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Abstract — Feature subset selection, as a special case of the gen-
eral subset selection problem, has been the topic of a considerable
number of studies due to the growing importance of data-mining
applications. In the feature subset selection problem there are two
main issues that need to be addressed: (i) Finding an appropriate
measure function than can be fairly fast and robustly computed
for high-dimensional data. (ii) A search strategy to optimize the
measure over the subset space in a reasonable amount of time. In
this article mutual information between features and class labels is
considered to be the measure function. Two series expansions for
mutual information are proposed, and it is shown that most heuristic
criteria suggested in the literature are truncated approximations of
these expansions. It is well-known that searching the whole subset
space is an NP-hard problem. Here, instead of the conventional
sequential search algorithms, we suggest a parallel search strategy
based on semidefinite programming (SDP) that can search through
the subset space in polynomial time. By exploiting the similarities
between the proposed algorithm and an instance of the maximum-
cut problem in graph theory, the approximation ratio of this algorithm
is derived and is compared with the approximation ratio of the
backward elimination method. The experiments show that it can be
misleading to judge the quality of a measure solely based on the
classification accuracy, without taking the effect of the non-optimum
search strategy into account.

Index Terms —Feature Selection, Mutual information, Convex objec-
tive, Approximation ratio.

1 INTRODUCTION

From a purely theoretical point of view, given the under-
lying conditional probability distribution of a dependent
variableC and a set of featuresX, the Bayes decision
rule can be applied to construct the optimum induction
algorithm. However, in practice learning machines are not
given access to this distribution,Pr(C|X). Therefore,
given a feature vector or variablesX ∈ RN , the aim of
most machine learning algorithms is to approximate this
underlying distribution or estimate some of its characteris-
tics. Unfortunately, in most practically relevant data mining
applications, the dimensionality of the feature vector is
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quite high making it prohibitive to learn the underlying
distribution. For instance, gene expression data or images
may easily have more than tens of thousands of features.
While, at least in theory, having more features should result
in a more discriminative classifier, it is not the case in
practice because of the computational burden and curse of
dimensionality.

High-dimensional data poses different challenges on in-
duction and prediction algorithms. Essentially, the amount
of data to sustain the spatial density of the underlying
distribution increases exponentially with the dimensionality
of the feature vector, or alternatively, the sparsity increases
exponentially given a constant amount of data. Normally
in real-world applications, a limited amount of data is
available and obtaining a sufficiently good estimate of
the underlying high-dimensional probability distribution is
almost impossible unless for some special data structures
or under some assumptions (independent features, etc).

Thus, dimensionality reduction techniques, particularlyfea-
ture extraction and feature selection methods, have to be
employed to reconcile idealistic learning algorithms with
real-world applications.

In the context of feature selection, two main issues can
be distinguished. The first one is to define an appropriate
measure function to assign a score to a set of features. The
second issue is to develop a search strategy that can find the
optimal (in a sense of optimizing the value of the measure
function) subset of features among all feasible subsets in a
reasonable amount of time.

Different approaches to address these two problems can
roughly be categorized into three groups: Wrapper methods,
embedded methods and filter methods.

Wrapper methods [27] use the performance of an induction
algorithm (for instance a classifier) as the measure function.
Given an inducerI, wrapper approaches search through the
space of all possible feature subsets and select the one that
maximizes the induction accuracy. Most of the methods
of this type require to check all the possible2N subsets
of features and thus, may rapidly become prohibitive due
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to the so-called combinatorial explosion. Since the measure
function is a machine learning (ML) algorithm, the selected
feature subset is only optimal with respect to that particular
algorithm, and may show poor generalization performance
over other inducers.

The second group of feature selection methods are called
embedded methods [34] and are based on some internal pa-
rameters of the ML algorithm. Embedded approaches rank
features during the training process and thus simultaneously
determine both the optimal features and the parameters
of the ML algorithm. Since using (accessing) the internal
parameters may not be applicable in all ML algorithms,
this approach cannot be seen as a general solution to the
feature selection problem. In contrast to wrapper methods,
embedded strategies do not require to run the exhaustive
search over all subsets since they mostly evaluate each
feature individually based on the score calculated from the
internal parameters. However, similar to wrapper methods,
embedded methods are dependent on the induction model
and thus the selected subset is somehow tuned to a partic-
ular induction algorithm.

Filter methods, as the third group of selection algorithms,
focus on filtering out irrelevant and redundant features in
which irrelevancy is defined according to a predetermined
measure function. Unlike the first two groups, filter methods
do not incorporate the learning part and thus show better
generalization power over a wider range of induction al-
gorithms. They rely on finding an optimal feature subset
through the optimization of a suitable measure function.
Since the measure function is selected independently of
the induction algorithm, this approach decouples the feature
selection problem from the following ML algorithm.

The first contribution of this work is to analyze the popular
mutual information measure in the context of the feature
selection problem. We will expand the mutual information
function in two different series and show that most of the
previously suggested information-theoretic criteria arethe
first or second order truncation-approximations of these
expansions. The first expansion is based on generalization
of mutual information and has already appeared in literature
while the second one is new, to the best of our knowledge.
The well-known minimal Redundancy Maximal Relevance
(mRMR) score function can be immediately concluded
from the second expansion. We will discuss the consis-
tency and accuracy of these approximations and experimen-
tally investigate the conditions in which these truncation-
approximations may lead to high estimation errors.

Alternatively, feature selection methods can be categorized
based on the search strategies they employ. Popular search
approaches can be divided into four categories: Exhaustive
search, greedy search, projection and heuristic. A trivial
approach is to exhaustively search in the subset space as
it is done in wrapper methods. However, as the number of
features increases, it can rapidly become infeasible. Hence,
many popular search approaches use greedy hill climbing,
as an approximation to this NP-hard combinatorial problem.

Greedy algorithms iteratively evaluate a candidate subset
of features, then modify the subset and evaluate if the new
subset is an improvement over the old one. This can be done
in a forward selection setup which starts with an empty
set and adds one feature at a time or with a backward
elimination process which starts with the full set of features
and removes one feature at each step. The third group of the
search algorithms are based on targeted projection pursuit
which is a linear mapping algorithm to pursue an optimum
projection of data onto a low dimensional manifold that
scores highly with respect to a measure function [15].
In heuristic methods, for instance genetic algorithms, the
search is started with an initial subset of features which
gradually evolves toward better solutions.

Recently, two convex quadratic programing based methods,
QPFS in [39] and SOSS in [32] have been suggested to
address the search problem. QPFS is a deterministic algo-
rithm and utilizes the Nyström method to approximate large
matrices for efficiency purposes. SOSS on the other hand,
has a randomized rounding step which injects a degree of
randomness into the algorithm in order to generate more
diverse feature sets.

Developing a new search strategy is another contribution
of this paper. Here, we introduce a new class of search
algorithms based on Semi-Definite Programming (SDP)
relaxation. We reformulate the feature selection problem as
a (0-1)-quadratic integer programming and will show that
it can be relaxed to an SDP problem, which is convex and
hence can be solved with efficient algorithms [7]. Moreover,
there is a discussion about the approximation ratio of the
proposed algorithm in subsection 3.2. We show that it
usually gives better solutions than greedy algorithms in the
sense that its approximate solution is more probable to be
closer to the optimal point of the criterion.

