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Abstract — Feature subset selection, as a special case of the gen-
eral subset selection problem, has been the topic of a considerable
I_|number of studies due to the growing importance of data-mining
(D applications. In the feature subset selection problem there are two
main issues that need to be addressed: (i) Finding an appropriate
measure function than can be fairly fast and robustly computed
| for high-dimensional data. (i) A search strategy to optimize the
measure over the subset space in a reasonable amount of time. In
—ithis article mutual information between features and class labels is
considered to be the measure function. Two series expansions for
(\J mutual information are proposed, and it is shown that most heuristic
> criteria suggested in the literature are truncated approximations of
Q' these expansions. It is well-known that searching the whole subset
00 space is an NP-hard problem. Here, instead of the conventional
(Y) sequential search algorithms, we suggest a parallel search strategy
based on semidefinite programming (SDP) that can search through
= the subset space in polynomial time. By exploiting the similarities
O) between the proposed algorithm and an instance of the maximum-
O cut problem in graph theory, the approximation ratio of this algorithm
ﬁ' is derived and is compared with the approximation ratio of the
] backward elimination method. The experiments show that it can be
= = misleading to judge the quality of a measure solely based on the
. 2 classification accuracy, without taking the effect of the non-optimum
>< search strategy into account.
—
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1 INTRODUCTION

quite high making it prohibitive to learn the underlying
distribution. For instance, gene expression data or images
may easily have more than tens of thousands of features.
While, at least in theory, having more features should tesul
in a more discriminative classifier, it is not the case in
practice because of the computational burden and curse of
dimensionality.

High-dimensional data poses different challenges on in-
duction and prediction algorithms. Essentially, the anmoun
of data to sustain the spatial density of the underlying
distribution increases exponentially with the dimensliya

of the feature vector, or alternatively, the sparsity iases
exponentially given a constant amount of data. Normally
in real-world applications, a limited amount of data is
available and obtaining a sufficiently good estimate of
the underlying high-dimensional probability distributids
almost impossible unless for some special data structures
or under some assumptions (independent features, etc).

Thus, dimensionality reduction techniques, particuléeb-

ture extraction and feature selection methods, have to be
employed to reconcile idealistic learning algorithms with
real-world applications.

In the context of feature selection, two main issues can
be distinguished. The first one is to define an appropriate
measure function to assign a score to a set of features. The
second issue is to develop a search strategy that can find the

From a purely theoretical point of view, given the undef@Ptimal (in a sense of optimizing the value of the measure
lying conditional probability distribution of a dependenfunction) subset of features among all feasible subsets in a
variable C' and a set of featureX, the Bayes decision "€asonable amount of time.

rule can be applied to construct the optimum inductioBifferent approaches to address these two problems can

algorithm. However, in practice learning machines are ngdyghly be categorized into three groups: Wrapper methods,
given access to this distributionPr(C|X). Therefore, embedded methods and filter methods.

given a feature vector or variablé& € R", the aim of

most machine learning algorithms is to approximate thi¥rapper methods [27] use the performance of an induction
underlying distribution or estimate some of its charasteridlgorithm (for instance a classifier) as the measure functio

tics. Unfortunately, in most practically relevant data mmn

Given an inducef, wrapper approaches search through the

applications, the dimensionality of the feature vector Pace of all possible feature subsets and select the one that

maximizes the induction accuracy. Most of the methods
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of features and thus, may rapidly become prohibitive due


http://arxiv.org/abs/1409.7384v2

to the so-called combinatorial explosion. Since the measuereedy algorithms iteratively evaluate a candidate subset
function is a machine learning (ML) algorithm, the selectedf features, then modify the subset and evaluate if the new
feature subset is only optimal with respect to that pardiculsubset is an improvement over the old one. This can be done
algorithm, and may show poor generalization performanae a forward selection setup which starts with an empty
over other inducers. set and adds one feature at a time or with a backward
f?élgnination process which starts with the full set of featur

The second group of feature selection methods are Caland removes one feature at each step. The third group of the
embedded methods [34] and are based on some internalga— P group

rameters of the ML algorithm. Embedded approaches ranﬁa.‘mh. algqnthms are .based on targeted projection .purswt
. 2 . which is a linear mapping algorithm to pursue an optimum
features during the training process and thus simultagous " . . .
rojection of data onto a low dimensional manifold that

determine both the optimal features and the parametgrs . : :
, : . : . scores highly with respect to a measure function| [15].
of the ML algorithm. Since using (accessing) the mternfil - . . .
: ; . n heuristic methods, for instance genetic algorithms, the
parameters may not be applicable in all ML algorithms ; ; A .
: . earch is started with an initial subset of features which
this approach cannot be seen as a general solution to the .
. é;sradually evolves toward better solutions.
feature selection problem. In contrast to wrapper methods,
embedded strategies do not require to run the exhaustiRecently, two convex quadratic programing based methods,
search over all subsets since they mostly evaluate ea@RFS in [39] and SOSS in_[B2] have been suggested to
feature individually based on the score calculated from tlaeldress the search problem. QPFS is a deterministic algo-
internal parameters. However, similar to wrapper method#hm and utilizes the Nystrom method to approximate large
embedded methods are dependent on the induction mouhgtrices for efficiency purposes. SOSS on the other hand,
and thus the selected subset is somehow tuned to a paitias a randomized rounding step which injects a degree of
ular induction algorithm. randomness into the algorithm in order to generate more

Filter methods, as the third group of selection aIgorithmgfverse feature sets.

focus on filtering out irrelevant and redundant features Developing a new search strategy is another contribution
which irrelevancy is defined according to a predetermined this paper. Here, we introduce a new class of search
measure function. Unlike the first two groups, filter methodsgorithms based on Semi-Definite Programming (SDP)
do not incorporate the learning part and thus show bettedaxation. We reformulate the feature selection problsm a
generalization power over a wider range of induction ak (0-1)-quadratic integer programming and will show that
gorithms. They rely on finding an optimal feature subsétcan be relaxed to an SDP problem, which is convex and
through the optimization of a suitable measure functiohence can be solved with efficient algorithms [7]. Moreover,
Since the measure function is selected independently thére is a discussion about the approximation ratio of the
the induction algorithm, this approach decouples the featiproposed algorithm in subsection 3.2. We show that it
selection problem from the following ML algorithm. usually gives better solutions than greedy algorithms @ th

The first contribution of this work is to analyze the populasrense that its approximate solution is more probable to be

mutual information measure in the context of the featurceIoser to the optimal point of the criterion.

selection problem. We will expand the mutual informatio
function in two different series and show that most of thrg MUTUAL INFORMATION PROS AND CONS
previously suggested information-theoretic criteria 8@ | ot s consider anV dimensional feature vectdK —

first or second order truncation-approximations of the &, Xs, ..., Xy] and a dependent variabté which can
expansions. The first expansion is based on generalizan gither a class label in case of classification or a target
of mutual information and has already appeared in litegatu, iaple in case of regression. The mutual information func
while the second one is new, to the best of our knowledgg,, is defined as a distance from independence between
The well-known minimal Redundancy Maximal Relevanc& anq ' measured by the Kullback-Leibler divergence
(MRMR) score function can be immediately concludefy) gasically, mutual information measures the amount of
from the second expansion. We will discuss the consigitormation shared betweeK and C by measuring their
tency and accuracy of these approximations and eXperim%’é‘pendency level. Denote the joint pdf¥fandC' and its

tally investigate the conditions in which these truncatioqnargina| distributions byPr(X, C'), Pr(X) and Pr(C),
approximations may lead to high estimation errors. respectively. The mutual information between the feature

Alternatively, feature selection methods can be categdrizvector and the class label can be defined as follows:
based on the search _st_rategies they employ.. Popular seqrfE\Xh Xo, .. Xn:O)= I[(X;C) =

approaches can be divided into four categories: Exhaustive

search, greedy search, projection and heuristic. A trivial /pT(X, CMM
approach is to exhaustively search in the subset space as Pr(X)Pr(C)
it is done in wrapper methods. However, as the number pfreaches its maximum value when the dependent variable
features increases, it can rapidly become infeasible. élenig perfectly described by the feature set. In this case nhutua
many popular search approaches use greedy hill climbingiormation is equal td7 (C), whereH (C) is the Shannon

as an approximation to this NP-hard combinatorial problersntropy ofC.

