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Abstract—To perform unconstrained face recognition robust to variations in illumination, pose and expression, this paper presents a
new scheme to extract “Multi-Directional Multi-Level Dual-Cross Patterns” (MDML-DCPs) from face images. Specifically, the MDML-
DCPs scheme exploits the first derivative of Gaussian operator to reduce the impact of differences in illumination and then computes
the DCP feature at both the holistic and component levels. DCP is a novel face image descriptor inspired by the unique textural structure
of human faces. It is computationally efficient and only doubles the cost of computing local binary patterns, yet is extremely robust to
pose and expression variations. MDML-DCPs comprehensively yet efficiently encodes the invariant characteristics of a face image
from multiple levels into patterns that are highly discriminative of inter-personal differences but robust to intra-personal variations.
Experimental results on the FERET, CAS-PERL-R1, FRGC 2.0, and LFW databases indicate that DCP outperforms the state-of-the-art
local descriptors (e.g. LBP, LTP, LPQ, POEM, tLBP, and LGXP) for both face identification and face verification tasks. More impressively,
the best performance is achieved on the challenging LFW and FRGC 2.0 databases by deploying MDML-DCPs in a simple recognition
scheme.

Index Terms—Face recognition, face image descriptors, face image representation
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1 INTRODUCTION

FACE recognition has been an active area of research
due to both the scientific challenge and its potential

use in a wide range of practical applications. Satisfac-
tory performance has been achieved but often only in
controlled environments. More recently, there has been
increased demand for recognition of unconstrained face
images, such as those collected from the internet [1] or
captured by mobile devices and surveillance cameras [2].
However, recognition of unconstrained face images is
a difficult problem due to degradation of face image
quality and the wide variations of pose, illumination, ex-
pression, and occlusion often encountered in images [3].

A face recognition system usually consists of a face
representation stage and a face matching stage. For
face matching, multi-class classifiers have been used
for face identification, such as the nearest neighbor
(NN) classifier and the sparse representation classifier
(SRC) [4], with two-class classifiers, such as support
vector machine (SVM) and Bayesian analysis, being used
for verification. In face representation, good representa-
tions discriminate inter-personal differences while being
robust to intra-personal variations. Two major categories
of face representation methods dominate recent research,
namely face image descriptor-based methods [5], [6],
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[7], [8] and deep learning-based methods [9], [10]. The
former has the advantage of ease of use, data inde-
pendence, and robustness to real-life challenges such as
illumination and expression differences. Consequently,
the design of effective face image descriptors is regarded
as fundamental for face recognition. Based on design
methodology, we can group existing face image de-
scriptors into two groups: hand-crafted descriptors and
learning-based descriptors.

Most face image descriptors are hand-crafted, of which
Local Binary Patterns (LBP) and Gabor wavelets are
two representative methods; Ahonen et al. [5] showed
that the texture descriptor LBP is extremely effective
for face recognition. LBP works by encoding the gray-
value differences between each central pixel and its
neighboring pixels into binary codes; the face image is
then represented as the concatenated spatial histograms
of the binary codes. Many variants of LBP have been
proposed. For example, Local Ternary Patterns (LTP) [11]
was proposed to enhance the robustness of LBP to
noises. Transition LBP (tLBP) [12] and Direction coded
LBP (dLBP) [12] were proposed to extract complemen-
tary information to LBP using novel encoding strate-
gies. On the other hand, Gabor wavelets aim to en-
code multi-scale and multi-orientation information of
face images [13], [14]. LBP-like descriptors are therefore
better at encoding fine-scale information while Gabor-
based descriptors extract information on larger scales.
Other notable descriptors for face recognition include
Local Phase Quantization (LPQ) [15] and Patterns of
Oriented Edge Magnitudes (POEM) [16]. In LPQ, the
blur-invariant information in face images is encoded and
the method shows good performance in unconstrained
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conditions [8]. POEM works by computing the LBP
feature on orientated edge magnitudes.

Of the learning-based descriptors, LE [6], Local Quan-
tized Patterns (LQP) [17], and Discriminant Face De-
scriptor (DFD) [18] have emerged in recent years, which
rely on unsupervised or supervised learning techniques
to optimize encoders. One important advantage of
learning-based descriptors over hand-crafted descriptors
is their greater diversity in sampling pattern shapes and
the larger sampling size.

Despite the successful application of existing face im-
age descriptors, the following three points are worth con-
sidering. First, the textual characteristics of human faces
have mostly been overlooked in the design of existing
descriptors. Second, it is generally prohibitive for hand-
crafted descriptors to adopt a large sampling size due
to the complication of the resulting encoding scheme
and large feature size (i.e., the number of histogram
bins) [17]. However, a large sampling size is desirable
since it provides better discriminative power, as has
been proved by learning-based descriptors; it is therefore
reasonable to ask whether it is genuinely impossible for
hand-crafted descriptors to exploit large sampling sizes.
Third, the recently proposed descriptors achieve good
performance but at the cost of using computationally ex-
pensive techniques such as Gabor filtering and codebook
learning. It would therefore be desirable to obtain a face
image descriptor with superior performance that retains
a lower computational cost and feature size.

