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Classification with Noisy Labels
by Importance Reweighting
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Abstract—In this paper, we study a classification problem in which sample labels are randomly corrupted. In this scenario, there
is an unobservable sample with noise-free labels. However, before being observed, the true labels are independently flipped with a
probability ρ ∈ [0, 0.5), and the random label noise can be class-conditional. Here, we address two fundamental problems raised by
this scenario. The first is how to best use the abundant surrogate loss functions designed for the traditional classification problem when
there is label noise. We prove that any surrogate loss function can be used for classification with noisy labels by using importance
reweighting, with consistency assurance that the label noise does not ultimately hinder the search for the optimal classifier of the
noise-free sample. The other is the open problem of how to obtain the noise rate ρ. We show that the rate is upper bounded by the
conditional probability P (Ŷ |X) of the noisy sample. Consequently, the rate can be estimated, because the upper bound can be easily
reached in classification problems. Experimental results on synthetic and real datasets confirm the efficiency of our methods.

Index Terms—Classification, label noise, noise rate estimation, consistency, importance reweighting.
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1 INTRODUCTION

C LASSIFICATION crucially relies on the accuracy of
the dataset labels. In some situations, observation

labels are easily corrupted and, therefore, inaccurate.
Designing learning algorithms that account for noisy
labeled data is therefore of great practical importance
and has attracted a significant amount of interest in the
machine learning community.

The random classification noise (RCN), in which each
label is flipped independently with a probability ρ ∈
[0, 0.5), has been proposed; it was proven to be PAC-
learnable by Angluin and Laird [1] soon after the noise-
free PAC learning model was introduced by Valiant
[2]. Many related works then followed: Kearns [3] pro-
posed the statistical query model to learn with RCN.
The restriction he enforced is that learning is based
not on the particular properties of individual random
examples, but instead on the global statistical properties
of large samples. Such an approach to learning seems
intuitively more robust. Lawrence and Scholköpf [4]
proposed a Bayesian model for this noise and applied
it to sky moving in images. Biggio et al. [5] enabled
support vector machine learning with RCN via a kernel
matrix correction. And Yang et al. [6] developed mul-
tiple kernel learning for classification with noisy labels
using stochastic programming. The interested reader is
referred to further examples in the survey [7]. How-
ever, most of these algorithms are designed for specific
surrogate loss functions, and the use and benefit of
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the large number of surrogate loss functions designed
for the traditional (noise-free) classification problem is
important to investigate in order to solve classification
problems in the presence of label noise.

Aslam and Decatur [8] proved that the RCN exploited
using a 0-1 loss function is PAC-learnable if the function
class is of finite VC-dimension. Manwani and Sastry
[9] analyzed the tolerance properties of RCN for risk
minimization under several frequently used surrogate
loss functions and showed that many of them do not
tolerate RCN. Natarajan et al. [10] reported two methods
for learning asymmetric RCN models, in which the
random label noise is class-conditional. Their methods
exploit many different surrogate loss functions [11]: the
first model uses unbiased estimators of surrogate loss
functions for empirical risk minimization, but the unbi-
ased estimator may be non-convex, even if the original
surrogate loss function is convex; their second method
uses label-dependent costs. The latter approach is based
on the idea that there exists an α ∈ (0, 1) such that the
minimizer of the expected risk as assessed using the α-
weighted 0-1 loss function `α(t, y) = (1 − α)1y=11t≤0 +
α1y=−11t>0 over the noisy sample distribution, where t
is the predicted value and y is the label of the exam-
ple, has the same sign as that of the Bayes classifier
which minimizes the expected risk as assessed using
the 0-1 loss function over the clean sample distribution;
see, for example, Theorem 9 in [10]. The method is
notable because it can be applied to all the convex
and classification-calibrated surrogate loss functions (If
a surrogate loss function is classification-calibrated and
the sample size is sufficiently large, the surrogate loss
function will help learn the same optimal classifier as
the 0-1 loss function does, see Theorem 1 in Bartlett et
al. [11]). This modification is based on the asymmetric
classification-calibrated results [12] and cannot be used
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to improve the performance of symmetric RCN problems
or the algorithms that employ the non-classification-
calibrated surrogate loss functions.

To best use and benefit from the abundant surrogate
loss functions designed for the traditional classification
problems, here we propose an importance reweighting
method in which any surrogate loss function designed
for a traditional classification problem can be used
for classification with noisy labels. In our method, the
weights are non-negative, so the convexity of objective
functions does not change. In addition, our method
inherits most batch learning optimization procedures
designed for traditional classification problems with dif-
ferent regularizations; see, for examples, [13]–[17].

Although many works have focused on the RCN
model, how to best estimate the noise rate ρ remains an
open problem [6] and severely limits the practical appli-
cation of the existing algorithms. Most previous works
make the assumption that the noise rate is known or
learn it using cross-validation, which is time-consuming
and lacks a guarantee of generalization accuracy. In
this paper, we set the noise rate to be asymmetric and
unknown and denote the flip probability of positive
labels P (Ŷ = −1|Y = +1) and the flip probability
of negative labels P (Ŷ = +1|Y = −1) by ρ+1 and
ρ−1, respectively. We show that the noise rate ρ+1 (or
ρ−1) is upper bounded by the conditional probability
P (−1|X) (or P (+1|X)) of the noisy data. Moreover, the
upper bound can be reached if there exists an x ∈ X
such that the probability P (+1|x) (or P (−1|x)) of the
“clean” sample is zero, which is very likely to hold for
classification problems. The noise rates ρ±1 are therefore
estimated by finding the minimal P (∓1|X) of the noisy
training sample.

1.1 Related Works

Kearns and Li [18] introduced the malicious noise (MN)
model, in which an adversary can access the sample and
randomly replace a fraction of them with adversarial
ones. It has been proven that any nontrivial target func-
tion class cannot be PAC learned with accuracy ε and
malicious noise rate η ≥ ε(1 + ε); see, for examples, [18]–
[20]. Long and Servedio [21] proved that an algorithm for
learning γ-margin half-spaces that minimizes a convex
surrogate loss function for misclassification risk cannot
tolerate malicious noise at a rate greater thanO(εγ). They
therefore proposed an algorithm, that does not optimize
a convex loss function and that can tolerate a higher
rate of malicious noise than order O(εγ). Further details
about the MN model can be found in [22].

Cesa-Bianchi et al. [23] considered a more complicated
model in which the features and labels are both added
with zero-mean and variance-bounded noise. They used
unbiased estimates of the gradient of the surrogate loss
function to learn from the noisy sample in an online
learning setting. Perceptron algorithms that tolerate RCN
have also been widely studied; see, for examples, [24]–

[27]. See Khardon and Wachman [28] for a survey of
noise-tolerant variants of perceptron algorithms.

As well as these model-motivated algorithms, many
algorithms that exploit robust surrogate loss functions
have been designed for learning with any kind of feature
and label noise. Robust surrogate loss functions, such
as the Cauchy loss function [29] and correntropy (also
known as the Welsch loss function), [30], [31], have been
empirically proven to be robust to noise. Some other
algorithms, such as confidence weighted learning [32],
have also been proposed for noise-tolerant learning.

To the best of our knowledge, the only work that
related to learn the unknown noise rate was proposed
by Scott et al. [33]. Inspired by the theory of mixture
proposition estimation [34], they provided estimators for
the inversed noise rates π+1 = P (Y = −1|Ŷ = +1)
and π−1 = P (Y = +1|Ŷ = −1). However, there were
no efficient algorithms that can be used to calculate
the estimators until Scott [35] proposed an efficient
algorithm for optimizing them during the preparation
of this manuscript. By using Bayes’ rule, we have
P (Ŷ |Y ) = P (Y |Ŷ )P (Ŷ )/P (Y ). However, our method for
estimation the noise rates is essentially different from
that of Scott et al. [33] because P (Y ) is unknown. The
inversed noise rates can be used to design algorithms for
classification with label noise; see, for example, [35]. In
this paper, we also design importance reweighting algo-
rithms for classification with label noise by employing
the inversed noise rates.

The rest of this paper is organized as follows. The
problem is set up in Section 2. Section 3 presents some
useful results applied to the traditional classification
problem. In Section 4, we discuss how to perform
classification in the presence of RCN and benefit from
the abundant surrogate loss functions and algorithms
designed for the traditional classification problem. In
Section 5, we discuss how to reduce the uncertainty
introduced by RCN by estimating the conditional proba-
bility P (Ŷ |X) of the noisy sample; theoretical guarantees
for the consistency of the learned classifiers are provided;
certain convergence rates are also characterized in this
section. In Section 6, an approach for estimating the noise
rates is proposed. We also provide a detailed comparison
between the theory of noise rate estimation and that of
the inversed noise rate estimation in this section. We
present the proofs of our assertions in Section 7. In
Section 8, we present experimental results on synthetic
and benchmark datasets, before concluding in Section 9.

2 PROBLEM SETUP

Let D be the distribution of a pair of random variables
(X,Y ) ∈ X × {±1}, where X ⊆ Rm. Our goal is to
predict a label for any given observation X ∈ X using a
sample drawn i.i.d. from the distribution D. However, in
many real-world classification problems, sample labels
are randomly corrupted. We therefore consider the asym-
metric RCN model (see [10]). Let (X1, Y1), . . . , (Xn, Yn)
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be an i.i.d. sample drawn from the distribution D and
(X1, Ŷ1), . . . , (Xn, Ŷn) the corresponding corrupted ones.
The asymmetric RCN model is given by:

P (Ŷ = +1|Y = −1) = ρ−1, P (Ŷ = −1|Y = +1) = ρ+1,

where ρ+1, ρ−1 ∈ [0, 1) and ρ+1 + ρ−1 < 1.
We denote by Dρ the distribution of the corrupted

variables (X, Ŷ ). In our setting, the “clean” sample
(X1, Y1), . . . , (Xn, Yn) and the noise rates ρ+1 and ρ−1
are not available for learning algorithms. The classifier
and noise rates are learned only by using the knowledge
from the corrupted sample (X1, Ŷ1), . . . , (Xn, Ŷn).

3 THE TRADITIONAL CLASSIFICATION PR-
OBLEM

Classification is a fundamental machine learning prob-
lem. One intuitive way to learn the classifier is to find
a decision function f ∈ F , such that the expected risk
R1,D(f) = E(X,Y )∼D[1sign(f(X))6=Y ] is minimized, where
F is the function class for searching. However, two
problems remain when minimizing the expected risk:
first, that the 0-1 loss function is neither convex nor
smooth, and second that the distribution D is unknown.
The solutions to these two problems are summarized
below.

