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Abstract

Compact and discriminative visual codebooks are pre-

ferred in many visual recognition tasks. In the literature,

a few researchers have taken the approach of hierarchi-

cally merging visual words of a initial large-size code-

book, but implemented this idea with different merging cri-

teria. In this work, we show that by defining different class-

conditional distribution functions and parameter estimation

methods, these merging criteria can be unified under a sin-

gle probabilistic framework. More importantly, by adopt-

ing new distribution functions and/or parameter estimation

methods, we can generalize this framework to produce a

spectrum of novel merging criteria. Two of them are par-

ticularly focused in this work. For one criterion, we adopt

the multinomial distribution to model each object class, and

for the other criterion we propose a large-margin based pa-

rameter estimation method. Both theoretical analysis and

experimental study demonstrate the superior performance

of the two new merging criteria and the general applicabil-

ity of our probabilistic framework.

1. Introduction

In the past few years, the Bag-of-Word (BOW) model

has gained its popularity in visual recognition thanks to its

simplicity and efficiency [4, 7, 8, 18]. It normally works

as follows: A set of local patches (for still images) or lo-

cal spatial-temporal volumes (for videos) are extracted and

represented by local descriptors. These descriptors are pro-

cessed, for example, by k-means clustering [4], to form a

collection of visual words, which in turn forms a visual

codebook. By assigning each local descriptor to the closest

visual word, a histogram indicating the number of occur-

rence of each visual word is created to characterize an im-

∗NICTA is funded by the Australian Government as represented by the

Department of Broadband, Communications and the Digital Economy and

the Australian Research Council through the ICT Center of Excellence

program.

age or video. Among all the factors of this model, the code-

book size plays a pivotal role, determining how well a his-

togram approximates the true distribution of local descrip-

tors in an image or video. Usually, a sufficiently large-size

codebook (for example, up to thousands of visual words)

has to be used to ensure good approximation and satisfac-

tory recognition performance.

However, a large-size codebook can be unfavorable. In

object localization, the computational load and memory re-

quirement for obtaining the histogram of each candidate

window is proportional to the codebook size [1]. In action

recognition [10], pair-wise relationship among visual words

is informative for modeling actions. A large codebook will

quadratically increase the number of pairs to be considered.

For classifiers commonly used in visual recognition, such

as Support Vector Machines (SVMs) and Nearest Neigh-

bor classifier, their training and test time often increases

with the codebook size [23]. Besides, high dimensionality

generally results in the “curse of dimensionality” problem.

Hence, a compact visual codebook is preferred in many vi-

sual recognition tasks. However, simply reducing the value

of k in k-means clustering will degrade recognition perfor-

mance because this loses discriminative information.

In the literature, a variety of approaches have been pro-

posed for designing better visual codebooks [9, 14, 22]. For

building both compact and discriminative codebooks in a

supervised setting, a dominating approach is to hierarchi-

cally merge visual words of a large initial codebook while

minimizing the loss of discriminative information, as taken

by [1, 23, 24]. Note that these three papers implemented

this approach with different models and criteria. In [1, 10],

the mutual information between words and class labels is

used to identify the optimal pair of words to merge at each

level of the hierarchy. In [23], the scatter-matrix-based class

separability is used as a criterion to seek the optimal pair

of words to merge. The work of [24] differs the previous

work in that a more rigorous probabilistic model is used to

merge visual words. In their work, the optimal pair is sought

as the one after which is merged, the resulting histograms
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can maximize the posteriori probability of true class labels.

Nevertheless, as reported in [1, 23], the merging criterion

of [24] often produces results inferior to those in [1, 23].

This is in a sharp contrast to the expected power of a rigor-

ous probabilistic model.

In this work, we follow the basic probabilistic model

in [24] and discuss its two key factors: the class-conditional

distribution function and parameter estimation method. The

difference between our work and [24] is that the two key

factors are kept fixed in [24] whereas they are treated as

flexible components in our work. As will be seen, such

a difference is critical because varying these two factors

could bring forth remarkably different characteristic to the

probabilistic model. By properly choosing different settings

to the two factors, we achieve a generalized probabilistic

framework for merging visual words. With our framework,

we are not only able to unify the criteria in [1, 23, 24], but

also able to produce a spectrum of new merging criteria.