2 MUTUAL INFORMATION PROS AND CONS

Let us consider anN dimensional feature vectorX =
[X1, X2, ..., XN ] and a dependent variableC which can
be either a class label in case of classification or a target
variable in case of regression. The mutual information func-
tion is defined as a distance from independence between
X and C measured by the Kullback-Leibler divergence
[11]. Basically, mutual information measures the amount of
information shared betweenX andC by measuring their
dependency level. Denote the joint pdf ofX andC and its
marginal distributions byPr(X, C), Pr(X) and Pr(C),
respectively. The mutual information between the feature
vector and the class label can be defined as follows:

I(X1, X2, . . . ,XN ;C)= I(X;C) =
∫

Pr(X, C)log
Pr(X, C)

Pr(X)Pr(C)
dX dC (1)

It reaches its maximum value when the dependent variable
is perfectly described by the feature set. In this case mutual
information is equal toH(C), whereH(C) is the Shannon
entropy ofC.
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Mutual information can also be considered a measure of
set intersection [38]. Namely, letA and B be event sets
corresponding to random variablesA andB, respectively.
It is not difficult to verify that a functionµ defined as:

µ(A ∩ B) = I(A;B) (2)

satisfies all three properties of a formal measure over sets
[42] [6], i.e., non-negativity, assigning zero to empty set
and countable additivity. However, as we see later, the
generalization of the mutual information measure to more
than two sets will no longer satisfy thenon-negativity
property and thus can be seen as a signed measure which
is the generalization of the concept of measure by allowing
it to have negative values.

There are at least three reasons for the popularity of the
use of mutual information in feature selection algorithms.

1. Most of the suggested non information-theoretic score
functions are not formal set measures (for instance corre-
lation function). Therefore, they cannot assign a score to a
set of features but rather to individual features. However,
mutual information as a formal set measure is able to
evaluate all possible informative interactions and complex
functional relations between features and as a result, fully
extract the information contained in a set of features.

2. The relevance of the mutual information measure to mis-
classification error is supported by the existence of bounds
relating the probability of misclassification of the Bayes
classifier,Pe, to the mutual information. More specifically,
Fano’s weak lower bound [13] onPe,

1 + Pelog2(ny−1) ≥ H(C)− I(X;C) (3)

whereny is the number of classes and the Hellman-Raviv
[22] upper bound,

Pe ≤
1

2
(H(C)− I(X;C)) (4)

on Pe, provide somewhat a performance guarantee.

As it can be seen in (3) and (4), maximizing the mutual
information betweenX and C decreases both upper and
lower bounds on misclassification error and guarantees
the goodness of the selected feature set. However, there
is somewhat of a misunderstanding of this fact in the
literature. It is sometimes wrongly claimed that maximizing
the mutual information results in minimizing thePe of the
optimal Bayes classifier. This is an unfounded claim since
Pe is not a monotonic function of the mutual information.
Namely, it is possible that a feature vectorA with less
relevant information-content about the class labelC than
a feature vectorB yields a lower classification error rate
thanB. The following example may clarify this point.

Example 1: Consider a binary classification problem with
equal number of positive and negative training samples and
two binary featuresX1 andX2. The goal is to select the
optimum feature for the classification task. Suppose the first
featureX1 is positive if the outcome is positive. However,
when the outcome is negative,X1 can take both positive

and negative values with the equal probability. Namely,
Pr(X1=1|C=1) = 1 andPr(X1= − 1|C= − 1) = 0.5.
In the same manner, the likelihood ofX2 is defined as
Pr(X2=1|C=1) = 0.9 andPr(X2= − 1|C=− 1) = 0.7.
Then, the Bayes classifier with featureX1 yields the
classification error:

Pe1 =Pr(C=−1)Pr(X1=1|C=−1)

+ Pr(C=1)Pr(X=−1|C=1) = 0.25 (5)

Similarly, the Bayes classifier withX2 yields Pe1 = 0.2
meaning that,X2 is a better feature thanX1 in the
sense of minimizing the probability of misclassification.
However, unlike their error probabilities,I(X1;C) = 0.31,
is greater thanI(X2;C) = 0.29. That is,X1 conveys more
information about the class label in the sense of Shannon
mutual information thanX2.

A more detailed discussion can be found in [17]. However,
it is worthwhile to mention that although using mutual
information may not necessarily result in the highest clas-
sification accuracy, it guarantees to reveal a salient feature
subset by reducing the upper and lower bounds ofPe.

3- By adapting classification error as a criterion, most
standard classification algorithms fail to correctly classify
the instances from minority classes in imbalanced datasets.
Common approaches to address this issue are to either
assign higher misclassification costs to minority classes or
replace the classification accuracy criterion with the area
under the ROC curve which is a more relevant criterion
when dealing with imbalanced datasets. Either way, the
features should also be selected by an algorithm which
is insensitive (robust) with respect to class distributions
(otherwise the selected features may not be informative
about minority classes, in the first place). Interestingly,
by internally applying unequal class dependent costs, mu-
tual information provides some robustness with respect to
class distributions. Thus, even in an imbalanced case, a
mutual information based feature selection algorithm is
likely (though not guaranteed) to not overlook the features
that represent the minority classes. In citebao:11, the
concept of the mutual information classifier is investigated.
Specifically, the internal cost matrix of the mutual infor-
mation classifier is derived to show that it applies unequal
misclassification costs when dealing with imbalanced data
and showed that the mutual information classifier is an
optimal classifier in the sense of maximizing a weighted
classification accuracy rate. The following example shows
this robustness.

Example 2: Assume an imbalanced binary classification
task wherePr(C=1) = 0.9. As in Example 1, there
are two binary featuresX1 and X2 and the goal is to
select the optimum feature. SupposePr(X1=1|C=1) =
1 and Pr(X1= − 1|C= − 1) = 0.5. Unlike the first
feature,X2 can much better classify the minority class
Pr(X2=−1|C=−1) = 1 and Pr(X2=1|C=1) = 0.8. It
can be seen that the Bayes classifier withX1 results in
100% classification rate for the majority class while only
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50% correct classification for the minority. On the other
hand, usingX2 leads to 100% correct classification for
the minority class and 80% for the majority. Based on
the probability of error,X1 should be preferred since its
probability of error isPe1 = 0.05 while Pe2 = 0.18.
However, by usingX1 the classifier can not learn the
rare event (50% classification rate) and thus randomly
classifies the minority class which is the class of interest in
many applications. Interestingly, unlike the Bayesian error
probabilities, mutual information prefersX2 overX1, since
I(X2;C) = 0.20 is greater thanI(X1;C) = 0.18. That
is, mutual information is to some extent robust against
imbalanced data.

Unfortunately, despite the theoretical appeal of the mutual
information measure, given a limited amount of data, an
accurate estimate of the mutual information would be
impossible. Because to calculate mutual information, es-
timating the high-dimensional joint probabilityPr(X, C)
is inevitable which is, in turn, known to be an NP hard
problem [25].

As mutual information is hard to evaluate, several alterna-
tives have been suggested [5], [35], [28]. For instance, the
Max-Relevance criterion approximates (1) with the sum of
the mutual information values between individual features
Xi andC:

Max-Relevance=
N
∑

i=1

I(Xi;C) (6)

Since it implicitly assumes that features are independent,
it is likely that selected features are highly redundant. To
overcome this problem, several heuristic corrective terms
have been introduced to remove the redundant information
and select mutually exclusive features. Here, it is shown
that most of these heuristics are derived from the following
expansions of mutual information with respect toXi.

2.1 First Expansion: Multi-way Mutual Informa-
tion Expansion

The first expansion of mutual information that is used here,
relies on the natural extension of mutual information to
more than two random variables proposed by McGill [30]
and Abramson [1]. According to their proposal, the three-
way mutual information between random variablesYi is
defined by:

I(Y1;Y2;Y3) =I(Y1;Y3) + I(Y2;Y3)− I(Y1, Y2;Y3)

=I(Y1;Y2)− I(Y1;Y2|Y3) (7)

where “,” between variables denotes the joint variables.
Note that, similar to two-way mutual information, it is
symmetric with respect toYi variables, i.e.,I(Y1;Y2;Y3) =
I(Y2;Y3;Y1). Generalizing overN variables:

I(Y1;Y2; . . . ;YN ) = I(Y1; . . . ;YN−1)

− I(Y1; . . . ;YN−1|YN ) (8)
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Fig. 1: Synergy betweenx andy features. While information of
each individual feature about the class label (ellipse or line) is
almost zero, their joint information can almost completelyremove
the class label ambiguity.