For the problem that the 0-1 loss function is nei-
ther convex nor smooth, abundant convex surrogate
loss functions (most are smooth) with the classification-
calibrated property [11], [12] have been proposed. These
surrogate loss functions, such as square loss, logistic loss,
and hinge loss, have been proven useful in many real-
world applications. Apart from the convex classification-
calibrated surrogate loss functions, many other non-
convex surrogate loss functions empirically proven to
be robust to noise, such as Cauchy loss and Welsch loss,
are also frequently used. In this paper, we show that
all these surrogate loss functions, as well as the non-
classification-calibrated surrogate loss functions, such as
the asymmetric exponential loss function (see Example
8 in [11])

`(t, y) =

{
exp(−2ty) t ≤ 0

exp(−ty) t > 0,

can be used directly for classification in the presence of
RCN by employing the importance reweighting method.

For the problem that distribution D is unknown, em-
pirical risk is proposed to approximate the expected risk.
The empirical risk is defined as

R̂`,D(f) =
1

n

n∑
i=1

`(f(Xi), Yi),

where the corresponding expected risk is

R`,D(f) = R[D, f, `] = E(X,Y )∼D[R̂`,D(f)]

and ` denotes any surrogate loss function. The classifier
is then learned by empirical risk minimization (ERM)
[36]:

fn = arg min
f∈F

R̂`,D(f).

The consistency of R`,D(fn) to minf∈F R`,D(f) is
therefore essential for designing surrogate loss functions
and learning algorithms. Let

f∗ = arg min
f∈F

R`,D(f).

It [37] is easily proven that

R`,D(fn)−R`,D(f∗) ≤ 2 sup
f∈F
|R`,D(f)− R̂`,D(f)|.

The right hand side term is known as the generalization
error, and the consistency is guaranteed by convergence
of the generalization error. We note that learning algo-
rithms which are based on ERM, such as those using
Tikhonov or manifold regularization, will not have a
slower convergence rate of consistency than that of
ERM. In this paper, we therefore provide consistency
guarantees for learning algorithms dealing with RCN by
deriving the generalization error bounds of the corre-
sponding ERM algorithms.

4 LEARNING WITH IMPORTANCE REWEIGH-
TING

Importance reweighting is widely used for domain adap-
tation [38], but here we introduce it to classification in
the presence of label noise. One observation [39] from
the field of importance reweighting is as follows:

R`,D(f) = R[D, f, `] = E(X,Y )∼D[`(f(X), Y )]

= E(X,Ŷ )∼Dρ

[
PD(X,Y )

PDρ(X, Ŷ )
`(f(X), Ŷ )

]

= R

[
Dρ, f,

PD(X,Y )

PDρ(X, Ŷ )
`(f(X), Ŷ )

]
= R

[
Dρ, f, β(X, Ŷ )`(f(X), Ŷ )

]
= Rβ`,Dρ(f),

where β(X, Ŷ ) = PD(X,Y )

PDρ (X,Ŷ )
.

For the problem of classification in the presence of
label noise, note that PD(X) = PDρ(X). We therefore
have

β(X, Ŷ ) =
PD(X,Y )

PDρ(X, Ŷ )
=

PD(Y |X)PD(X)

PDρ(Ŷ |X)PDρ(X)

=
PD(Y |X)

PDρ(Ŷ |X)
.

Thus, even though the labels are corrupted, classifi-
cation can still be implemented if only the weight
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β(X, Ŷ ) = PD(Y |X)/PDρ(Ŷ |X) could be accessed to the
loss `(f(X), Ŷ ).

Lemma 1: The asymmetric RCN problem can be ad-
dressed by reweighting the surrogate loss functions
of the traditional classification problem via importance
reweighting. The weight given to a noisy example
(X, Ŷ ) ∼ Dρ is

β(X, Ŷ ) =
PD(Y |X)

PDρ(Ŷ |X)

=
PDρ(Ŷ |X)− ρ−Ŷ

(1− ρ+1 − ρ−1)PDρ(Ŷ |X)
.

The weight β(X, Ŷ ) is non-negative if PDρ(Ŷ |X) 6= 0. If
PDρ(Ŷ |X) = 0, we intuitively let β(X, Ŷ ) = 0.

A classifier can therefore be learned for the “clean”
data in the presence of asymmetric RCN by minimizing
the following reweighted empirical risk:

f̂n = arg min
f∈F

R̂β`,Dρ

= arg min
f∈F

1

n

n∑
i=1

β(Xi, Ŷi)`(f(Xi), Ŷi),

where

β(Xi, Ŷi) =
PDρ(Ŷi|Xi)− ρ−Ŷi

(1− ρ+1 − ρ−1)PDρ(Ŷi|Xi)
.

By the following proposition, based on Talagrand’s
Lemma (see, e.g., Lemma 4.2 in [40]), we show that,
given PDρ(Ŷ |X), the above weighted empirical risk will
converge to the unweighted expected risk of the “clean”
data for any f ∈ F . So, R`,D can be approximated by
R̂β`,Dρ .

Proposition 1: Given the conditional probability
PDρ(Ŷ |X) and the noise rates ρ+1 and ρ−1. Let
β(X, Ŷ )`(f(X), Ŷ ) be upper bounded by b. Then, for
any δ > 0, with probability at least 1− δ, we have

sup
f∈F
|R`,D(f)− R̂β`,Dρ(f)|

= sup
f∈F

∣∣∣E(X,Ŷ )∼Dρ

[
R̂β`,Dρ(f)

]
− R̂β`,Dρ(f)

∣∣∣
≤ 1− U

1− ρ−1 − ρ+1
R(` ◦ F ) + b

√
log(1/δ)

2n
,

where U = min(X,Ŷ )

ρ−Ŷ
PDρ (Ŷ |X)

, and the Rademacher
complexity R(` ◦ F ) [41] is defined by

R(` ◦ F ) = E(X,Ŷ )∼Dρ,σ

[
sup
f∈F

2

n

n∑
i=1

σi`(f(Xi), Ŷi)

]
and σ1, . . . , σn are i.i.d. Rademacher variables.

The Rademacher complexity has a convergence rate
of order O(

√
1/n) [41]. If the function class has proper

conditions on its variance, the Rademacher complexity
will quickly converge and is of order O(1/n); see, for
example, [42]. The generalization bound in Proposition
1 is derived using the Rademacher complexity method.

Many other hypothesis complexities and methods can
also be employed to derive the generalization bound.

Since

R`,D(fn)−R`,D(f∗)

= Rβ`,Dρ(fn)−Rβ`,Dρ(f∗)
≤ 2 sup

f∈F
|Rβ`,Dρ(f)− R̂β`,Dρ(f)|,

the consistency rate will therefore be inherited for learn-
ing with label noise, provided that the conditional prob-
ability PDρ(Ŷ |X) and noise rates ρ±1 are accurately
estimated.

Based on Proposition 1, we can now state our first
main result for classification in the presence of label
noise using our framework of importance reweighting.

Theorem 1: Any surrogate loss functions designed for
the traditional classification problem can be used for
classification in the presence of asymmetric RCN by
employing the importance reweighting method. The
consistency rate for classification with asymmetric RCN
will be the same as that of the corresponding traditional
classification algorithm, provided that the conditional
probability PDρ(Ŷ |X) and noise rates ρ±1 are accurately
estimated.

The trade-off for using and benefitting from the abun-
dant surrogate loss functions designed for traditional
classification problems is the need to estimate the distri-
bution PDρ(Ŷ |X) and noise rates ρ±1. Next, we address
how to estimate the distribution and the noise rates
separately.

5 ESTIMATING PDρ(Ŷ |X)

We have shown that the uncertainty introduced by clas-
sification label noise can be reduced by the knowledge
of weight

β(X, Ŷ ) =
PD(X,Y )

PDρ(X, Ŷ )
=

PD(Y |X)

PDρ(Ŷ |X)
.

In the asymmetric RCN problem,

β(X, Ŷ ) =
PDρ(Ŷ |X)− ρ−Ŷ

(1− ρ+1 − ρ−1)PDρ(Ŷ |X)
,

and therefore the weight can be learned by using the
noisy sample and the noise rates. In this section, we
present three methods to estimate the conditional prob-
ability PDρ(Ŷ |X) with consistency analyses; how to es-
timate the noise rates is discussed in the next section.

5.1 The Probabilistic Classification Method
The conditional probability PDρ(Ŷ |X) can be estimated
by a simple probabilistic classification method, where
the corresponding link function maps the outputs of the
learned predictor to the interval [0, 1] and thus can be
interpreted as probabilities. However, such a method
is parametric, which has a strong assumption that the
target conditional distribution is of the form of the link
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function used. For example, if the logistic loss function
is employed, the learned distribution will be the form of

PDρ(Ŷ |X, f) =
1

1 + exp (−Ŷ f(X))
.

When the logistic regression is correctly specified, i.e.,
there exists f∗ ∈ F such that PDρ(Ŷ |X, f∗) is equal to
the target conditional distribution P ∗Dρ(Ŷ |X), the logistic
regression is optimal in the sense that the approxima-
tion error is minimized (being zero). However, when
the model is misspecified, which would be the case in
practice, a large approximation error may be introduced
even if the hypothesis class F is chosen to be relatively
large, which will hinder the statistical consistency for
learning the target weight function β∗(X, Ŷ ).

Remark 1: We found that employing the probabilistic
classification method to estimate the conditional prob-
ability PDρ(Ŷ |X) did not perform well. Its empirical
validation is therefore omitted in this paper.

5.2 The Kernel Density Estimation Method
In this subsection, we introduce the kernel density es-
timation method to estimate the conditional probability
PDρ(Ŷ |X), which has the consistency property for learn-
ing the target weight function β∗(X, Ŷ ).

Using Bayes’ rule, we have

PDρ(Ŷ |X) =
PDρ(X|Ŷ )PDρ(Ŷ )

PDρ(X)
. (1)

When the dimensionality of X is low and the sample size
is sufficiently large, the probabilities PDρ(x|y), PDρ(y)
and PDρ(x) can be easily and efficiently estimated using
the noisy sample.

If we use

P̂Dρ(Ŷ ) =
1

n

n∑
i=1

1Ŷi=Ŷ (2)

and the kernel density estimation method

P̂Dρ(X) =
1

n

n∑
i=1

K(X,Xi) (3)

to estimate PDρ(Ŷ ) and PDρ(X), respectively (where
K(X,Xi) = k(X)k(Xi) is a universal kernel, see [43]),
the consistency of classification with label noise (or learn-
ing the target weight function β∗(X, Ŷ )) is guaranteed by
the following theorem.

