arXiv:1408.5574v2 [cs.LG] 8 Feb 2015

APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015

Supervised Hashing Using Graph Cuts and
Boosted Decision Trees

Guosheng Lin, Chunhua Shen, Anton van den Hengel

Abstract—To build large-scale query-by-example image retrieval systems, embedding image features into a binary Hamming space
provides great benefits. Supervised hashing aims to map the original features to compact binary codes that are able to preserve label
based similarity in the binary Hamming space. Most existing approaches apply a single form of hash function, and an optimization
process which is typically deeply coupled to this specific form. This tight coupling restricts the flexibility of those methods, and can
result in complex optimization problems that are difficult to solve. In this work we proffer a flexible yet simple framework that is able to
accommodate different types of loss functions and hash functions. The proposed framework allows a number of existing approaches to
hashing to be placed in context, and simplifies the development of new problem-specific hashing methods. Our framework decomposes
the hashing learning problem into two steps: binary code (hash bit) learning and hash function learning. The first step can typically
be formulated as binary quadratic problems, and the second step can be accomplished by training a standard binary classifier. For
solving large-scale binary code inference, we show how it is possible to ensure that the binary quadratic problems are submodular
such that efficient graph cut methods may be used. To achieve efficiency as well as efficacy on large-scale high-dimensional data, we
propose to use boosted decision trees as the hash functions, which are nonlinear, highly descriptive, and are very fast to train and
evaluate. Experiments demonstrate that the proposed method significantly outperforms most state-of-the-art methods, especially on

high-dimensional data.

Index Terms—Hashing, Binary Codes, Graph Cuts, Decision Trees, Nearest Neighbour Search, Image Retrieval.

1 INTRODUCTION

An explosion in the size of the datasets has been wit-
nessed in the past a few years. It becomes more and
more demanding to cope with image datasets with tens
of millions of images, in terms of both efficient storage
and processing. Hashing methods construct a set of hash
functions that map the original features into compact bi-
nary codes. Hashing enables fast nearest neighbor search
by using look-up tables or Hamming distance based
ranking. Moreover, compact binary codes are extremely
efficient for large-scale data storage. Example applica-
tions include image retrieval ([1], [2]), image matching
[3], object detection [4], etc.

Loss functions for learning-based hashing are typi-
cally defined on the basis of the Hamming distance or
Hamming affinity of similar and dissimilar data pairs.
Hamming affinity is calculated by the inner product of
two binary codes (a binary code takes a value from
{—1,1}). Existing methods thus tend to optimize a single
form of hash function. The common forms of hash func-
tions are linear perceptron functions (e.g., Minimal Loss
Hashing (MLH) [5], Semi-supervised Hashing (SPLH)
[2], Iterative Quantization (ITQ) [6], Locality-Sensitive
Hashing (LSH) [7]), kernel functions (Supervised Hash-
ing with Kernels (KSH) [8]), eigenfunctions (Spectral

o Authors are with the School of Computer Science, The University of
Adelaide, Australia; and Australian Research Council Centre of Excellence
for Robotic Vision;

Corresponding author: Chunhua Shen (chunhua.shen@adelaide.edu.au);
(c) IEEE 2015. Appearing in IEEE Trans. Pattern Analysis and Machine
Intelligence. Content may change prior to final publication.

Hashing (SPH) [9], Multidimensional Spectral Hashing
(MDSH) [10]). The optimization procedure is then cou-
pled with the selected family of hash functions. Different
types of hash functions offer a trade-off between testing
time and fitting capacity. For example, compared with
kernel functions, the simple linear perceptron function is
usually much more efficient for evaluation but can have
a relatively low accuracy for nearest neighbor search.
This coupling often results in a highly non-convex op-
timization problem which can be very challenging to
optimize. As an example, the loss functions in MDSH,
KSH and Binary Reconstructive Embeddings (BRE) [11]
all take a similar form that aims to minimize the differ-
ence between the Hamming affinity (or distance) of data
pairs and the ground truth. However, the optimization
procedures used are coupled with the form of hash
functions (eigenfunctions, kernel functions) and thus
different optimization techniques are needed for each.
Our framework, however, is able to accommodate any
loss function defined on the Hamming distance/affinity
of data pairs, such as the loss functions used in KSH, BRE
or MLH. We decompose the learning into two steps: the
binary codes inference step and the hash function learn-
ing step. We can formulate the optimization problem
of any Hamming distance/affinity based loss as binary
quadratic problems, hence different types of loss func-
tions are unified into the same optimization problem,
which significantly simplifies the optimization. With this
decomposition the hash function learning becomes a
binary classification problem, hence we can learn various
types of hash function, like perceptrons, kernel and
decision tree hash functions, by simply training binary

APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015 2

classifiers.

Many supervised hashing approaches require complex
optimization for directly learning hash functions, and
hence may only be tractable for small scale training data.
In our approach, we propose an efficient graph cut based
block search algorithm for solving the large-scale binary
code inference problem, thus our method can be easily
trained on large-scale datasets.

Recent advances in the feature learning ([12], [13])
show that high-dimensional features are essential for
achieving good performance. For example, the dimen-
sion of codebook based features is usually in the tens
of thousands. Many existing hashing methods become
impractically slow when trained on large scale high-
dimensional features. Non-linear hash functions, e.g., the
kernel hash function employed in KSH, have shown
much improved performance over the linear hash func-
tion. However, kernel functions can be extremely expen-
sive to evaluate for both training and testing on high-
dimensional features. Here we propose to learn decision
trees as hash functions for non-linear mapping. Decision
trees only involve simple comparison operations, thus
they are very efficient to evaluate. Moreover, decision
trees are able to work on quantized data without signif-
icant performance loss, and hence only consume a small
amount of memory for training.

The main contributions of this work are as follows.

o We propose a flexible and efficient hashing frame-
work which is able to incorporate various kinds of
loss functions and hash functions.

We decompose the learning procedure into two
steps: binary code inference, and hash function
learning. This decomposition simplifies the hash
function learning problem into a standard binary
classification problem. An arbitrary classifier, such
as linear or kernel Support Vector Machines (SVM),
boosting, or neural networks, may thus be adopted
to learn the hash functions.

We are able to incorporate various types of loss
function in a unified manner. We show that any
type of loss function (e.g., the loss functions in KSH,
BRE, MLH) defined on Hamming affinity or Ham-
ming distance, can be equivalently converted into
a standard quadratic function, thus we can solve a
standard binary quadratic problem for binary code
inference.

 For binary code inference, we propose sub-modular
formulations and an efficient graph cut [14] based
block search method for solving large-scale binary
code inference.

o We propose to use (ensembles of) decision trees
as hash functions for supervised hashing, which
can easily deal with a very large number of high-
dimensional training data and has the desired non-
linear mapping.

o Our method significantly outperforms many exist-
ing methods in terms of retrieval accuracy. For high-
dimensional data, our method is also orders of

magnitude faster for training.

We made the code available at https://bitbucket.org/
chhshen/fasthash/|

1.1 Related work

Hashing methods aim to preserve some notion of simi-
larity (or distance) in the Hamming space. These meth-
ods can be roughly categorized as being either super-
vised or unsupervised. Unsupervised hashing methods
(IZ1, [©], [x0N, 161, [15], [16l, [17], [18]) try to preserve the
similarity which is often calculated in the original feature
space. For example, LSH [7] generates random linear
hash functions to approximate cosine similarity; SPH
([0, [10]) learns eigenfunctions that preserve Gaussian
affinity; ITQ [6] approximates the Euclidean distance in
the Hamming space. Supervised hashing is designed to
preserve the label-based similarity ([19], [11], [5], [20],
[2], 18], [21], [22]). This might take place, for example,
in the case where images from the same category are
defined as being semantically similar to each other.
Supervised hashing has received increasing attention
recently (e.g., KSH [8], BRE [11I]]). Our method targets
supervised hashing. Preliminary results of our work
appeared in [23] and [24].

Various optimization techniques are proposed in exist-
ing methods. For example, random projection is used in
LSH and Kernelized Locality-Sensitive Hashing (KLSH)
[25]; spectral graph analysis for exploring the data man-
ifold is used in SPH [9], MDSH [10], STH [26], Hashing
with Graphs (AGH) [16], and inductive hashing [18];
vector quantization is used in ITQ [6], and K-means
Hashing [15]; kernel methods are used in KSH [8] and
KLSH [25]. MLH [5] optimizes a hinge-like loss. The
optimization techniques in most existing work are tightly
coupled with their loss functions and hash functions.
In contrast, our method breaks this coupling and easily
incorporates various types of loss function and hash
function.

A number of existing hash methods have explicitly or
implicitly employed two-step optimization based strate-
gies for hash function learning, like Self-Taught Hashing
(STH) [26], MLH [5], Hamming distance metric learning
[27], ITQ [6] and angular quantization based binary code
learning [28]. However, in these existing methods, the
optimization techniques for binary inference and hash
function learning are deeply coupled to their specific
form of loss function and hash functions, and none of
them is as general as our learning framework.

STH [26] explicitly employs a two-step learning
scheme for optimizing the Laplacian affinity loss. The
Laplacian affinity loss in STH only tries to pull together
similar data pairs but does not push away dissimilar
data pairs, which may lead to inferior performance [29].
Moreover, STH employs a spectral method for binary
code inference, which usually leads to inferior binary
solutions due to its loose relaxation. Moreover, the spec-
tral method does not scale well on large training data.

https://bitbucket.org/chhshen/fasthash/
https://bitbucket.org/chhshen/fasthash/

APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015 3

In contrast, we are able to incorporate any hamming
distance or affinity based loss function, and propose an
efficient graph cut based method for large scale binary
code inference.