Two of them will be focused in this paper. In summary, our

work has achieved the following results:

• By employing appropriate distribution functions and

maximum likelihood estimation, our generalized prob-

abilistic framework reproduces the criteria in [1]

and [23] as special cases;

• With this framework, we propose a new criterion by

modeling each class with a multinomial distribution

function. It achieves better recognition performance

than that originally proposed in [24];

• Based on this framework, we put forward a large-

margin parameter estimation method, leading to an-

other new criterion. It gives the overall highest recog-

nition performance when compared with all the above

word-merging criteria.

2. Related Work

This section reviews supervised compact codebook cre-

ation in [1, 23, 24], with the focus on [24] which inspires

our work. As shown in [23], compact codebook creation

can essentially be casted as a large-scale discrete optimiza-

tion problem, subject to a criterion related to the discrimi-

native power of the resulting compact codebook. Due to the

difficulty of efficient and global optimization, hierarchically

merging visual words is often adopted in the literature. That

is, two words are identified at each level of the hierarchy

such that merging them will optimize a given criterion. Let

Bt+1 denote a visual codebook consisting of t + 1 words.

Let Bt
r,s be the resulting codebook after merging the rth

and sth words. The corresponding histogram for an image

or video i is denoted by h
t
i, and its jth bin is ht

ij , where

1 ≤ i ≤ n, 1 ≤ j ≤ t. Also, c ∈ {1, 2, · · · , C} is the

class label of an image or video. In this paper, the crite-

ria in [1, 23, 24] are termed AIB, CSM and UVD in short,

respectively.
AIB: In [1], the mutual information, I , between Bt

r,s and
class labels is used to measure its discriminative power as

I(Bt
r,s, c) =

t
∑

j=1

C
∑

c=1

P (vtj , c) log
P (vtj , c)

P (vtj)P (c)
, (1)

where vtj denotes the jth word of Bt
r,s and P (vtj , c) and

P (vtj) are estimated with the jth bins of training his-

tograms. At each level, the words r and s whose merging

maximizes I(Bt
r,s, c) are identified and merged. As noted

in [1], this criterion can be related to agglomerative infor-

mation bottleneck [19].
CSM: In [23], the scatter-matrix-based class separabil-

ity, S, is used to measure the goodness of Bt
r,s as

S(r, s) = tr(Sw)/tr(St), (2)

where Sw and St are the within-class scatter matrix and the

total scatter matrix, respectively. They are computed with

h
t
1, · · · ,h

t
n. At each level, the words r and s whose merg-

ing minimize S(r, s) are identified and merged 1.
UVD: In [24], the posteriori probability of true class la-

bels conditioned on Bt
r,s is proposed to measure the dis-

criminative power of Bt
r,s. Let ĉ = {c1, · · · , cn} be the

label set of the n training samples. LetHt = {ht
1, · · · ,h

t
n}

be the set of n histograms obtained with Bt
r,s. Using Bayes’

theorem, this posterior probability is computed as

P (ĉ|Ht) =
P (Ht|ĉ)P (ĉ)

∑

c′
P (Ht|c′)P (c′)

, (3)

where P (Ht|ĉ) is the likelihood of the n training his-
tograms conditioned on true label configuration ĉ, and
P (Ht|c′) is the likelihood conditioned on any one of Cn

possible label configurations. Due to the difficulty of enu-
merating all possible configurations, [24] approximates the
denominatorwith two configurations only: the true configu-
ration ĉ and a special configuration csame in which all train-
ing samples have a same class label. Assuming equal prior
over these two configurations, it gives:

P (ĉ|Ht) ≈
P (Ht|ĉ)

P (Ht|ĉ) + P (Ht|csame)

(4)

Thus, maximizing P (ĉ|Ht) is (approximately) equivalent

to maximizing
P (Ht|ĉ)

P (Ht|csame) . The likelihood P (Ht|c) is

computed as

P (Ht|c) =

C
∏

c=1

∫

∏

ht
i
∈Dc

P (ht
i|θc)P (θc)dθc (5)

1To facilitate the subsequent analysis, we use the minimization of

tr(Sw)/tr(St) here. Because of tr(St) = tr(Sb) + tr(Sw), it is es-
sentially equivalent to [23] which maximizes tr(Sb)/tr(St).
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where P (ht
i|θc) is the class-conditional distribution for

class c, θc its parameter set, and Dc the set of all train-
ing samples in class c. In [24], P (ht

i|θc) is modeled as a

Gaussian distribution2. A conjugate Gaussian-gamma prior
is defined over θc as P (θc|µ, λ, a, b), where µ, λ, a, and
b are the hyper-parameters. Assuming the independence of
different bins and i.i.d samples in each class, the above like-
lihood is obtained as

P (Ht|c) =

C
∏

c=1

t
∏

j=1

∫

∏

ht
i
∈Dc

P (ht
ij |θcj)P (θcj)dθcj (6)

where ht
ij is the jth bin of the histogram h

t
i, and θci is the

parameter set (mean and variance) for the jth bin in class

c. Since P (θcj) is the conjugate prior of P (ht
ij |θcj), the in-

tegral can be analytically worked out. At each level of the

hierarchy, the pair of words r and s whose merging maxi-

mizes P (Ht|ĉ)/P (Ht|csame) is identified and merged.