Theorem 2: Let P̂Dρ(Ŷ |X) be an estimator for
PDρ(Ŷ |X) using equations (1), (2) and (3), and

β̂(X, Ŷ ) =
P̂Dρ(Ŷ |X)− ρ−Ŷ

(1− ρ−1 − ρ+1)P̂Dρ(Ŷ |X)
.

Let

f̂n,β̂ = min
f∈F

1

n

n∑
i=1

β̂(Xi, Ŷi)`(f(k(Xi)), Ŷi)

and

f∗ = min
f∈F

R[D, f, `(f(k(X)), Y )].

For any ε > 0, we have

lim
n→∞

P (R[D, f̂n,β̂ , `(f̂n,β̂(k(X)), Y )]

−R[D, f∗, `(f∗(k(X)), Y )] > ε) = 0.

When PDρ(X|Ŷ ) and PDρ(X) are estimated separately,
although the consistency property is guaranteed by map-
ping features into a universal kernel induced reproduc-
ing kernel Hilbert space (RKHS), the convergence rate
may be slow. Note that the kernel density estimation
method is non-parametric and thus it often requires a
large sample size. Since density estimation is known to
be a hard problem for high-dimensional variables, in
practice, it is preferable to directly estimate the density
ratio [44] and avoid estimating the densities separately.

5.3 The Density Ratio Estimation Method
Density ratio estimation [45] provides a way to signif-
icantly reduce the curse of dimensionality for kernel
density estimation and can be estimated accurately for
high-dimensional variables. Therefore, in this subsection,
we introduce density ratio estimation to estimate the
conditional probability distribution PDρ(Ŷ |X) for clas-
sification in the presence of RCN.

Three methods are frequently used for density ratio
estimation, including the moment matching approach,
the probabilistic classification approach and the ratio
matching approach; see [46]. Since the probabilistic clas-
sification approach may introduce a large approxima-
tion error, in practice, the moment matching and ratio
matching methods are more preferable [47], where the
density ratio r(X) = P1(X)/P2(X) can be modelled
by employing linear or non-linear functions. If proper
reproducing kernel Hilbert spaces are chosen to be the
hypothesis classes, the approximation errors of the mo-
ment matching and ratio matching methods could be
small. Although these methods introduce approximation
errors for learning the weight β∗(X, Ŷ ), their efficiency
has been widely and empirically proven [48]–[50].

In this paper, we exploit the ratio matching approach
that employs the Bregman divergence [51] (KLIEP
[52]) to estimate the conditional probability distribution
PDρ(Ŷ |X). It is proven that the ratio matching approach
exploiting the Bregman divergence [51] is consistent with
the optimal approximation in the hypothesis class1.

The following theorem provides an assurance that our
importance reweighting method that exploits density
ratio estimation is consistent.

Theorem 3: When employing the density ratio esti-
mation method to estimate the conditional probability
distribution PDρ(Ŷ |X) (and β(X, Ŷ )), if the hypothesis
class for estimating the density ratio is chosen properly

1. Parametric modeling is used for estimating density ratio. We
provide the proof of consistency in Section 7.6.
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so that the approximation error is zero, for any ε > 0,
we have

lim
n→∞

P (R[D, f̂n,β̂ , `(f̂n,β̂(X), Y )]

−R[D, f∗, `(f∗(X), Y )] > ε) = 0,

where β̂(X, Ŷ ) is the same as that defined in Theorem
2, f̂n,β̂ = minf∈F

1
n

∑n
i=1 β̂(Xi, Ŷi)`(f(Xi), Ŷi) and f∗ =

minf∈F R[D, f, `(f(X), Y )].
The convergence rate is characterized in the following

proposition.
Proposition 2: Under the settings of Theorem 3, if the

Bregman divergence degenerates to square distance, for
any δ > 0, with probability at least 1− 3δ, the following
holds:

R[D, f̂n,β̂ , `(f̂n,β̂(X), Y )]−R[D, f∗, `(f∗(X), Y )]

≤ O

(
R(` ◦ F ) +

√
log(1/δ)

n +

√
RBDR +

√
log(1/δ)

n

)
,

where RBDR is the Rademacher complexity induced by
estimating the density ratio using square distance and is
defined in Section 7.6.

The proofs of Theorem 3 and Proposition 2 are pro-
vided in the supplementary material.

The convergence rate in Proposition 2 could be a cer-
tain rate of order O(1/min(n+, n−)1/4) because RSDR ≤
O(
√

1/min(n+, n−)), where n+ and n− denote the num-
ber of positive labels and negative labels of the noisy
sample, respectively.

6 ESTIMATING THE NOISE RATES

Most existing algorithms designed for RCN problems
need the knowledge of the noise rates. Scott et al. [33],
[34] developed lower bounds for the inversed noise
rates π+1 = P (Y = −1|Ŷ = +1) and π−1 = P (Y =
+1|Ŷ = −1), under the irreducibility assumption, which
are consistent with the target inversed noise rates and
can therefore be used as estimators for the inversed noise
rates. However, the convergence rate could be slow.
Then, during the preparation of this manuscript, Scott
[35] released an efficient implementation to estimate the
inversed noise rates and introduced the distributional
assumption {(X,Y )|Y = 1} 6⊂ {(X,Y )|Y = −1} and
{(X,Y )|Y = −1} 6⊂ {(X,Y )|Y = 1} to the label noise
classification problem. The distributional assumption is
sufficient for the irreducibility assumption and thus is
slightly stronger. Scott then proved that the distribu-
tional assumption ensures an asymptotic convergence
rate of order O(

√
1/n) for estimating the inversed noise

rates.
To the best of our knowledge, no efficient method has

been proposed to estimate the noise rates and how to
estimate them remains an open problem [6]. We first
provide upper bounds for the noise rates and show that
with a mild assumption on the “clean” data, they can be
used to efficiently estimate the noise rates.

Theorem 4: We have that

ρŶ ≤ PDρ(−Ŷ |X).

Moreover, if the assumption holds that there exists
x−1, x+1 ∈ X , such that PD(Y = +1|x−1) = PD(Y =
−1|x+1) = 0, we have

ρ−1 = PDρ(Ŷ = +1|x−1)

and

ρ+1 = PDρ(Ŷ = −1|x+1),

which means

ρ−Ŷ = min
X∈X

PDρ(Ŷ |X).

Theorem 4 shows that under the assumption that there
exists x−1, x+1 ∈ X , such that PD(Y = +1|x−1) =
PD(Y = −1|x+1) = 0, minX∈X PDρ(Ŷ |X) is a consistent
estimator for the noise rates. The convergence rate for
estimating the noise rates is the same as that of estimat-
ing the conditional distribution PDρ(Ŷ |X). We therefore
could obtain fast convergence rates for estimating the
noise rates via finite sample analysis. For example, if the
hypothesis class has proper conditions on its variance,
the Rademacher complexity will quickly converge and
is of order O(1/n) [42].

Remark 2: We have proven the consistency property
of the joint estimation of the weight and classifier in
Theorems 2 and 3, and characterized the convergence
rates of the joint estimation in Proposition 2. According
to Theorem 4, the results can be easily extended to the
joint estimation of the weight, noise rate and classifier
of our importance reweighting method. We provide
detailed proofs in the supplementary material.

For classification problems, the assumption in The-
orem 4 can be easily held. If an observation x ∈ X
is far from the target classifier, it is likely that the
conditional probability PD(y = +1|x) (or PD(y = −1|x))
is equal to zero or very small. With the assumption that
there exist x−1, x+1 ∈ X such that PD(y = +1|x−1)
and PD(y = −1|x+1) are very small, we can efficiently
estimate ρy by

min
X∈X

PDρ(Ŷ |X).

In our experiments, we estimate ρy by

ρ̂−Ŷ = min
X∈{X1,...,Xn}

P̂Dρ(Ŷ |X).

It is not hard to see that Scott’s distributional assump-
tion is equal to ours in Theorem 4. Interestingly, this is
not a coincidence. In Proposition 3 of [35], Scott derived
that

PDρ(X|Ŷ )

=

(
1−

πŶ
1− π−Ŷ

)
PD(X|Y ) +

πŶ
1− π−Ŷ

PDρ(X| − Ŷ ).
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Note that
(

1− πŶ
1−π−Ŷ

)
PD(X|Y ) ≥ 0. Thus, πŶ

1−π−Ŷ
can

be consistently estimated by minX∈X
PDρ (X|Ŷ )

PDρ (X|−Ŷ )
if there

exists an x ∈ X such that PD(x|Y ) = 0, where PDρ (X|Ŷ )

PDρ (X|−Ŷ )

is the slope to the point (1, 1) in the receiver operating
characteristic (ROC) space defined in [33], [35]. In the
proof of Theorem 4, we also derived that

PDρ(Ŷ |X) = (1− ρ−1 − ρ+1)PD(Y |X) + ρ−Ŷ .

Since (1− ρ−1 − ρ+1)PD(Y |X) is non-negative, our esti-
mator ρ−Ŷ = minX∈X PDρ(Ŷ |X) is consistent based on
the assumption that there exists an x ∈ X such that
PD(Y |x) = 0. Having the above knowledge in mind, we
can improve the theoretical analysis for estimation the
inversed noise rates in [33], [35] (and the mixture pro-
portion estimation) by employing finite sample analysis.

We can design importance reweighting algorithms for
classification with label noise by employing the inversed
noise rates.

Lemma 2: When using the importance reweighting
method to address the asymmetric RCN problem, the
weight given to a noisy example (X, Ŷ ) ∼ Dρ can be
derived by exploiting the inversed noise rates:

β(X, Ŷ ) =
PD(Y |X)

PDρ(Ŷ |X)

=
(1− π−1 − π+1)PDρ(Ŷ |X) + π−Ŷ

PDρ(Ŷ |X)
.

The weight β(X, Ŷ ) is non-negative2 if PDρ(Ŷ |X) 6= 0. If
PDρ(Ŷ |X) = 0, we intuitively let β(X, Ŷ ) = 0.