Unlike 2-way mutual information, the generalized mutual
information is not necessarily nonnegative and hence, can
be interpreted as a signed measure of set intersection [21].
Consider (7) and assumeY3 is class labelC, then positive
I(Y1;Y2;C) implies thatY1 and Y2 are redundant with
respect toC since I(Y1, Y2;C) ≤ I(Y1;C) + I(Y2;C).
However, the more interesting case is whenI(Y1;Y2;C)
is negative, i.e.,I(Y1, Y2;C) ≥ I(Y1;C) + I(Y2;C). This
means, the information contained in the interactions of the
variables is greater than the sum of the information of the
individual variables [20].

An artificial example for this situation is the binary clas-
sification problem depicted in Figure 1, where the classi-
fication task is to discriminate between the ellipse class
(class samples depicted by circles) and the line class (star
samples) by using two features: values ofx axis and values
of y axis. As can be seen, sinceI(x;C)≈0 andI(y;C)≈0,
there is no way to distinguish between these two classes by
just using one of the features. However, it is obvious that
employing both features results in almost perfect classifi-
cation, i.e.,I(x, y;C)≈H(C). The mutual information in
(1) can be expanded out in terms of generalized mutual
information between the features and the class label as:

I(X;C) =

N
∑

i1=1

I(Xi1 ;C)−
N−1
∑

i1=1

N
∑

i2=i1+1

I(Xi1 ;Xi2 ;C)

+ · · ·+ (−1)N−1I(X1; . . . ;XN ;C) (9)

From the definition in (8) it is straightforward to infer this
expansion. However, the more intuitive proof is to use the
fact that mutual information is a measure of set intersection,
i.e., I(Y1;Y2;Y3) = µ(Y1 ∩ Y2 ∩ Y3), whereYi is the
corresponding event set of theYi variable. Now, expanding
theN -variable measure function results in:

I(X;C) = µ((

N
⋃

i=1

Xi) ∩ C) = µ(

N
⋃

i=1

(Xi ∩C)) (10)

=

N
∑

i=1

µ(Xi ∩ C)−
N−1
∑

i1=1

N
∑

i2=i1+1

µ(Xi1 ∩ Xi2 ∩ C)

+ · · ·+ (−1)N−1µ(X1 ∩ X2 · · · ∩ XN ∩ C)
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where the last equation follows directly from the addition
law or sum rule in set theory. The proof is complete by
recalling that all measure functions with the set intersection
arguments in the last equation can be replaced by the mutual
information functions according to the definition of mutual
information in (2).

2.2 Second Expansion: Chain Rule of Information

The second expansion for mutual information is based on
the chain rule of information[11]:

I(X;C) =

N
∑

i=1

I(Xi;C|Xi−1, . . . , X1) (11)

The chain rule of information leaves the choice of ordering
quite flexible. For example, the right side can be written in
the order(X1, X2, . . . , XN ) or (XN , XN−1, . . . , X1). In
general, it can be expanded overN ! different permutations
of the feature set{X1, . . . , XN}. Taking the sum over all
possible expansions yields,

(N !)I(X;C) = (N−1)!

N
∑

i=1

I(Xi;C) (12)

+ (N−2)!

N
∑

i1=1

∑

i2∈{1,...,N}/i1

I(Xi2 ;C|Xi1)

+ · · ·+ (N−1)!

N
∑

i=1

I(Xi;C|{X1, . . . , XN}\Xi
)

Dividing both sides by(N−1)!/2, and using the following
equationI(Xi1 ;C|Xi2 ) = I(Xi1 ;C) − I(Xi1 ;Xi2 ;C) to
replaceI(Xi1 ;C|Xi2) terms, our second expansion can be
expressed as

N

2
I(X;C) =

N
∑

i=1

I(Xi;C) (13)

−
1

N − 1

N−1
∑

i1=1

N
∑

i2=i1+1

I(Xi1 ;Xi2 ;C)

+ · · ·+
1

2

N
∑

i=1

I(Xi;C|{X1, . . . , XN}\Xi
)

Ignoring the unimportant multiplicative constantN/2 on
the left side of equation (13), the right side can be seen
as a series expansion form of mutual information (up to a
known constant factor).

2.3 Truncation of the Expansions

In the both proposed expansions (9) and (13), mutual
information terms with more than two features represent
higher-order interaction properties. Neglecting the higher
order terms yields the so-called truncated approximation of
the mutual information function. If we ignore the constant

coefficient in (13), the truncated forms of suggested expan-
sions can be written as:

D1 =

N
∑

i=1

I(Xi;C)−
N−1
∑

i=1

N
∑

j=i+1

I(Xi;Xj ;C)

D2 =

N
∑

i=1

I(Xi;C)−
1

N − 1

N−1
∑

i=1

N
∑

j=i+1

I(Xi;Xj;C)

(14)

whereD1 is the truncated approximation of (9) andD2

is for (13). Interestingly, despite the very similar structure
of the expressions in (14), they have intrinsically different
behaviors. This difference seems to be rooted in different
functional forms they employ to approximate the underly-
ing high-order pdf with lower order distributions ( i.e., how
they combine these lower order terms). For instance, the
functional form that MIFS employs to approximatePr(x)
is shown in (18). WhileD1 is not necessarily a positive
value,D2 is guaranteed to be a positive approximation since
all terms in (12) are positive. However,D2 may highly
underestimate the mutual information values since it may
violate the fact that (1) is always greater than or equal to
maxi I(Xi;C).

2.3.1 JMI, mRMR & MIFS Criteria

Several known criteria including Joint Mutual Informa-
tion (JMI) [31], minimal Redundancy Maximal Relevance
(mRMR) [35] and Mutual Information Feature Selection
(MIFS) [5] can immediately be derived fromD1 andD2.

Using the identity:I(Xi;Xj ;C) = I(Xi;C)+ I(Xj ;C)−
I(Xi, Xj ;C) in D2 reveals thatD2 is equivalent to JMI.

JMI= D2 =
N−1
∑

i=1

N
∑

j=i+1

I(Xi, Xj ;C) (15)

Using I(Xi;Xj ;C) = I(Xi;Xj) − I(Xi;Xj |C) and ig-
noring the terms containing more than two variables, i.e.,
I(Xi;Xj |C), in the second approximationD2, one may
immediately recognize the popular score function

mRMR=

N
∑

i=1

I(Xi;C)−
1

N − 1

N−1
∑

i=1

N
∑

j=i+1

I(Xi;Xj) (16)

introduced by Peng et al. in [35]. That is, mRMR is a
truncated approximation of mutual information and not a
heuristic approximation as suggested in [9].

The same line of reasoning as for mRMR can be applied
to D1 to achieve MIFS withβ equal to 1.

MIFS=

N
∑

i=1

I(Xi;C)−
N−1
∑

i=1

N
∑

j=i+1

I(Xi;Xj) (17)

Observation: A constant feature is a potential danger
for the above measures. While adding an informative
but correlated feature may reduce the score value (since
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I(Xi;Xj|C) − I(Xi;Xj) can be negative), adding a non-
informative constant featureZ to a feature set does not
reduce its score value since bothI(Z;C) andI(Z;Xi;C)
terms are zero, that is, constant features may be preferred
over informative but correlated features. Therefore, it is
essential to remove constant features by some preprocessing
before using the above criteria for feature selection.