3. Our Generalized Probabilistic Framework

In this paper, we take the basic formulation in Eq. (4)

and develop it to a general framework (Note that we define

J = logP (Ht|ĉ)/P (Ht|csame) and use it throughout the

following sections). Any algorithm taking such a formula-

tion needs to determine two key factors: i) how to model the

class-conditional distribution P (hi|θc)
3; ii) how to handle

the model parameter θc. As shown in Section 2, UVD [24]

models P (hi|θc) with a Gaussian distribution and take the

Bayesian method to marginalize out the model parameter

θc. The effect of θc is averaged with a Gaussian-gamma

prior and their values are not explicitly estimated.

By choosing different settings to the two factors, our

framework not only accommodates the existing criteria, but

also produces a matrix of new criteria. UVD [24], AIB [23]

and CSM [23] are merely three entries corresponding to

specific settings of the two factors, and there are more crite-

ria to be explored. Two of them, called MLT and MME

in short, are focused in this paper. We demonstrate that

they can create more efficient compact codebooks. In Sec-

tion 3.1, we first propose the criterion MLT, which replaces

the Gaussian distribution in UVD with a multinomial distri-

bution. Then, we derive AIB and CSM as two special cases

in Section 3.2 and 3.3 respectively. Finally, we propose in

Section 3.4 another criterion MME which estimates model

parameters through a discriminative approach.

3.1. MLT: Multinomial distribution + Bayesian
Method (Dirichlet prior)

In the literature, the BOW model originates from doc-

ument analysis, in which a histogram of words is usually

2As advised in [24], the square root of each bin of h is used to better fit

the Gaussian distribution assumption.
3In this section, we drop the superscript t in ht

i . All the calculation is

at the level t unless indicated otherwise.

modeled by a multinomial distribution [2]. In the first cri-

terion derived from our generalized framework, we propose

to use the multinomial distribution and Dirichlet prior to

replace the Gaussian distribution and the Gaussian-gamma

prior in [24]. As will be seen in the experiment, this simple

change can bring forth significant improvement.
In MLT, P (H|c) is still modeled as Eq.(5), but the like-

lihood and the prior terms become:

P (hi|θc) =
t
∏

j=1

P (vj |c)
hij

P (θc) =
1

B(α)

t
∏

j=1

P (vj |c)
αj−1, (7)

where vj denotes the jth word and P (vj |c) is the model pa-
rameter, which represents the likelihood of word vj occur-
ring in class c. B(α) is the multinomial Beta function and
α = (α1, ..., αt) is the hyper-parameter. We set αj = 0.1
for all j and all classes in the experiment. Substituting (7)
into (5), We can obtain:

P (H|c) = · · · =
C
∏

c=1

B(α+ h̄c)

B(α)
(8)

where we define h̄c = (h̄c1, ..., h̄ct) for class c and h̄cj =∑
{i|hi∈Dc}

hij . Note that the integral in (5) can be analyti-

cally worked out because the Dirichlet distribution is a con-
jugate prior of a multinomial distribution. Thus, our MLT
criterion is obtained as

J =

C
∑

c=1

logB(α+ h̄c)− logB(α+

C
∑

c=1

h̄c) + const. (9)

Recall that J = logP (H|ĉ)/P (H|csame). At each level

of the hierarchy, the pair of words r and s whose merging

maximizes J is identified and merged.