Remark 3: We employed Scott’s method [35] to esti-
mate the inversed noise rates and found that the im-
portance reweighting method exploiting the estimated
inversed noise rates did not perform well, so the re-
sults are omitted. There might be two reasons which
could possibly explain the poor performance: (1) Scott’s

estimator πŶ
1−π−Ŷ

= minX∈X
PDρ (X|Ŷ )

PDρ (X|−Ŷ )
has the form of

density ratio estimation, and is more complex than our
estimator ρ−Ŷ = minX∈X PDρ(Ŷ |X), which has the form
of the conditional distribution. (2) How to choose the
kernel width to obtain the ROC in Scott’s method has
remained elusive.

7 PROOF

In this section, we provide detailed proofs of the asser-
tions made in previous sections.

7.1 Proof of Lemma 1
For label noise problem, we have shown that

β(X, Ŷ ) =
PD(Y |X)

PDρ(Ŷ |X)
.

2. The inversed noise rates are defined so that π−1 + π+1 ≤ 1, see,
[35].

When the label noise is of asymmetric RCN, we have

PDρ(+1|X)

= P (Ŷ = +1, Y = +1|X) + P (Ŷ = +1, Y = −1|X)

= P (Ŷ = +1|Y = +1, X)PD(Y = +1|X)

+P (Ŷ = +1|Y = −1, X)PD(Y = −1|X)

= P (Ŷ = +1|Y = +1)PD(Y = +1|X)

+P (Ŷ = +1|Y = −1)PD(Y = −1|X)

= (1− ρ+1)PD(Y = +1|X)

+ρ−1(1− PD(Y = +1|X))

= (1− ρ−1 − ρ+1)PD(Y = +1|X) + ρ−1

≥ ρ−1.

Similarly, it gives

PDρ(−1|X) = (1− ρ−1 − ρ+1)PD(Y = −1|X) + ρ+1

≥ ρ+1.

We therefore have

PD(Y |X) =
PDρ(Ŷ |X)− ρ−Ŷ
(1− ρ−1 − ρ+1)

.

Thus,

β(X, Ŷ ) =
PD(Y |X)

PDρ(Ŷ |X)

=
PDρ(Ŷ |X)− ρ−Ŷ

(1− ρ+1 − ρ−1)PDρ(Ŷ |X)
.

We intuitively let β(X, Ŷ ) = 0, if PDρ(Ŷ |X) = 0. Since
PDρ(Ŷ |X) ≥ ρ−Ŷ , we can conclude that β(X, Ŷ ) ≥ 0.

�

7.2 Proofs of Proposition 1 and Theorem 1

We start by introducing the Rademacher complexity
method [41] for deriving generalization bounds.

Let σ1, . . . , σn be independent Rademacher variables,
X1, . . . , Xn be i.i.d. variables and F be a real-valued
function class. The Rademacher complexity of the func-
tion class over the variable is defined as

R(F ) = EX,σ

[
sup
f∈F

2

n

n∑
i=1

σif(Xi)

]
.

Theorem 5 ( [41]): Let F be a real-valued function class
on X , S = {X1, . . . , Xn} ∈ Xn and

Φ(S) = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

E[f(X)]− f(Xi)

∣∣∣∣∣ .
Then, ES [Φ(S)] ≤ R(F ).

The following theorem, proven utilizing Theorem 5
and Hoeffding’s inequality, plays an important role in
deriving the generalization bounds.

Theorem 6 ( [41]): Let F be an [a, b]-valued function
class on X , and S = {X1, . . . , Xn} ∈ Xn. Then, for any
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f ∈ F and any δ > 0, with probability at least 1− δ, we
have

EX [f(X)]− 1

n

n∑
i=1

f(Xi) ≤ R(F ) + (b− a)

√
log(1/δ)

2n
.

According to Theorem 6, we can easily prove that
for any [0, b]-valued function class and δ > 0, with
probability at least 1− δ, the following holds

sup
f∈F
|E(X,Ŷ )∼DρR̂β`,Dρ − R̂β`,Dρ |

≤ R(β ◦ ` ◦ F ) + b

√
log(1/δ)

2n
.

Since β is upper bounded by

1− U
1− ρ−1 − ρ+1

,

where

U = min
(X,Ŷ )

ρ−Ŷ

PDρ(Ŷ |X)
,

using the Lipschitz composition property of Rademacher
complexity, which is also known as the Talagrand’s
Lemma (see, e.g., Lemma 4.2 in [40]), we have

R(β ◦ ` ◦ F ) ≤ 1− U
1− ρ−1 − ρ+1

R(` ◦ F ).

Propostion 1 can be proven together with the fact that
E(X,Ŷ )∼Dρ [R̂β`,Dρ ] = Rβ`,Dρ = R`,D. �

Theorem 1 follows from Proposition 1.

7.3 Proof of Theorem 2

We begin with the following lemma.
Lemma 3: Let K(X1, X2) = k(X1)k(X2) be a universal

kernel, where k : X → H is a feature map into a feature
space. Let

P̂Dρ(Ŷ ) =
1

n

n∑
i=1

1Ŷi=Ŷ

and

P̂Dρ(X) =
1

n

n∑
i=1

K(X,Xi).

Then, P̂Dρ(Ŷ ) and P̂Dρ(X) will converge to their target
distributions PDρ(Ŷ ) and PDρ(X) in the induced RKHS
H, respectively.
The proof relies on the following theorem proven by
Gretton et al. [39].

Theorem 7: Let P be the space of all probability distri-
butions on an RKHS H induced by a universal kernel
K(X1, X2) = k(X1)k(X2). Define µ : P → H as the
expectation operator that µ(P ) = EX∼P (X)[k(X)]. The
operator µ is a bijection between P and {µ(P )|P ∈ P}.

Proof of Lemma 3. Since

E[P̂Dρ(Ŷ )] =
1

n

n∑
i=1

E1Ŷi=Ŷ = PDρ(Ŷ ),

using the weak law of large numbers, for any ε > 0, we
have

lim
n→∞

P
(
|P̂Dρ(Ŷ )− PDρ(Ŷ )| ≥ ε

)
= 0.

So, P̂Dρ(Ŷ ) will converge to its target distribution
PDρ(Ŷ ).

We then prove that P̂Dρ(X) converges to PDρ(X) in
the RKHS by using Theorem 7 and showing that∫
P̂Dρ(X)k(X)dX = EX∼PDρ (X)[k(X)], when n→∞.

We have that

P̂Dρ(X) =
1

n

n∑
i=1

K(X,Xi) =
1

n

n∑
i=1

k(X)k(Xi)

=
k(X)

n

n∑
i=1

k(Xi).

By properly modifying the kernel map k by a constant
so that

∫
k2(X)dX = 1, we have

∫
P̂Dρ(X)k(X)dX =

1

n

n∑
i=1

k(Xi)

∫
k2(X)dX

=
1

n

n∑
i=1

k(Xi).

Moreover, for any ε > 0, using Hoeffding’s inequality,
the following holds

lim
n→∞

P

(∣∣∣∣∣ 1n
n∑
i=1

k(Xi)− EX∼PDρ (X)[k(X)]

∣∣∣∣∣ ≥ ε
)

= 0.

By combing the above two equations, we can conclude
that

lim
n→∞

P

(∣∣∣∣∫ P̂Dρ(X)k(X)dX

−EX∼PDρ (X)[k(X)]
∣∣∣ ≥ ε) = 0.

According to Theorem 7, we have that the estimator
P̂Dρ(x) will converge to PDρ(X) in H. �

Proof of Theorem 2. In the universal kernel induced
RKHS, we have proven that

P̂Dρ(Ŷ ) = PDρ(Ŷ ), when n→∞

and

P̂Dρ(X) = PDρ(X), when n→∞.

Thus, we have

β̂(X, Ŷ ) = β(X, Ŷ ), when n→∞. (4)

In Proposition 1, we have proven that

sup
f∈F
|R[Dρ, f, β(X, Ŷ )`(f(X), Ŷ )]

−R̂[Dρ, f, β(X, Ŷ )`(f(X), Ŷ )]| = 0,

when n→∞. (5)
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By substitution from equation (4) into equation (5), we
have

sup
f∈F
|R[Dρ, f, β̂(X, Ŷ )`(f(X), Ŷ )]

−R̂[Dρ, f, β̂(X, Ŷ )`(f(X), Ŷ )]| = 0,

when n→∞. (6)

Let

f̂n,β̂ = min
f∈F

1

n

n∑
i=1

β̂(Xi, Ŷi)`(f(k(Xi)), Ŷi)

and

f∗ = min
f∈F

R[D, f, `(f(k(X)), Y )].

We have inequalities (7). The first inequality in in-
equalities (7) holds because of the definition of f̂n,β̂ .

For sufficiently large n, using equations (4), (6) and
(7), we have

R[D, f̂n,β̂ , `(f̂n,β̂(k(X)), Y )]

−R[D, f∗, `(f∗k(X)), Y )]

= R[Dρ, f̂n,β̂ , β(X, Ŷ )`(f̂n,β̂(k(X)), Ŷ )]

−R[Dρ, f
∗, β(X, Ŷ )`(f∗(k(X)), Ŷ )]

= R[Dρ, f̂n,β̂ , β̂(X, Ŷ )`(f̂n,β̂(k(X)), Ŷ )]

−R[Dρ, f
∗, β̂(X, Ŷ )`(f∗(k(X)), Ŷ )]

≤ 2 sup
f∈F

∣∣∣R̂[Dρ, f, β̂(X, Ŷ )`(f(k(X)), Ŷ )]

−R[Dρ, f, β̂(X, Ŷ )`(f(k(X)), Ŷ )]
∣∣∣

= 0.

This concludes the proof of Theorem 2. �

7.4 Proof of Theorem 4
In the proof of Lemma 1, we have proven that

PDρ(+1|X) = (1− ρ−1 − ρ+1)PD(Y = +1|X) + ρ−1,

If there exists x−1 ∈ X such that

PD(Y = +1|x−1) = 0,

then

PDρ(Ŷ = +1|x−1) = ρ−1.

Similarly,

PDρ(−1|X) = (1− ρ−1 − ρ+1)PD(Y = −1|X) + ρ+1,

and if there exists x+1 ∈ X such that

PD(Y = −1|x+1) = 0,

which means

PDρ(Ŷ = −1|x+1) = ρ+1.