MLH [5] learns hash functions by optimizing a
convex-concave upper-bound of a hinge loss function
(or BRE loss function). They need to solve a binary code
inference problem during optimization, for which they
propose a so-called loss-adjusted inference algorithm. A
similar technique is also applied in [27]. The training of
ITQ [6] also involves a two-step optimization strategy.
ITQ iteratively generates the binary code and learns a
rotation matrix by minimizing the quantization error
against the binary code. They generate the binary code
simply by thresholding.

The problem of similarity search on high-dimensional
data is also addressed in [30]. Their method extends
vocabulary tree based search methods ([31], [32]) by
replacing vocabulary trees with boosted trees. This type
of search method represents the image as the evidence
of a large number of visual words, which are vectors
with thousands or even millions dimensions. Then this
visual word representation is fed into an inverted index
based search algorithm to output the final retrieval re-
sult. Clearly hashing methods are different from these
inverted index based search methods. Our method is in
the vein of supervised hashing methods: mapping data
points into binary codes so that the hamming distance
on binary codes reflects the label based similarity.

2 FLEXIBLE TWO-STEP HASHING

Let X = {z1,..,z,} C RY denote a set of training
points. Label based similarity information is described
by an affinity matrix: Y, which is the ground truth
for supervised learning. The element in Y: y;; indicates
the similarity between two data points «; and x;; and
Yij = yji- Specifically, y;; = 1 if two data points are
similar (relevant), y;; = —1 if dissimilar (irrelevant) and
yi; = 0 if the pairwise relation is undefined. We aim to
learn a set of hash functions which preserve the label
based similarity in the Hamming space. A hash function
is denoted by h(-) with binary output: h(z) € {—1,1}.
The output of m hash functions is denoted by ®(x):

®(x) = [hi(x), ha(T), - .., hm ()], 1)

which is a m-bit binary vector: ®(x) € {—1,1}™.

The loss function in hashing learning for preserving
pairwise similarity relations is typically defined in terms
of the Hamming distance or Hamming affinity of data
pairs. The Hamming distance between two binary codes
is the number of bits taking different values:

m

Zé(hr(wi) # he(x;))).)

r=1

du (i, z;) =

Here §(-) € {0,1} is an indicator function which outputs
1 if the input is true and 0 otherwise. Generally, the

formulation of hashing learning encourages small Ham-
ming distances for similar data pairs and large distances
for dissimilar data pairs. Closely related to Hamming
distance, the Hamming affinity is calculated by the inner
product of two binary codes:

m

=" he(xi)he (). ©)

r=1

su(zi, ;)

As shown in [§], the Hamming affinity is in one-to-one
correspondence with the Hamming distance. We solve
the following optimization for hash function learning:

manZ(Syw;éO D(x;), d(x

7.1]1

j);yij)- 4)

Here 6(y;; # 0) € {0,1} indicates whether the relation
between two data points is defined, and L(-) is a loss
function that measures how well the binary codes match
the similarity ground truth y;;. Various types of loss
functions L(-) have been proposed, and will be discussed
in detail in the next section. Most existing methods try
to directly optimize the objective function in () in order
to learn the parameters of hash functions ([8], [5], [11],
[10]). This inevitably means that the optimization process
is tightly coupled to the form of hash functions used,
which makes it non-trivial to extend a method to use
other types of hash functions. Moreover, this coupling
usually results in challenging optimization problems.

As an example, the KSH loss function, which is de-
fined on Hamming affinity, is written as follows:

2
Lxsn = ZZ(S Yij 7é 0 |:myzj Zh ()hr(xj)] .
=1 j=1 r=1
®)

We use 6(y;; # 0) to prevent undefined pairwise rela-
tions from having an impact on the training objective.
Intuitively, this optimization encourages the Hamming
affinity value of a data pair to be close to the ground
truth value. The form of hash function in KSH is the
kernel function:

) = sign lqu a; ,x)+b

in which X' = {z},...,z;} are Q support vectors;
KSH directly solve the optlmlzatlons in (B) for learning
the hash functions. If we prefer other forms of hash
functions, the optimization of KSH would not be ap-
plicable. For example if using the decision-tree hash
function which is more suitable for high-dimensional
data, it is not clear how to learn decision trees by directly
optimizing (5). Moreover, KSH uses a set of predefined
support vectors which are randomly sampled from the
training set, and it does not have a sparse solution of the
weighting parameters. Hence this unsophisticated kernel
method would be impracticable for large-scale training
and computationally expensive for evaluation.

(6)

APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015 4

Here we develop a general and flexible two-step learn-
ing framework, which is readily to incorporate various
forms of loss functions and hash functions. Basically,
partly inspired by STH [26], we decompose the learning
procedure into two steps: the first step for binary code
inference and the second step for hash function learning.
We introduce auxiliary variables z,; € {—1,1} as the
output of the r-th hash function on z;:

Zrg = hr(xz))
Clearly, z,; represents the r-th bit of the binary code
of the i-th data point. With these auxiliary variables,
the problem in can be decomposed into two sub-
problems:

mzinz;Z;5(yij # O)L(Zi7zj;yij)7 (8a)
=1)=
st. Ze{-1,1}m™"™ (8b)
and,
mi] Zrg = hr Zi)). 9
in DIPIIER (i) ©)

r=11i=1

Here Z is the matrix of m-bit binary codes for all n
training data points; z; is the binary code vector corre-
sponding to i-th data point. 6(-) is an indicator function.
In this way, the hashing learning in now becomes
two relatively simpler tasks—solving (8) (Step 1) and (9)
(Step 2). Clearly, Step 1 is to solve for binary codes, and
Step 2 is to solve simple binary classification problems.

We sequentially solve for one bit at a time conditioning
on previous bits. Hence we solve these two steps al-
ternatively, rather than completely separating these two
steps. After solving for one bit, the binary codes are
updated by applying the learned hash function. Hence
the learned hash function is able to influence the binary
code inference for the next bit. This bit-wise optimization
strategy helps to simplify the optimization, and the error
of one learned hash function can be propagated and
compensated for when learning the next bit.

In the following sections, we describe how to solve
these two steps for one bit. In Sec. 3} we show that
any hamming distance or affinity based loss function
can be equivalently reformulated as a binary quadratic
problem. For binary code inference, we propose a graph
cut based block search method for efficiently solving the
binary code inference (Sec.[3.2). Later we discuss training
different types of hash functions in Sec. 4] Especially we
introduce the decision tree hash functions which provide
the desirable non-linear mapping and are highly efficient
for evaluation (Sec. £.1I). With the proposed efficient
binary code inference algorithm, our method is not only
flexible, but also capable of large-scale training. We refer
to our method as FastHash. The algorithm is shown in
Algorithm

Algorithm 1: FastHash (flexible two-step hashing)
Input: training data points: {1, ..., }; affinity
matrix: Y; bit length: m.
Output: hash functions: ® = [hy, ..., hy,].
1 Initialization: construct blocks:{B1, Bo, ...} for Block
GraphCut, Algorithm [2| shows an example;
2 for r=1,....,m do
3 Step-1: call Algorithm [3|to solve the binary code
inference in (13a)), obtain binary codes of the
r-th bit;
4 Step-2: solve binary classification in to
obtain one hash function &, (e.g., solve linear
SVM in or boosted tree learning in (39)) ;
5 Update the binary codes of the r-th bit by
applying the learned hash function h,;

Algorithm 2: An example for constructing blocks

Input: training data points: {1, ..., }; affinity
matrix: Y.

Output: blocks:{B1, Bo, ...}.

Ve {xy,...,xn}; t =0;

repeat

t=t+1; B, < 0;

Randomly selected z; from V;

Initialize U as the joint set of V and similar

examples of x; ;

for each x; in U do

7 if x; is not dissimilar with any examples in B,

then

L add z; to By ;

remove x; from V ;

gl s W N =

=2

10 until V = 0;

3 STEP 1: BINARY CODE INFERENCE

When solving for the r-th bit, the binary codes of the
previous (r — 1) bits are fixed, and the bit length m is
set to r. The binary code inference problem is:

n n

> (g # OV (20 255 Yig)-

i=1 j=1

min (10)
z(mE{—1,1}"

Here z(,) is the n-dimensional binary code vector we
seek. It represents the binary hash codes of the n training
data points for the r-th bit. z,; is the binary code of the
i-th data point and the r-th bit. [, represents the loss
function output for the r-th bit, conditioning on previous
bits:

. L =1 _(r=1)
U (zris 2053 Yig) = Lzr, 2rj3 2, 25

Here zgr_l) is the binary code vector of the i-th data
point in all previous (r — 1) bits.

Based on the following proposition, we are able to
rewrite the binary code inference problem with any

yij)- (11)

APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015 5

Algorithm 3: Step-1: Block GraphCut for binary code
inference

Input: affinity matrix: Y; bit length: r;
blocks:{B1, Bs, ...}; binary codes:
{Zl, ceey ZTfl}.
Output: binary codes of one bit: z,.
1 repeat
2 Randomly permute all blocks;
3 for each B; do
4 Solve the inference in (27a) on B; using
L graph cuts;

5 until max iteration is reached;

Hamming affinity (or distance) based loss function L(-)
into a standard quadratic problem.

Proposition 1: For any loss function I(z1,22) that is
defined on a pair of binary input variables 2,22 €
{-1,1} and I(1,1) = I(—1,-1), I(1,-1) = I(-1,1), we
can define a quadratic function g(z1, 22) that is equal to
I(#1,22). We have following equations:

1
U(a1,22) = 5 2125111 = 1710) 4400 g1 |,

1
= §z1z2(l(11) — l(fll)) -+ const.

= g(z1, 22). (12)
Here {11 [(=11) are constants, !V is the loss output on
identical input pair: 1Y) = [(1,1), and (=Y is the loss
output on distinct input pair: (=11 = (1, 1).

