of the proposed method, it can be divided into several smaller problems.
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and the remaining to the testing set. We assume there exists

a score function such that F ðXiÞ > F ðXjÞ if and only if

Xi � uk, X
j � ul and k < l. That is, the sequences from a

data-generating model with a lower index are viewed to
have a higher score (or ranking) than those from a data-
generating model with a higher index. A set of pairs

fði; jÞjXi � uk;X
j � ukþ1; k ¼ 1; . . . ; 5g are then formed

accordingly, some of which are then randomly selected as
the training pairs E.

We use the proposed methods and also HMM to learn
models from the training pairs. The learned models are
then used to evaluate the testing set, i.e., how many test-
ing pairs that they rank the same as the ground truth. The
result of the methods with different numbers of training
pairs is summarized in Fig. 3, where due to the computa-
tional time it takes, we do not have the results for the
baseline method when there are more than 3;750 training
pairs. From Fig. 3, we can find that the improved method
achieves the best results on both the training set and the
testing set; and the HMM method gives the worse result.
In addition, the performance of both of the proposed
methods stabilized after certain number of training pairs.
However the performance of the HMM method drops
dramatically when the number of training pairs reaches
about 6;250. It can be explained by that the two HMMs
share a lot of common data (for those generated by
u2 � u5) and the models are trained independently with-
out considering their discrimination ability. Normalizing
the logarithm of the data likelihood does not improve the
performance of baseline method, which could be
explained by that, all the sequences have roughly the
same length, i.e., 80 � 120.

Fig. 4 shows the logarithm of the data likelihood ratio
with the models learned by the improved method, when
about 1; 250 training pairs are provided. This clearly dem-
onstrates that, although we formed the training pairs only
with data from data-generating models of adjacent
indexes (i.e., i and iþ 1), the learned model is able to
recover the strict ranking of the original data. We can also
try to classify the data into six models, by thresholding the
logarithm of data likelihood ratio, where, for the model
learned with the improved method, the classification accu-
racy is 86:44 and 98:60 percent for testing and training
respectively.

Convergence and Speed. For empirically understanding the
convergence behavior of the improved method, we plot in
Fig. 5 the objective value in the model as a function of the
number of iterations. We can find that the improved method
converges fairly quickly (within about 14 iterations) and the
value of the objective function monotonically increases.

We also compare the computational time of the optimi-
zation method in [13] (shown as the red/upper curve) and
the proposed optimization method (in Section 4.3 and
shown as the green/lower curve) in solving the improved
model under varying number of training pairs in Fig. 6. In
[13], a primal-dual interior point method is utilized to
update the model; while in this paper, we design an aug-
mented Lagrange multiplier method which utilizes the spe-
cial structure of the objective function of the problem. From
the plot, we can find that the proposed optimization
method has a much lower computational cost than the one
proposed in [13].

Parameter Selection. To understand the effect of parame-
ters to the performances of the improved method, includ-
ing accuracy and computation cost, we evaluate it with

Fig. 4. The logarithm of the data likelihood ratio with the models learned
by the improved method. Top: the result for the testing set. Bottom: the
result for the training set. The data are grouped (as the section parti-
tioned by the red lines) according to the data generation model from
which they are synthesized.

Fig. 5. The convergence behavior of the improved method, where
around 1; 250 training pairs were used. The blue curve/axis shows the
value of the objective function, and the green curve/axis shows the num-
ber of constraints satisfied.

Fig. 3. The results of four methods on training set (dashed curve) and
testing set (solid curve) with different numbers of training pairs.
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varying combination of parameters. First we learn the
model with varying numbers of states (K), from 6 to 30.
The result is shown Fig. 1. From Fig. 1b, we can find that,
though the accuracy for the training data increases with
the number of states, the accuracy for testing doesn’t fol-
lowing this trend, which indicates a potential risk of over-
fitting. The computational time and number of iteration
until convergence get minimum when the number of states
is 11-13. We also do experiment with different combina-
tions of g (controlling the weight of the penalty term with
slack variables) and r (controlling the margin of the
model), where the experiment result is shown in Fig. 2.
From this experiment we can find that, g 2 ½1; 1;000� and
r 2 ½4; 32� are good choices.