We therefore have

ρ−Ŷ = min
X∈X

PDρ(Ŷ |X),

which concludes the proof. �

7.5 Proof of Lemma 2
Similar to the proof of Lemma 1, we have

PD(+1|X)

= P (Y = +1, Ŷ = +1|X) + P (Y = +1, Ŷ = −1|X)

= P (Y = +1|Ŷ = +1, X)PDρ(Ŷ = +1|X)

+P (Y = +1|Ŷ = −1, X)PDρ(Ŷ = −1|X)

= P (Y = +1|Ŷ = +1)PDρ(Ŷ = +1|X)

+P (Y = +1|Ŷ = −1)PDρ(Ŷ = −1|X)

= (1− π+1)PDρ(Ŷ = +1|X)

+π−1(1− PDρ(Ŷ = +1|X))

= (1− π−1 − π+1)PDρ(Ŷ = +1|X) + π−1

≥ π−1.

We also have

PD(−1|X)

= (1− π−1 − π+1)PDρ(Ŷ = −1|X) + π+1

≥ π+1.

Thus,

β(X, Ŷ ) =
PD(Y |X)

PDρ(Ŷ |X)

=
(1− π−1 − π+1)PDρ(Ŷ |X) + π−Ŷ

PDρ(Ŷ |X)
.

We intuitively let β(X, Ŷ ) = 0, if PDρ(Ŷ |X) = 0. Then,
we can conclude that β(X, Ŷ ) ≥ 0. �

7.6 Consistency of Density Ratio Estimation
We first introduce how to use the ratio matching method
under the Bregman divergence to estimate

r∗(X) =
PDρ(X|Ŷ )

PDρ(X)
.

The discrepancy from the true density ratio r∗ to a den-
sity ratio model r measured by the Bregman divergence
(BD) is as follows:

BDf (r∗‖r) =

∫
PDρ(X) {f(r∗(X))− f(r(X))

−∇f(r(X))(r∗(X)− r(X))} dX,

where f is a convex function and ∇f(X) denotes the
subgradient of f(X).

Let Xnu
1 , . . . , Xnu

n1
be the i.i.d. sample of the numerator

distribution and Xde
1 , . . . , X

de
n2

the i.i.d. sample of the
denominator distribution. An empirical approximation
of BDf (r∗‖r) is given by

B̂Df (r∗‖r) =
1

n2

n2∑
i=1

∇f(r(Xde
i ))r(Xde

i )

− 1

n2

n2∑
i=1

f(r(Xde
i ))− 1

n1

n1∑
i=1

∇f(r(Xnu
i )).
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R[Dρ, f̂n,β̂ , β̂(X, Ŷ )`(f̂n,β̂(k(X)), Ŷ )]−R[Dρ, f
∗, β̂(X, Ŷ )`(f∗(k(X)), Ŷ )]

= R[Dρ, f̂n,β̂ , β̂(X, Ŷ )`(f̂n,β̂(k(X)), Ŷ )]− R̂[Dρ, f̂n,β̂ , β̂(X, Ŷ )`(f̂n,β̂(k(X)), Ŷ )]

+R̂[Dρ, f̂n,β̂ , β̂(X, Ŷ )`(f̂n,β̂(k(X)), Ŷ )]− R̂[Dρ, f
∗, β̂(X, Ŷ )`(f∗(k(X)), Ŷ )]

+R̂[Dρ, f
∗, β̂(X, Ŷ )`(f∗(k(X)), Ŷ )]−R[Dρ, f

∗, β̂(X, Ŷ )`(f∗(k(X)), Ŷ )]

≤ R[Dρ, f̂n,β̂ , β̂(X, Ŷ )`(f̂n,β̂(k(X)), Ŷ )]− R̂[Dρ, f̂n,β̂ , β̂(X, Ŷ )`(f̂n,β̂(k(X)), Ŷ )]

+R̂[Dρ, f
∗, β̂(X, Ŷ )`(f∗(k(X)), Ŷ )]−R[Dρ, f

∗, β̂(X, Ŷ )`(f∗(k(X)), Ŷ )]

≤ 2 sup
f∈F
|R̂[Dρ, f, β̂(X, Ŷ )`(f(k(X)), Ŷ )]−R[Dρ, f, β̂(X, Ŷ )`(f(k(X)), Ŷ )]|. (7)

RBDR = EX∼Dρ,σ

[
2

n2

n2∑
i=1

σi∇f(r(Xde
i ))r(Xde

i )− 2

n2

n2∑
i=1

σif(r(Xde
i ))− 2

n1

n1∑
i=1

σi∇f(r(Xnu
i ))

]
. (8)

Let

r̂(X) = arg min
r

B̂Df (r∗‖r)

and

r′ = arg min
r

BDf (r∗‖r).

If the hypothesis class includes r∗, we have

BDf (r∗‖r̂)
= BDf (r∗‖r̂)− BDf (r∗‖r′)
= BDf (r∗‖r̂)− B̂Df (r∗‖r̂) + B̂Df (r∗‖r̂)
−B̂Df (r∗‖r′) + B̂Df (r∗‖r′)− BDf (r∗‖r′)

≤ BDf (r∗‖r̂)− B̂Df (r∗‖r̂)
+B̂Df (r∗‖r′)− BDf (r∗‖r′)

≤ 2 sup
r
|B̂Df (r∗‖r)− BDf (r∗‖r)|,

where the first inequality holds because of the definition
of r̂.

Since r(x) is usually modeled by linear or non-linear
functions, we can assume that r(x) has the range [a, b] for
all observations. Using the Rademacher method again,
for any δ > 0, with probability at least 1− δ, we have

BDf (r∗‖r̂) ≤ 2 sup
r
|B̂Df (r∗‖r)− BDf (r∗‖r)|

≤ 2RBDR + C

√
log(1/δ)

2n
, (9)

where RBDR defined in (8)) is the Rademacher complex-
ity induced by estimating the density ratio exploiting
Bregman divergence and C is a constant. The conver-
gence rate of RBDR can be proven to be as fast as the
order O(

√
1/min(n+, n−)), where n+ and n− denote

the number of positive labels and negative labels of
the noisy sample, respectively. So, the ratio matching
approach exploiting Bregman divergence is consistent to
the optimal approximation in the hypothesis class.

8 EXPERIMENTS

We next conducted experiments on synthetic and real
data to illustrate the performance of the proposed ap-
proaches. Each dataset was randomly split 10 times, 75%
for training and 25% for testing, and then the labels
of the training sample flipped according to given noise
rates ρ+1 and ρ−1. The mean accuracies of the 10 datasets
are presented.

To show the efficiency of our method for estimating
the noise rates, we employed two baselines for compar-
ison: the simple cross-validation method used in [10]
and Scott’s method [35] for estimating the inversed noise
rates. Note that Scott’s method can not be exploited to
estimate the noise rates unless the knowledge PD(±1) is
given, which is often unknown in practice. To make the
comparison, we assumed that the knowledge is known.

For the task of classification with noisy labels, the un-
biased estimator (UB`) and label-dependent costs (LD`)
models, developed by Natarajan et al. [10], and empiri-
cally shown to be competitive with, and perform better
more often than, three of state-of-the-art robust methods
(random projection classifier [27], NHERD [32], and the
perceptron algorithm with margin [28]) for dealing with
asymmetric RCN, were chosen as baselines for compari-
son3. We denote our importance reweighting method by
IW` that estimates the conditional distribution PDρ(Ŷ |X)
by employing the KLIEP method and the noise rates
by using the cross-validation method, and denote our
importance reweighting method by eIW` that exploits
the KLIEP method to estimate the conditional distribu-
tion PDρ(Ŷ |X) and the noise rates jointly. Three-fold
cross-validation4 was used to tune the noise rates on the
training sets when needed.

3. Note that comparisons in our paper and those in [10] are imple-
mented on the same standard UCI classification datasets provided by
Gunnar Rätsch: http://theoval.cmp.uea.ac.uk/matlab.

4. To achieve high performance for UB`, LD` and IW`, the optimal
noise rates were chosen by the criterion that the classification accuracy
rate, instead of the weighted objective function, is minimized on the
validation set.

http://theoval.cmp.uea.ac.uk/matlab
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Fig. 1: Accuracy comparison of classification algorithms on synthetic data (m=2, n=1000). The six different noise
rate pairs (ρ+1, ρ−1) are: (0.1, 0.1), (0.2, 0.2), (0.3, 0.1), (0.1, 0.3), (0.3, 0.3), and (0.4, 0.4). UB method employing hinge
loss was not implemented due to non-convexity.

TABLE 1: Estimating the Noise Rates (Means and Standard Deviations) on Synthetic Data

Dataset (m, n) True (ρ+1, ρ−1) Cross-validation Scott’s Method Our Method
Synthetic (0, 0.4) (0.036±0.032, 0.402±0.153) (0.000±0.000, 0.382±0.032) (0.019±0.001, 0.422±0.019)
dataset (0.1, 0.3) (0.322±0.163, 0.352±0.158) (0.089±0.028, 0.297±0.032) (0.125±0.023, 0.325±0.023)

(2, 1000) (0.2, 0.2) (0.424±0.098, 0.352±0.171) (0.176±0.035, 0.203±0.036) (0.213±0.031, 0.230±0.023)
Synthetic (0, 0.4) (0.445±0.016, 0.235±0.024) (0.000±0.000, 0.320±0.049) (0.074±0.021, 0.458±0.112)
dataset (0.1, 0.3) (0.440±0.021, 0.310±0.091) (0.078±0.022, 0.255±0.047) (0.140±0.022, 0.328±0.090)

(20, 1000) (0.2, 0.2) (0.425±0.043, 0.445±0.016) (0.159±0.022, 0.168±0.037) (0.214±0.064, 0.226±0.023)

TABLE 2: Estimating the Noise Rates (Means and Standard Deviations) on UCI Benchmarks

Dataset (m, n) True (ρ+1, ρ−1) Cross-validation Scott’s Method Our Method
(0, 0.4) (0.186±0.150, 0.050±0.047) (0.073±0.043, 0.225±0.080) (0.027±0.013, 0.364±0.078)

Heart (0.1, 0.3) (0.134±0.102, 0.220±0.168) (0.089±0.031, 0.231±0.116) (0.070±0.020, 0.272±0.070)
(13, 270) (0.2, 0.2) (0.110±0.109, 0.260±0.172) (0.105±0.055, 0.179±0.047) (0.121±0.063, 0.131±0.065)

(0, 0.4) (0.288±0.123, 0.206±0.118) (0.122±0.036, 0.310±0.050) (0.026±0.012, 0.402±0.062)
Diabetes (0.1, 0.3) (0.154±0.099, 0.162±0.087) (0.254±0.045, 0.249±0.057) (0.096±0.056, 0.304±0.060)
(8, 768) (0.2, 0.2) (0.138±0.103, 0.168±0.131) (0.361±0.127, 0.185±0.053) (0.135±0.036, 0.215±0.074)

8.1 Synthetic Data

We first tested the performance of noise rate estimation
on the synthetic dataset, where the data were uniformly
distributed from the interval [0, 1] and then linearly
separated into two classes such that P (Y = +1) =
P (Y = −1). We used kernel density and density ratio
estimation methods to estimate the noise rates on 2-
dimensional and 20-dimensional synthetic data, respec-
tively. The kernel width for kernel density estimation
method was chosen as the standard deviation, and the
density ratio was estimated using the KLIEP method
[46]. The performances of the different methods are
shown in Table 1, with entries having errors less than 0.1
shown in bold. Table 1 shows that our and Scott’s meth-
ods for estimating the noise rates is far more accurate
than the simple cross-validation method and that our
method is comparable with that of Scott on the synthetic
datasets.