3.2. AIB [1]: Multinomial distribution +Maximum
Likelihood Estimation

The above UVD and MLT use Bayesian method to han-

dle the model parameters. The performance of the Bayesian

method highly depends on the choice of prior distribution

and its hyper-parameters. In practice, for the feasibility of

calculation, the hyper-parameters are often empirically set,

say, using the same hyper-parameters for all classes. Conse-

quently, the Bayesian method does not necessarily outper-

form the way that straightforwardly estimates model param-

eters from training data. In the following, we maintain the

multinomial distribution and use the maximum likelihood

estimate (MLE). By doing so, our probabilistic framework

will produce the AIB criterion in [1].
In this setting, P (H|c) is computed as:

P (H|c) =
∏

{i|hi∈Dc}

P (hi|θc) =
∏

{i|hi∈Dc}

t
∏

j=1

P (vj |c)
hij . (10)

3
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Thus, the merging criterion becomes:

J =
C
∑

c=1

t
∑

j=1

h̄cj logP (vj |c)−
t
∑

j=1

(

C
∑

c=1

h̄cj

)

logP (vj)

=
C
∑

c=1

t
∑

j=1

h̄cj log
P (vj |c)

P (vj)
. (11)

With training samples, it is not difficult to obtain the MLE
of the model parameters as

P (vj |c) =
h̄cj

∑t

j=1 h̄cj

, P (vj |c
same) =

∑C

c=1 h̄cj
∑t

j=1

∑C

c=1 h̄cj

. (12)

Note that P (vj |c
same) = P (vj) because all samples are

assumed to be in a same class in the csame configuration. In
AIB [1], these two terms are computed in the same way 4.
Moreover, AIB computes the joint probability as:

P (vj , c) =
h̄cj

∑t

j=1

∑C

c=1 h̄cj

. (13)

Note that the denominator
∑t

j=1

∑C

c=1 h̄cj keeps constant

when merging different words at level t. Substitute h̄cj =

P (vj , c)
∑t

j=1

∑C

c=1 h̄cj into Eq.(11) and dropping con-

stant
∑t

j=1

∑C

c=1 h̄cj , we produce AIB criterion in [1] as,

Eq.(11) ∝
C
∑

c=1

t
∑

j=1

P (vj , c) log
P (vj , c)

P (vj)P (c)
= AIB. (14)

3.3. CSM [23]: Gaussian distribution + Maximum
Likelihood Estimation

If we use a Gaussian distribution to model P (hi|θc) and
estimate the mean with MLE, Eq.(4) will lead to the CSM
criterion in [23], as shown below.

P (H|c) =
∏

{i|hi∈Dc}

P (hi|θc)

∝ |Σc|
−Nc

2 exp



−
1

2

∑

{i|hi∈Dc}

(hi − µc)
⊤
Σ

−1
c (hi − µc)



 ,

(15)

where µc and Σc denote the mean and covariance matrix
for class c, respectively. Nc is the number of samples in
class c. Then J = logP (H|ĉ)/P (H|csame) becomes:

J = const.+
n
∑

i=1

(hi − µ)⊤Σ−1(hi − µ)

−
C
∑

c=1

∑

{i|hi∈Dc}

(hi − µc)
⊤
Σ

−1
c (hi − µc), (16)

4This can be seen in the code provided by the author [20].

where µ and Σ denote the total mean and covariance ma-
trix for all data, respectively. Now, we treat Σc and Σ

as predetermined constants. Considering a special case of
Σ1 = Σ2 = ... = ΣC = diag(σ2

1 , .., σ
2
1) and Σ =

diag(σ2
0 , .., σ

2
0), Eq.(16) reduces to

J =
1

σ2
0

n
∑

i=1

‖hi − µ‖2 −
1

σ2
1

C
∑

c=1

∑

{i|hi∈Dc}

‖hi − µc‖
2

∝ −
(

[tr(Sw)]− (σ2
1/σ

2
0) [tr(St)]

)

(17)

where Sw and St are exactly the within-class scatter ma-

trix and the total scatter matrix defined in [23]. The

criterion tr(Sw) − (σ2
1/σ

2
0)tr(St) strongly connects to

tr(Sw)/tr(St) used in [23]. This is because minimizing

tr(Sw)/tr(St), which is a fractional programming prob-

lem, can be effectively solved by the Dinkelbach’s algo-

rithm [17]. It iteratively minimizing tr(Sw) − λtr(St),
where λ is the ratio of tr(Sw) to tr(St) at the last iteration.