X dc (1)



Mutual information can also be considered a measure afid negative values with the equal probability. Namely,

set intersection[[38]. Namely, lek andB be event sets Pr(X;=1|C=1) = 1 and Pr(X;= — 1|C=—1) = 0.5.

corresponding to random variablesand B, respectively. In the same manner, the likelihood df, is defined as

It is not difficult to verify that a functior defined as: Pr(X.=1|C=1) = 0.9 and Pr(Xy=—1|C=—-1) = 0.7.
(AN B) = I(A; B) @) Then_,.the. Bayes.classifier with featur®; yields the

classification error:

satisfies all three properties of a formal measure over sets

[42] [6], i.e., non-negativity, assigning zero to empty set Pey =Pr(C=-1)Pr(X;=1|C=-1)

and countable additivity. However, as we see later, the + Pr(C=1)Pr(X=-1|C=1) =025 (5)

?he;nerﬁ,véagztns O\]:vit:;en:)nul;[)unalG:pf(;;rg;tlo?hgnoena_ilérea:i(\)/itmogmiIarIy, the Bayes classifier wittX, yields P.; = 0.2
g y 9 y mehaning that,X, is a better feature thanX; in the

property and thus can be seen as a signed measure whic CmE . . e
: o .sense of minimizing the probability of misclassification.
is the generalization of the concept of measure by aIIown?_g . . e
it to have negative values However, unlike their error probablllt_lef(Xl; C) =0.31,

) is greater thard (X; C') = 0.29. That is,X; conveys more
There are at least three reasons for the popularity of thformation about the class label in the sense of Shannon

use of mutual information in feature selection algorithmsmutual information than¥s,.

1. Most of the suggested non information-theoretic scofemore detailed discussion can be found[in|[17]. However,
functions are not formal set measures (for instance corie-is worthwhile to mention that although using mutual
lation function). Therefore, they cannot assign a score tardformation may not necessarily result in the highest clas-
set of features but rather to individual features. Howevedification accuracy, it guarantees to reveal a salient featu
mutual information as a formal set measure is able subset by reducing the upper and lower bound#of
evaluate all possible informative interactions and compl
functional relations between features and as a result; fu
extract the information contained in a set of features.

- By adapting classification error as a criterion, most
standard classification algorithms fail to correctly cifyss
the instances from minority classes in imbalanced datasets
2. The relevance of the mutual information measure to mi€ommon approaches to address this issue are to either
classification error is supported by the existence of boundssign higher misclassification costs to minority classes o
relating the probability of misclassification of the Bayeseplace the classification accuracy criterion with the area
classifier,P,, to the mutual information. More specifically,under the ROC curve which is a more relevant criterion
Fano’s weak lower bound [13] oR,, when dealing with imbalanced datasets. Either way, the

features should also be selected by an algorithm which
1+ Felog,(ny—1) = H(C) - I(X; C) ) s insensitive (robust) with respect ¥o classg distribugion
wheren, is the number of classes and the Hellman-Raviotherwise the selected features may not be informative

[22] upper bound, about minority classes, in the first place). Interestingly,
1 by internally applying unequal class dependent costs, mu-
P. < Q(H(C) - I(X;0)) (4) tual information provides some robustness with respect to

class distributions. Thus, even in an imbalanced case, a
mutual information based feature selection algorithm is
As it can be seen iM13) andl(4), maximizing the mutudikely (though not guaranteed) to not overlook the features
information betweenX and C' decreases both upper andhat represent the minority classes. In citebao:11, the
lower bounds on misclassification error and guaranteesncept of the mutual information classifier is investigate
the goodness of the selected feature set. However, th8pecifically, the internal cost matrix of the mutual infor-
is somewhat of a misunderstanding of this fact in thmation classifier is derived to show that it applies unequal
literature. It is sometimes wrongly claimed that maximgzinmisclassification costs when dealing with imbalanced data
the mutual information results in minimizing thé, of the and showed that the mutual information classifier is an
optimal Bayes classifier. This is an unfounded claim sinagptimal classifier in the sense of maximizing a weighted
P, is not a monotonic function of the mutual informationclassification accuracy rate. The following example shows
Namely, it is possible that a feature vectdr with less this robustness.

relevant information-content about the class labethan

a feature vectoB yields a lower classification error rate
thanB. The following example may clarify this point.

on P,, provide somewhat a performance guarantee.

Example 2 Assume an imbalanced binary classification
task wherePr(C=1) = 0.9. As in Example 1, there
are two binary features{; and X, and the goal is to
Example 1 Consider a binary classification problem wittselect the optimum feature. SuppoBe(X;=1|C=1) =
equal number of positive and negative training samples ahdand Pr(X;= — 1|C= — 1) = 0.5. Unlike the first
two binary featuresX; and X,. The goal is to select the feature, Xo can much better classify the minority class
optimum feature for the classification task. Suppose the fiBr(X,=—1|C=—-1) = 1 and Pr(X,=1|C=1) = 0.8. It
feature X is positive if the outcome is positive. Howevercan be seen that the Bayes classifier wkh results in
when the outcome is negativ&]; can take both positive 100% classification rate for the majority class while only



50% correct classification for the minority. On the other

O Ellipse class o o
hand, usingX, leads to 100% correct classification for 15* chg@@igﬁ%éi%go
the minority class and 80% for the majority. Based on Jd C@M@@m e S |
the probability of error,X; should be preferred since its ol @o@s” é;ﬁ%’“ oi@?
probability of error isP,; = 0.05 while P, = 0.18. . o= A‘ng §§
However, by usingX; the classifier can not learn the R o Qj,‘fgfi o8
rare event (50% classification rate) and thus randomly -os} 2% *ﬁd:}fg ’ oo
classifies the minority class which is the class of intenest i Ll %8 X »%f ’ & ¢
many applications. Interestingly, unlike the Bayesiamerr “‘Z% = Og%@@ooeﬁ
probabilities, mutual information prefers, over X1, since B
I(X5;C) = 0.20 is greater than/(X;;C) = 0.18. That e TS =
is, mutual information is to some extent robust against xvalues
imbalanced data. Fig. 1: Synergy betweem andy features. While information of

) ] each individual feature about the class label (ellipse woe)liis
Unfortunately, despite the theoretical appeal of the mutug@imost zero, their joint information can almost completelgnove
information measure, given a limited amount of data, ghe class label ambiguity.

accurate estimate of the mutual information would bl?]nlike 2-way mutual information, the generalized mutual

impossible. Because to calculate mutual information, es- L . .
information is not necessarily nonnegative and hence, can

timating the high-dimensional joint probabilit#r(X, C) . ; . -
is inevitable which is, in turn. known to be an NP har%e interpreted as a signed measure of set intersection [21].

problem [25] onsider[(¥) and assum§ is class label”, then positive
== I(Y1;Ys; C) implies thatY; and Y2 are redundant with

As mutual information is hard to evaluate, several alterneespect toC' since I(Y1,Ys;C) < I(Yy;C) + I(Ys; C).

tives have been suggestéd [5].[[35].1[28]. For instance, thtowever, the more interesting case is whEfY7; Ys; C)