We next tested the performance of IW`, UB`, and LD`
on the synthetic data. For fair comparison, we used the

true noise rates for each model so that there was no
tuning parameter for all the methods. Even though our
method still needs to estimate the conditional probability
PDρ(y|x), Fig. 1 shows that our method is more effective
than the baselines when tested on these synthetic data.
The empirical results also show that the logistic classifi-
cation and SVM perform very bad when the noise rates
are asymmetric.

8.2 Comparison on UCI Benchmarks

The comparison of noise rate estimation on two UCI
datasets are shown in Table 2, with entries having error
less than 0.1 shown in bold. The results show that
the cross-validation method can estimate some noise
rates with errors less than 0.1. However, this method
produced large standard deviations. We employed the
KLIEP method to estimate the noise rates. Table 2 il-
lustrates that our method is more accurate than the
baselines and has errors and standard deviations less
than 0.1. These errors in our method occurred for two
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TABLE 3: Means and Standard Deviations (Percentage) of Classification Accuracies of all Kernel Hinge-loss-based
Methods on UCI benchmarks

Bechmark dataset Noise rate
(m,n+, n−) (ρ+1, ρ−1) `hinge LD`hinge StPMKL eIW`hinge IW`hinge

(0.2, 0.2) 64.24±6.59 65.76±9.29 71.36±5.95 69.39±5.91 71.06±4.13
Breast cancer (0.3, 0.1) 67.12±8.69 70.61±5.16 71.82±5.21 68.79±7.57 72.73±5.15

(9, 77, 186) (0.4, 0.4) 57.88±5.52 54.18±11.84 67.12±8.72 65.30±7.64 68.79±8.09
(0.2, 0.2) 71.56±4.20 71.77±4.51 65.00±2.50 73.02±3.09 72.92±3.53

Diabetes (0.3, 0.1) 73.59±2.63 73.23±2.37 66.46±2.75 74.27±2.77 71.46±3.04
(8, 268, 500) (0.4, 0.4) 66.77±2.37 66.25±4.31 73.18±4.01 71.98±2.50 71.77±3.38

(0.2, 0.2) 67.20±3.55 68.68±2.84 69.80±2.23 67.20±3.45 68.08±2.85
German (0.3, 0.1) 68.56±2.62 70.84±2.87 67.24±1.78 68.76±2.29 69.56±2.37

(20, 300, 700) (0.4, 0.4) 62.32±2.81 62.04±5.90 71.96±3.41 63.36±2.83 63.04±2.89
(0.2, 0.2) 67.21±5.33 70.15±6.20 77.21±9.88 68.82±5.62 68.82±5.08

Heart (0.3, 0.1) 70.59±8.05 72.21±8.16 54.71±7.96 70.74±8.42 72.06±6.69
(13, 120, 150) (0.4, 0.4) 68.68±6.12 67.94±13.28 59.12±13.30 70.29±5.62 69.71±6.09

(0.2, 0.2) 92.80±1.19 92.16±0.95 73.35±1.80 92.82±1.14 92.49±0.93
Image (0.3, 0.1) 91.30±1.99 91.74±2.29 58.89±6.72 91.02±1.70 92.07±2.27

(18, 1188, 898) (0.4, 0.4) 91.97±3.18 90.98±1.49 57.24±2.83 92.13±1.33 89.37±3.45
(0.2, 0.2) 89.81±3.18 90.74±3.38 70.93±3.50 88.52±3.58 87.41±4.43

Thyroid (0.3, 0.1) 87.22±6.95 90.93±5.89 69.81±6.93 85.19±7.81 81.85±6.58
(5, 65, 150) (0.4, 0.4) 91.85±4.02 88.52±13.26 82.22±12.60 91.76±2.66 93.15±3.50

Average 75.04 75.44 68.19 76.29 76.48

TABLE 4: Means and Standard Deviations (Percentage) of Classification Accuracies of all Kernel Logistic-loss-based
Methods on UCI benchmarks

Bechmark dataset Noise rate
(m,n+, n−) (ρ+1, ρ−1) `log LD`log UB`log eIW`log IW`log

(0.2, 0.2) 73.48±5.16 73.48±4.47 72.73±4.46 72.88±6.04 73.94±4.33
Breast cancer (0.3, 0.1) 73.33±3.86 70.91±5.09 71.67±5.49 71.36±5.41 71.97±5.99

(9, 77, 186) (0.4, 0.4) 66.36±8.41 67.73±11.50 67.09±8.24 71.76±6.89 65.61±7.69
(0.2, 0.2) 74.43±2.67 72.24±2.78 72.92±2.95 73.70±2.49 72.45±2.74

Diabetes (0.3, 0.1) 73.54±2.98 73.12±4.29 72.34±4.71 73.70±2.47 73.33±3.62
(8, 268, 500) (0.4, 0.4) 70.21±4.56 71.04±5.10 71.30±4.56 73.85±3.50 70.83±3.67

(0.2, 0.2) 69.28±2.20 68.80±2.66 69.52±2.11 69.72±2.02 69.00±2.76
German (0.3, 0.1) 67.36±1.91 67.20±2.17 67.28±1.89 67.36±1.92 67.32±2.04

(20, 300, 700) (0.4, 0.4) 60.60±7.13 60.36±9.15 65.16±6.66 64.96±6.19 64.56±6.95
(0.2, 0.2) 82.21±5.61 80.29±7.44 82.94±5.01 81.32±10.36 81.91±4.44

Heart (0.3, 0.1) 69.41±9.37 77.06±8.80 75.88±9.02 75.44±9.33 76.91±7.84
(13, 120, 150) (0.4, 0.4) 69.56±10.17 78.24±5.62 76.18±7.03 78.38±9.40 77.50±7.04

(0.2, 0.2) 62.84±3.02 59.85±7.36 65.84±3.70 62.16±4.68 61.72±4.88
Image (0.3, 0.1) 58.56±2.72 57.47±1.82 56.15±1.90 58.91±3.02 58.26±2.69

(18, 1188, 898) (0.4, 0.4) 60.48±7.60 63.72±4.36 65.27±3.95 64.69±5.60 62.26±4.07
(0.2, 0.2) 89.07±4.40 90.93±3.08 90.37±3.47 86.11±6.37 92.41±2.82

Thyroid (0.3, 0.1) 84.26±4.12 88.89±4.78 85.04±6.36 82.59±4.38 87.96±5.26
(5, 65, 150) (0.4, 0.4) 86.48±6.88 87.04±9.28 86.30±9.16 88.33±6.11 88.70±4.23

Average 71.75 72.69 73.00 73.13 73.23

reasons: the first is that no example has very small
PD(Y |X) in the Euclidian space (according to the theory
part, in this case, both Scott’s and our methods cannot
perform well), and the second is that the KLIEP method
for estimating the conditional distribution is inaccurate
due to the difficulty in choosing kernel width. However,
when using the estimated noise rates, the performance
of our method (eIW`) for classification with noisy labels
performs better more often than the baselines (see Tables
3, 4, 5 and 6). Our noise rate estimation method is also
valuable in the sense that some methods can benefit
when the noise rates are approximately known [10].

To further demonstrate the efficiency of our impor-
tance reweighting method, we also tested multiple ker-
nel learning from noisy labels by stochastic program-
ming (StPMKL) [6] as a baseline on six UCI datasets,
where all single kernel learning methods used Gaus-
sian kernel with width 1 and StPMKL used Gaussian
kernels with 10 different widths {2−3, 2−2, . . . , 26}. The

performances of the methods for different noise rates
are shown in Tables 3, 4, 5 and 6, separately, with the
two highest values in each row shown in bold. The
results validate that our methods eIW`, which employ
the estimated noise rates and run fast, perform better
more often than the baselines in all datasets and that
our methods IW` have average performances better
than those of all the baselines. While our methods IW
have average performances better than those of all the
baselines, the methods as well as the baselines LD and
UB need to learn the noise rates via cross-validation,
which is time-consuming. Note that the kernel logistic-
loss-based average performances in Tables 4 are lower
than those in Tables 3, 5 and 6 because the kernel logistic-
loss-based methods have low accuracies on the Image
dataset.

According to Tables 3, 4, 5 and 6, the method IW`hinge,
which has the highest average performances, is preferred
in practice. However, the method eIW`hinge, which is
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TABLE 5: Means and Standard Deviations (Percentage) of Classification Accuracies of all Linear Hinge-loss-based
Methods on UCI benchmarks

Bechmark dataset Noise rate
(m,n+, n−) (ρ+1, ρ−1) `hinge LD`hinge eIW`hinge IW`hinge

(0.2, 0.2) 71.82±3.93 69.24±5.94 71.36±4.65 70.30±4.58
Breast cancer (0.3, 0.1) 71.52±3.56 71.36±3.67 72.42±3.83 72.42±3.90

(9, 77, 186) (0.4, 0.4) 66.36±7.55 63.64±13.59 71.67±4.58 67.88±4.83
(0.2, 0.2) 76.88±1.89 75.68±2.37 75.99±6.55 75.63±2.86

Diabetes (0.3, 0.1) 68.39±5.31 73.59±5.19 70.52±4.90 74.22±4.99
(8, 268, 500) (0.4, 0.4) 73.54±4.65 75.05±5.43 76.41±2.38 74.53±4.96

(0.2, 0.2) 71.20±2.80 71.08±2.87 71.56±2.62 71.76±1.90
German (0.3, 0.1) 67.16±1.91 67.16±1.78 67.24±1.78 67.16±1.91

(20, 300, 700) (0.4, 0.4) 70.24±3.99 70.96±3.21 71.08±2.41 72.56±3.44
(0.2, 0.2) 78.82±5.20 77.35±5.29 81.18±5.49 78.97±6.51