2.3.2 Implicitly Assumed Distribution

A natural question arising in this context with respect
to the proposed truncated approximations is: Under what
probabilistic assumptions do the proposed approximations
become valid mutual information functions? That is, which
structure should a joint pdf admit, to yield mutual informa-
tion in the forms ofD1 or D2?

For instance, if we assume features are mutually and class
conditionally independent, i.e.,Pr(X) =

∏N
i=1 Pr(Xi)

andPr(X, C) = Pr(C)
∏N

i=1 Pr(Xi|C), then it is easy
to verify that mutual information has the form of Max-
Relevance introduced in (6). These two assumptions, define
the adaptedindependence-mapof Pr(X, C) where the
independence-map of a joint probability distribution is
defined as follows.

Definition 1: An independence-map (i-map) is a look up
table or a set of rules that denote all the conditional and
unconditional independence between random variables.
Moreover, an i-map is consistent if it leads to a valid
factorized probability distribution.

That is, given a consistent i-map, a high-order joint prob-
ability distribution is approximated with product of low-
order pdfs and the obtained approximation is a valid
pdf itself (e.g.,

∏N
i=1 Pr(Xi) is an approximation of the

high-order pdfPr(X) and it is also a valid probability
distribution).

The question regarding the implicit consistent i-map that
MIFS adopts has been investigated in [4]. However, the
assumption set (i-map) suggested in their work is inconsis-
tent and leads to the incorrect conclusion that MIFS upper
bounds the Bayesian classification error via the inequality
(4). As we show in the following theorem, unlike the Max-
Relevance case, there is no i-map that can produce mutual
information in the forms of mRMR of MIFS (ignoring
the trivial solution that reduces mRMR or MIFS to Max-
Relevance).

Theorem 1. Ignoring the trivial solution, i.e., the i-map
indicating that random variables are mutually and class
conditionally independent, there is no consistent i-map that
can produce mutual information functions in the forms of
mRMR (16) or MIFS (17) for arbitrary number of features.

Proof: The proof is by contradiction. Suppose there is
a consistent i-map, where its corresponding joint pdf
P̂ r(X, C) (which is the approximation ofPr(X, C)) can
generate mutual information in the forms of (16) or (17).
That is, if this i-map is adopted, by replacinĝPr(X, C)

in (1) we get mRMR or MIFS. This implies that mRMR
and MIFS arealways valid set measures for all datasets
regardless of their true underlying joint probability distri-
butions. Now, if we show (by any example) that they are
not valid mutual information measures, i.e., they are not
always positive and monotonic, then we have contradicted
our assumption that̂Pr(X, C) exists and is a valid pdf. It
is not so difficult to construct an example in which mRMR
or MIFS can get negative values. Consider the case where
features are independent of class label,I(Xi;C) = 0,
while they have nonzero dependencies among themselves,
I(Xi;Xj) 6= 0. In this case, both mRMR and MIFS
generate negative values which is not allowed by a valid
set measure. This contradicts our assumption that they
are generated by a valid distribution, so we are forced to
conclude that there is no consistent i-map that results in
mutual information in the mRMR or MIFS forms.�

The same line of reasoning can be used to show thatD1

andD2 are also not valid measures.

However, despite the fact that no valid pdf can produce
mutual information of those forms, it is still valid to
ask for which low-order approximations of the underlying
high-order pdfs, mutual information reduces to a truncated
approximation form. That is, we do not restrict an approx-
imation to be a valid distribution anymore. Any functional
form of low-order pdfs may be seen as an approximation of
the high-order pdfs and may give rise to MIFS or mRMR.
In the next subsection we reveal these assumptions for the
MIFS criterion.

2.3.3 MIFS Derivation from Kirkwood Approximation

It is shown in [26] that truncation of the joint entropy
H(X) at therth-order is equivalent to approximating the
full-dimensional pdfPr(X) using joint pdfs with dimen-
sionality of r or smaller. This approximation is called
rth order Kirkwood approximation. The truncation order
that we choose, partially determines our belief about the
structure of the function that we are going to estimate the
exactPr(X) with.

The 2nd order Kirkwood approximation ofPr(X), can be
denoted as follows [26]:

P̂ r(X) =

∏N−1
i=1

∏N
j=i+1 Pr(Xi, Xj)

[
∏N

i=1 Pr(Xi)
]N−2

(18)

Now, assume the following two assumptions hold:

Assumption 1: Features are class conditionally indepen-
dent, that is:Pr(X|C) =

∏N
i=1 Pr(Xi|C)

Assumption 2: Pr(X) is well approximated by a 2nd order
Kirkwood superposition approximation in (18).

Then, writing the definition of mutual information and
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applying the above assumptions yields the MIFS criterion

I(X;C) = H(X)−H(X|C) (19)

(a)
≈

N
∑

i=1

H(Xi)−
N−1
∑

i=1

N
∑

j=i+1

I(Xi;Xj)−H(X|C)

(b)
=

N
∑

i=1

I(Xi;C)−
N−1
∑

i=1

N
∑

j=i+1

I(Xi;Xj)

In the above equation, (a) follows the second assumption
by substituting the 2nd order Kirkwood approximation (18)
inside the logarithm of the entropy integral and (b) is an
immediate consequence of the first assumption.

The first assumption has already appeared in previous
works [9] [4]. However, the second assumption is novel
and, to the best of our knowledge, the connection between
the Kirkwood approximation and the MIFS criterion has
not been explored before.

It is worth to mention that, in reality, both assumptions can
be violated. Specifically, the Kirkwood approximation may
not precisely reproduce dependencies we might observe in
real-world datasets. Moreover, it is important to remember
that the Kirkwood approximation is not a valid probability
distribution.

2.4 D2 Approximation

From our experiments, which we omit because of space
constraints,D2 tends to underestimate the mutual informa-
tion whileD1 shows a large overestimation for independent
features and a large underestimation (even becoming neg-
ative) in the presence of dependent features. In general,
D2 shows more robustness thanD1. The same results can
be observed for mRMR which is derived fromD2 and
MIFS derived fromD1. Previous work also arrived to the
same results and reported that mRMR performs better and
more robustly than MIFS especially when the feature set
is large. Therefore, in the following sections we useD2 as
the truncated approximation. For simplicity, its subscript is
dropped and it is rewritten as follows:

D({X1, . . . , XN}) =
N
∑

i=1

I(Xi;C) (20)

−
1

N − 1

N−1
∑

i=1

N
∑

j=i+1

I(Xi;Xj ;C)

Note that althoughD in (20) is not a formal set measure
any more, it still can be seen as a score function for sets.
However, it is noteworthy that unlike formal measures, the
suggested approximations are no longer monotonic where
the monotonicity merely means that a subset of features
should not be better than any larger set that contains the
very same subset. Therefore, as explained in [33] the branch
and bound based search strategies can not be applied to
them.

A very similar approach has been applied [8] (by using
D1 approximation) to derive several known criteria like
MIFS [5] and mRMR [35]. However, in [8] and most
of other previous works, the set score function in (20) is
immediately reduced to an individual-feature score function
by fixingN−1 features in the feature set. This will let them
to run a greedy selection search method over the feature
set which essentially is a one-feature-at-a-time selection
strategy. It is clearly a naive approximation of the optimal
NP-hard search algorithm and may perform poorly under
some conditions. In the following, we investigate a convex
approximation of the binary objective function appearing
in feature selection inspired by the Goemans-Williamson
maximum cut approximation approach [18].

3 SEARCH STRATEGIES

Given a measure function1 D, the Subset Selection Problem
(SSP) can be defined as follows:

Definition 2: GivenN featuresXi and a dependent variable
C, select a subset ofP ≪N features that maximizes the
measure function. Here it is assumed that the cardinalityP
of the optimal feature subset is known.