3.4. MME: Multinomial distribution + Max­
Margin Parameter Estimation

The maximum likelihood estimation of model parame-

ters still presents some potential drawbacks. Due to its gen-

erative nature, it prevents us from using more information

in training data. For example, when the multinomial dis-

tribution is employed, the MLE of its parameters are only

determined by the average histogram per class. In the lit-

erature, this phenomenon is known as exchangeable prop-

erty [2]. One solution may be to adopt more complex distri-

bution, say, the multivariate Polya distribution [13]. How-

ever, this will lead to intractable computation because there

is normally no analytical MLE for the parameters in these

complex models. Another disadvantage of MLE is that the

estimation can be noisy when training samples are scarce

or many less discriminative visual words exist. It cannot

effectively identify the discriminative words since the pa-

rameters are estimated based on the data from a same class

only. This limits the performance of the created compact

codebooks.
To improve this situation, we propose to employ a Max-

Margin parameter Estimation (MME) scheme. The idea is
to seek the model parameters that can maximize the mar-
gin of posterior probability ratio of the true class label to
all other possible labels under certain regularization. The
aforementioned disadvantages of MLE can be avoided be-
cause (i) the parameter estimation is now based on all avail-
able training samples; (ii) the max-margin principle empha-
sizes discriminative features. Still modeling P (hi|θc) by a
multinomial distribution, we define the ratio for each train-
ing sample as:

Ri,c = log
P (ci|hi)

P (c|hi)
= log

P (hi|ci)P (ci)

P (hi|c)P (c)

=
t
∑

j=1

hij log
P (vj |ci)

P (vj |c)
+ log

P (ci)

P (c)
, c 6= ci; (18)

4
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where ci is the truth label of sample i and c is one of the
other possible labels. Note that this ratio takes a form of lin-

ear classifier if we treat log
P (vj |ci)
P (vj |c)

and log P (ci)
P (c) as param-

eters, although the variables are P (vj |ck) and P (ck), k =
1, .., C , j = 1, .., t. Inspired by the margin definition in
SVM [6], we define the margin of posterior probability ra-
tio as:

γ = min
i=1,··· ,n
c=1,··· ,C

Ri,c

∑

cp,cq

[

∑t

j=1

(

log
P (vj |cp)

P (vj |cq)

)2

+
(

log
P (cp)

P (cq)

)2
]

=
min i=1,··· ,n

c=1,··· ,C

Ri,c

∑

cp,cq

[

∑t

j=1

(

log
P (vj |cp)

P (vj |cq)

)2

+
(

log
P (cp)

P (cq)

)2
]

∀ p 6= q, p, q = 1, 2, · · · , C; (19)

where the denominator acts as a regularization term which
smoothes the estimation of P (vj |ck) and P (ck) over differ-
ent k (k = 1, · · · , C). Maximizing the margin leads to an
optimization problem which is similar to SVM 5(Note that
we also add the slack variables to handle the non-separable
case):

min
∑

cp,cq

[

t
∑

j=1

(

log
P (vj |cp)

P (vj |cq)

)2

+

(

log
P (cp)

P (cq)

)2
]

+ λ
∑

i,c

ξi,c

s.t.
t
∑

j=1

hij

(

log
P (vj |ci)

P (vj |c)

)

+

(

log
P (ci)

P (c)

)

≥ 1− ξi,c,

ξi,c ≥ 0, ∀ c 6= ci; ∀ i = 1, 2, · · · , n;

∀ p 6= q, p, q, c = 1, 2, · · · , C; (20)

Besides, we need to ensure the variables P (vj |ck)
and P (ck) bounded because only their pairwise ratio
presents in the constraints and object function. Hence, we
impose two more constraints through the total probability
rule and probability property,

C
∑

c=1

P (vj |c)P (c) = P (vj),
C
∑

c=1

P (c) = 1. (21)

where P (vj) is estimated via Eq.(12). Thus the parameter
estimation can be performed in two steps: i) obtain the log-
ratios by solving the problem in Eq.(20) which is a QP prob-
lem; and ii) recover the exact values of P (vj |ck) and P (ck)
combining a linear equation derived from Eq.(21). Partic-
ularly, in binary classification, there are only two types of
class labels, +1 and −1. The problem in Eq.(20) turns out
to be a standard QP problem in binary SVMs by defining

wj
+1,−1 = log

P (vj |c = 1)

P (vj |c = −1)
; b+1,−1 = log

P (c = 1)

P (c = −1)
.

(22)

5Strictly speaking, the margin defined in Eq.19 is invariant after multi-

plying a scaling factor to log
P (vj |ci)

P (vj |c)
and log

P (ci)
P (c)

. To make a simple

analysis, here we set this scaling factor to 1. But other choices are also

acceptable. In fact, this factor will give an extra tuning parameter for esti-

mating P (vj |ci) and P (ci).

This equivalence provides us with the advantage of simply

using the off-the-shelf SVM solver to perform parameter

estimation. Once we estimate these model parameters, we

apply them to the multinomial distribution to compute J to

identify the optimal pair of words to merge.