Heart (0.3, 0.1) 75.88±8.06 74.12±9.49 79.26±4.46 75.59±7.08
(13, 120, 150) (0.4, 0.4) 75.88±4.96 74.71±10.18 78.97±5.05 78.38±6.76

(0.2, 0.2) 79.62±2.55 82.30±2.03 79.69±2.66 82.55±2.21
Image (0.3, 0.1) 76.13±4.38 82.09±1.74 75.70±4.21 82.78±1.30

(18, 1188, 898) (0.4, 0.4) 73.74±2.00 81.84±2.53 73.83±1.92 80.21±4.20
(0.2, 0.2) 85.00±6.32 87.78±4.11 82.59±7.67 88.33±2.90

Thyroid (0.3, 0.1) 82.22±5.03 85.19±6.23 77.59±6.95 84.26±4.96
(5, 65, 150) (0.4, 0.4) 86.11±5.18 85.93±4.55 85.56±7.40 85.00±7.06

Average 75.03 76.06 75.72 76.81

TABLE 6: Means and Standard Deviations (Percentage) of Classification Accuracies of all Linear Logistic-loss-based
Methods on UCI benchmarks

Bechmark dataset Noise rate
(m,n+, n−) (ρ+1, ρ−1) `log LD`log UB`log eIW`log IW`log

(0.2, 0.2) 70.00±5.88 71.52±4.83 71.82±5.31 73.48±4.91 71.52±4.51
Breast cancer (0.3, 0.1) 72.42±3.96 70.76±4.63 72.73±4.23 71.06±4.49 71.06±4.76

(9, 77, 186) (0.4, 0.4) 63.33±6.42 60.30±16.24 61.52±16.12 66.97±6.95 65.61±12.00
(0.2, 0.2) 77.14±1.84 77.29±2.00 76.51±2.22 74.79±2.52 76.72±2.00

Diabetes (0.3, 0.1) 74.48±2.33 74.79±2.96 74.64±3.30 74.48±3.44 74.37±3.49
(8, 268, 500) (0.4, 0.4) 71.20±3.17 72.86±5.29 71.93±4.89 77.03±3.39 74.06±5.01

(0.2, 0.2) 72.80±1.73 72.68±1.93 72.92±2.14 71.56±2.95 72.64±1.28
German (0.3, 0.1) 70.88±2.40 68.76±1.96 70.04±2.03 71.76±3.13 69.08±2.52

(20, 300, 700) (0.4, 0.4) 70.60±3.23 70.88±5.23 71.56±3.96 71.20±3.70 70.84±5.20
(0.2, 0.2) 77.50±3.80 76.91±6.01 77.79±5.74 78.97±6.61 79.85±5.33

Heart (0.3, 0.1) 74.85±7.02 74.26±6.36 74.41±9.56 78.68±5.85 75.00±7.17
(13, 120, 150) (0.4, 0.4) 74.71±5.27 73.82±7.49 77.21±5.60 77.79±6.81 72.50±6.09

(0.2, 0.2) 82.22±2.31 82.05±2.21 81.99±2.76 82.18±2.47 82.43±2.23
Image (0.3, 0.1) 73.24±4.28 80.29±2.67 80.63±2.88 72.76±3.92 81.19±2.35

(18, 1188, 898) (0.4, 0.4) 77.59±1.79 81.32±2.03 82.09±2.27 77.93±1.85 81.59±2.52
(0.2, 0.2) 85.37±5.20 85.00±4.14 85.00±5.12 84.07±6.66 86.11±3.52

Thyroid (0.3, 0.1) 82.22±4.88 84.07±5.74 82.22±5.60 81.30±4.14 84.63±4.46
(5, 65, 150) (0.4, 0.4) 80.37±6.99 85.37±4.66 84.26±5.67 86.30±6.43 86.48±5.24

Average 75.05 75.72 76.07 76.24 76.43

time efficient and is competitive with all the baselines on
all the datasets, should be sometimes preferred because
of its low training time complexity.

9 CONCLUSIONS AND FUTURE WORK

In this paper, we presented an importance reweighting
framework for classification in the presence of label
noise. Theoretical analyses were provided to assure that
the learned classifier will converge to the optimal one
for the noise-free sample. Empirical studies on synthetic
and real-world datasets verified the effectiveness and
robustness of our proposed learning framework. We also
provided a method to estimate the noise rates.

All our proposed methods crucially depend on the
accuracy of the estimation of the conditional distribution
PDρ(Ŷ |X). In future work, we need to consider how to
accurately learn the conditional probability distribution
for the noisy sample.
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APPENDIX A
PROOFS OF THEOREM 3 AND PROPOSITION 2
Proof of Theorem 3. If the hypothesis class for estimat-
ing the density ratio is set properly so that the approx-
imation error is zero, the target density ratio r∗(X) =
PDρ(X|Y )/PDρ(X) will be included in the hypothesis
class. The consistency of the ratio matching approach
exploiting Bregman divergence (proven in Section 7.6 of
the submission) guarantees that the target density ratio
r∗(X) can be learned when n is sufficiently large. Using
the proof method of Theorem 2, for any ε > 0, we can
prove that

lim
n→∞

P (R[D, f̂n,β̂ , `(f̂n,β̂(X), Y )]

−R[D, f∗, `(f∗(X), Y )] > ε) = 0.

�
Proof of Proposition 2. If we let f(r) = (t− 1)2/2, the

Bregman divergence degenerates to the square distance
as follows

BDf (r∗‖r) = SD(r∗‖r) =
1

2
(r∗ − r)2.

According to (9), for any δ > 0, with probability at least
1− δ, we have

BD(r∗‖r̂) =
1

2
(r∗ − r̂)2

≤ 2 sup
r
|B̂D(r∗‖r)− BD(r∗‖r)|

≤ 2RBDR + C

√
log(1/δ)

2n
,

where RBDR is defined in (8). Thus, with probability at
least 1− δ, the following holds

|r∗ − r̂| ≤ O

√RBDR +

√
log(1/δ)

n

 . (A.1)

The convergence rate of RBDR can be proven to be
of order O(

√
1/min(n+, n−)), where n+ and n− denote

the number of positive labels and negative labels of the
noisy sample, respectively.

Note that PDρ(Ŷ |X) =
PDρ (X|Ŷ )PDρ (Ŷ )

PDρ (X) , and that we es-

timate PDρ (X|Ŷ )

PDρ (X) by employing the Bregman divergence

based ratio matching method and PDρ(Ŷ = ±1) by
1
n

∑n
i=1 1{Ŷ=±1}.

Using Hoeffding’s inequality, with probability at least
1− δ, we have∣∣∣PDρ(Ŷ = ±1)− P̂Dρ(Ŷ = ±1)

∣∣∣ ≤√ log(1/δ)

2n
. (A.2)

Combining Equations (A.1) and (A.2), with probability
at least 1− 2δ, we have∣∣∣PDρ(Ŷ |X)− P̂Dρ(Ŷ |X)

∣∣∣
≤ O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n

 .

Then, with probability at least 1− 2δ, we have

β(X, Ŷ )

=
PDρ(Ŷ |X)− ρ−Ŷ

(1− ρ−1 − ρ+1)PDρ(Ŷ |X)

=
1− ρ−Ŷ

PDρ (Ŷ |X)

1− ρ−1 − ρ+1

≤

1− ρ−Ŷ

P̂Dρ (Ŷ |X)+O
(√

log(1/δ)
n +

√
RSDR+

√
log(1/δ)

n

)
1− ρ−1 − ρ+1

Let ∆(n) , O

(√
log(1/δ)

n +

√
RSDR +

√
log(1/δ)

n

)
, we

have

β(X, Ŷ )

≤
P̂Dρ(Ŷ |X) + ∆(n)− ρ−Ŷ

(1− ρ−1 − ρ+1)(P̂Dρ(Ŷ |X) + ∆(n))

≤
P̂Dρ(Ŷ |X) + ∆(n)− ρ−Ŷ
(1− ρ−1 − ρ+1)P̂Dρ(Ŷ |X)

≤
P̂Dρ(Ŷ |X)− ρ−Ŷ

(1− ρ−1 − ρ+1)P̂Dρ(Ŷ |X)

+O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n


= β̂(X, Ŷ )

+O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n


Hence, with probability at least 1− 2δ, we have that

Rβ`,Dρ(f̂n,β̂)

= R[Dρ, f̂n,β̂ , β(X, Ŷ )`(f̂n,β̂(X), Ŷ )]

= E(X,Ŷ )∼Dρ

[
β(X, Ŷ )`(f̂n,β̂(X), Ŷ )

]
≤ E(X,Ŷ )∼Dρ

[(
β̂(X, Ŷ )

+O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n


`(f̂n,β̂(X), Ŷ )

]
= R

[
Dρ, f̂n,β̂ , β̂(X, Ŷ )`(f̂n,β̂(X), Ŷ )

]
+O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n


= Rβ̂`,Dρ(f̂n,β̂) (A.3)

+O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n

 .
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Using the proof method of Proposition 1, with proba-
bility at least 1− δ, we have

Rβ̂`,Dρ(f̂n,β̂)−Rβ̂`,Dρ(f
∗)

≤ 2 sup
f∈F

∣∣∣E(X,Ŷ )∼Dρ

[
R̂β̂`,Dρ

]
− R̂β̂`,Dρ

∣∣∣
≤ 2

1−min(X,Ŷ )

ρ−Ŷ
P̂Dρ (Ŷ |X)

1− ρ−1 − ρ+1
R(` ◦ F ) + 2b

√
log(1/δ)

2n

≤ 2
1−min(ρ−1, ρ+1)

1− ρ−1 − ρ+1
R(` ◦ F ) + 2b

√
log(1/δ)

2n
,

or

Rβ̂`,Dρ(f̂n,β̂)−Rβ̂`,Dρ(f
∗)

≤ O

(
R(` ◦ F ) +

√
log(1/δ)

n

)
. (A.4)

Combining Equations (A.3) and (A.4), with probability
at least 1− 3δ, we have

Rβ`,Dρ(f̂n,β̂)−Rβ̂`,Dρ(f
∗)

≤ O

R(` ◦ F ) +

√
log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n

 ,

which completes the proof. �

APPENDIX B
PROOFS OF THE ASSERTIONS IN REMARK 2
B.1 Consistency of the Joint Estimation of the Noise
Rate, Weight and Classifier

We have considered the consistency of the joint estima-
tion of the weight and classifier in Theorems 2 and 3.
Those consistency results can be easily extended to the
joint estimation of the noise rate, weight and classifier.
In Lemma 3, we have proven that the kernel density
estimation method can learn the target weight β∗(X, Ŷ )
by employing a universal kernel. Thus, given suffi-
ciently large data and the assumption in Theorem 4 that
∃x−1, x+1 ∈ X , PD(Y = +1|x−1) = PD(Y = −1|x+1) = 0,
Theorem 4 guarantees that we will learn the target noise
rates. Theorem 2 therefore can be extended to provide
a theoretical justification for the consistency of learning
the optimal classifier in the hypothesis class with the
estimated noise rates and weights. In Theorem 3, we
have assumed that when employing the density ratio
estimation method to learn the conditional distribution
PDρ(Ŷ |X) and the hypothesis class is properly chosen,
the corresponding approximation error is zero. The es-
timated noise rates therefore will converge to the target
noise rates and the estimated weights will approach to
the target weights under the assumption in Theorem 4.
Thus, Theorem 3 can be extended to the consistency
of the joint estimation of the noise rate, weight and
classifier as well.