In practice, the exact value ofP can be obtained by
evaluating subsets for different values of cardinalityP with
the final induction algorithm. Note that it is intrinsically
different than wrapper methods. While in wrapper methods
2N subsets have to be tested, here at mostN runs of the
learning algorithm are needed to evaluate all possible values
of P .

A search strategy is an algorithm trying to find a feature
subset in the feature subset space with2N members2

that optimizes the measure function. The wide range of
proposed search strategies in the literature can be divided
into three categories: 1- Exponential complexity methods
including exhaustive search [27], branch and bound based
algorithms [33]. 2- Sequential selection strategies with two
very popular members, forward selection and backward
elimination methods. 3- Stochastic methods like simulated
annealing and genetic algorithms [41], [12].

Here, we introduce a fourth class of search strategies
which is based on the convex relaxation of the 0-1 inte-
ger programming and explore its approximation ratio by
establishing a link between SSP and an instance of the
maximum-cut problem in graph theory. In the following,
we briefly discuss the two popular sequential search meth-
ods and continue with the proposed solution: a close to
optimal polynomial-time complexity search algorithm and
its evaluation on different datasets.

1By some abuse of terminology, we refer to any set function in this
section as a measure, no matter whether they satisfy the formal measure
properties.

2Given aP , the size of the feature subset space reduces to
(

N

P

)

.
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3.1 Convex Based Search

The forward selection (FS) algorithm selects a setS of size
P iteratively as follows:

1) Initialize S0 = ∅.
2) In each iterationi, select the featureXm maximizing

D(Si−1 ∪Xm), and setSi = Si−1 ∪Xm.
3) OutputSP .

Similarly, backward elimination (BE) can be described as:

1) Start with the full set of featureSN .
2) Iteratively remove a variableXm maximizing

D(Si\Xm), and setSi−1 = Si\Xm, where removing
X from S is denoted byS\X .

3) OutputSP .

An experimentally comparative evaluation of several vari-
ants of these two algorithms has been conducted in [2].
From an information theoretical standpoint, the main dis-
advantage of the forward selection method is that it only
can evaluate the utility of a single feature in the limited
context of the previously selected features. The artificial
binary classifier in Figure 1 may illustrate this issue. Since
the information content of each feature (x andy) is almost
zero, it is highly probable that the forward selection method
fails to select them in the presence of some other more
informative features.

Contrary to forward selection, backward elimination can
evaluate the contribution of a given feature in the context
of all other features. Perhaps this is why it has been
frequently reported to show superior performance than
forward selection. However, its overemphasis on feature
interactions is a double-edged sword and may lead to a
sub-optimal solution.

Example 3: Imagine a four dimensional feature se-
lection problem whereX1 and X2 are class con-
ditionally and mutually independent ofX3 and X4,
i.e., Pr(X1, X2, X3, X4) = Pr(X1, X2)Pr(X3, X4) and
Pr(X1, X2, X3, X4|C) = Pr(X1, X2|C)Pr(X3, X4|C).
ConsiderI(X1;C) and I(X2;C) are equal to zero, while
their interaction is informative. That is,I(X1, X2;C) =
0.4. Moreover, assumeI(X3;C) = 0.2, I(X4;C) = 0.25
and I(X3, X4;C) = 0.45. The goal is to select only two
features out of four. Here, backward elimination will select
{X1, X2} rather than the optimal subset{X3, X4} because,
removing any ofX1 or X2 features will result in0.4 re-
duction of the mutual information valueI(X1, . . . , X4;C),
while eliminating X3 or X4 deducts at most0.25. One
may draw the conclusion that backward elimination tends
to sacrifice the individually-informative features in favor of
the merely cooperatively-informative features. As a remedy,
several hybrid forward-backward sequential search methods
have been proposed. However, they all fail in one way
or another and more importantly cannot guarantee the
goodness of the solution.

Alternatively, a sequential search method can be seen as
an approximation of the combinatorial subset selection
problem. To propose a new approximation method, the
underlying combinatorial problem has to be studied. To this
end, we may formulate the SSP defined in the beginning
of this section as:

max
x

xTQx

N
∑

i=1

xi = P (21)

xi ∈ {0, 1} for i = 1, . . . , N

whereQ is a symmetric mutual information matrix con-
structed from the mutual information terms in (20):

Q =











I(X1;C) · · · −λ
2 I(X1;XN ;C)

−λ
2 I(X1;X2;C) · · · −λ

2 I(X2;XN ;C)
...

. . .
...

−λ
2 I(X1;XN ;C) · · · I(XN ;C)











(22)
whereλ = 1

P−1 andx = [x1, . . . , xN ] is a binary vector
where the variablesxi are set-membership binary variables
indicating the presence of the corresponding featuresXi in
the feature subset. It is straightforward to verify that forany
binary vectorx, the objective function in (21) is equal to
the score functionD(Xnz) whereXnz = {Xi|xi = 1; i =
1, . . . , N}. Note that, for mRMRI(Xi;Xj;C) terms have
to be replaced withI(Xi;Xj).

The (0,1)-quadratic programming problem (21) has at-
tracted a great deal of theoretical study because of its
importance in combinatorial problems [36, and references
therein]. This problem can simply be transformed to a
(-1,1)-quadratic programming problem,

max
y

1

4
yTQy +

1

2
yTQe+ c

N
∑

i=1

yi = 2P −N (23)

yi ∈ {−1, 1} for i = 1, . . . , N

via y = 2x − e transformation, wheree is an all ones
vector. Additionallyc in the above formulation is a constant
equal to 1

4e
TQe and it can be ignored because of its

independence ofy. In order to homogenize the objective
function in (23), define an(N+1)×(N+1) matrix Qu by
adding a 0-th row and column toQ so that:

Qu =

(

0 eTQ

QTe Q

)

(24)

Ignoring the constant factor14 in (23), the equivalent
homogeneous form of (21) can be written as:

SSSP= max
y

yTQuy

〈SSP〉
N
∑

i=1

yiy0 = 2P −N (25)

yi ∈ {−1, 1} for i = 0, . . . , N
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Note thaty is now anN + 1 dimensional vector with the
first elementy0 = ±1 as a reference variable. Given the
solution of the problem above, i.e.,y, the optimal feature
subset is obtained byXop = {Xi|yi = y0}.

The optimization problem in (25) can be seen as an instance
of the maximum-cut problem [18] with an additional car-
dinality constraint, also known as the k-heaviest subgraph
or maximum partitioning graph problem. The two main
approaches to solve this combinatorial problem are either
to use the linear programming relaxation by linearizing the
product of two binary variables [16], or the semidefinite
programming (SDP) relaxation suggested in [18]. The SDP
relaxation has been proved to have exceptionally high
performance and achieves the approximation ratio of 0.878
for the original maximum-cut problem. The SDP relaxation
of (25) is:

SSDP = max
Y

tr{QuY}

N
∑

i,j=1

Yij = (2P −N)2

〈SDP〉
N
∑

i=1

Yi0 = (2P −N) (26)

diag(Y) = e

Y � 0

where Y is an unknown(N + 1) × (N + 1) positive
semidefinite matrix and tr{Y} denotes its trace. Obviously,
any feasible solutiony for 〈SSP〉is also feasible for its SDP
relaxation byY = yyT . Furthermore, it is not difficult to
see that any rank one solution, rank(Y) = 1, of 〈SDP〉is a
solution of 〈SSP〉.

The 〈SDP〉problem can be solved within an additive error
γ of the optimum by for example interior point methods
[7] whose computational complexity are polynomial in the
size of the input andlog( 1γ ). However, since its solution
is not necessarily a rank one matrix, we need some more
steps to obtain a feasible solution for〈SSP〉. The following
three steps summarize the approximation algorithm for
〈SSP〉which in the following will be referred to as convex
based relaxation approximation (COBRA) algorithm.