Max-Relevance criterion approximaté$ (1) with the sum @ negative, i.e./(Y1,Y>2;C) > I(Yy;C) + I(Y2; C). This

the mutual information values between individual featureaeans, the information contained in the interactions of the

X, andC: variables is greater than the sum of the information of the
N individual variables[[20].
Max-Relevance- ZI(Xi§ C) (6) An artificial example for this situation is the binary clas-
i=1 sification problem depicted in Figuté 1, where the classi-

Since it implicitly assumes that features are independefigation task is to discriminate between the ellipse class
it is likely that selected features are highly redundant. T@¢lass samples depicted by circles) and the line class (star
overcome this problem, several heuristic corrective terrsi@mples) by using two features: valuescadxis and values
have been introduced to remove the redundant informatiehy axis. As can be seen, sinéér; C)~0 andI(y; C)~0,
and select mutually exclusive features. Here, it is showhere is no way to distinguish between these two classes by
that most of these heuristics are derived from the followingst using one of the features. However, it is obvious that
expansions of mutual information with respectXg. employing both features results in almost perfect classifi-
cation, i.e.,I(z,y; C)~ H(C). The mutual information in
(@) can be expanded out in terms of generalized mutual

2.1 First Expansion: Multi-way Mutual Informa- information between the features and the class label as:
tion Expansion N N—1 N
. . . . . I(X;C) = 1(X;,;C) — 1(X;;X;,;C
The first expansion of mutual information that is used here,( ) z_:l (X215 C) z_:l _Z+1 (Xir; Xiz; O)
relies on the natural extension of mutual information to n neonn
o (DN TU(X L X O) )

more than two random variables proposed by McGill [30]
and Abramson([1]. According to their proposal, the threg:om the definition in[(8) it is straightforward to infer this
way mutual information between random variablesis  expansion. However, the more intuitive proof is to use the
defined by: fact that mutual information is a measure of set intersegtio

I(V1: Yy: Ya) =I(Yy: Ya) + I(Ya: Y3) — I(Y, Ya: Y i.e.,I(Yl;YQ_;Y?,):H(Y%ﬁYgﬂﬁ_{%), whereYs isth_e
(Y13 ¥25¥5) =1(V1575) + 1(Y25Y5) (Y1, ¥2; Y3) corresponding event set of thé variable. Now, expanding

=I(Y1;Y2) - I(Y1; Y2|Ys) () the N-variable measure function results in:
where “” between variables denotes the joint variables. N N
Note that, similar to two-way mutual information, it is [(X;C) = u((U X;)NC) = M(U(Xz' NaC)) (10)
symmetric with respect t; variables, i.e.J(Y1;Y2;Y3) = i=1 i=1

1(Y3;Ys;Y1). Generalizing oveV variables: N N-1 N
=Y uXnC) - > Y X, NX;, NC)
I(Y1;Yo;..5Yn) =1(Y1;...;YN-1) i=1 i1=1is—i1 +1

—I(le;...;YN_1|YN) (8) —|—---—|—(—1)N_1,u(X1ﬁXg---ﬁXNﬂ(C)



where the last equation follows directly from the additiosoefficient in [I8), the truncated forms of suggested expan-
law or sum rule in set theory. The proof is complete bgions can be written as:

recalling that all measure functions with the set inteiisect N N—1 N
arguments in the last equation can be replaced by the mutuajp, — ZI(X“ C) — Z Z I(X;; X;;0)
information functions according to the definition of mutual izl =1 jeit1
information in [2). N | NN
DQZZI(Xi;C)—m > I(Xi X550
1=1 =1 j=1+1
2.2 Second Expansion; Chain Rule of Information (24)

The second expansion for mutual information is based §f1ere D1 is the truncated approximation dfl (9) arfd,
the chain rule of informatior{L1]: is for (I3). Interestingly, despite the very similar sturet
of the expressions in_(14), they have intrinsically differe

N behaviors. This difference seems to be rooted in different
I(X;0) =Y I(Xi;C|Xi ..., X1) (11) functional forms they employ to approximate the underly-
=1 ing high-order pdf with lower order distributions (i.e.,viao

The chain rule of information leaves the choice of orderinigi€y combine these lower order terms). For instance, the

quite flexible. For example, the right side can be written if¥inctional form that MIFS employs to approximalte:(x)

the order(X;, Xs,...,Xy) of (Xn,Xn_1,...,X1). In is shown in [(IB). WhileD; is not necessarily a positive

general, it can be expanded ovt different permutations Value,D- is guaranteed to be a positive approximation since

of the feature sefX,,..., Xy}. Taking the sum over all all terms in [12) are positive. Howevef), may highly

possible expansions yields, underestimate the mutual information values since it may
violate the fact that[{1) is always greater than or equal to

N .
(NYI(X;C) = (N_l)!ZI(Xi;C) (12) max; I(X;;C).
i=1

N 2.3.1 JMI, mRMR & MIFS Criteria
+N=21Y 0 Y I(X,;:C)X)

=lise{l. N}/ia Several known criteria including Joint Mutual Informa-

N tion (JMI) [31], minimal Redundancy Maximal Relevance
4ot (N—l)!ZI(Xi;CHXl,---,XN}\X.) (mMRMR) [35] and Mutual Information Feature Selection

= ‘ (MIFS) [5] can immediately be derived fro?; and D-.
Dividing both sides by N—1)!/2, and using the following USing the identity: (X;; X;; C') = I1(X;; C) + 1(X;; C) —
equation/(X;,; C|X:,) = I(X;,;C) — I(X;,; Xi,: C) to I(X;,X;;C) in Dy reveals thatD, is equivalent to JML.

replacel (X;,; C|X;,) terms, our second expansion can be

N—-1 N
expressed as IMI= Dy = Z Z I(Xi, X;;C) (15)
N N i=1 j=i+1
—I(X;C) = I1(X;;C 13 . .
2 ( ) ; ( ) (13) Using I(X;; X;;C) = I(X;; X;) — I(X;; X;|C) and ig-
N-1 N noring the terms containing more than two variables, i.e.,
__ b (X, Xi,:C) I(X;; X;|C), in the second approximatio®,, one may
N -1 =1 in—iy 41 immediately recognize the popular score function
1 X N ] N1 N
+ot g D I(XiCHXy, . Xn ) le\/lR:ZI()Q;o)_m >3 I(XiX;) (16)
i=1

=1 i=1 j=1i+1

Ignoring the unimportant multiplicative constant/2 on introduced by Peng et al. in [B5]. That is, MRMR is a

the left side of equatior_(13), the right side can be se@fincated approximation of mutual information and not a
as a series expansion form of mutual information (up tofReuristic approximation as suggested/ih [9].

known constant factor).
) The same line of reasoning as for mMRMR can be applied

to D; to achieve MIFS with3 equal to 1.