It is obvious from this experiment that the sequences are
different from (or similar to) each other only because they
are from different (or the same) data-generating models,
whereas their relative ranking can be arbitrarily defined. In
the end, the proposed methods will learn a temporal model
to reflect the defined rankings. This suggests that, as long as
we can assume there are some data-generating models for
the given sequential data, we can use the proposed methods
to learn a relative HMM. This is the basis for applying the
approach to the surgical training data in the following sec-
tion, where it is reasonable to assume that movement pat-
terns of subjects with different skill levels may be modeled
by different underlying HMMs while the ranking can be
based on the time of training, which reflects the skill level of
the subject at the time.

5.2 Skill Evaluation Using Surgical Training Video

We now evaluate the proposed method using real videos
captured from the FLS trainer box, which has been widely
used in surgical training. The data set contains 546 videos
captured from 18 subjects performing the “peg transfer”
operation, which is one of the standard training tasks a resi-
dent surgeon needs to perform and pass. The number of
frames in each video varies from 1; 000 to 6; 000 (depending
on the trainees’ speed in completing a training session). The

data set covers a training period of four weeks, with every
trainee performing three sessions each week.

In the training, the subject needs to lift six objects (one
by one) with a grasper by the non-dominant hand, trans-
fer the object midair to the dominant hand, and then place
the object on a peg on the other side of the board. Once all
six objects are transferred, the process is reversed, and the
objects are to be transferred back to the original side of
the board. The videos capture the entire process inside the
trainer box, showing how the tools and objects are moved
by the subject. The motion skill is related to how well the
subjects perform in such operation. In the existing prac-
tice, senior surgeons rate the performance of the trainees
based on such videos. Our goal is to perform the rating
automatically with the proposed model.

Based on the reasonable assumption that the trainees
improve their skills over time (which is the whole point of
having the resident surgeons going through the training
before taking the exam), the time of recording is used to
rank the recorded videos within each subjects’ corpus (i.e., a
later video is associated with a better skill). Other than this
relative ranking, there are no other labels assumed for the
video, e.g., there is no rank information between videos of
different subjects (which would be hard to obtain anyway,
since there is no clearly-defined skill levels for a group of
trainees with diverse background). Based on this, we ran-
domly pick 300 pairs for training, similar to the experiment
using synthetic data.

Feature Extraction. We use the “bag of words” approach
for feature extraction from the videos as follows. The spatio-
temporal interest point detector [34] is applied to obtain the
histogram-of-gradient (HoG) features, which was found to
be useful in target application in the literature [35]. K-means
(k ¼ 100) is then used to build a code book for the descrip-
tors of the interest points. Finally, the code book is used to
obtain a histogram of interest points for each frame, and
thus each video is represented as a sequence of histograms.
This representation, compared with the existing way of
using bag of words in action recognition, i.e., transforming
each video into a single histogram, can better capture the
temporal information of the data. For all three methods, we
set the number of states to ten.

After learning the models from the training data, we
compute the score of the test data as the logarithm of data
likelihood (for the baseline method) or the logarithm of the
data likelihood ratio (for the improved method and the
HMM). We compare these scores for each pair of the testing
data (within each subject) and compute the percentage of
correctly labeled pairs (recall that, we use their time of
recording as ground truth). To demonstrate the advantage
of the proposed method, we also compare with the “relative
attribute” method [9] (referred as “SVM” in the following
discussions), which relies on ranking SVM. For “relative
attribute”, we represent each video as a histogram by accu-
mulating the sequence of histograms of the video along the
temporal direction.