COBRA Algorithm :

1) SDP: Solve〈SDP〉and obtainYsdp. Repeat the fol-
lowing steps many times and output the best solution.

2) Randomized rounding: Using the multivariate normal
distribution with a zero mean and a covariance matrix
R = Ysdp to sampleu from distributionN (0,R)
and construct̂x = sign(u). SelectX = {Xi|x̂i =
x̂0}.

3) Size adjusting: By using the greedy forward or back-
ward algorithm, resize the cardinality ofX to P .

The randomized rounding step is a standard procedure to
produce a binary solution from the real-valued solution

of 〈SDP〉and is widely used for designing and analyz-
ing approximation algorithms [37]. The third step is to
construct a feasible solution that satisfies the cardinality
constraint. Generally, it can be skipped since in feature
selection problems the exact satisfaction of the cardinality
constraint is not required.

We use the SDP-NAL solver [43] with the Yalmip interface
[29] to implement this algorithm in Matlab. SDP-NAL
uses the Newton-CG augmented Lagrangian method to
efficiently solve SDP problems. It can solve large scale
problems (N up to a few thousand) in an hour on a PC
with an Intel Core i7 CPU. Even more efficient algorithms
for low-rank SDP have been suggested claiming that they
can solve problems with the size up toN=30000 in a
reasonable amount of time [19]. Here we only use the SDP-
NAL for our experiments.

3.2 Approximation Analysis

In order to gain more insight into the quality of a measure
function, it is essential to be able to directly examine it.
However, since estimating the exact mutual information
value in real data is not feasible, it is not possible to
directly evaluate the measure function. Its quality can
only be indirectly examined through the final classification
performance (or other measurable criteria). However, the
quality of a measure function is not the only contributor to
the classification rate. Since SSP is an NP-hard problem,
the search strategy can only find a local optimal solution.
That is, besides the quality of a measure function, the
inaccuracy of the search strategy also contributes to the
final classification error. Thus, in order to draw a conclusion
concerning the quality of a measure function, it is essential
to have an insight about the accuracy of the search strategy
in use. In this section, we compare the accuracy of the
proposed method with the traditional backward elimination
approach.

A standard approach to investigate the accuracy of an
optimization algorithm is by analyzing how close it gets to
the optimal solution. Unfortunately, feature selection isan
NP-hard problem and thus achieving the optimal solution to
use as reference is only feasible for small-sized problems.
In such cases, one wants a provable solution’s quality and
certain properties about the algorithm, such as its approxi-
mation ratio. Given a maximization problem, an algorithm
is called ρ-approximation algorithm if the approximate
solution is at leastρ times the optimal value. That is, in our
caseρSSSP ≤ SCOBRA, whereSCOBRA = D(XCOBRA).
The factorρ is usually referred to as the approximation ratio
in the literature.

The approximation ratios of BE and COBRA can be found
by linking the SSP to the k-heaviest subgraph problem (k-
HSP) in graph theory. k-HSP is an instance of the max-
cut problem with a cardinality constraint on the selected
subset, that is, to determine a subsetS of k vertices such
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Values of P N/2 N/3 N/4 N/6 N/8 N/10 N/20

BE 0.4 0.25 0.16 0.10 0.071 0.055 0.026
COBRA 0.48 0.33 0.24 0.13 0.082 0.056 0.015

TABLE 1: Approximation ratios of BE and COBRA for differentN/P values.

that the weight of the subgraph induced byS is maximized
[40]. From the definition of k-HSP, it is clear that SSP with
the criterion (20) is equivalent to theP -heaviest subgraph
problem since it selects the heaviest subset of features with
the cardinalityP , where heaviness of a set is the score
assigned to it byD.

An SDP based algorithm for k-HSP has been suggested
in [40] and its approximation ratio has been analyzed.
Their results are directly applicable to COBRA since both
algorithms use the same randomization method (step 2 of
COBRA) and the randomization is the main ingredient
of their approximation analysis. The approximation ratio
of BE for k-HSP has been investigated in [3]. It is a
deterministic analysis and their results are also valid for
our case, i.e., using BE for maximizingD.

The approximation ratios of both algorithms for different
values ofP , as a function ofN (total number of features),
have been listed in Table 1 (values are calculated from the
formulas in [3]). As can be seen, asP becomes smaller,
the approximation ratio approaches zero yielding the trivial
lower bound 0 on the approximate solution. However, for
larger values ofP , the approximation ratio is nontrivial
since it is bounded away from zero. For all cases shown in
the table except the last one, COBRA gives better guarantee
bound than BE. Thus, we may conclude that COBRA is
more likely to achieve better approximate solution than BE.

In the following section, we will focus on comparing our
search algorithm with sequential search methods in con-
junction with different measure functions and over different
classifiers and datasets.

4 EXPERIMENTS

The evaluation of a feature selection algorithm is an intrin-
sically difficult task since there is no direct way to evaluate
the goodness of aselection processin general. Thus, usually
a selection algorithm is scored based on the performance of
its output, i.e., the selected feature subset, in some specific
classification (regression) system. This kind of evaluation
can be referred to as the goal-dependent evaluation. How-
ever, this method obviously cannot evaluate the generaliza-
tion power of the selection process on different induction
algorithms. To evaluate the generalization strength of a
feature selection algorithm, we need a goal-independent
evaluation. Thus, for evaluation of the feature selection
algorithms, we propose to compare the algorithms over
different datasets with multiple classifiers. This method
leads to a more classifier-independent evaluation process.

Some properties of the eight datasets used in the exper-
iments are listed in Table 2. All datasets are available on

SetP : P={P1, . . . , PL}.

for all P in P do
Run the COBRA algorithm and output the solu-

tion X.
Derive the classifier error-rate by applying K-fold
cross-validation and save it inCL(P ).

end for
Output:Popt = argmin

P
CL(P )

TABLE 3: EstimatingP by searching over an admissible set that
minimizes the classification error-rate.

the UCI machine learning archive [14], except the NCI data
which can be found in the website of Peng et al. [35]. These
datasets have been widely used in previous feature selection
studies [35], [10]. The goodness of each feature set is
evaluated with five classifiers including Support Vector
Machine (SVM), Random Forest (RF), Classification and
Regression Tree (CART), Neural Network (NN) and Linear
Discriminant Analysis (LDA). To derive the classification
accuracies, 10-fold cross-validation is performed exceptfor
the NCI, DBW and LNG datasets where leave-one-out
cross-validation is used.

As explained before, filter-based methods consist of two
components: A measure function and a search strategy.
The measure functions we use for our experiments are
mRMR and JMI defined in (16) and (15), respectively.
To unambiguously refer to an algorithm, it is denoted by
measure function + search method used in that algorithm,
eg., mRMR+FS.

A simple algorithm listed in Table 3 is employed to search
for the optimal value of the subset cardinalityP , whereP
ranges over a setP of admissible values. In the worst case,
P = {1, . . . , N}.

Table 4 shows the results obtained for the 8 datasets and 5
classifiers. Friedman test with the corresponding Wilcoxon-
Nemenyi post-hoc analysis was used to compare the differ-
ent algorithms. However, looking at the classification rates
even before running the Friedman tests on them reveals a
few interesting points which are marked in bold font.