Proof: This proposition can be easily proved by
exhaustively checking all possible inputs of the loss
function. Notice that there are only two possible output
values of the loss function. For the input (z; = 1,22 = 1):

1
g(1.1) =5 [1 x 1x (1) — =10y 4y 4 l(‘“)]

=1(1,1),

For the input (z; = —1,2, = 1):

1
g(-1,1) = 2{_ 1x1x (41 — =1y 40y +l(—“)}

=1(-1,1),

The input (21 = —1,22 = —1) is the same as (z; = 1,23 =
1) and the input (z; = 1,22 = —1) is the same as (z; =
—1,2z9 = 1). In conclusion, the function I(-,-) and g(-,-)
have the same output for any possible inputs. O

Any hash loss function [(-,-) which is defined on
the Hamming affinity or Hamming distance of data
pairs is able to meet the requirement that: I(1,1) =
I(-1,-1),i(1,-1) = I(—1,1). Applying this proposition,
the optimization of can be equivalently reformulated

as:
min Qi Zri%rj, 13a
L ;g J5ni%ng (13a)
where, a;; = 0(y;; # 0) (11 — 1)), (13b)
11 —11
li,i,} =1-(1, 15 yi5), l7(~77;,j D=1 (-1, L), (130)

Here a; ; is constant. The above optimization is an un-
constrained binary quadratic problem. It can be written
in a matrix form:

min Z(AZ (), (14a)
stz € {—1,1}" (14b)

Here the (7, j)-th element of matrix A is defined by a; ;
in (I3b). We have shown that the original optimization
in for one bit can be equivalently reformulated as
a binary quadratic problem (BQP) in (13a). We discuss
algorithms for solving this BQP in the next section.

Here we describe a selection of such loss functions,
most of which arise from recent hashing methods. These
loss functions are defined on Hamming distance/affinity,
thus they are applicable to Proposition (I} Recall that m
is the number of bits, dy(-,-) is the Hamming distance
and 6(-) € {0,1} is an indicator function.

FastH-KSH The KSH loss function is based on Ham-
ming affinity. MDSH also uses a similar form of loss

function (weighted Hamming affinity instead).
Lysn(zi, 2;) = (myij — 2, 2;)°. (15)

FastH-Hinge The Hinge loss function is based on
Hamming distance:

Ltinge(zi, zj) = [0 — du(zi, 25))? if yi; > 0,
Hineet=H =10 [max(0.5m — du (24, 25),0)]2 if y;; < 0,
(16)

FastH-BRE The BRE loss function is based on Ham-
ming distance:

LBRE(zi7 Zj) = [mé(y” < 0) — dH(zi7 Zj)]Q. (17)

FastH-ExpH Here ExpH is an exponential loss func-
tion using the Hamming distance:

Lixpn(zi, 2j) = exp [yijdu(zi, zj) /m + 6(y;; < 0)]. (18)

These loss functions are evaluated in the experiment
section later. It is worth noting that the Hinge loss
encourages the Hamming distance of dissimilar pairs
to be at least more than half of the bit length. This
is plausible because the Hamming distance of dissim-
ilar pairs is only required to be large enough, but not
necessarily be the maximum value. In contrast, other
regression-like loss functions (e.g., KSH, BRE) push the
distance of dissimilar pairs to the maximum value (the
bit length), which may introduce unnecessary penalties.
As empirically verified in our experiments, the Hinge
loss usually performs better.

APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015 6

One motivation of KSH in [8] for using the Hamming
affinity based loss function rather than the Hamming
distance is that they can apply efficient optimization
algorithms. However, here we show that both Hamming
affinity and Hamming distance based loss functions can
be easily solved in our general two-step framework
using identical optimization techniques.

To apply the result of Proposition [1] in (13a), we
take the KSH loss function as an example. Recall that
Lo (25 2r 53 yiy) In (L0) is the loss function output for the
r-th bit and data pair (i, j). Using the KSH loss in (15),
we have:
zgr_l)Tz;T_l) — zniz,«’j)? (19)

U (2ryis 23 Yig) = (ryig —

Recall that I('Y) is the loss output on identical input pairs,
and I~V is the loss output on distinct input palrs. With

the above equation, we can write lfnlzlz and 17(21]1 in (13¢)
for the KSH loss as:
- (ryij - zﬁ’"*mzy*) —1)% (20a)
—11
1 = (-1, 1)
= (Tylj — Zgril)ng-Til) + 1)2 (20b)

Finally, the matrix element q; ; in the BQP problem (13a)
is written as:

KSH an) (—11)
(y 7& 0)(lr i“j lr N) (218)
=d(yij # 0) (ryyy — 2~ =27V —1)?
—(rys; — 20TV 112 (21b)
= —48(yi; # 0)(rys; — 20 VT2 (210

By substituting into (13a) and removing constant multi-
pliers, we obtain the binary code inference problem for
the r-th bit using the KSH loss function:

: i 22a
where, a; ; = —(yi; # 0)(ryi; — ZZ; i%p.j) (22b)

Here z* denotes the binary code in previous bits.

3.1 Spectral method for binary inference

To solve the BQP problem in for obtaining bi-
nary codes, we first describe a simple spectral relax-
ation based method, then present an efficient graph
cut based method for large-scale inference. Spectral re-
laxation drops the binary constraints. The optimization
becomes:
T
min ={ A%

(23)

st [lzml3 =n

The solution (denoted z(()r)) of the above optimization is
simply the eigenvector that corresponds to the minimum

eigenvalue of the matrix A. To achieve a better solution,
we can solve the following relaxed problem of (14a):

Izll(lr)lz(7)AZ()

stz = [—1, 1]”. (24)
We use the solution 2!, of spectral relaxation in (3)
as an initialization and solve the above problem using
the efficient LBFGS-B solver [33]. The solution is then
thresholded at 0 to output the final binary codes.

3.2 Block GraphCut for binary code inference

We have shown that the simple spectral method can be
used to solve the binary code inference problem in (14a).
However solving eigenvalue problems does not scale up
to large training sets, and the loose relaxation leads to
inferior results. Here we propose sub-modular formu-
lations and an efficient graph cut based block search
method for solving large-scale inference problems. This
block search method is much more efficient than the
spectral method and able to achieve better solutions.

Specifically, we first group data points into a number
of blocks, then iteratively optimize for these blocks until
converge. At each iteration, we randomly pick one block,
then optimize for (update) the corresponding binary
variables of this block, conditioning on the remaining
variables. In other words, when optimizing for one
block, only those binary variables that correspond to
the data points of the target block will be updated;
and for the variables that are not involved in the target
block, their values remain unchanged. Clearly each block
update would strictly decrease the objective.

Formally, let B denote a block of data points. We want
to optimize for the corresponding binary variables of the
block B. We denote by %, a binary code in the r-bit that
is not involved in the target block. First we rewrite the
objective in to separate the variables of the target
block from other variables. The objective in (13a) can be
rewritten as:

n n
E :E :ai,jz"'»izTJ

(25a)
i=1 j=1
:E E i jZr,i%r; + E E Qi,jZr,i%r,j
i€B jeB i€B j¢B
YN aigzide Y aijieit; (25b)
i¢BjEB i¢B j¢B
=)D iz +2)) @izt
i€B jEB i€B j¢B
+ E E aiyji,«,,»é,.J. (25C)
igB j¢B

When optimizing for one block, those variables which
are not involved in the target block are treated as con-
stants; hence 2, is treated as a constant. By removing the

APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015 7

constant part, the optimization for one block is:

E § ai,jzr,izr,j+2§ E i, Zr,i%r,5 -

i€EB jeB i€B j¢B
(26)

We aim to optimize z, s which is a vector of variables
that are involved in the target block B. Substituting
the constant a;; by its definition in (I3b), the above
optimization is written as:

min
z, 5 €{—1,1}BI

min Z WiZr i +ZZUUZT P27, (278)

zhge{fl,l}VB\ ieB jen
where, Vij = 5(yij ?é 0)(911; - lizlgl)) (27b)
=23 20y # 0L — 155 @70)

Jj¢B

Here u;, v;; are constants. The key to constructing a block
is to ensure for such a block is sub-modular, thus
we are able to apply the efficient graph cut method. We
refer to this as Block GraphCut (Block-GC), shown in
Algorithm Specifically in our hashing problem, by
leveraging similarity information, we can easily con-
struct blocks to meet the sub-modularity requirement.
Here we assume that the loss function satisfies the
following conditions:

Vy;; > 0 and Vr :
aij =0y #0)(1) — 1t

which intuitively means that, for two similar data points,
the loss of assigning identical binary values for one bit
is smaller than assigning distinct binary values. As loss
functions always encourage two similar data points to
have similar binary codes, this condition can be naturally
satisfied. All of the loss functions (e.g., KSH, BRE, Hinge)
that we described before meet this requirement. As an
example, the definition of a;s" in @) for the KSH loss
satisfies the above cond1t1ons The following proposition
shows how to construct such a block:

Proposition 2: Vi, j € B, if y;; > 0, the optimization in
(27a) is a sub-modular problem. In other words, for any
data point in the block, if it is not dissimilar with any
other data points in the block, then is sub-modular.

Proof: If y;; > 0, according to the conditions in (28),
we have:

Vy<o, o (28)

vig =0 £ 0ty — i) <00 @)
With the following definition:
03,5 (Zris 2r,5) = Vij2rizrjy (30)
the following holds:
0;;(—1,1) =6, ;(1,-1) = —v;; > 0; (31)
0;;(1,1) =0, ;(—1,—-1) = v;; <0. (32)

Hence we have the following relations: Vi, j € B:

ei,j(l, 1) + 91‘7]‘(*1, 71) <0< 91'73'(1, *1) + oi,j(flv 1);
(33)

which prove the sub-modularity of [34]. O

Blocks can be constructed in many ways as long as
they satisfy the condition in Proposition [2l A simple
greedy method is shown in Algorithm [2l Note that
one block can overlap with another and the union of
all blocks needs to cover all n variables. If one block
only consist of one variable, Block-GC becomes the ICM
method ([35], [36]) which optimizes for one variable at
a time.