N N—-1 N
MIFS=> I(X;;C)- > > I(XsX;)  (17)
In the both proposed expansiorld (9) and] (13), mutual im1 i=1 jmit1
information terms with more than two features represent
higher-order interaction properties. Neglecting the bighObservation: A constant feature is a potential danger
order terms yields the so-called truncated approximatfonfor the above measures. While adding an informative
the mutual information function. If we ignore the constarttut correlated feature may reduce the score value (since

2.3 Truncation of the Expansions



I(X;; X;|C) — I(X;; X;) can be negative), adding a nonin (1) we get mRMR or MIFS. This implies that mRMR
informative constant featur& to a feature set does notand MIFS arealways valid set measures for all datasets
reduce its score value since battZ; C) andI(Z; X;;C') regardless of their true underlying joint probability dist
terms are zero, that is, constant features may be prefertedions. Now, if we show (by any example) that they are
over informative but correlated features. Therefore, it isot valid mutual information measures, i.e., they are not
essential to remove constant features by some preprogessifways positive and monotonic, then we have contradicted
before using the above criteria for feature selection. our assumption thaPr(X, () exists and is a valid pdf. It

is not so difficult to construct an example in which mRMR
or MIFS can get negative values. Consider the case where
features are independent of class labELX;;C) = 0,

A natural question arising in this context with respedvhile they have nonzero dependencies among themselves,
to the proposed truncated approximations is: Under whbtX;; X;) # 0. In this case, both mRMR and MIFS
probabilistic assumptions do the proposed approximatioggnerate negative values which is not allowed by a valid
become valid mutual information functions? That is, whichet measure. This contradicts our assumption that they
structure should a joint pdf admit, to yield mutual informaare generated by a valid distribution, so we are forced to
tion in the forms ofD; or Dy? conclude that there is no consistent i-map that results in

. : mutual information in the mRMR or MIFS fornil.
For instance, if we assume features are mutually and class

conditionally independent, i.ePr(X) = Hﬁil Pr(X;) The same line of reasoning can be used to show that
and Pr(X,C) = Pr(C)[I~, Pr(X;|C), then it is easy andD are also not valid measures.

to verify th_at mutual |_nformat|on has the form_of Max'_However, despite the fact that no valid pdf can produce
Relevance introduced ift](6). These two assumptions, defip@y o) information of those forms, it is still valid to
the adaptedndependence-mapf Pr(X,C) where the ,qi for which low-order approximations of the underlying
independence-map of a joint probability distribution igigh_order pdfs, mutual information reduces to a truncated
defined as follows. approximation form. That is, we do not restrict an approx-
Definition 1: An independence-map (i-map) is a look ugmnation to be a valid distribution anymore. Any functional
table or a set of rules that denote all the conditional anéPrm of low-order pdfs may be seen as an approximation of
unconditional independence between random variabldg€e high-order pdfs and may give rise to MIFS or mRMR.
Moreover, an i-map is consistent if it leads to a validn the next subsection we reveal these assumptions for the
factorized probability distribution MIFS criterion.

2.3.2 Implicitly Assumed Distribution

That is, given a consistent i-map, a high-order joint prob-

ability distribution is approximated with product of low-

order pdfs and the obtained approximation is a valid3.3 MIFS Derivation from Kirkwood Approximation
pdf itself (e.g.,]_[f.\[:1 Pr(X;) is an approximation of the

high-order pdf Pr(X) and it is also a valid probability It is shown in [26] that truncation of the joint entropy
distribution). H(X) at therth-order is equivalent to approximating the

The question regarding the implicit consistent i-map th(fjlltjll-dimensional pdfPr(X) using joint pdfs with dimen-

MIFS adopts has been investigated lin [4]. However, tﬁéonality of roor smaller. '.rhis-approximation i_s called
assumption set (i-map) suggested in their work is incons{dl order hK|rkwood a.plpl)ro;qmatlo.n. The trgnlgaftlorl; order:
tent and leads to the incorrect conclusion that MIFS uppBlat We choose, partially determines our beliet about the

bounds the Bayesian classification error via the inequal@rUCture of the function that we are going to estimate the

(@). As we show in the following theorem, unlike the Max-exaCtPT(X) with.

Relevance case, there is no i-map that can produce mutuiaé 2nd order Kirkwood approximation @tr(X), can be
information in the forms of mMRMR of MIFS (ignoring denoted as follows [26]:
the ftrivial solution that reduces mRMR or MIFS to Max-

Relevance). Nl o N
. o . . ) 5 [Tiz, Hj:iJrl Pr(X;, X;)
Theorem 1. Ignoring the trivial solution, i.e., the i-map Pr(X) = ~ N3
indicating that random variables are mutually and class [Hizl PT(Xi)]
conditionally independent, there is no consistent i-magt th

can produce mutual information functions in the forms dfiow, assume the following two assumptions hold:
MRMR [IF) or MIFSI7) for arbitrary number of fealturesAssumption 1 Features are class conditionally indepen-

Proof: The proof is by contradiction. Suppose there ident, that is:Pr(X|C) = vazlPr(Xi|C)

a consistent i-map, where its corresponding joint p(ﬂ . . :
5 I N ssumption 2 Pr(X) is well approximated by a 2nd order
Pr(X, C) (which is the approximation oPr(X, C')) can Kirkwogd superg(gsit)ion appron(Fi)mation iiﬂl)é).

generate mutual information in the forms &f16) brl(17).
That is, if this i-map is adopted, by replacidg-(X,C) Then, writing the definition of mutual information and

(18)



applying the above assumptions yields the MIFS criterioA very similar approach has been appliéd [8] (by using
D, approximation) to derive several known criteria like

I(X;C) = H(X) — H(X[C) (19) MIFS [5] and mRMR [35]. However, in[]8] and most
(@) & N-1 N of other previous works, the set score function[in] (20) is
~ Y H(X) =Y > I(X;X;)— HX|C)  immediately reduced to an individual-feature score functi

i=1 i=1 j=i+1 by fixing N—1 features in the feature set. This will let them
®) N N-1 N to run a greedy selection search method over the feature
=Y IXE0) =Y > (X Xy) set which essentially is a one-feature-at-a-time selectio

i=1 i=1 j=it+l strategy. It is clearly a naive approximation of the optimal

In the above equation, (a) follows the second assumptibi "hard search algorithm and may perform poorly under

by substituting the 2nd order Kirkwood approximatibnl(1 ome c_ond@tions. In the_ foIIowing, we investigate a convex
inside the logarithm of the entropy integral and (b) is a pproximation of the binary objective function appearing
immediate consequence of the first assumption In feature selection inspired by the Goemans-Williamson

maximum cut approximation approach [18].
The first assumption has already appeared in previous

works [9] [4]. However, the second assumption is novel

and, to the best of our knowledge, the connection betwedn SEARCH STRATEGIES

the Kirkwood approximation and the MIFS criterion has_ _ )
not been explored before. Given a measure funcUElD, the Subset Selection Problem

(SSP) can be defined as follows:

It is worth to mention that, in reality, both assumptions can . . .
be violated. Specifically, the Kirkwood approximation maj?€finition 2: Given N featuresy; and a dependent variable
select a subset aP <« N features that maximizes the

not precisely reproduce dependencies we might observe’in : S =S
real-world datasets. Moreover, it is important to rememb@}€2sure function. Here it is assumed that the cardin&lity
that the Kirkwood approximation is not a valid probability?f the optimal feature subset is known.
distribution. In practice, the exact value oP can be obtained by
evaluating subsets for different values of cardinaltyvith
o the final induction algorithm. Note that it is intrinsically
2.4 D, Approximation different than wrapper methods. While in wrapper methods

2N subsets have to be tested, here at miéstuns of the

From our experiments, which we omit because of spage, ning algorithm are needed to evaluate all possiblesgalu
constraints,D, tends to underestimate the mutual |nforma6f =

tion while D; shows a large overestimation for independent

features and a large underestimation (even becoming négsearch strategy is an algorithm trying to find a feature

ative) in the presence of dependent features. In genegbset in the feature subset space wath memberd

D, shows more robustness thﬂn The same results Canthat Optimizes the measure function. The wide range of
be observed for mRMR which is derived frof, and Proposed search strategies in the literature can be divided
MIES derived fromD;. Previous work also arrived to theinto three categories: 1- Exponential complexity methods

same results and reported that mMRMR performs better dfgluding exhaustive search [27], branch and bound based
more robustly than MIFS especially when the feature salgorithms[33]. 2- Sequential selection strategies with t

is large. Therefore, in the following sections we u3gas Very popular members, forward selection and backward
the truncated approximation. For S|mp||c|ty’ its Subst:@ elimination methods. 3- Stochastic methods like simulated

dropped and it is rewritten as follows: annealing and genetic algorithms [41], [12].
N Here, we introduce a fourth class of search strategies
D({X1,...,Xn}) :ZI(Xi§C) (20) Which is based on the convex relaxation of the 0-1 inte-
=1 ger programming and explore its approximation ratio by
;] N1 N establishing a link between SSP and an instance of the
N1 Z I(X;;X5;,C) maximum-cut problem in graph theory. In the following,
T =l =it we briefly discuss the two popular sequential search meth-

ods and continue with the proposed solution: a close to

Note that ?"h"_“g”) 'E @) is not a forme;l set_ mefasure%ﬂmal polynomial-time complexity search algorithm and
any more, it still can be seen as a score function for sefs, .\ .21uation on different datasets.