First, on the small size datasets (NCI, DBW and LNG),
mRMR+COBRA consistently shows higher performance
than other algorithms. The reason lies in the fact that the
similarity ratio of the feature sets selected by COBRA is
lower than BE or FS feature sets. Thesimilarity ratio Si is
defined as the number of features in the intersection ofith
andi+1th feature sets divided by the cardinality of theith
feature set. From its definition it is clear that for BE and
FS this ratio is always equal to 1. However, because of the
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Dataset Name Arrhythmia NCI DBWorld e-mails CNAE-9 Internet Adv. Madelon Lung Cancer Dexter
Mnemonic ARR NCI DBW CNA IAD MAD LNG DEX

# Features 278 9703 4702 856 1558 500 56 20000
# Samples 370 60 64 1080 3279 2000 32 300
# Classes 2 9 2 9 2 2 3 2

TABLE 2: Datasets descriptions

Classifiers SVM LDA CART RF NN Average

NCI Dataset
mRMR+COBRA (54) 81.7 (95) 78.3 (20) 45.0 (71) 88.3 (60) 75.0 73.67
mRMR+FS (32) 78.3 (11) 68.3 (2) 45.0 (12) 83.3 (99) 70.0 69.00
mRMR+BE (26) 76.6 (11) 68.3 (2) 45.0 (13) 85.0 (31) 71.7 69.33
JMI+COBRA (72) 85.0 (70) 75.0 (28) 45.0 (45) 90.0 (93) 75.0 74.00
JMI+FS (27) 75.0 (17) 68.3 (82) 45.0 (17) 86.6 (78) 70.0 69.00
JMI+BE (23) 76.6 (20) 76.6 (7) 33.3 (19) 86.6 (89) 76.6 70.00

DBW Dataset
mRMR+COBRA (38) 96.9 (152) 92.2 (38) 86.0 (33) 92.2 (33) 98.4 93.12
mRMR+FS (31) 93.7 (4) 89.0 (4) 86.0 (7) 90.6 (9) 92.2 90.31
mRMR+BE (110) 93.7 (6) 89.0 (4) 82.8 (29) 92.2 (9) 92.2 90.00
JMI+COBRA (35) 93.7 (14) 89.0 (8) 82.8 (24) 92.2 (108) 93.7 90.31
JMI+FS (23) 93.7 (6) 89.0 (5) 82.8 (34) 92.2 (96) 92.2 90.00
JMI+BE (24) 93.7 (6) 89.0 (5) 82.8 (23) 92.2 (149) 92.2 90.00

CNA Dataset
mRMR+COBRA (200) 94.0 (183) 92.7 (63) 75.0 (183) 90.8 (187) 92.0 88.91
mRMR+FS (149) 90.6 (142) 90.4 (7) 70.2 (138) 87.7 (78) 85.5 84.88
mRMR+BE (199) 94.0 (165) 92.5 (47) 75.0 (176) 90.8 (84) 92.2 88.90
JMI+COBRA (140) 92.6 (146) 92.2 (47) 75.0 (148) 90.4 (148) 91.4 88.30
JMI+FS (150) 92.7 (142) 92.1 (48) 75.3 (148) 90.7 (145) 91.3 88.40
JMI+BE (150) 92.7 (142) 92.1 (48) 75.0 (144) 90.4 (134) 91.2 88.30

IAD Dataset
mRMR+COBRA (165) 96.5 (140) 96.1 (28) 96.4 (160) 97.2 (68) 97.1 96.64
mRMR+FS (109) 96.2 (127) 95.8 (127) 96.7 (25) 97.0 (52) 97.2 96.58
mRMR+BE (22) 96.3 (163) 95.9 (121) 96.1 (109) 97.2 (148) 97.4 96.58
JMI+COBRA (112) 96.3 (4) 96.3 (9) 96.3 (57) 97.3 (140) 100 97.24
JMI+FS (9) 96.2 (4) 96.2 (52) 96.4 (7) 96.8 (7) 97.8 96.68
JMI+BE (4) 96.6 (17) 95.8 (79) 96.3 (13) 96.5 (10) 97.2 96.48

MAD Dataset
mRMR+COBRA (12) 83.2 (13) 60.4 (26) 80.5 (12) 88.0 (11) 62.2 74.81
mRMR+FS (32) 55.3 (5) 55.5 (12) 58.2 (49) 57.3 (5) 52.7 55.82
mRMR+BE (14) 55.3 (11) 54.8 (31) 57.3 (26) 56.4 (115) 48.6 54.50
JMI+COBRA (13) 82.5 (12) 60.7 (40) 80.7 (13) 87.6 (4) 61.1 74.54
JMI+FS (13) 82.5 (12) 60.7 (58) 80.5 (13) 87.9 (19) 59.2 74.20
JMI+BE (13) 82.5 (12) 60.7 (58) 80.5 (13) 87.3 (20) 60.1 74.25

LNG Dataset
mRMR+COBRA (23) 75.0 (28) 96.9 (13) 71.8 (28) 68.7 (27) 71.8 76.87
mRMR+FS (7) 81.2 (5) 68.7 (5) 71.8 (5) 75.0 (6) 71.8 73.75
mRMR+BE (7) 81.2 (4) 68.7 (4) 71.8 (4) 75.0 (4) 75.0 74.37
JMI+COBRA (7) 78.1 (6) 71.8 (5) 71.8 (5) 75.0 (5) 68.7 73.12
JMI+FS (7) 78.1 (4) 71.8 (4) 71.8 (8) 78.1 (5) 68.7 73.75
JMI+BE (7) 78.1 (6) 71.8 (5) 71.8 (6) 78.1 (6) 71.8 74.37

ARR Dataset
mRMR+COBRA (45) 81.9 (48) 76.3 (30) 75.4 (43) 82.2 (57) 72.9 77.75
mRMR+FS (34) 81.3 (43) 76.1 (7) 78.3 (34) 81.3 (5) 75.7 78.56
mRMR+BE (36) 81.6 (43) 76.3 (22) 78.0 (25) 82.9 (8) 76.1 79.02
JMI+COBRA (26) 80.6 (51) 74.7 (15) 78.3 (51) 81.5 (13) 71.9 77.41
JMI+FS (47) 74.3 (38) 73.5 (26) 76.9 (37) 79.2 (54) 70.0 74.80
JMI+BE (47) 74.3 (38) 73.5 (26) 76.9 (25) 80.0 (29) 68.6 74.66

DEX Dataset
mRMR+COBRA (3) 92.0 (131) 86.3 (24) 80.7 (3) 93.0 (3) 81.3 86.66
mRMR+FS (3) 90.3 (56) 87.0 (94) 80.3 (3) 92.0 (3) 80.0 86.00
mRMR+BE (3) 90.0 (131) 87.3 (18) 80.3 (3) 91.6 (99) 78.6 85.53
JMI+COBRA (88) 91.6 (13) 83.0 (12) 80.3 (3) 94.0 (3) 81.0 86.00
JMI+FS (149) 91.0 (129) 87.6 (95) 80.3 (119) 92.3 (94) 80.6 86.40
JMI+BE (149) 90.0 (128) 87.3 (22) 81.0 (146) 92.0 (138) 78.0 85.60

TABLE 4: Comparison of COBRA with the greedy search methods over different datasets. For each classifier and combinationof search
method and measure function, the values in parentheses is the number of selected features and the second value is the classification
accuracy. The last column reports the average of the classification accuracies for each algorithm.
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Datasets NCI DBW IAD CNA

S-ratio 0.7717 0.8929 0.9266 0.9976

TABLE 5: The average (over 50 similarity ratios) similarityratio
for 4 datasets.

CO - BE FS - BE FS - CO

-4
-2

0
2

4

Friedman Test on Mean Accuracies for mRMR

CO - BE PostHoc P.value: 0.078
FS - BE PostHoc P.value: 0.965
FS - CO PostHoc P.value: 0.042

Fig. 2: Comparing the search strategies for mRMR measure with
the Friedman test and its corresponding post-hoc analysis.The y-
axis is the classification accuracy difference and x-axis indicates
the names of the compared algorithms.

randomization step this ratio may widely vary for COBRA.
That is, COBRA generates quite diverse feature sets. Some
of these feature sets have relatively low scores as compared
with BE or FS sets. However, since for small datasets the
estimated mutual information terms are highly inaccurate,
features that rank low with our noisy measure function
may in fact be better for classification. The average of the
similarity ratios of 50 subsequent feature sets (1

50

∑55
i=5 Si)

have been reported for 4 datasets in Table 5. As seen, for
NCI the averaged similarity ratio is significantly smaller
than 1 while for CNA which is a relatively larger dataset,
it is almost constant and equal to 1.