4 STEP 2: HASH FUNCTION LEARNING

The second step is to solve a binary classification prob-
lem for learning one hash function. The binary codes
obtained in the first step are used as the classification
labels. Any binary classifiers (e.g., decision trees, neural
networks) and any advanced large-scale training tech-
niques can be directly applied to hash function learning
at this step. For the r-th bit, the classification problem is:

n

Z 6(zr,i

i=1

= hr(:)). (34)

he ()

Usually the zero-one loss in the above problem is re-
placed by some convex surrogate loss. For example,
when training a perceptron hash function:

h(z) = sign (w' = +b), (35)
we can train a linear SVM classifier by solving;:
Hw||2+2maxl—zm(w x+b),0]. (36)

i=1

Any binary classifier can be applied here. We could
also train an kernel SVM to learn a kernel hash function:

) = sign lqu a: ,x)+b

in which X' = {z},...,z,} are Q support vectors.
Sophisticated kernel learning methods can be applied
here, for example, LIBSVM or the stochastic kernel SVM
training method with a support vector budget in [37].

After learning the hash function for one bit, the binary
code is updated by applying the learned hash function.
Hence, the learned hash function is able to influence the
learning of the next bit.

(37)

4.1 Boosted trees as hash functions

Decision trees could be a good choice for hash functions
with nonlinear mapping. Compared to kernel method,
decision trees only involve simple comparison opera-
tions for evaluation; thus they are much more efficient
for testing, especially on high-dimensional data. We
define one hash function as a linear combination of trees:

) = sign [iquq(x)] . (38)

APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015 8

TABLE 1 — Comparison of KSH and our FastHash. KSH results
are presented with different numbers of support vectors. Both of
our FastHash and FastHash-Full significantly outperform KSH
in terms of training time, binary encoding time (test time) and
retrieval precision.

Method | #Train _ #Support Vector | Train time Test time Precision
CIFARI10 (features:11200)

“KSH] 5000 © 300 1082 227 7 0480
KSH 5000 1000 3481 57 0.553
KSH 5000 3000 52747 145 0.590
FastH 5000 N/A 331 21 0.634
FastH-Full | 50000 N/A 1794 21 0.763

TAPRTC12 (features:11200)

TKSH] 5000 © T 300 [1129 777019
KSH 5000 1000 3447 21 0.235
KSH 5000 3000 51927 51 0.273
FastH 5000 N/A 331 9 0.285
FastH-Full | 17665 N/A 620 9 0.371

ESPGAME (features:11200)

CKSH ~]5000 300 - [1120 8 0124
KSH 5000 1000 3358 22 0.139
KSH 5000 3000 52115 46 0.163
FastH 5000 N/A 309 9 0.188
FastH-Full | 18689 N/A 663 9 0.261

MIRFLICKR (features:11200)

CKSH ©]5000 © T 300 1036 5 0387
KSH 5000 1000 3337 13 0.407
KSH 5000 3000 52031 42 0.434
FastH 5000 N/A 278 7 0.555
FastH-Full | 12500 N/A 509 7 0.595

Here @ is the number of decision trees; T'(-) € {—1,1}
denotes a tree function with binary output. We train a
boosting classifier to learn the weighting coefficients and
trees for one hash function. The classification problem
for the r-th hash function is written as:

n Q
mi% Z exp [— Zri Z quq(wi)} . (39)
w=ia g=1

We apply Adaboost to solve the problem. At each boost-
ing iteration, a decision tree as well as its weighting
coefficient is learned. Every node of a binary decision
tree is a decision stump. Training a stump is to find
a feature dimension and threshold that minimizes the
weighted classification error. From this point of view,
we are performing feature selection and hash function
learning at the same time. We can easily make use of
efficient decision tree learning techniques available in the
literature. Here we summarize some techniques that are
included in our implementation:

1) We use the efficient stump implementation pro-
posed in the recent work of [38], which is around 10
times faster than conventional implementation.

2) Feature quantization can significantly speed up tree
training without noticeable performance loss in practice,
and also largely reduce the memory consuming. As in
[38], we linearly quantize feature values into 256 bins.

3) We apply the weight-trimming technique described
in [39], [38]. At each boosting iteration, the smallest 10%
weightings are trimmed (set to 0).

4) We apply the LazyBoost technique to speed up
the tree learning process. For one node splitting in tree
training, only a random subset of feature dimensions are
evaluated for splitting.

Fig. 1 — Some retrieval examples of our method FastHash on
CIFAR10. The first column shows query images, and the rest are
retrieved images in the database.

5 EXPERIMENTS

To evaluate the proposed method, here we present the
results of comprehensive experiments on several large
image datasets. The evaluation measures include train-
ing time, binary encoding time and retrieval accuracy.
We compare to a number of recent supervised and
unsupervised hashing methods. To explore our method
with different settings, we perform comparisons of using
different binary code inference algorithms, various kinds
of loss functions and hash functions.

The similarity preserving performance is evaluated in
small binary codes based image retrieval [40], [2]. Given
a query image, the retrieved images in the database
are returned by hamming distance ranking based on
their binary codes. The retrieval quality is measured in
3 different aspects: the precision of the top-K (X=100)
retrieved examples (denoted as Precision), mean average
precision (MAP) and the area under the Precision-Recall
curve (Prec-Recall). The training time and testing time
(binary encoding time) are recorded in seconds.

Results are reported on 6 large image datasets which
cover a wide variety of images. The dataset CIFARlOEl
contains 60,000 images in small resolution. The multi-
label datasets IAPRTC12 and ESPGAME contain
around 20, 000 images, and MIRFLICKR is a collec-
tion of 25000 images. SUN397 [43] contains more than

1. http:/ /www.cs.toronto.edu/~kriz/ cifar.html

http://www.cs.toronto.edu/~kriz/cifar.html

APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015 9

CIFAR10 IAPRTC12

ESPGAME MIRFLICKR

0. 0.
At KSH-3000 —# KSH-3000
o7 | E:g—; ggo 049 ~-KSH-1000
- 0. KSH-300
, 00080 -B--a-- iiastHash ! -8-FastHash
. astHash-Full —*—FastHash-Full

Precision
Precision

KSH-3000
~-KSH-1000
KSH-300
-8-FastHash
—*- FastHash-Full

KSH-3000
~9-KSH-1000
KSH-300
-8-FastHash
% FastHash-Full 7
—m—.

0.65
0.6¢
05FEEEEG o g g

05

K
& 0.45
0.4
0.35 ; B
000

Precision
recision

1000 1500

5 2000) 500 100
Number of retrieved samples (64 bits)

0 150
Number of retrieved samples

0 2000
(64 bits)

0.0:

501

00 1500 1000 1500
Number of retrieved samples (64 bits)

5 2000
Number of retrieved samples (64 bits)

Fig. 2 — Comparison of KSH and our FastHash on all datasets. The number after “KSH” is the number of support vectors. Both of our

FastHash and FastHash-Full significantly outperform KSH.

100,000 scene images form 397 categories. The large
dataset ILSVRC2012 contains roughly 1.2 million images
of 1000 categories from ImageNet [44].

For the multi-class datasets: CIFAR10, SUN397 and
ILSVRC2012, the ground truth pairwise similarity is
defined as multi-class label agreement. For multi-label
datasets: JAPRTC12, ESPGAME and MIRFLICKR, of
which the keyword (tags) annotation is provided in [41],
two images are considered as semantically similar if they
are annotated with at least 2 identical keywords (or tags).
In the training stage of supervised methods, a maximum
number of 100 similar and dissimilar neighbors are
defined for each example; hence the pairwise similarity
label matrix is sparse.

Following the conventional protocol in [8], [11], [2]
for hashing method evaluation, a large portion of the
dataset is allocated as an image database for training
and retrieval, and the rest is put aside as test queries.
Specifically, for CIFAR10, IAPRTC12, ESPGAME and
MIRFLICKER, the training data in the the provided split
are used as image database and the test data are used
as test queries. The splits for SUN397 and ILSVRC2012
are described in their corresponding sections.

We extract codebook-based features following the con-
ventional pipeline from [12], [45]: we employ K-SVD
for codebook (dictionary) learning with a codebook size
of 800, soft-thresholding for patch encoding and spatial
pooling of 3 levels, which results 11200-dimensional
features. For further evaluation, we increase the code-
book size to 1600 to generate 22400-dimensional features.
We also extract the low-dimensional GIST [46] features
(512 or 320 dimensions) for evaluation. For the dataset
ILSVRC2012, we extract the convolution neural network
features with 4096 dimensions ([13]], [47]]), which is de-
scribed in detail in the corresponding section.

If not specified, we use the following in our method:
the KSH loss function (described in (I5)), the proposed
Block GraphCut algorithm in Step-1, and the decision
tree hash function in Step-2. The tree depth is set to
4, and the number of boosting iterations is 200. Differ-
ent settings of hash functions or loss functions will be
evaluated in the later sections. For comparison methods,
we follow the original papers for parameter setting.
If not specified, 64-bit binary codes are generated for
evaluation.