However, it is noteworthy that unlike formal measures, the

suggested approximations are no longer monotonic where

the monotonicity merely means that a subset of features

should not be better than any larger set that contains the . o

very same subset. Therefore, as explained in [33] the brangh, BY Some abuse of terminology, we refer fo any set functiorhia t
. .~ Séction as a measure, no matter whether they satisfy theaformaasure

and bound based search strategies can not be appliechégerties.

them. 2Given aP, the size of the feature subset space reduce@it)a



3.1 Convex Based Search Alternatively, a sequential search method can be seen as
an approximation of the combinatorial subset selection

problem. To propose a new approximation method, the

underlying combinatorial problem has to be studied. To this

end, we may formulate the SSP defined in the beginning
1) Initialize Sy = 0. of this section as:

2) In each iteration, select the featur&’,, maximizing max x7 Qx
D(Si_l UXm), and sefS; = S;_1 U X,,. *

3) OutputSp. N
) OutputSp Sai=P (21)
1=1

z; €{0,1}fori=1,...,N

The forward selection (FS) algorithm selects aSsef size
P iteratively as follows:

Similarly, backward elimination (BE) can be described as:

1) Start with the full set of featur8y . where Q is a symmetric mutual information matrix con-

2) lteratively remove a variableX,, maximizing gty cted from the mutual information terms [R20):
D(Si\X,,), and seS;_; = S;\ X,,, where removing

X from S is denoted byS\ X. XI(XNC) o =2 I(X1; Xn; O)
3) OutputSp. Q- “A(X1;X2;C) -+ —31(X9; Xn; O)
An experimentally comparative evaluation of several vari- A :_ _ : _
ants of these two algorithms has been conducted lin [2]. 2L (X1; Xv: C) I(Xn; ) 22)
From an information theoretical standpoint, the main d'%\'/here)\ _ ﬁ andx = [z1,...,7x] is a binary vector

advantage of the forward selection method is that it Onfyhere the variables; are set-membership binary variables
can evaluate the ut.|I|ty of a single feature in the l'm'_te_%dicating the presence of the corresponding featiifes
context of the previously selected features. The artificigle feature subset. It is straightforward to verify thatday

binary classifier in Figurell may illustrate this issue. Sinooinary vectorx, the objective function in[{21) is equal to
the information content of each featute gndy) is almost e score functiorD(X,,.) whereX,,, = {X;|z; = 1;i =
nz nz — 3 (2 ) -

zero, itis highly probable that the forward selection metho; N. Note that, for mRMRI(X;; X,; C') terms have
fails to select them in the presence of some other Mo ne replaced with (X;: X,). T

informative features. _ _

_ L The (0,1)-quadratic programming problefm](21) has at-
Contrary to forward selection, backward elimination cagacied a great deal of theoretical study because of its
evaluate the contribution of a given feature in the conteithnortance in combinatorial problenis [36, and references

of all other features. Perhaps this is why it has begRerein]. This problem can simply be transformed to a
frequently reported to show superior performance th"i‘nl 1)-quadratic programming problem
forward selection. However, its overemphasis on feature ' '

interacti_ons is a _double-edged sword and may lead to a max inQy+ %yTQeJrC
sub-optimal solution. Y

N
Example 3 Imagine a four dimensional feature se- Zyizzp_]v (23)
lection problem whereX; and X, are class con- i—1
ditionally and mutually independent ofX; and X4, yie{-1,1}fori=1,...,N

i.e., Pr(Xi, Xo, X3, X4) = Pr(Xy, Xo)Pr(Xs, Xy4) and . .

Pr(X1, Xs, X3, X4]C) = Pr(Xy, X2|C)Pr(Xs, X4C). V@Y = 2x — e transformation, where is an all ones
Consid7erI(’X1-70) and I(X,; C) are equal to sero. while Vector. Additionallyc in the above formulation is a constant
their interaction is informative. That ig(X;, X»;C) = €qual to 7€' Qe and it can be ignored because of its
0.4. Moreover, assumé(X3; C) = 0.2, I(X4;C) = 0.25 independence of. In order to homogenize the objective
and I(X3, X4:C) = 0.45. The goal is to select only two function in [23), define afN+1) x (N-+1) matrix Q" by
features out of four. Here, backward elimination will selec@dding a 0-th row and column 1@ so that:

{X1, X} rather than the optimal subsgk;, X4} because, u 0 e'Q
removing any ofX; or X, features will result in0.4 re- Q"= Q% Q (24)
duction of the mutual information valuE X1, ..., X4; C),

while eliminating X3 or X, deducts at mos0.25. One !9noring the constant factoy; in (23), the equivalent
may draw the conclusion that backward elimination tend?™ogeneous form of(21) can be written as:

to sacrifice the individually-informative features in favaf

the merely cooperatively-informative features. As a reyned
several hybrid forward-backward sequential search mathod
have been proposed. However, they all fail in one way (SSh Zyiyo =2P-N (25)
or another and more importantly cannot guarantee the =1

goodness of the solution. yie{-1,1}fori=0,....N

Sssp= max y' Qy

N



Note thaty is now anN + 1 dimensional vector with the of (SDPand is widely used for designing and analyz-
first elementy, = +1 as a reference variable. Given theng approximation algorithms [37]. The third step is to
solution of the problem above, i.ey, the optimal feature construct a feasible solution that satisfies the cardinalit
subset is obtained b¥,, = {Xi|y; = yo}. constraint. Generally, it can be skipped since in feature
The optimization problem if.(25) can be seen as an instansceeleCtio.n problems th.e exact satisfaction of the cardinali

: ; ; " constraint is not required.
of the maximum-cut problemni [18] with an additional car-
dinality constraint, also known as the k-heaviest subgrapte use the SDP-NAL solvelr [43] with the Yalmip interface
or maximum partitioning graph problem. The two mairf29] to implement this algorithm in Matlab. SDP-NAL
approaches to solve this combinatorial problem are eitheses the Newton-CG augmented Lagrangian method to
to use the linear programming relaxation by linearizing thefficiently solve SDP problems. It can solve large scale
product of two binary variables [16], or the semidefinitproblems (V up to a few thousand) in an hour on a PC
programming (SDP) relaxation suggested_in [18]. The SD#th an Intel Core i7 CPU. Even more efficient algorithms
relaxation has been proved to have exceptionally hidbr low-rank SDP have been suggested claiming that they
performance and achieves the approximation ratio of 0.828n solve problems with the size up f§=30000 in a
for the original maximum-cut problem. The SDP relaxatioreasonable amount of time [19]. Here we only use the SDP-
of (29) is: NAL for our experiments.