The second interesting point is with respect to the Made-
lon dataset. As can be seen, mRMR with greedy search
algorithms perform poorly on this dataset. Several authors
have already utilized this dataset to compare their proposed
criterion with mRMR and arrived at the conclusion that
mRMR cannot handle highly correlated features, as in
Madelon dataset. However, surprisingly the performance
of the mRMR+COBRA is as good as JMI on this dataset
meaning that it is not the criterion but the search method
that has difficulty to deal with highly correlated features.
Thus, any conclusion with respect to the quality of a
measure has to be drawn carefully since, as in this case, the
effect of the non optimum search method can be decisive.

To discover the statistically meaningful differences between
the algorithms, we applied the Friedman test following with

CO - BE FS - BE FS - CO

-6
-2

2
4

SVM

CO - BE FS - BE FS - CO

-1
0

-5
0

5
1

0

LDA

CO - BE FS - BE FS - CO

-4
-2

0
2

CART

CO - BE FS - BE FS - CO

-4
0

2
4

6

RF

CO - BE FS - BE FS - CO

-1
0

0
5

1
0

NN

Fig. 3: Comparing the search strategies for mRMR. Results ofthe
post-hoc tests for each classifier.

Wilcoxon-Nemenyi post-hoc analysis, as suggested in [23],
on the average accuracies (the last column of Table 4).
Note that since we have 8 datasets, there are 8 independent
measurements available for each algorithm. The results of
this test for mRMR based algorithms have been depicted in
Figure 2. In all box plots, CO stands for COBRA algorithm.
Each box plot compares a pair of the algorithms. The green
box plots represent the existence of a significant difference
between the corresponding algorithms. The adjusted p-
values for each pair of algorithms have also been reported in
Figure 2. The smaller the p-value, the stronger the evidence
against the null hypothesis. As can be seen, COBRA
shows meaningful superiority over both greedy algorithms.
However, if we set the significance level atp = 0.05,
only FS rejects the null hypothesis and shows a meaningful
difference with COBRA.

The same test was run for each classifier and its results
can be found in Figure 3. While three of the classifiers
show some differences between FS and COBRA, neither
of them reveal any meaningful difference between BE and
COBRA. At this point, the least we can conclude is that
independent of the classification algorithm we choose, it is
a good chance that FS performs worse than COBRA.

For JMI, however, the performances of all algorithms are
comparable and with only 8 datasets it is difficult to draw
any conclusion. Thus, the Wilcoxon-Nemenyi test results
for JMI is not shown here because of the lack of space.

In the next experiment COBRA is compared with two
other convex programming based feature selection algo-
rithms, SOSS [32] and QPFS [39]. Both SOSS and QPFS
employ quadratic programing techniques to maximize a
score function. SOSS, however, uses an instance of ran-
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Datasets MAD NCI IAD ARR CNA

mRMR+COBRA 74.81± 0.65 73.67± 2.41 96.64± 0.16 77.75± 1.03 88.91± 0.31
mRMR+QPFS 71.44± 0.57 71.00± 1.84 95.02± 0.21 78.73± 0.84 86.93± 0.45
mRMR+SOSS 71.36± 0.53 72.65± 2.13 96.64± 0.28 79.86± 1.18 85.43± 0.49

Time COBRA 175+ 24 368+ 341 540+ 121 6+ 14 120+ 50
Time QPFS 11 180 202 1 25
Time SOSS 175+ 5 368+ 27 540+ 12 6+ 4 120+ 7

TABLE 6: Comparison of COBRA with QPFS and SOSS over 5 datasets. Average classification rates and their standard deviations
are reported in the top three rows of the table. In the next three rows, the computational times in second are shown where the first
value for COBRA and SOSS is for calculating the mutual information matrix and the second value is the time needed to solve the
optimization problems.

domized rounding to generate the set-membership binary
values while QPFS ranks the features based on their scores
(achieved from solving the convex problem) and therefore,
sidesteps the difficulties of generating binary values. Note
that both COBRA and SOSS first need to calculate the mu-
tual information matrixQ. Once it is calculated, they can
solve their corresponding convex optimization problems for
different values ofP . The first 3 rows of Table 6 report the
average (over 5 classifiers) classification accuracies of these
three algorithms and the standard deviation of these mean
accuracies (calculated over the cross-validation folds).In
the next three rows of the table, the computational times
of each algorithm for a single run (in second) are shown,
i.e., the amount of time needed to select a feature set with
(given) P features. The reported times for COBRA and
SOSS consist of two values. The first value is the time
needed to calculate the mutual information matrixQ and
the second value is the amount of time needed to solve the
corresponding convex optimization problem. All the values
were measured on a PC with an Intel Core i7 CPU. As seen,
QPFS is significantly faster than COBRA and SOSS. This
computational superiority, however, seems to come at the
expense of lower classification accuracy. For large datasets
such as IAD, CNA and MAD, the Nyström approximation
used in QPFS to cast the problem into a lower dimensional
subspace does not yield a precise enough approximation
and results in lower classification accuracies. An important
remark to interpret these results is that, for NCI dataset (in
all the experiments) we first filtered out the features with
the low mutual information values with the class label and
only kept 2000 informative features (similarly for DEX and
DBW datasets). Thus, the dimension is 2000 and not 9703
as mentioned in Table 2.

The generalization power of the COBRA algorithm over
different classifiers is another important issue to test. As
can be observed in Table 4, the number of selected features
varies quite markedly from one classifier to another. How-
ever, based on our experiments, the optimum feature set of
any of the classifiers, usually (for large enough datasets)
achieves a near-optimal accuracy in conjunction with other
classifiers as well. This is shown in Table 7 for 4 classifiers
and 3 datasets. The COBRA features of the LDA classifier
in Table 4 is used here to train other classifiers. Table 7 lists
the accuracies obtained by using the LDA features and the
optimal features, repeated from Table 4. Unlike the CNA

and IAD datasets, a significant accuracy reduction can be
observed in the case of ARR data which has substantially
less training data than CNA and IAD. It suggests that
for small size datasets, a feature selection scheme should
take the induction algorithm into account since the learning
algorithm is sensitive to small changes of the feature set.

Classifiers SVM CART RF NN

ARR LDA feat. 78.4 73.7 77.1 68.00
Optimum 81.9 75.4 82.2 72.9

CNA LDA feat. 92.6 75.0 90.5 91.1
Optimum 94.0 75.0 90.8 92.0

IAD LDA feat 95.8 96.0 97.2 96.3
Optimum 96.5 96.4 97.2 97.1

TABLE 7: The performance of the classification algorithms when
trained with COBRA features optimized for the LDA classifier.
This table shows the generalization power of the COBRA features
on the classifiers.

5 CONCLUSION

A convex based parallel search strategy for feature selec-
tion, COBRA, was suggested in this work. Its approxima-
tion ratio was derived and compared with the approximation
ratio of the backward elimination method. It was experi-
mentally shown that COBRA outperforms sequential search
methods especially in the case of sparse data. Moreover, we
presented two series expansions for mutual information,
and showed that most mutual information based score
functions in the literature including mRMR and MIFS are
truncated approximations of these expansions. Furthermore,
the underlying connection between MIFS and the Kirwood
approximation was explored, and it was shown that by
adopting the class conditional independence assumption
and the Kirkwood approximation forPr(X), mutual in-
formation reduces to the MIFS criterion.
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