5.1

KSH [8] has been shown to outperform many state-of-
the-art comparators. Here we evaluate our method using
the KSH loss and compare against the original KSH
method on high-dimensional codebook features. KSH
employs a simple kernel technique by predefining a set
of support vectors then learning linear weights for each
hash function. For our method, we use boosted decision
trees as hash functions. KSH is trained on a sampled set
of 5000 examples, and the number of support vectors for
KSH is varied from 300 to 3000. The results are summa-
rized in Table (1} which shows that increasing the number
of support vectors consistently improves the retrieval
precision of KSH. However, even on this small training
set, including more support vectors will dramatically
increase the training time and binary encoding time
of KSH. We have run our FastHash both on the same
sampled training set and the whole training set (labeled
as FastHash-Full) in order to show that our method can
be efficiently trained on the whole dataset. Our FastHash
and FastHash-Full outperform KSH by a large margin
in terms of both training speed and retrieval precision.
It also shows that the decision tree hash functions in
FastHash are much more efficient for testing (binary
encoding) than the kernel function in KSH. FastHash is
orders of magnitude faster than KSH in training, and
thus much better suited to large training sets and high-
dimensional data. We also show the precision curves
of top-K retrieved examples in Figure 2} The number
after “KSH” is the number of support vectors. Besides
high-dimensional features, we also compare with KSH
on the low-dimensional GIST feature, and FastHash also
significantly performs better; see Table 2| for details.
Some retrieval examples of our method are shown in

Figure

Comparison with KSH

5.2 Evaluation on different features

We evaluate our method both on the low-dimensional
(320 or 512) GIST features and the high-dimensional
(11200) codebook features. Several state-of-the-art super-
vised methods are included in this comparison: KSH [8],
Supervised Self-Taught Hashing (STHs) [26], and Semi-
supervised Hashing (SPLH) [2]. Comparison methods
are trained on a sampled training set (5000 examples).
Results are presented in Table 2| The codebook features

APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015

TABLE 2 - Results using two types of features: low-dimensional GIST features and the high-dimensional codebook features. Our FastHash
and FastHash-Full significantly outperform the comparators on both feature types. In terms of training time, our FastHash is also much

faster than others on the high-dimensional codebook features.

I GIST feature (320 / 512 dimensions)

[Codebook feature (11200 dimensions)
|

KSH

KSH I - P

Method #Train || Train time Test time Precision MAP Prec-Recall | Train time (s) Test time (s) Precision MAP Prec-Recall
CIFAR10
"7 KSH © T 5000 |[52173 © T "8 © 7 T 0453 ~ T 0350 ~ ~ 0.1e4 ~] 52747 T T T T 145 ~ 7 T T T 0590 ~ ~ 0464 ~ ~ 0.261
BREs 5000 481 1 0.262 0.198 0.082 18343 8 0.292 0.216 0.089
SPLH 5000 102 1 0.368 0.291 0.138 9858 4 0.496 0.396 0.219
STHs 5000 380 1 0.197 0.151 0.051 6878 4 0.246 0.175 0.058
FastH 5000 304 21 0.517 0.462 0.243 331 21 0.634 0.575 0.358
FastH-Full 50000 1681 21 0.649 0.653 0.450 1794 21 0.763 0.775 0.605
TAPRTC12
"7 KSH ~ T 5000 |[5184 ~ "5~ 7 T 0182 ~0.126 ~ ~ 0.083 ~] 51927 ~ ~ =~ 51~ 7 T T T 0273 ~ 0169 =~ 0.123
BREs 5000 6052 1 0.138 0.109 0.074 6779 3 0.163 0.124 0.097
SPLH 5000 154 1 0.160 0.124 0.084 10261 2 0.220 0.157 0.119
STHs 5000 628 1 0.099 0.092 0.062 10108 2 0.160 0.114 0.076
FastH 5000 286 9 0.232 0.168 0.117 331 9 0.285 0.202 0.146
FastH-Full 17665 590 9 0.316 0.240 0.178 620 9 0.371 0.276 0.210
ESPGAME
7 KSH T 5000 | 52061 5 " 0118 T 0.077 ~ 0.054 ~ [B2115° T T . 6 T T T 0163 =~ 0.100 ~ ~ 0.072
BREs 5000 714 1 0.095 0.070 0.050 16628 3 0.111 0.076 0.059
SPLH 5000 185 1 0.116 0.083 0.062 11740 2 0.148 0.104 0.074
STHs 5000 616 1 0.061 0.047 0.033 11045 2 0.087 0.064 0.042
FastH 5000 289 9 0.157 0.106 0.070 309 9 0.188 0.125 0.081
FastH-Full 18689 448 9 0.228 0.169 0.109 663 9 0.261 0.189 0.126
MIRFLICKR
"7 KSH © T 5000 |[51983 © T "3 T T T 0379 0320 © T 0234]52031 T T 427 7 T T 0434~ ~ 0350 ~ 0254 "
BREs 5000 1161 1 0.347 0.310 0.224 13671 2 0.399 0.345 0.250
SPLH 5000 166 1 0.379 0.337 0.241 9824 2 0.444 0.391 0.277
STHs 5000 613 1 0.268 0.261 0.172 10254 2 0.281 0.272 0.174
FastH 5000 307 7 0.477 0.429 0.299 338 7 0.555 0.487 0.344
FastH-Full 12500 451 7 0.525 0.507 0.345 509 7 0.595 0.558 0.420
08 CIFAR10 . ESPGAME o IAPRTC12 MIRFLICKR
h < SThs <~ STHs < STHs
0.7 0.3} SPLH 0.35} SPLH SPLH
0 ETE e g ~-BREs ~-BREs ~-BREs
o o 02 KSH M%ﬂ KSH ESHH X
205 ™ S 0.2k -8-FastHash s G- -8-FastHash s -8-FastHas|
é 0 v 2;':3 X % 5 - FastHash—Full :ag) 0% -t —*-FastHash—Full :a%) - FastHash-Fully
e ~-BREs €0 [& e \\\
0.3, KSH 0.1 P
0.2 -8-FastHash 005 R 399390 e i M‘lnr
—*— FastHash-Full : 0 » 4
V-v-y
0707 02 03 04 05 06 07 08 %01 02 03 04 05 06 07 005002 03 04 05 06 07 08 0851 02 03 04 05 06 07 08
Recall (64 bits) Recall (64 bits) Recall (64 bits) Recall (64 bits)
0 ‘ C'F‘}R1° ‘ ESPGAME IAPRTC12 s MIRFLICKR
ek = STHs < STHs)
07 SPLH SPLH O-&M
o JEOOE A S A B8 By ~-BREs ~-BREs OSFEIREe G g g k

-8-FastHash

c c
9 2
.§ < STHs .g —#-FastHash-Full
go. SPLH £ X
~-BREs
0. KSH
02 V-V ¥-9- g4 -y |-5-FastHash _fv
—*—FastHash-Full

-8-FastHash
—*FastHash-Full

 STHs
SPLH
—6-BREs
KSH
-8-FastHash
—*-FastHash-Full|

A\

500 0.0!

500 1000 1500 2000
Number of retrieved samples (64 bits)

500 1000 1500
Number of retrieved samples (64 bits)

500 2000

500 1000 1 500
Number of retrieved samples (64 bits)

500 1000 1 2000
Number of retrieved samples (64 bits)

Fig. 3 — Results on high-dimensional codebook features. Our FastHash significantly outperform others.

consistently show better results than the GIST features.
The results for codebook features are also plotted in
Figure | It shows that the competing methods can
be efficiently trained on the GIST features. However,
when applied to high dimensional features, even on a
small training set (5000), their training time dramatically
increase. It is very difficult to train these methods on
the whole training set. The training time of KSH mainly
depends on the number of support vectors (3000 is
used here). We run our FastHash on the same sampled
training set (5000 examples) and the whole training set
(labeled as FastHash-Full). Results show that FastHash
can be efficiently trained on the whole dataset. FastHash
significantly outperform others both in GIST and code-

book features. The training of FastHash is also orders of
magnitudes faster than others on the high-dimensional
codebook features.

5.3 Comparison with dimension reduction

One possible way to reduce the training cost on high-
dimensional data is to apply dimension reduction. For
the methods: KSH, SPLH and STHs, we thus reduce
the original 11200-dimensional codebook features to
500 dimensions by applying PCA. We also compare to
CCA+ITQ [6] which combines ITQ with supervised di-
mensional reduction. Our FastHash still uses the original
high-dimensional features. The result is summarized in
Table 3| After dimension reduction, most comparison

APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015 11

TABLE 3 - Results of methods with dimension reduction. Our
FastHash significantly outperforms others.

Method # Train \ Train time Test time Precision MAP
CIFAR10
" PCA+KSH ~ 50000 | — - - T T - -
PCA+SPLH 50000 25984 18 0.482 0.388
PCA+STHs 50000 7980 18 0.287 0.200
CCA+ITQ 50000 1055 7 0.676 0.642
FastH 50000 1794 21 0.763 0.775
IAPRTC12
" PCA+KSH ™~ 17665 | 55031 ~ 11~~~ 0.082" ~ 0.103
PCA+SPLH 17665 1855 7 0.239 0.169
PCA+STHs 17665 2463 7 0.174 0.126
CCA+ITQ 17665 804 3 0.332 0.198
FastH 17665 620 9 0.371 0.276
ESPGAME
" PCA+KSH =~ 18689 | 55714~ ~ 11 ~ ~ — 0141 ~ "0.084 ~
PCA+SPLH 18689 2409 7 0.153 0.103
PCA+STHs 18689 2777 7 0.098 0.069
CCA+ITQ 18689 814 3 0.216 0.131
FastH 18689 663 9 0.261 0.189
MIRFLICKR
" PCA+KSH ™~ 12500 | 54260 ~ 8 0384 ~ 0313
PCA+SPLH 12500 1054 5 0.445 0.391
PCA+STHs 12500 1768 5 0.347 0.301
CCA+ITQ 12500 699 3 0.519 0.408
FastH 12500 509 7 0.595 0.558

TABLE 4 — Performance of our FastHash on more features (22400
dimensions) and more bits (1024 bits). The training and binary
coding time (test time) of FastHash is only linearly increased with
the bit length.

Bits #Train Features \ Train time Test time Precision MAP
CIFAR10
T 64 500000 11200 T 1794 © T 21 T T T T 0763~ ~ 0775 ~
256 50000 22400 5588 71 0.794 0.814
1024 50000 22400 22687 282 0.803 0.826
TAPRTC12
T4 T 17665 11200 3200 9 T T T T 0371 ~ 0276 -
256 17665 22400 1987 33 0.439 0.314
1024 17665 22400 7432 134 0.483 0.338
ESPGAME
T 64 T 18689 11200 T 663 T T 9 T T T T 0261~ ~ 0.189 ~
256 18689 22400 1912 34 0.329 0.233
1024 18689 22400 7689 139 0.373 0.257
MIRFLICKR
T 64 T 7125000 T 11200 T 7509 T T T 77 T T T T 0595~ ~ 0558 ~
256 12500 22400 1560 28 0.612 0.567
1024 12500 22400 6418 105 0.628 0.576

methods can be trained on the whole training set within
24 hours (except KSH on CIFAR10). However it still
much slower than our FastHash. Our FastHash also per-
forms significantly better on retrieval precision. Learning
decision tree hash functions in FastHash actually per-
form feature selection and hash function learning at the
same time, which shows much better performance than
other hashing methods with dimensional reduction.