Sspp = tr{Q"Y L :
SDP = g {Q"y} 3.2 Approximation Analysis

N
S ¥, - PN

b=l In order to gain more insight into the quality of a measure
N function, it is essential to be able to directly examine it.
(SDF) ZYZ'O = (2P —-N) (26) However, since estimating the exact mutual information
=1 value in real data is not feasible, it is not possible to
diagY) =e directly evaluate the measure function. Its quality can
Y =0 only be indirectly examined through the final classification

performance (or other measurable criteria). However, the
where Y is an unknown(N + 1) x (N + 1) positive quality of a measure function is not the only contributor to
semidefinite matrix and {fY'} denotes its trace. Obviously,ihe classification rate. Since SSP is an NP-hard problem,
any feasible solutioy for (SSRis also feasible for its SDP he search strategy can only find a local optimal solution.
relaxation byY = yy”. Furthermore, it is not difficult to That is, besides the quality of a measure function, the
see that any rank one solution, rghk) = 1, of (SDP)is a jnaccuracy of the search strategy also contributes to the
solution of (SSP. final classification error. Thus, in order to draw a conclasio

The (SDPproblem can be solved within an additive errofoncerning the quality of a measure function, it is essentia
~ of the optimum by for example interior point methodd® have an insight about the accuracy of the search strategy

[7] whose computational complexity are polynomial in thé use. In this section, we compare the accuracy of the
size of the input andog(%). However, since its solution Proposed method with the traditional backward elimination
is not necessarily a rank one matrix, we need some maHaproach.
steps to obtain a feasible solution f8SP. The following A standard approach to investigate the accuracy of an
three steps summarize the approximation algorithm fgptimization algorithm is by analyzing how close it gets to
(SSPwhich in the following will be referred to as convexihe optimal solution. Unfortunately, feature selectiorais
based relaxation approximation (COBRA) algorithm.  Np-hard problem and thus achieving the optimal solution to
] use as reference is only feasible for small-sized problems.
COBRA Algorithm : In such cases, one wants a provable solution’s quality and
certain properties about the algorithm, such as its approxi
1) SDP: Solve(SDF)and obtainY 4. Repeat the fol- mation ratio. Given a maximization problem, an algorithm
lowing steps many times and output the best solutiofy called p-approximation algorithm if the approximate
2) Randomized rounding: Using the multivariate normajo|ytion is at leasp times the optimal value. That is, in our
distribution with a zero mean and a covariance matr'@asepgssp < Scopra, WhereScopra = D(Xcopra).
R = Y4, to sampleu from distribution V'(0, R) The factorp is usually referred to as the approximation ratio
and constructk = sign(u). SelectX = {X;|Z; = in the literature.
Zog- L .
3) Si;re adjusting: By using the greedy forward or backLhe approximation ratios of BE and COBRA can be found

ward algorithm, resize the cardinality & to P. by linking the SSP to the k-heaviest subgraph problem (k-
HSP) in graph theory. k-HSP is an instance of the max-

The randomized rounding step is a standard procedurecttt problem with a cardinality constraint on the selected
produce a binary solution from the real-valued solutiosubset, that is, to determine a subSebf k vertices such
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vauesof P [ N2 N/3 N/4 N/6 N/8 N/10 N/20

BE 0.4 0.25 0.16 0.10 0.071 0.055 0.026
COBRA 0.48 0.33 0.24 0.13 0.082 0.056 0.015

TABLE 1: Approximation ratios of BE and COBRA for differed¥/P values.

that the weight of the subgraph induced $ys maximized | SetP: P={Pi,..., P.}.
[40Q]. From the definition of k-HSP, it is clear that SSP with  for all P in P do

the criterion [[2D) is equivalent to thB-heaviest subgraph Run the COBRA algorithm and output the solu-
problem since it selects the heaviest subset of featurds wit tion X.

the cardinality P, where heaviness of a set is the score Derive the classifier error-rate by applying K-fold
assigned to it byD. cross-validation and save it fL(P).

end for
utput: P, = argmin CL(P)
P

An SDP based algorithm for k-HSP has been sugges eg
in [40] and its approximation ratio has been analyze}i.
Their results are directly applicable to COBRA since botf
algorithms use the same randomization method (step 2,
COBRA) and the randomization is the main ingredient
of their approximation analysis. The approximation ratio
of BE for k-HSP has been investigated in| [3]. It is a
deterministic analysis and their results are also valid féhe UCI machine learning archivie [14], except the NCI data
our case, i.e., using BE for maximizing. which can be found in the website of Peng etlal! [35]. These
datasets have been widely used in previous feature seiectio
Liudies [35], [10]. The goodness of each feature set is
) . valuated with five classifiers including Support Vector
have been listed in Tablg 1 (values are calculated from t chine (SVM), Random Forest (RF), Classification and

formulas n [3]).' As can be seen, &3 becqme_s Sma"e_r’_Regression Tree (CART), Neural Network (NN) and Linear
the approximation ratio approaches zero yielding theethV'Discriminant Analysis (LDA). To derive the classification

lower bound 0 on the approxw_nate_ SOIUtK_)n'. Howev_er_, fOa(ccuracies, 10-fold cross-validation is performed exéept
larger values ofP, the approximation ratio is nontrivial

. . the NCI, DBW and LNG datasets where leave-one-out
since it is bounded away from zero. For all cases shown

Foss-validation is used.
the table except the last one, COBRA gives better guarantee

bound than BE. Thus, we may conclude that COBRA i&s explained before, filter-based methods consist of two
more likely to achieve better approximate solution than BEomponents: A measure function and a search strategy.
In the followi . il . The measure functions we use for our experiments are
n he lofowing section, we witl Tocus on comparing 0Uy,pyvir and JMI defined in[{16) and_(15), respectively.

_seargh algorithm with sequential S(_earch methods_in Cots unambiguously refer to an algorithm, it is denoted by
junction with different measure functions and over diffare measure function + search method used in that algorithm,

classifiers and datasets. eg., MRMR+FS.

LE 3: EstimatingP by searching over an admissible set that
imizes the classification error-rate.

The approximation ratios of both algorithms for differen
values ofP, as a function ofV (total number of features),

A simple algorithm listed in Tablel 3 is employed to search
for the optimal value of the subset cardinali; where P

. , . . .. ranges over a sé of admissible values. In the worst case,
The evaluation of a feature selection algorithm is an |ntr|r]1p N}

sically difficult task since there is no direct way to evatat {1
the goodness of selection procesis general. Thus, usually Table[4 shows the results obtained for the 8 datasets and 5
a selection algorithm is scored based on the performancectdssifiers. Friedman test with the corresponding Wilcexon
its output, i.e., the selected feature subset, in some fapecdNemenyi post-hoc analysis was used to compare the differ-
classification (regression) system. This kind of evaluatient algorithms. However, looking at the classification sate
can be referred to as the goal-dependent evaluation. Hawen before running the Friedman tests on them reveals a
ever, this method obviously cannot evaluate the generalifaw interesting points which are marked in bold font.

tion power of the selection process on different indUCtiolgirst on the small size datasets (NCI, DBW and LNG)
algorithms. To evaluate the generalization strength ofm h}IR+COBRA consistently shows higher performancé

feature selection algorithm, we need a goal-mdepend?ﬂan other algorithms. The reason lies in the fact that the

evalu.atlon. Thus, for evaluation of the featurg SGIE}Ctlosr}milarity ratio of the feature sets selected by COBRA is
algorithms, we propose to compare the algorithms OVEI

. . . . . wer than BE or FS feature sets. Téienilarity ratio S; is
different datasets with multiple classifiers. This method .. . : .
leads to a more classifier-independent evaluation rocesseflned as the number of features in the intersectiontof

P P andi+1th feature sets divided by the cardinality of tih
Some properties of the eight datasets used in the expimature set. From its definition it is clear that for BE and

iments are listed in Tablel 2. All datasets are available &8 this ratio is always equal to 1. However, because of the

4 EXPERIMENTS
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Dataset Name Arrhythmia NCI DBWorld e-mails CNAE-9 Internet Adv. Madelo  Lung Cancer Dexter
Mnemonic ARR NCI DBW CNA IAD MAD LNG DEX