Estimating P (vrs|c) might be a computational issue,

where vrs denotes the new visual word formed by merging

words r and s. If strictly following the max-margin param-

eter estimation, we have to re-estimate P (vrs|c) by solving
the QP problem for each possible pair of r and s, which
is at the order of O(t2) at level t. Even the SVM solver

is highly efficient, this will still be too time-consuming. In

practice, we adopt a compromised scheme: the max-margin

estimation is only carried out once at each level after the

optimal pair of words is identified. In the course of iden-

tifying the optimal pair, the updating formula P (vrs|c) =
P (vr|c) + P (vs|c) is used. Experimental study shows that

this strategy works well in practice.

Multi-class extension For a multi-class case, the opti-
mization in Eq.(20) is not equivalent to the optimization
problem in SVM anymore because many extra constraints
are to be introduced. Extending the definition of w in

Eq.(22) to define wj
cp,cq

= log
P (vj |cp)
P (vj |cq)

, a set of extra con-

straints: wj
cp,cq

= wj
cp,ck

+ wj
ck,cq

, wj
cp,cq

+ wj
cq,cp

= 0

need to be added to enforce the fact that log
P (vj |cp)
P (vj |cq)

=

log
P (vj |cp)
P (vj |ck)

+ log
P (vj |ck)
P (vj |cq)

log
P (vj |cp)
P (vj |cq)

+ log
P (vj |cq)
P (vj |cp)

= 0

(Similar definition and constraints for bcp,cq ). As a result,
the optimization problem becomes:

min
C
∑

cp,cq

(

‖wcp,cq‖
2 + b2cp,cq

)

+ λ
∑

i,c

ξi,c

s.t. w
⊤
ci,c

hi + bci,c ≥ 1− ξi,c; ∀i = 1, 2, · · · , n;

wj
cp,ck

+ wj
ck,cq

= wj
cp,cq ; wj

cp,cq + wj
cq ,cp = 0;

bcp,ck + bck,cq = bcp,cq ; bcp,cq + bcq,cp = 0;

∀p 6= k, k 6= q, q 6= p, p, k, q, c = 1, 2, · · · , C;

ξi,c ≥ 0, c 6= ci, ∀ j = 1, 2, · · · , t; (23)

where wcp,cq = (w1
cp,cq

, w2
cp,cq

, · · · , wt
cp,cq

)⊤. Examin-

ing this problem shows that it is still QP. However, we can-

not leverage a highly efficient SVM solver anymore since it

is not equivalent to any multi-class SVM formulation. Its

number of variables and constraints gradually rises with the

increasing number of classes, words and training samples.

Consequently, this problem will become difficult to handle

on a data set having a large number of classes, many training

samples and a large-size initial codebook. In this paper, we

test this multi-class extension on the data sets with a smaller

number of classes and words to preliminarily demonstrate

its effectiveness. More efficient solutions will be explored

in our future work. The problem in Eq.(23) is currently

solved by CVX [5] package.
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Figure 1: Comparison of five compact codebook creation algorithms on the Graz02 data set.

4. Experimental Result

This experiment aims to verify the effectiveness of our

generalized probabilistic framework. The proposed new cri-

teria, MLT and MME, will be compared with the existing

criterion UVD [24], AIB [1], and CSM [23]. We imple-

ment UVD by following [24] and use AIB and CSM codes

provided by their authors. Two indexes are used to evaluate

the quality of compact codebooks. One is the classification

error rate versus codebook size, used in [1, 10, 23, 24]. For

a same codebook size, the lower the error rates, the better

the criterion. The other one is the “stability” of the clas-

sification performance of the created codebooks. A better

criterion will show smaller fluctuation with the decreasing

codebook size. This will mitigate the issue of choosing the

optimal codebook size. Here, we use the variance of clas-

sification error rate to measure the stability. A linear SVM

classifier is used. Its regularization parameter is equally op-

timized via 5-fold cross-validation for each algorithm to en-

sure fair comparison. Three benchmark data sets, Graz02

[15], 15-Scenes [9], and KTH [16], are used, corresponding

object classification, scene classification, and action classi-

fication tasks, respectively. With the binaries provided by

VGG group6, we use the Harris-Affine detector [12] to lo-

cate interest regions, and then represent them by the SIFT

descriptor [11]. Each comparison will be conducted on ten

pairs of randomly split training/test sets, and the average

result is used. A large initial codebook is created by apply-

ing k-means to the local descriptors from training samples

only. This experiment mainly focuses on binary classifi-

cation cases by using one-vs-one and one-vs-rest settings.