5.4 More features and more bits

We increase the codebook size to 1600 for generating
higher dimensional features (22400 dimensions) and run
up to 1024 bits. Table {4 shows that FastHash can be
efficiently trained on high-dimensional features with
large bit length. The training and binary coding time (test
time) of FastHash increases only linearly with bit length.
The retrieval result is improved when the bit length is
increased.

TABLE 5 — Comparison of spectral method and the proposed
Block GraphCut (Block-GC) for binary code inference. Block-GC
achieves lower objective value and takes less inference time, thus
performs much better.

Step-1 methods [#train Block Size | Time (s) Objective
SUN397
" Spectral] 100417 = N/A | 5281 = 0.7524
Block-GC-1 100417 1 298 0.6341
Block-GC 100417 253 2239 0.5608
CIFAR10
" Spectral] 50000 = N/A | 1363 04912
Block-GC-1 50000 1 158 0.5338
Block-GC 50000 5000 788 0.4158
IAPRTC12
" Spectral] 17665 ~ N/A | 426 07237
Block-GC-1 17665 1 43 0.7316
Block-GC 17665 316 70 0.7095
ESPGAME
" Spectral] 18689 N/A™ | 480 ~ 0.7373
Block-GC-1 18689 1 45 0.7527
Block-GC 18689 336 72 0.7231
MIRFLICKR
" Spectral] 12500 = N/A | 125 = 05718
Block-GC-1 12500 1 28 0.5851
Block-GC 12500 295 40 0.5449

TABLE 6 — Comparison of combinations of hash functions and
binary inference methods. Decision tree hash functions perform
much better than linear SVM (LSVM) hash functions. The pro-
posed Block GraphCut (Block-GC) performs much better than the
spectral method.

Step-1 method Step-2 method [Precision MAP Prec-Recall
CIFAR10
" Block-GC =~~~ TREE =~~~ [| 0763 0775 0.605
Spectral TREE 0.731 0.695 0.501
Block-GC LSVM 0.669 0.621 0.435
Spectral LSVM 0.624 0.512 0.322
TAPRTC12
" Block-GC ~ ~ " TREE ~ | 0371 0276 0210
Spectral TREE 0.355 0.265 0.201
Block-GC LSVM 0.327 0.238 0.186
Spectral LSVM 0.275 0.207 0.160
ESPGAME
" Block-GC =~ TREE =~~~ [0261 ~ 0189 0.126
Spectral TREE 0.249 0.183 0.123
Block-GC LSVM 0.227 0.157 0.109
Spectral LSVM 0.183 0.133 0.093
MIRFLICKR
" Block-GC ~ ~ " TREE =~ | 0595 ~ 0.558 0.420
Spectral TREE 0.584 0.551 0.413
Block-GC LSVM 0.536 0.498 0.344
Spectral LSVM 0.489 0.466 0.319

5.5 Binary code inference evaluation

Here we evaluate different algorithms for solving the
binary code inference problem which is involved in Step-
1 of our learning process. We compare the proposed
Block GraphCut (Block-GC) with the simple spectral
method. The number of iterations of Block-GC is set to 2,
which is the same as that in other experiments. Results
are summarized in Table |5, We construct blocks using
Algorithm 2| The averaged block size is reported in the
table. We also evaluate a special case where the block
size is set to 1 for Block-CG (labeled as Block-CG-1), in
which case Block-GC is reduced to the ICM ([35], [36]])
method. It shows that when the training set gets larger,
the spectral method becomes slow. The objective value
shown in the table is divided by the number of defined
pairwise relations. Results show that the proposed Block-

Precision (100-NN)

APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015 12
CIFAR10 ESPGAME IAPRTC12 MIRFLICKR
0 0 0.4 0.
—9—FastH-Spectral-LSVM —~9—FastH-Spectral-LSVM —9—FastH-Spectral-LSVM —~9—FastH-Spectral-LSVM Mr
FastHfBIockGCfLSVM/k/,,t 0.26] FastH-BlockGC-LSVM| g FastH-BlockGC-LSVM| e FastH-BlockGC-LSVM|. - -8--~"""
0.75(- 8- FastH-Spectral-TREE . -8-FastH-Spectral-TREE /; =03 -8-FastH-Spectral-TREE /‘/___: — -8-FastH-Spectral-TREE
——FastH-BlockGC-TREE| ____..-- Z 0.24| -+~ FastH-BIockGC-TREE| e Z 035 4 FastH-BlockGC-TREEF 5 _.---~"" Z 053] 4 FastH-BlockGC-TREE
P i 1 PE-] PPtide T
07 8 - 8 8
a-"" 2 2 - 2
.- - < < 0.3 < 0.5
0.65 Lt ki @ @ W
.7 =3 o o
. o o a4 I
//4‘< a0 & 0.28f & 0.45,
0.6,

0'5?6

64 64

32 48 32 48
Number of bits Number of bits

36 64 46 64

32 48 32 48
Number of bits Number of bits

Fig. 4 — Comparison of combinations of hash functions and binary inference methods. Decision tree hash functions perform much better
than linear SVM. The proposed Block-GC performs much better than the spectral method.

GC achieves much lower objective values and takes
less inference time, and hence outperforms the spectral
method. The inference time for Block-CG increases only
linearly with training set size.

Our method is able to incorporate different kinds of
hash functions in Step-2. Here we provide results com-
paring different combinations of hash functions (Step-2)
and binary code inference methods (Step-1). We evaluate
linear SVM and decision tree hash functions with the
spectral method and the proposed Block-GC. Codebook
features are used here. Results are summarized in Table
[l We also plot the retrieval performance in Figure
As expected, decision tree hash functions perform much
better than linear SVM hash functions, and the pro-
posed Block-GC performs much better than the spectral
method, which indicates that Block-GC is able to gener-
ate high quality binary codes.

5.6 Using different loss functions

Our method is able to incorporate different kinds of
loss functions and hash functions. Here we compare the
performance of 4 kinds of loss function: KSH (15), Hinge
(16), BRE and ExpH (18), combined with linear
SVM and boosted decision tree hash functions.
Results are summarized in Table [/l It shows that the
Hinge loss usually achieves the best performance, and
the remaining loss functions have similar performances.
The Hinge loss function in (16) encourages the hamming
distance of dissimilar pairs to be at least half of the
bit length, instead of unnecessarily pushing it to the
maximum value. It also shows that decision tree hash
functions perform much better than linear SVM. We
plot the performance of decision tree hash functions
combined with different kinds of loss functions in Figure

5.7 Comparison with unsupervised methods

We compare to some popular unsupervised hashing
methods: LSH [7], ITQ [6], Anchor Graph Hashing
(AGH) [16], Spherical Hashing (SPHER) [17], Multi-
dimension Spectral Hashing (MDSH) [10] [10]. The re-
trieval performance is shown in Figure [f} Unsupervised
methods perform poorly at preserving label based sim-
ilarity. Our FastHash significantly outperforms others.

TABLE 7 — Comparison of combinations of different loss func-
tions and hash functions. Using the Hinge loss achieves the best
result. Decision tree hash functions perform much better than
linear SVM hash functions.

Loss Step-2 method [Precision MAP Prec-Recall
CIFAR10
" FastH-KSH™ =~ ~TREE =~~~ | 0763~ ~ 0775 ~ ~ 0.605 =~
FastH-BRE TREE 0.761 0.772 0.602
FastH-HINGE TREE 0.773 0.780 0.613
FastH-EXPH TREE 0.765 0.774 0.604
FastH-KSH LSVM 0.669 0.621 0.435
FastH-BRE LSVM 0.667 0.619 0.431
FastH-HINGE =~ LSVM 0.669 0.604 0.387
FastH-EXPH LSVM 0.665 0.619 0.430
TAPRTC12
" FastH-KSH ~ TREE | 0371 ~ 0276 ~ 0210
FastH-BRE TREE 0.375 0.279 0.213
FastH-HINGE = TREE 0.410 0.295 0.234
FastH-EXPH TREE 0.344 0.268 0.199
FastH-KSH LSVM 0.327 0.238 0.186
FastH-BRE LSVM 0.328 0.237 0.187
FastH-HINGE =~ LSVM 0.338 0.247 0.194
FastH-EXPH LSVM 0.295 0.225 0.170
ESPGAME
" FastH-KSH ~ TREE | 0261 ~ 0189 =~ 0.126 ~ °
FastH-BRE TREE 0.262 0.189 0.125
FastH-HINGE TREE 0.286 0.200 0.148
FastH-EXPH TREE 0.253 0.194 0.124
FastH-KSH LSVM 0.227 0.157 0.109
FastH-BRE LSVM 0.231 0.160 0.111
FastH-HINGE LSVM 0.225 0.155 0.109
FastH-EXPH LSVM 0.216 0.154 0.104
MIRFLICKR
" FastH-KSH™ = TREE ~ | 059 0558 ~ 0420
FastH-BRE TREE 0.596 0.559 0.420
FastH-HINGE TREE 0.647 0.592 0.457
FastH-EXPH TREE 0.560 0.543 0.404
FastH-KSH LSVM 0.536 0.498 0.344
FastH-BRE LSVM 0.531 0.494 0.341
FastH-HINGE =~ LSVM 0.567 0.522 0.397
FastH-EXPH LSVM 0.502 0471 0.323