# Features 278 9703 4702 856 1558 500 56 20000
# Samples 370 60 64 1080 3279 2000 32 300
# Classes 2 9 2 9 2 2 3 2

TABLE 2: Datasets descriptions

Classifiers I SVM | LDA |  cArRT ] RF | NN | Average
NCI Dataset
mMRMR+COBRA (54) 81.7 (95) 78.3 (20) 45.0 (71) 88.3 (60) 75.0 73.67
MRMR+FS (32) 78.3 (11) 68.3 (2) 45.0 (12) 83.3 (99) 70.0 69.00
mRMR+BE (26) 76.6 (11) 68.3 (2) 45.0 (13) 85.0 (31) 71.7 69.33
JMI+COBRA (72) 85.0 (70) 75.0 (28) 45.0 (45) 90.0 (93) 75.0 74.00
IMI+FS (27) 75.0 (17) 68.3 (82) 45.0 (17) 86.6 (78) 70.0 69.00
JMI+BE (23) 76.6 (20) 76.6 (7) 33.3 (19) 86.6 (89) 76.6 70.00
DBW Dataset
mMRMR+COBRA (38) 96.9 (152) 92.2 (38) 86.0 (33) 92.2 (33) 98.4 93.12
MRMR+FS (31) 93.7 (4) 89.0 (4) 86.0 (7) 90.6 9) 92.2 90.31
mRMR+BE (110) 93.7 (6) 89.0 (4) 82.8 (29) 92.2 (9) 92.2 90.00
JMI+COBRA (35) 93.7 (14) 89.0 (8) 82.8 (24) 92.2 (108) 93.7 90.31
IMI+FS (23) 93.7 (6) 89.0 (5) 82.8 (34) 92.2 (96) 92.2 90.00
JMI+BE (24) 93.7 (6) 89.0 (5) 82.8 (23) 92.2 (149) 92.2 90.00
CNA Dataset
mMRMR+COBRA (200) 94.0 (183) 92.7 (63) 75.0 (183) 90.8 (187) 92.0 88.91
MRMR+FS (149) 90.6 (142) 90.4 (7) 70.2 (138) 87.7 (78) 85.5 84.88
mMRMR+BE (199) 94.0 (165) 92.5 (47) 75.0 (176) 90.8 (84) 92.2 88.90
JMI+COBRA (140) 92.6 (146) 92.2 (47) 75.0 (148) 90.4 (148) 91.4 88.30
IMI+FS (150) 92.7 (142) 92.1 (48) 75.3 (148) 90.7 (145) 91.3 88.40
JMI+BE (150) 92.7 (142) 92.1 (48) 75.0 (144) 90.4 (134) 91.2 88.30
IAD Dataset
mMRMR+COBRA (165) 96.5 (140) 96.1 (28) 96.4 (160) 97.2 (68) 97.1 96.64
MRMR+FS (109) 96.2 (127) 95.8 (127) 96.7 (25) 97.0 (52) 97.2 96.58
mRMR+BE (22) 96.3 (163) 95.9 (121) 96.1 (209) 97.2 (148) 97.4 96.58
JMI+COBRA (112) 96.3 (4) 96.3 9) 96.3 (57) 97.3 (140) 100 97.24
IMI+FS (9) 96.2 (4) 96.2 (52) 96.4 (7) 96.8 (7) 97.8 96.68
JMI+BE (4) 96.6 (17) 95.8 (79) 96.3 (13) 96.5 (10) 97.2 96.48
MAD Dataset
mMRMR+COBRA (12) 83.2 (13) 60.4 (26) 80.5 (12) 88.0 (11) 62.2 74.81
MRMR+FS (32) 55.3 (5) 555 (12) 58.2 (49) 57.3 (5) 52.7 55.82
mRMR+BE (14) 55.3 (11) 54.8 (31) 57.3 (26) 56.4 (115) 48.6 54.50
JMI+COBRA (13) 82.5 (12) 60.7 (40) 80.7 (13) 87.6 (4) 611 74.54
IMI+FS (13) 82.5 (12) 60.7 (58) 80.5 (13) 87.9 (19) 59.2 74.20
JMI+BE (13) 82.5 (12) 60.7 (58) 80.5 (13) 87.3 (20) 60.1 74.25
LNG Dataset
mMRMR+COBRA (23) 75.0 (28) 96.9 (23) 71.8 (28) 68.7 (27) 71.8 76.87
MRMR+FS (7) 81.2 (5) 68.7 (5) 71.8 (5) 75.0 (6) 71.8 73.75
mMRMR+BE (7) 81.2 (4) 68.7 4) 718 (4) 75.0 (4) 75.0 74.37
JMI+COBRA (7) 78.1 (6) 71.8 (5) 71.8 (5) 75.0 (5) 68.7 73.12
IMI+FS (7) 78.1 (4) 71.8 4) 71.8 (8) 78.1 (5) 68.7 73.75
JMI+BE (7) 78.1 (6) 71.8 (5) 71.8 (6) 78.1 (6) 71.8 74.37
ARR Dataset
mMRMR+COBRA (45) 81.9 (48) 76.3 (30) 75.4 (43) 82.2 (57) 72.9 77.75
MRMR+FS (34) 81.3 (43) 76.1 (7) 78.3 (34) 81.3 (5) 75.7 78.56
mRMR+BE (36) 81.6 (43) 76.3 (22) 78.0 (25) 82.9 (8) 76.1 79.02
JMI+COBRA (26) 80.6 (51) 74.7 (15) 78.3 (51) 81.5 (13) 71.9 77.41
IMI+FS (47) 74.3 (38) 73.5 (26) 76.9 (37) 79.2 (54) 70.0 74.80
JMI+BE (47) 74.3 (38) 73.5 (26) 76.9 (25) 80.0 (29) 68.6 74.66
DEX Dataset
mMRMR+COBRA (3) 92.0 (131) 86.3 (24) 80.7 (3) 93.0 (3) 81.3 86.66
MRMR+FS (3) 90.3 (56) 87.0 (94) 80.3 (3) 92.0 (3) 80.0 86.00
mRMR+BE (3) 90.0 (131) 87.3 (18) 80.3 (3) 91.6 (99) 78.6 85.53
JMI+COBRA (88) 91.6 (13) 83.0 (12) 80.3 (3) 94.0 (3) 81.0 86.00
IMI+FS (149) 91.0 (129) 87.6 (95) 80.3 (119) 92.3 (94) 80.6 86.40
JMI+BE (149) 90.0 (128) 87.3 (22) 81.0 (146) 92.0 (138) 78.0 85.60

TABLE 4: Comparison of COBRA with the greedy search methods different datasets. For each classifier and combinatisearch
method and measure function, the values in parentheses isuthber of selected features and the second value is trsficiation
accuracy. The last column reports the average of the clestsifh accuracies for each algorithm.
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Datasets | NCI DBW IAD CNA SVM LDA

Srato || 07717 0.8929 0.9266 0.9976 ] i m

4

TABLE 5: The average (over 50 similarity ratios) similaritstio
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< Fig. 3: Comparing the search strategies for MRMR. Resultkeof
post-hoc tests for each classifier.
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Fig. 2: Comparing the search strategies for mMRMR measute wifVilcoxon-Nemenyi post-hoc analysis, as suggested ih [23],

the F_neﬂmaT tes_ft_ and its CO”GSPOEF]{;V‘Q post-ho(;: a”?d“{;?s'y' on the average accuracies (the last column of Table 4).

axis Is the classification accuracy ailrerence and x-a mes . :

the names of the compared algorithms. Note that since we have 8 datasets, the_re are 8 independent
measurements available for each algorithm. The results of
this test for mRMR based algorithms have been depicted in

o . . . Figurel2. In all box plots, CO stands for COBRA algorithm.
randomization step this ratio may widely vary for COBRAEach box plot compares a pair of the algorithms. The green