This allows us to verify the correspondence of the opti-

mization problems in MME and binary SVMs, as identified

in section 3.4. We use the off-the-shelf SVM solver (lib-

svm [3]) to estimate parameters for MME. Meanwhile, we

investigate the multi-class extension of MME and prelimi-

narily demonstrate its effectiveness on multi-class classifi-

6http://www.robots.ox.ac.uk/˜vgg/research/

affine/detectors.html#binaries

cation tasks. In the experiment, the following two points

will be verified: i) if the proposed MME is the overall best;

ii) if the proposed MLT is better than UVD.

4.1. Object classification on the Graz02 data set

Graz02 is a challenging data set because each object can

appear in an image with different location, position, size,

and view angle. Also, the background can occupy a large

portion of an image, making the histograms contain many

“noisy bins”. There are three object classes, namely, Car,

Bicycle and Person. We use one-vs-one setting to form

three binary classification problems. An initial codebook

with the size of 1000 is used to create compact codebooks.

As presented in Figure 1, the MME criterion produces

the lowest error in all classification tasks, and clearly out-

performs the others. Also, it shows clear improvement over

AIB which only differs to MME at the parameter estimation

method. This can be understood as that the max-margin-

based parameter estimation is able to emphasize more on

discriminative bins and handle noisy bins more effectively.

Another important observation is that by using MME, the

created compact codebooks can even achieve the classifi-

cation performance better than that using the initial large

codebook. Also, in all the three tasks, MLT achieves better

performance than UVD by replacing the Gaussian distribu-

tion with a multinomial distribution. As can be seen in Fig-

ure 1, the MME criterion also demonstrates a significantly

lower variance than the others. (Quantitative measurement

of the variance can be found in the supplemental material).

The superior performance of MME and the improvement of

MLT over UVD preliminarily demonstrate the importance

of properly setting the two key factors and the generalizabil-

ity of our probabilistic framework.

4.2. Scene classification on the 15­Scenes data set

The five criteria are further compared on discriminating

15 different classes of scenes in the benchmark 15-Scenes

data set. We exhaustively test all the 105 pairwise classifi-

cation cases, and report the average pairwise classification

6
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performance. Again, all these are conducted on ten pairs

of randomly split training/test sets and the average result is

used. The size of the initial codebook is 1000.

Figure 2(a) plots the average pairwise classification error

rate. As seen, by the proposedMME, the created codebooks

consistently give the highest performance. Moreover, most

of these compact codebooks produce better performance

than the initial codebook of size 1000, even if the code-

book size reduces to a number as low as 10. These clearly
indicates the excellent performance of MME. In terms of

performance stability, MME is also the most stable one

with respect to different codebook sizes, as demonstrated by

the variance listed in supplemental material. As examples,

sub-figure(b) and (c) show two pairwise classification cases

whereMME achieves the most significant improvement and

the advantage of MME becomes more pronounced. Focus-

ing onMLT and UVD and going through the above compar-

ison again, we can see that MLT gives better classification

performance than UVD as expected.

4.3. Action classification on the KTH data set

In recent years, the Bag-of-Word model has also been

applied to action recognition by extracting local spatial-

temporal features of videos [8, 21]. This experiment is car-

ried out on the KTH data set, a benchmark data set in ac-

tion recognition [16]. It consists of 25 subjects performing

6 actions: boxing, hand-clapping, jogging, running, walk-

ing and hand-waving. We randomly choose 16 subjects for

training and the remaining 9 subjects for test, forming 10
pairs of training/testing sets. Laptev’s spatial-temporal fea-

ture proposed in [8] is used. By using k-means clustering,

an initial large codebook with size of 4000 is obtained. In

this experiment, we compare the five criteria in the setting

of one-vs-rest binary classification tasks, each of which dis-

criminate one target action from the others. We report the

classification performance averaged over the 6 one-vs-rest

classification tasks in Figure 3(a). Along with it, we par-

ticularly show the comparison on the two most challenging

tasks (identified based on both our experiment and those re-

ported in [16]), that is, running vs. the rest, and jogging vs

the rest. For the other easier tasks, all criteria give nearly

perfect classification results.

As shown in all the sub-figures of Figure 3, MME still

achieves top performance and only CSM is comparable to it.