5.8 Large dataset: SUN397

The SUN397 [43]] dataset contains more than 100,000
scene images. 8000 images are randomly selected as test
queries, while the remaining 100,417 images form the
training set. 11200-dimensional codebook features are
used here. We compare with a number of supervised
and unsupervised methods. The depth for decision trees
is set to 6. Results are presented in Table 8| Supervised
methods: KSH, BREs, SPLH and STHSs are trained on a
subset of 10K examples. Even on this sampled training
set, the training of these methods are already imprac-
tically slow. In contrast, our method can be efficiently
trained with a long bit length (1024 bits) on the whole
training set (more than 100, 000 training examples). Our
FastHash significantly outperforms other methods. The
retrieval performance is also plotted in Figure[7] It shows

APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015 13
CIFAR10 ESPGAME IAPRTC12 MIRFLICKR
0.7 0. 0. 0.7
N o~ FastH-EXPH-TREE o~ FastH-EXPH-TREE - FastH-EXPH-TREE
076 0 | FastH-HINGE-TREE| FastH-HINGE-TREE| FastH-HINGE-TREE|
. __ 0.3-8-FastH-BRE-TREE __ 0.4(-8-FastH-BRE-TREE — 0.65)| "8 FastH-BRE-TREE
Zo74 z —*— FastH-KSH-TREE E —&—FastH-KSH-TREE y Z %% FastH-KSH-TREE
1 I I I
Q 2 0.25 & =}
a0 3 3 3
= = = =
S o7 S oo S s
38 ~-FastH-EXPH-TREE || § 8 8
Loes) FastH-HINGE-TREE| & f & £o.
056 -8-FastH-BRE-TREE 0.15
- —&-FastH-KSH-TREE
0546 ZERST 6 %6 ST

32 48 32 48
Number of bits Number of bits

64

32 48 32 48
Number of bits Number of bits

Fig. 5 — Comparison of using different loss functions with decision tree hash functions. Using the Hinge loss (FastH-Hinge) achieves the

best result.

CIFAR10 ESPGAME IAPRTC12 MIRFLICKR
0. —— - 0 05 0.65
= LSH < LSH - LSH
0.7] ~LSH 0o AGH 0.45 AGH o.am AGH
08 AGH - -9-MDSH 0.4} ~ , ~0-MDSH 0.55 ; : -0-MDSH [F
- —¢-MDSH SPHER 035 SPHER 08 SPHER
Sos ISTF(’}HER 5 o -8-1TQ s -8-ITQ s e-ITQ
B -8- [%] o (%)
1] S —*FastHash S 0.3 —k-FastHash G 0.45 —kFastHash
£ —+FastHash 3 8 | 8 astHas
o o 0. 22, K o

O.Z&HQ
0.5, 78

%vvvvv-‘vrv—dv_

1000 1500

5l 2000 . 500 100
Number of retrieved samples (64 bits)

0 150
Number of retrieved samples

0
(64 bits)

1000 1500 100
Number of retrieved samples (64 bits)

5 0 1500 2000
Number of retrieved samples (64 bits)

Fig. 6 — Comparison with a few unsupervised hashing methods. Unsupervised methods perform poorly for preserving label based similarity.

Our FastHash performs significantly better.

SUN397
0.25 : . .
LSH
0. ——-SPHER 1
ITQ
0.15 -8-CCA+ITQ J
@ —*FastHash
3 -
a
A

1000 1500

500
Number of retrieved samples (1024 bits)

2000

Fig. 7 — The top-2000 precision curve on large dataset SUN397
(1024 bits). Our FastHash performs the best.

the results of those comparison methods that are able to
be trained to 1024 bits on the whole training set. In terms
of memory usage, many comparison methods require a
large amount of memory for large matrix multiplication.
In contrast, the decision tree learning in our method only
involves simple comparison operations on quantized
feature data (256 bins), thus FastHash consumes less
than 7GB for training.

5.9 Large dataset: ImageNet

The large dataset ILSVRC2012 contains more than 1.2
million images from ImageNet [44]. We use the provided
training set as the database (around 1.2 million) and the
validation set as test queries (50K images). Convolution
neural networks (CNNs) have shown the best classifi-
cation performance on this dataset [13]. As described
in [47], the neuron activation values of internal layers
of CNNs can be used as features. By using the Caffe
toolbox [48] which implements the CNN architecture
in [13]], we extract 4096-dimensional features from the

TABLE 8 — Results on SUN397 dataset. Our FastHash can be
efficiently trained on this large training set. FastHash significantly
outperforms other methods.

Method #Irain Bits \ Train time Test time Precision MAP
SUN397
KSH 10000 64 57045 463 0.034 0.023
BREs 10000 64 105240 23 0.019 0.013
SPLH 10000 64 27552 14 0.022 0.015
STHs 10000 64 22914 14 0.010 0.008
1TQ 100417 1024 | 1686 127 0.030 0.021
SPHER 100417 1024 | 35954 121 0.039 0.024
LSH 1024 | — 99 0.028 0.019
CCA+ITQ 100417 512 7484 66 0.113 0.076
CCA+ITQ 100417 1024 | 15580 127 0.120 0.081
FastH 100417 512 29624 302 0.149 0.142
FastH 100417 1024 | 62076 536 0.165 0.163

the seventh layer of the CNN. We compare with a
number of supervised and unsupervised methods. The
depth for the decision trees is set to 16. The smallest
2% of data weightings are trimmed for decision tree
learning. Most comparing supervised methods become
intractable on the full training set (1.2 million examples).
In contrast, our method is still able to be efficiently
trained on the whole training set. For comparison, we
also construct a smaller dataset (denoted as ImageNet-
50) by sampling 50 classes from ILSVRC2012. It contains
25,000 training images (500 images for each class) and
2500 testing images. Results of ImageNet-50 and the
full ILSVRC2012 are presented in Table [9] Our FastHash
performs significantly better than others. The retrieval
performance of 128 bits on the full ILSVRC2012 is plotted
in Figure [§]

5.10

Since binary codes have very small storage cost or
network transfer cost, image features can be compressed
to binary codes by apply hashing methods. Here we

Image classification

APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015 14

TABLE 9 — Results on two ImageNet datasets using CNN
features. ImageNet-50 is a small subset of ILSVRC2012. Our
FastHash significantly outperforms others.

Method #Train _ Bits | Precision MAP Prec-Recall
ImageNet-50
TKSH 25000 64 | 0572 ~ 0460 = 0.328
BREs 25000 64 0.377 0.246 0.189
SPLH 25000 64 0.411 0.303 0.217
STHs 25000 64 0.625 0.580 0.412
ITQ+CCA 25000 64 0.690 0.668 0.517
1ITQ 25000 64 0.492 0.358 0.266
SPHER 25000 64 0.345 0.210 0.155
LSH — 64 0.064 0.046 0.023
FastHash 25000 64 0.697 0.718 0.532
ILSVRC2012
T CCA+ITQ 12M ~ 64 | 0195 ~ 0433 =~ 0.049
CCA+ITQ 12M 128 0.289 0.199 0.090
CCA+ITQ 12M 1024 0.428 0.305 0.160
ITQ 1.2M 64 0.227 0.132 0.053
1ITQ 1.2M 128 0.294 0.175 0.080
ITQ 1.2M 1024 0.368 0.227 0.108
LSH - 1024 0.126 0.065 0.023
FastH 1.2M 64 0.383 0.301 0.107
FastH 1.2M 128 0.458 0.390 0.171
ILSVRC2012
0.5 T T
——-LSH
ITQ
04 -8-CCA+ITQ
3 —~*FastHash
g 0. 1'-_' i
3 "8 H-g e
4 B-g_
o 0.2 CEeeig]
B
0.1
0 ; ; ;
500 1000 1500 2000
Number of retrieved samples (128 bits)
Fig. 8 - The top-2000 precision curve on large dataset

ILSVRC2012 (128 bits). Our FastHash outperforms others.

evaluate the image classification performance of using
binary codes as features on the dataset ILSVRC2012.
Hashing methods are trained on the CNN features. We
apply two types of classification methods: the K nearest
neighbor (KNN) classifier and the one-vs-all linear SVM
classifier. KNN classification is performed by majority
voting of top-K retrieved neighbors with smallest ham-
ming distances. Results are shown in Table Our
method outperforms all comparison hashing methods.

The CNN features used here are extracted on the
center crops of images using Caffe [48]. We also report
the results of CNN methods which have the state-of-
the-art results of this dataset. As shown in Table
the performance gap is around 8% between the error
rate of our hashing method and that of Caffe with
similar settings (only using center crops). However, 128-
bit binary codes in our methods take up around 1000
times less storage than the CNN features with 4096-
dimensional float values. It shows that our method is
able to perform effective binary compression without
large performance loss.

TABLE 10 - Image classification results on dataset ILSVRC2012.
Binary codes are generated as features for training classifiers.
Our FastHash outperforms other hashing methods for binary
compression of features.

Hashing method bits | KNN-50 test error 1-vs-all SVM test error

ILSVRC2012
TISsH T IV 0594 X 0939

1TQ 128 0.557 0.919
CCA+ITQ 64 0.716 0.691
CCA+ITQ 128 0.614 0.583
FastHash 64 0.572 0.567
FastHash 128 0.516 0.512
Classification method Test error

Caffe [48] (center crop) 0.433

Caffe [48] 0.413

CNNss [13] (one model) 0.407

6 CONCLUSION

We have shown that various kinds of loss functions
and hash functions can be placed in a unified learning
framework for supervised hashing. By using the pro-
posed binary inference algorithm Block GraphCut and
learning decision tree hash functions, our method can be
efficiently trained on large-scale and high-dimensional
data and achieves high testing precision, which indicates
its practical significance on many applications like large-
scale image retrieval.

ACKNOWLEDGEMENTS

This research was in part supported by the Data to
Decisions Cooperative Research Centre. C. Shen’s partic-
ipation was in part support by ARC Future Fellowship.