B.2 Convergence rate of the Joint Estimation of the
Noise Rate, Weight and Classifier

We have discussed the convergence rate of the joint
estimation of the weight and classifier in Proposition 2.
In this subsection, we characterize a convergence rate
for the joint estimation of the noise rate, weight and
classifier.

Let P̂Dρ(Ŷ |X) be an estimator for PDρ(Ŷ |X) using
equations (1), (2) and (3), and

ρ̂−Ŷ = min
X∈{X1,...,Xn}

P̂Dρ(Ŷ |X). (B.1)

be the estimators for ρ±1.
Let defined the (learned) weight function comprised

of the learned conditional distribution and learned noise
rates as follows:

β̂(X, Ŷ ) =
P̂Dρ(Ŷ |X)− ρ̂−Ŷ

(1− ρ̂−1 − ρ̂+1)P̂Dρ(Ŷ |X)
.

Note that the weight function is different from that
defined in Theorem 2, where the noise rates are known
and not estimated.

We also let

f̂n,β̂ = min
f∈F

1

n

n∑
i=1

β̂(Xi, Ŷi)`(f(Xi), Ŷi)

and

f∗ = min
f∈F

R[D, f, `(f(X), Y )].

Then, the convergence rate for the joint estimation of
the learned noise rate, weight and classifier is character-
ized as follows:

Proposition 3: Under the settings of Theorem 3, if the
Bregman divergence degenerates to square distance, for
any δ > 0, with probability at least 1− 9δ, the following
holds:

R[D, f̂n,β̂ , `(f̂n,β̂(X), Y )]−R[D, f∗, `(f∗(X), Y )]

≤
O
(√

log(1/δ)
n

+

√
RSDR+

√
log(1/δ)

n

)
(
1−ρ̂−1−ρ̂+1−O

(√
log(1/δ)

n
+

√
RSDR+

√
log(1/δ)

n

))2

+O

(
R(` ◦ F ) +

√
log(1/δ)

n

)
,

Proof of Proposition 3. In the proof of Proposition 2,
we have proven that with probability at least 1− 2δ, we
have ∣∣∣PDρ(Ŷ |X)− P̂Dρ(Ŷ |X)

∣∣∣ (B.2)

≤ O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n

 .
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We have also proven that with probability at least 1−
2δ, we have

PDρ(Ŷ |X)− ρ−Ŷ
(1− ρ−1 − ρ+1)PDρ(Ŷ |X)

≤
P̂Dρ(Ŷ |X)− ρ−Ŷ

(1− ρ−1 − ρ+1)P̂Dρ(Ŷ |X)

+O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n

 .

According to (B.1) and (B.2), with probability at least
1− 2δ, we have

|ρ̂±1 − ρ±1| ≤ O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n

 .

This is because, with probability at least 1− 2δ, we have

ρ̂±1 − ρ±1 = min
X∈{X1,...,Xn}

P̂Dρ(Ŷ |X)− min
X∈X

PDρ(Ŷ |X)

≤ max
X∈X

P̂Dρ(Ŷ |X)− PDρ(Ŷ |X)

≤ O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n


and

ρ±1 − ρ̂±1 = min
X∈X

PDρ(Ŷ |X)− min
X∈{X1,...,Xn}

P̂Dρ(Ŷ |X)

≤ max
X∈X

PDρ(Ŷ |X)− P̂Dρ(Ŷ |X)

≤ O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n

 .

Thus, with probability at least 1− 4δ, it holds that

P̂Dρ(Ŷ |X)− ρ−Ŷ
(1− ρ−1 − ρ+1)P̂Dρ(Ŷ |X)

+O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n


≤

P̂Dρ(Ŷ |X)− ρ̂−Ŷ
(1− ρ−1 − ρ+1)P̂Dρ(Ŷ |X)

(B.3)

+O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n

 .

Since with probability at least 1 − 2δ, it holds that

ρ̂±1 ≥ ρ±1 − O

(√
log(1/δ)

n +

√
RSDR +

√
log(1/δ)

n

)
, with

probability at least 1− 4δ, we have

1

1− ρ−1 − ρ+1
≤ 1

1− ρ̂−1 − ρ̂+1 −∆(n)
, (B.4)

where ∆(n) , O

(√
log(1/δ)

n +

√
RSDR +

√
log(1/δ)

n

)
.

We now prove that for any a > 0, b > 0, a + b < 1, it
holds that

1

1− a− b
≤ 1

1− a
+

b

(1− a− b)2
. (B.5)

This is because

1

1− a− b
≤ 1

1− a
+

b

(1− a− b)2

⇔ 1− a ≤ 1− a− b+
b(1− a)

1− a− b
⇔ 1 ≤ 1− a

1− a− b
.

Combining inequalities (B.4) and (B.5), with probabil-
ity at least 1− 4δ, we have

1

1− ρ−1 − ρ+1

≤ 1

1− ρ̂−1 − ρ̂+1 −∆(n)
(B.6)

≤ 1

1− ρ̂−1 − ρ̂+1
+

∆(n)

(1− ρ̂−1 − ρ̂+1 −∆(n))2

Combining inequalities (B.3) and (B.6), we have that
with probability at least 1− 8δ, the following holds

β(X, Ŷ )

≤
P̂Dρ(Ŷ |X)− ρ−Ŷ

(1− ρ−1 − ρ+1)P̂Dρ(Ŷ |X)

+O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n


≤

P̂Dρ(Ŷ |X)− ρ̂−Ŷ
(1− ρ−1 − ρ+1)P̂Dρ(Ŷ |X)

+O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n

 .

(According to P̂Dρ(Ŷ |X)− ρ̂−Ŷ ≥ 0 and (B.6))

≤
P̂Dρ(Ŷ |X)− ρ̂−Ŷ

(1− ρ̂−1 − ρ̂+1)P̂Dρ(Ŷ |X)

+
O
(√

log(1/δ)
n

+

√
RSDR+

√
log(1/δ)

n

)
(
1−ρ̂−1−ρ̂+1−O

(√
log(1/δ)

n
+

√
RSDR+

√
log(1/δ)

n

))2

+O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n

 .

= β̂(X, Ŷ ) (B.7)

+
O
(√

log(1/δ)
n

+

√
RSDR+

√
log(1/δ)

n

)
(
1−ρ̂−1−ρ̂+1−O

(√
log(1/δ)

n
+

√
RSDR+

√
log(1/δ)

n

))2

+O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n

 .
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Hence, with probability at least 1− 8δ, we have that

Rβ`,Dρ(f̂n,β̂)

= R[Dρ, f̂n,β̂ , β(X, Ŷ )`(f̂n,β̂(X), Ŷ )]

= E(X,Ŷ )∼Dρ

[
β(X, Ŷ )`(f̂n,β̂(X), Ŷ )

]
≤ E(X,Ŷ )∼Dρ

[(
β̂(X, Ŷ )

+
O
(√

log(1/δ)
n

+

√
RSDR+

√
log(1/δ)

n

)
(
1−ρ̂−1−ρ̂+1−O

(√
log(1/δ)

n
+

√
RSDR+

√
log(1/δ)

n

))2

+O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n


`(f̂n,β̂(X), Ŷ )

]
= R

[
Dρ, f̂n,β̂ , β̂(X, Ŷ )`(f̂n,β̂(X), Ŷ )

]
+

O
(√

log(1/δ)
n

+

√
RSDR+

√
log(1/δ)

n

)
(
1−ρ̂−1−ρ̂+1−O

(√
log(1/δ)

n
+

√
RSDR+

√
log(1/δ)

n

))2

+O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n


= Rβ̂`,Dρ(f̂n,β̂)

+
O
(√

log(1/δ)
n

+

√
RSDR+

√
log(1/δ)

n

)
(
1−ρ̂−1−ρ̂+1−O

(√
log(1/δ)

n
+

√
RSDR+

√
log(1/δ)

n

))2

+O

√ log(1/δ)

n
+

√
RSDR +

√
log(1/δ)

n

 . (B.8)

Using the proof method of Proposition 1, with proba-
bility at least 1− δ, we have

Rβ̂`,Dρ(f̂n,β̂)−Rβ̂`,Dρ(f
∗)

≤ 2 sup
f∈F

∣∣∣E(X,Ŷ )∼Dρ

[
R̂β̂`,Dρ

]
− R̂β̂`,Dρ

∣∣∣
≤ 2

1−min(X,Ŷ )

ρ̂−Ŷ
P̂Dρ (Ŷ |X)

1− ρ̂−1 − ρ̂+1
R(` ◦ F ) + 2b

√
log(1/δ)

2n

≤ 2
1−min(ρ̂−1, ρ̂+1)

1− ρ̂−1 − ρ̂+1
R(` ◦ F ) + 2b

√
log(1/δ)

2n
,

or

Rβ̂`,Dρ(f̂n,β̂)−Rβ̂`,Dρ(f
∗)

≤ O

(
R(` ◦ F ) +

√
log(1/δ)

n

)
. (B.9)

Combining Equations (B.8) and (B.9), with probability at
least 1− 9δ, we have

Rβ`,Dρ(f̂n,β̂)−Rβ̂`,Dρ(f
∗)

≤
O
(√

log(1/δ)
n

+

√
RSDR+

√
log(1/δ)

n

)
(
1−ρ̂−1−ρ̂+1−O

(√
log(1/δ)

n
+

√
RSDR+

√
log(1/δ)

n

))2

+O

(
R(` ◦ F ) +

√
log(1/δ)

n

)
,

which completes the proof. �
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