The result is summarized in Table 2, where the improved
method obtained a significantly better result than the other
approaches, including “relative attribute”. Surprisingly, the
baseline method even performed slightly worse than the
HMM method. This is largely due to the wide range of

Fig. 6. The computation time for solving the improved model with the
method proposed in [13] (red/upper curve) and the method proposed in
Section 4.3 (green/lower) under varying number of training pairs. For
illustration purpose, we use log-log plot, where X-axis is the number of
training pairs (from around 125 to around 9; 000) and Y-axis is the com-
putation time in unit second (from about 20 to around 6; 000). The time is
measured in Matlab on a dual-core PC platform.
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variations of the length of the input sequences. Fig. 7 shows
the computed scores with the learned models, where for
better illustration purpose we group them by their subject
ID and within each subject’s corpus we sort the videos by
their recording time. From the figure, we can find that the
improved method (bottom) reveals a more clear trend for
the data than both the HMM method (top) and the baseline
method (middle), i.e., the scores of the data increase over
times (X-axis) for each subject (segments within the red
lines). It is worth emphasizing that only one joint model is
learned from ranked pairs of subjects with potentially vary-
ing skill levels. Still the learned model is able to recover the
improving trend, independent of the underlying skill levels.

As shown in Fig. 7, the model learned with the proposed
method can be used for comparing not only the videos of
the same subjects but also the videos from different subjects,
where the logarithm of data likelihood ratio can be used as a
measurement of the skills. However, it is not possible to
quantitatively measure the accuracy in comparing videos
from different subjects, due to the lack of ground truth
information for videos from different subjects.

It is also interesting to look at what the jointly-learned
models look like. Fig. 8 depicts the two models learned by
the improved method in this real-data based experiment.
From the figure, we can see that the two models have differ-
ent transition patterns. For example, the transition from
State 8 to States 2 and 5 are only observed in Model 1. This
may be linked to different motion patterns for data of differ-
ent surgical skills, with the hidden states corresponding to
some underlying action elements (and thus the transition
patterns vary with the skill).

6 ADDITIONAL VALIDATION USING SPEECH DATA

Although the proposed approach was evaluated above in
the context of motion skill analysis in surgical training,
using visual data as the input, the approach itself is general
and applicable for other applications involving temporal
data. To show that the proposed method can be used to
solve temporal inference problems other than video-based
motion skill assessment, we now consider an exemplar
problem, speech-based emotion recognition, where the attri-
bute of interest (the underlying emotion of a speaker) needs
to be inferred from sequential data. Emotion recognition
has received attention from researchers due to its broad
applications. For example, in human-machine interaction,
better responses can be made if the emotional state of the
human can be recognized. Existing work on this in the liter-
ature mainly focuses on developing models for assigning
the labels like “pleasing”, “angry” and “neural” to the data,
e.g., [36], [37], [38], [39]. Most of the those efforts are

TABLE 2
The Result for Experiment on Evaluating Surgical Skills

Method SVM HMM Baseline Improved

# Pairs 6335 6363 6215 6993
Accuracy 78:91% 79:39% 77:54% 87:25%

There are 8;015 pairs in total (only 300 for training), excluding the compari-
sons among data of different subjects.

Fig. 7. Top: the logarithm of the data likelihood ratio from two models learned by HMM. Middle: the logarithm of data likelihood with the model learned
by the baseline method. Bottom: the logarithm of the data likelihood ratio with the models learned by the improved method. The red vertical lines sep-
arate the data of different subjects, where X-axis is the corresponding subject ID. Within each subjects’ corpus, the videos are sorted according to
their time of recording.
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supervised in natural, i.e., the ground truth labeling for the
training data is required. For example, [40] used support
vector machines, [36] used hidden Markov models, both uti-
lizing fully-labelled data. The ground truth data typically
require manual labeling by human, which is an error-prone
process especially if absolute labels must be assigned to
ambiguous data. With the proposed model, we can support
learning with only relative labels like “Audio a is more
pleasing than Audio b”, which is easier to obtain and also
less error-prone.

In this experiment, we use Utsunomiya University
Spoken Dialogue Database For Paralinguistic Information
Studies (UUDB)[41](http://uudb.speech-lab.org), which
contains 4840 assets labeled across six dimensions (pleas-
antness, arousal, dominance, credibility, interest and posi-
tivity) on a scale of 1 to 7. The ground truth is based on the
average of scores of three annotators. For our experiment,
we pick the assets which are longer than 1 second to ensure
the effectiveness of emotional recognition, which results in
991 assets, where half of the data are used for training and
the remaining for testing. For generating the ground truth
pairs, we randomly picks 1000 pairs from the training
assets. Note that, we say two assets are similar, if the differ-
ence of the labeled scores of two assets is within the range
of ð�1; 1Þ.