REFERENCES

[1] A. Torralba, R. Fergus, and W. Freeman, “80 million tiny images:
A large data set for nonparametric object and scene recognition,”
IEEE T. Pattern Analysis Mach. Intelli., 2008.

[2]]. Wang, S. Kumar, and S. Chang, “Semi-supervised hashing for
large scale search,” IEEE T. Pattern Analysis Mach. Intelli., 2012.

[3] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua, “Ldahash:
Improved matching with smaller descriptors,” IEEE T. Pattern
Analysis Mach. Intelli., 2012.

[4] T. Dean, M. A. Ruzon, M. Segal,]. Shlens, S. Vijayanarasimhan,
and J. Yagnik, “Fast, accurate detection of 100,000 object classes on
a single machine,” in Proc. IEEE Conf. Comp. Vis. Pattern Recogn.,
2013.

[5] M. Norouzi and D. Fleet, “Minimal loss hashing for compact
binary codes,” in Proc. Int. Conf. Mach. Learn., 2011.

[6] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative
quantization: a procrustean approach to learning binary codes for
large-scale image retrieval,” IEEE T. Pattern Analysis Mach. Intelli.,
2012.

[71 A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in Proc. Int. Conf. Very Large Data Bases,
1999.

[8] W.Liu,J. Wang, R. Ji, Y. Jiang, and S. Chang, “Supervised hashing
with kernels,” in Proc. IEEE Conf. Comp. Vis. Pattern Recogn., 2012.

[9]1 Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc.
Adv. Neural Info. Process. Syst., 2008.

[10] Y. Weiss, R. Fergus, and A. Torralba, “Multidimensional spectral
hashing,” in Proc. Eur. Conf. Comp. Vis., 2012.

[11] B. Kulis and T. Darrell, “Learning to hash with binary reconstruc-
tive embeddings,” in Proc. Adv. Neural Info. Process. Syst., 2009.

[12] A. Coates and A. Ng, “The importance of encoding versus
training with sparse coding and vector quantization,” in Proc. Int.
Conf. Mach. Learn., 2011.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks.” in Proc. Adv.
Neural Info. Process. Syst., 2012.

APPEARING IN IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, FEB. 2015 15

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

(34]

(35]

[36]

[37]

[38]

[39]

[40]

Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” IEEE T. Pattern Analysis Mach.
Intelli., 2001.

K. He, F. Wen, and J. Sun, “K-means hashing: An affinity-
preserving quantization method for learning binary compact
codes,” in Proc. IEEE Conf. Comp. Vis. Pattern Recogn., 2013.

W. Liu, J. Wang, S. Kumar, and S. F. Chang, “Hashing with
graphs,” in Proc. Int. Conf. Mach. Learn., 2011.

J.-P. Heo, Y. Lee,]J. He, S.-F. Chang, and S.-E. Yoon, “Spherical
hashing,” in Proc. IEEE Conf. Comp. Vis. Pattern Recogn., 2012.

E. Shen, C. Shen, Q. Shi, A. van den Hengel, and Z. Tang,
“Inductive hashing on manifolds,” in Proc. IEEE Conf. Comp. Vis.
Pattern Recogn., 2013.

R. Salakhutdinov and G. E. Hinton, “Learning a nonlinear em-
bedding by preserving class neighbourhood structure,” in Proc.
Int. Conf. Artificial Intelli. and Stat., 2007.

D. Zhang, J. Wang, D. Cai, and]. Lu, “Extensions to self-
taught hashing: kernelisation and supervision,” in Proc. ACM
SIGIR Workshop on Feature Generation and Selection for Information
Retrieval, 2010.

X. Li, G. Lin, C. Shen, A. v. d. Hengel, and A. Dick, “Learning
hash functions using column generation,” in Proc. Int. Conf. Mach.
Learn., 2013.

G. Lin, C. Shen, and J. Wu, “Optimizing ranking measures for
compact binary code learning,” in Proc. Eur. Conf. Comp. Vis., 2014.
G. Lin, C. Shen, D. Suter, and A. van den Hengel, “A general
two-step approach to learning-based hashing,” in Proc. Int. Conf.
Comp. Vis., 2013.

G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter,
“Fast supervised hashing with decision trees for high-dimensional
data,” in Proc. IEEE Conf. Comp. Vis. Pattern Recogn., 2014.

B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing,”
IEEE T. Pattern Analysis Mach. Intelli., 2012.

D. Zhang,]. Wang, D. Cai, and J. Lu, “Self-taught hashing for fast
similarity search,” in Proc. Annual ACM SIGIR Conf., 2010.

M. Norouzi, D. M. Blei, and R. Salakhutdinov, “Hamming dis-
tance metric learning,” in Proc. Adv. Neural Info. Process. Syst.,
2012.

Y. Gong, S. Kumar, V. Verma, and S. Lazebnik, “Angular
quantization-based binary codes for fast similarity search,” in
Proc. Adv. Neural Info. Process. Syst., 2012.

M. A. and C. Perpinan, “The elastic embedding algorithm for
dimensionality reduction,” in Proc. Int. Conf. Mach. Learn., 2010.
Z. Li, H. Ning, L. Cao, T. Zhang, Y. Gong, and T. S. Huang,
“Learning to search efficiently in high dimensions,” in Proc. Adv.
Neural Info. Process. Syst., 2011.

D. Nister and H. Stewenius, “Scalable recognition with a vocab-
ulary tree,” in Proc. IEEE Conf. Comp. Vis. Pattern Recogn., 2006.
J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in
Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE
Conference on, 2007.

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-
BFGS-B: Fortran subroutines for large-scale bound-constrained
optimization,” ACM T. Math. Softw., 1997.

C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer, “Op-
timizing binary MRFs via extended roof duality,” in Proc. IEEE
Conf. Comp. Vis. Pattern Recogn., 2007.

J. Besag, “On the statistical analysis of dirty pictures,” . of the
Royal Stat. Society., 1986.

M. Schmidt, “UGM: Matlab code for undirected graphical
models,” 2012. [Online]. Available: http://www.di.ens.fr/
~mschmidt/Software/UGM.html

Z. Wang, K. Crammer, and S. Vucetic, “Breaking the curse of
kernelization: Budgeted stochastic gradient descent for large-scale
svm training,” J. Mach. Learn. Research, 2012.

R. Appel, T. Fuchs, P. Dollar, and P. Perona, “Quickly boosting
decision trees-pruning underachieving features early,” in Proc. Int.
Conf. Mach. Learn., 2013.

J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regres-
sion: a statistical view of boosting (with discussion and a rejoinder
by the authors),” The annals of statistics, 2000.

A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large image
databases for recognition,” in Proc. IEEE Conf. Comp. Vis. Pattern
Recogn., 2008.

[41]

[42]

[43]

(44]

[45]

[46]

[47]

(48]

M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, “Tagprop:
Discriminative metric learning in nearest neighbor models for
image auto-annotation,” in Proc. IEEE Conf. Comp. Vis. Pattern
Recogn., 2009.

M. J. Huiskes and M. S. Lew, “The MIR-Flickr retrieval evalua-
tion,” in Proc. ACM Int. Conf. Multimedia Info. Retrieval, 2008.

J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “SUN
database: Large-scale scene recognition from abbey to zoo,” in
Proc. IEEE Conf. Comp. Vis. Pattern Recogn., 2010.

J. Deng, W. Dong, R. Socher, L-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comp. Vis. Pattern Recogn., 2009.

R. Kiros and C. Szepesvari, “Deep representations and codes for
image auto-annotation,” in Proc. Adv. Neural Info. Process. Syst.,
2012.

A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,” Int. |. Comp. Vis.,
2001.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng,
and T. Darrell, “Decaf: A deep convolutional activation feature for
generic visual recognition,” in Proc. Int. Conf. Mach. Learn., 2014.
Y. Jia, “Caffe: An open source convolutional architecture for fast
feature embedding,” 2013, berkeley Vision and Learning Center
techical report.

Guosheng Lin is a Research Fellow at School
of Computer Science, The University of Ade-
laide. He completed his PhD degree at the same
university in 2014. His research interests are on
computer vision and machine learning. He re-
ceived a Bachelor degree and a Master degree
from the South China University of Technology in
computer science in 2007 and 2010 respectively.

Chunhua Shen is a Professor at School of
Computer Science, The University of Adelaide.
His research interests are in the intersection of
computer vision and statistical machine learn-
ing. He studied at Nanjing University, at Aus-
tralian National University, and received his PhD
degree from University of Adelaide. In 2012, he
was awarded the Australian Research Council
Future Fellowship.

Anton van den Hengel is the founding Director
of The Australian Centre for Visual Technologies
(ACVT). He is a Professor in School of Com-
puter Science, The University of Adelaide. He
received a PhD in Computer Vision in 2000, a
Master Degree in Computer Science in 1994,
a Bachelor of Laws in 1993, and a Bachelor
of Mathematical Science in 1991, all from The
University of Adelaide.

http://www.di.ens.fr/~mschmidt/Software/UGM.html
http://www.di.ens.fr/~mschmidt/Software/UGM.html

	1 Introduction
	1.1 Related work

	2 Flexible Two-Step Hashing
	3 Step 1: binary code inference
	3.1 Spectral method for binary inference
	3.2 Block GraphCut for binary code inference

	4 Step 2: hash function learning
	4.1 Boosted trees as hash functions

	5 Experiments
	5.1 Comparison with KSH
	5.2 Evaluation on different features
	5.3 Comparison with dimension reduction
	5.4 More features and more bits
	5.5 Binary code inference evaluation
	5.6 Using different loss functions
	5.7 Comparison with unsupervised methods
	5.8 Large dataset: SUN397
	5.9 Large dataset: ImageNet
	5.10 Image classification

	6 Conclusion
	References
	Biographies
	Guosheng Lin
	Chunhua Shen
	Anton van den Hengel