However, reviewing the results of CSM in all the previous

experiments shows that the overall performance of CSM is

far behind that of MME. As for the criteria of UVD, AIB

and MLT, their performance is inferior and can deteriorate

quickly with the decreasing codebook size. Comparatively,

UVD shows the worst performance, but MLT still manages

to keep clear improvement over UVD, especially when the

codebook size is smaller.

4.4. Preliminary result on multi­class classification

We conduct preliminary study of our multi-class MME

extension . Following previous experimental settings, the

five criteria are compared in terms of the classification error

rates averaged on 10 training/test pairs. Due to the scala-

bility problem of current MME, this experiment is carried

on Graz02 and a “reduced” version of KTH and 15-scenes

data sets. For KTH, only the three most confused classes,

namely, hand waving, jogging and running are selected; For

15-Scenes, we choose bedroom, kitchen and industry which

have been demonstrated in previous binary classification ex-

periment. The initial codebook size in all three data sets are

reduced to 100. The results are shown in Figure 4. It is clear

that MME still produces the best performance with the de-

creasing codebook size. Also, we observe that MLT again

achieves better performance than UVD.

5. Conclusion

We have presented a generalized probabilistic frame-

work, with which we unify existing merging criteria and de-

sign new criteria for compact codebook construction. With

the better performance achieved by the new criteria, we

have demonstrated the importance of properly setting the

two key factors of this framework. In future work, we will

address the scalability issue in the current multi-class MME

method. Also, more effective merging criteria are to be ex-

plored within this framework.

References

[1] B.Fulkerson, A. Vedaldi, and S. Soatto. Localizing objects with

smart dictionaries. In Proc. Eur. Conf. Comp. Vis., 2008.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J.

Mach. Learn. Res., 3:993–1022, 2003.

[3] C.-C. Chang and C.-J. Lin. LIBSVM: http://www.csie.ntu.

edu.tw/˜cjlin/libsvm, 2001.

[4] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual

categorization with bags of keypoints. In Proc. Eur. Conf. Comp.

Vis., 2004.

[5] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex

programming, version 1.21. http://cvxr.com/cvx, Oct. 2010.

[6] R. Herbrich and T. Graepel. Bayes point machines. J. Mach. Learn.

Res., 1:245–279, 2001.

[7] F. Jurie and B. Triggs. Creating efficient codebooks for visual recog-

nition. In Proc. IEEE Int. Conf. Comp. Vis., Washington, DC, USA,

2005. IEEE Computer Society.

[8] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning

realistic human actions from movies. In Proc. IEEE Conf. Comp.

Vis. Patt. Recogn., pages 1–8, June 2008.

[9] S. Lazebnik andM. Raginsky. Supervised learning of quantizer code-

books by information loss minimization. IEEE Trans. Pattern Anal.

Mach. Intell., 31:1294–1309, 2009.

[10] J. Liu and M. Shah. Learning human actions via information maxi-

mization. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2008.

[11] D. G. Lowe. Object recognition from local scale-invariant features.

In Proc. IEEE Int. Conf. Comp. Vis., pages 1150–1157, 1999.

[12] K.Mikolajczyk and C. Schmid. Scale & affine invariant interest point

detectors. Int. J. Comp. Vis., 60(1):63–86, 2004.

7



Appearing in IEEE Conf. Comp. Vis. Pattern Recogn. 2011. This reprint differs from the original in
pagination and typographic detail.

1K 800 600 400 200 100 90 80 70 60 50 40 30 20 15 10
12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

Size of Codebook

E
rr

o
r 

R
a

te
 %

Average of all 105 pairwise classification tasks

 

 

UVD [24]

AIB [1]

CSM [23]

MLT (Proposed)

MME (Proposed)

(a)

1K 800 600 400 200 100 90 80 70 60 50 40 30 20 15 10
21

22

23

24

25

26

27

28

29

Size of Codebook

E
rr

o
r 

R
a

te
 %

Bedroom vs Industrial

 

 

UVD [24]

AIB [1]

CSM [23]

MLT (Proposed)

MME (Proposed)

(b)

1K 800 600 400 200 100 90 80 70 60 50 40 30 20 15 10
23

24

25

26

27

28

29

30

31

Size of Codebook

E
rr

o
r 

R
a

te
 %

Industrial vs Kitchen

 

 

UVD [24]

AIB [1]

CSM [23]

MLT (Proposed)

MME (Proposed)

(c)

Figure 2: Comparison of five compact codebook creation algorithms on the 15-Scenes data set.
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Figure 3: Comparison of five compact codebook creation algorithms on the KTH data set.
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Figure 4: Comparison on three data sets in the multi-class setting.
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