That is, COBRA generates quite diverse feature sets. So plots represent the existence of a significant diffeeenc

of these feature sets have relati\{ely low scores as compaged oo the corresponding algorithms. The adjusted p-

W'th BE or FS setfs. Howeyer, since for small dgtasets N&iues for each pair of algorithms have also been reported in

estimated mutual information terms are highly maccuratgigurem' The smaller the p-value, the stronger the evidence

features that rank low with our noisy measure functiog ainst the null hypothesis As, can be seen COBRA
e ' |

may in fact be better for classification. The average of ows meaningful superiority over both greedy algorithms.

similarity ratios of 50 subsequent feature sefsX_;”; S;) H : o e
) i=5 " owever, if we set the significance level at= 0.05,
have been reported for 4 datasets in Table 5. As seen, I) g 2

S N 91rly FS rejects the null hypothesis and shows a meaningful

NCI the averaged similarity ratio is significantly Sma"eﬁiﬁerence with COBRA

than 1 while for CNA which is a relatively larger dataset, '

it is almost constant and equal to 1. The same test was run for each classifier and its results
. . S can be found in Figurél3. While three of the classifiers

The second interesting point is with respect to the Madg ow some differences between FS and COBRA. neither

lon d_ataset. As can be seen, 'T”R'V'R with greedy Sear8?'them reveal any meaningful difference between BE and

algorithms perform poorly on this dataset. Several aUtho&)BRA. At this point, the least we can conclude is that

have already utilized this dataset to compare their pmpo%ﬁdependent of the classification algorithm we choose, it is

criterion with mRMR and_ arrived at the conclusion tha] good chance that FS performs worse than COBRA.
MmRMR cannot handle highly correlated features, as In

Madelon dataset. However, surprisingly the performan&®r JMI, however, the performances of all algorithms are
of the mMRMR+COBRA is as good as JMI on this datasg¢omparable and with only 8 datasets it is difficult to draw
meaning that it is not the criterion but the search meth@iy conclusion. Thus, the Wilcoxon-Nemenyi test results
that has difficulty to deal with highly correlated featuresfor JMI is not shown here because of the lack of space.

Thus, any conclusion with respect to the quality of f{lﬂ the next experiment COBRA is compared with two

measure has to be drawn carefully since, as in this case, e . .
othier convex programming based feature selection algo-

effect of the non optimum search method can be deC|S|vrt|atth, SOSSI[32] and QPFS [39]. Both SOSS and QPFS

To discover the statistically meaningful differences betw employ quadratic programing techniques to maximize a
the algorithms, we applied the Friedman test following witecore function. SOSS, however, uses an instance of ran-
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Datasets | MAD NCI IAD ARR CNA

MRMR+COBRA 74.81+0.65 73.6H2.41 96.64+ 0.16 77.75:1.03 88.9H0.31
MRMR+QPFS 71.44+0.57 71.00£1.84 95.02+ 0.21 78.73+0.84 86.93+ 0.45
mMRMR+SOSS 71.36+0.53 72.65+2.13 96.64+ 0.28 79.86+1.18 85.43+0.49
Time COBRA 175424 368+ 341 540+ 121 6+ 14 120+ 50
Time QPFS 11 180 202 1 25
Time SOSS 17545 3684 27 540412 6+4 120+7

TABLE 6: Comparison of COBRA with QPFS and SOSS over 5 dasag®terage classification rates and their standard deumtio
are reported in the top three rows of the table. In the nexetliows, the computational times in second are shown wherértt
value for COBRA and SOSS is for calculating the mutual infation matrix and the second value is the time needed to shkve t
optimization problems.

domized rounding to generate the set-membership binamyd IAD datasets, a significant accuracy reduction can be
values while QPFS ranks the features based on their scoobserved in the case of ARR data which has substantially
(achieved from solving the convex problem) and thereforkess training data than CNA and IAD. It suggests that
sidesteps the difficulties of generating binary values.eNotor small size datasets, a feature selection scheme should
that both COBRA and SOSS first need to calculate the miake the induction algorithm into account since the leagnin
tual information matrixQ. Once it is calculated, they canalgorithm is sensitive to small changes of the feature set.
solve their corresponding convex optimization problenms fo

different values ofP. The first 3 rows of TablEI6 report the Classifiers | svm  cART  RF NN
average (over 5 classifiers) classification accuraciesasith LDA feat. 78.4 737 77.1 68.00
: ot ARR ot 81.9 754 822 729
three algorithms and the standard deviation of these mean pumum : : : :
LDA feat. 92.6 75.0 90.5 91.1

a;]ccurame?1 (calculated]c ot:/er tr[;(le crﬁss—vahdanon folltts_). CNA Optimum 940 750 90.8 90
the next three rows of the table, the computationa t|mt-:,IAD DA Toat 58 560 572 563
of each algorithm for a single run (in second) are shown, Optimum 96.5 96.4 97.2 97.1

|.e_., the amount of time needed to §elect a feature set w. RBLE 7: The performance of the classification algorithmsewh
(given) P features. The reported times for COBRA an@gjned with COBRA features optimized for the LDA classifier

SOSS consist of two values. The first value is the tinnis table shows the generalization power of the COBRA festu
needed to calculate the mutual information maf}xand on the classifiers.

the second value is the amount of time needed to solve the
corresponding convex optimization problem. All the value
were measured on a PC with an Intel Core i7 CPU. As seen,
QPFS is significantly faster than COBRA and SOSS. Thg

computational superior_it_y, h_owever, seems to come at t 6n, COBRA, was suggested in this work. Its approxima-
expﬁ nseIXfDIova:?\lr Af: Iasglf’{/(lzzgorlhac?\luratcy. For Iargg da:_as%n ratio was derived and compared with the approximation
such as ¥ an » (NE TySrom approxima Ior}a]teio of the backward elimination method. It was experi-

used in QPFS to cast the problem into a lower dimensior‘m ntally shown that COBRA outperforms sequential search

squpac?t d_oels not 31|eld.ffa p;reuse en0u.gh aApp_rOX|(r1n?tmgthodS especially in the case of sparse data. Moreover, we
and resuits In lower classitication accuracies. An Impartaesenteq two series expansions for mutual information,

re”rrtlﬁrk to mt_erpre: thesef_re?ufl_fts IS (tjhat,tf?r: NfCI flataset_ nd showed that most mutual information based score
all the experiments) we first filtered out the features wi nctions in the literature including MRMR and MIFS are

the low mutual _mformat_lon values W't.h the class label a uncated approximations of these expansions. Furthemor
only kept 2000 informative features (similarly for DEX an he underlying connection between MIFS and the Kirwood

DBW datasets). Thus, the dimension is 2000 and not 97 Bproximation was explored, and it was shown that by

as mentioned in Tabfd 2. adopting the class conditional independence assumption
The generalization power of the COBRA algorithm oveand the Kirkwood approximation foPr(X), mutual in-
different classifiers is another important issue to test. Agrmation reduces to the MIFS criterion.

can be observed in Tallé 4, the number of selected features

varies quite markedly from one classifier to another. How-

ever, based on our experiments, the optimum feature setf ACKNOWLEDGMENTS

any of the cla55|f|ers, usually (for. Iarge_ enoggh Qatasetﬁ)]is work has partly been supported by Swiss National
achieves a near-optimal accuracy in conjunction with othgrCience Foundation (SNSF)

classifiers as well. This is shown in Table 7 for 4 classifiers '
and 3 datasets. The COBRA features of the LDA classifier

in Table[4 is used here to train other classifiers. Table § ISk EFERENCES
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