For feature extraction, we use Hidden Markov Model
Toolkit (HTK)[42], where the MFCC coefficients are
extracted with the following configurations: sampling rate
is 100 HZ, windows size is 25 millisecond, number of filter
bank channels is 26, cepstral liftering coefficient is 22 with
12 cepstral parameters and the feature vector is normalized.
K-means is applied to the MFCC coefficients of all the train-
ing data to generate a code book of 64 elements. Finally,
each data is converted to a sequences of histograms. We use
the same set of parameters as the previous experiment.

The experimental results are reported in Table 3, where
we also provide a comparison to the relative attribute [9] as

referred by “SVM”. From the table, we can find that the
improved method consistently outperforms than both plain
HMM and also the baseline method in all six dimensions.
We also find that the baseline method gets low accuracy on
this experiment, which can be explained by that the length
of the audio (in number of temporal frames) varies dramati-
cally and the baseline method obviously cannot handle this
variation very well.

7 DISCUSSIONS AND CONCLUSIONS

In this paper, we presented a new formulation for the prob-
lem of learning temporal models using only relative infor-
mation. Algorithms were developed under the formulation,
and experiments using both synthetic and real data were
performed to verify the performance of the proposed
method. In essence, the proposed method attempts to learn
an HMM with relative constraints. Such a setting is useful
for many practical applications where relative attributes are
easier to obtain while explicit labeling is difficult to get. The
application of video-based surgical training was the focus
of this study, and the evaluation results using realistic data
suggests that the proposed method provides a promising
solution to the problem of motion skill evaluation from

TABLE 3
The Result for Experiment on UUDB Datasets

Dimension SVM Improved Baseline HMM

Pleasantness 75:25% 77:30% 57:96% 75:05%
Arousal 82:11% 86:95% 55:74% 69:55%
Dominance 74:13% 87:95% 63:04% 77:32%
Credibility 69:15% 76:68% 55:11% 71:74%
Interest 76:91% 81:90% 62:56% 78:07%
Positivity 68:08% 74:99% 67:84% 70:36%
Average 74:27% 81:28% 53:14% 73:72%

We evaulate the accuracy of ranking pairs with the learned models compared
with the ground truth ones.

Fig. 8. The two component models (Model 1 for X1 and Model 2 for X2) learned by the improved method, where we only draw the edges with a transi-
tion probability larger than 0.01 and ignore self transitions. The number attached to each edge indicates the transition probability.

1216 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 6, JUNE 2015



videos. For future work, we plan to extend the proposed
method to cover different observation models so that more
types of applications may be handled. That also includes
investigating alternative feature spaces which may be more
effective for the target problem.

APPENDIX A

For multinomial observation model, i.e., pðXtjfzt
Þ ¼QD

d¼1 fzt
ðlÞXtðlÞ, where D is the dimension of each frame,

XtðlÞ is the lth dimension ofXt and fzt
are the parameters of

observation model with State zt, we can further define the

following variables for each sequenceXi:

ni 2 RK�1 : niðkÞ ¼ d
�
zi1 ¼ k

�
;

Oi 2 RK�D : Oiðk; dÞ ¼
X
t:zt¼k

Xi
tðdÞ;

Mi 2 RK�K : Miðk; lÞ ¼
XT
t¼2

d
�
zit�1 ¼ k

�
d
�
zit ¼ l

�
;

where dð
Þ is Dirac Delta function. Then the log likelihood
with the optimal path can be written as:

logpðXi; zijuÞ
¼

X
l

niðlÞlog pðlÞ þ
X
k;l

Miðk; lÞlog Aðk; lÞ

þ
X
k;d

Oiðk; dÞlog fkðdÞ

¼ uThðXi; ziÞ; (19)

where u ¼ ½log p; vecðlog AÞ; vecðlog fÞ�, hðXi; ziÞ ¼ ½ni;

vecðMiÞ; vecðOiÞ� and vec converts matrix to vector.
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