To address these three limitations of existing tech-
niques, in this paper we present a novel face image
descriptor named Dual-Cross Patterns (DCP). Inspired
by the unique textural structure of human faces, DCP
encodes second-order discriminative information in the
directions of major facial components: the horizontal di-
rection for eyes, eyebrows, and lips; the vertical direction
for the nose; and the diagonal directions (π/4 and 3π/4)
for the end parts of facial components. The sampling
strategy we adopt samples twice as many pixels as LBP.
By appropriately grouping the sampled pixels from the
perspective of maximum joint Shannon entropy, we keep
the DCP feature size reasonable. DCP is very efficient -
only twice the computational cost of LBP. Significantly
better performance is achieved even when a sub-DCP
(denoted herein as DCP-1 and DCP-2) of exactly the
same time and memory costs as LBP is used.

A powerful face representation scheme is equally im-
portant for unconstrained face recognition as a good
face image descriptor. To improve the discrimination of
face representations and even the more general image
representations, the usual approach is to fuse the infor-
mation extracted by different descriptors [11], [19], [20]
and at different scales [8], [21]. To enhance robustness to
pose variation, Wright et al. [22] expanded image patch
descriptors with their spatial locations and represented
the face image as a histogram of quantized patch de-
scriptors. Ding et al. [23] proposed to represent the face
image using only the unoccluded facial texture that is

automatically detected in the 3D pose normalized face
image. Recently, face representation has benefited from
rapid progress in face alignment techniques [24]. For
example, Chen et al. [25] built a high dimensional face
representation by extracting LBP features from multi-
scale image patches around dense facial feature points.
For other representative face representations, we direct
readers to a recent survey [3].

In this paper we propose a highly robust and dis-
criminative face representation scheme called Multi-
Directional Multi-Level Dual-Cross Patterns (MDML-
DCPs). Specifically, the MDML-DCPs scheme employs
the first derivative of Gaussian operator to conduct
multi-directional filtering to reduce the impact of differ-
ences in illumination. DCP features are then computed at
two levels: 1) holistic-level features incorporating facial
contours and facial components and their configuration,
and 2) component-level features focusing on the descrip-
tion of a single facial component. Thus, MDML-DCPs
comprehensively encodes multi-level invariant charac-
teristics of face images.

Both the DCP descriptor and the MDML-DCPs scheme
are extensively evaluated on four large-scale databases:
FERET [26], CAS-PEAL-R1 [27], FRGC 2.0 [28], and
LFW [1]. The proposed DCP descriptor consistently
achieves superior performance for both face identifica-
tion and face verification tasks. More impressively, the
proposed MDML-DCPs exploits only a single descriptor
but achieves the best performance on two challenging
unconstrained databases, FRGC 2.0 and LFW. Besides,
this paper provides a fair and systematic comparison
between state-of-the-art facial descriptors, which has
been rarely performed in the face recognition field [29].

The remainder of the paper is organized as follows:
Section 2 details the DCP descriptor and the construc-
tion of the MDML-DCPs face representation scheme is
discussed in Section 3. Face recognition pipelines using
MDML-DCPs are introduced in Section 4. Experimental
results are presented in Section 5, leading to conclusions
in Section 6.

2 DUAL-CROSS PATTERNS

The design of a face image descriptor consists of three
main parts: image filtering, local sampling, and pat-
tern encoding. The implementation of image filtering is
flexible: possible methods include Gabor wavelets [7],
Difference of Gaussian (DoG), or the recently proposed
discriminative image filter [18]. In this paper, we focus
on local sampling and pattern encoding, which are the
core components of a face image descriptor.

2.1 Local Sampling
The essence of DCP is to perform local sampling and
pattern encoding in the most informative directions con-
tained within face images. For face recognition, useful
face image information consists of two parts: the config-
uration of facial components and the shape of each facial
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Fig. 1. Local sampling of Dual-Cross Patterns. Sixteen
points are sampled around the central pixel O. The sam-
pled points A0 to A7 are uniformly spaced on an inner
circle of radius Rin, while B0 to B7 are evenly distributed
on the exterior circle with radius Rex.

component. The shape of facial components is, in fact,
rather regular. After geometric normalization of the face
image, the central parts of several facial components,
i.e., the eyebrows, eyes, nose, and mouth, extend either
horizontally or vertically, while their ends converge in
approximately diagonal directions (π/4 and 3π/4). In
addition, wrinkles in the forehead lie flat, while those
in the cheeks are either raised or inclined.

Based on the above observations, local sampling of
DCP is conducted as shown in Fig. 1. For each pixel
O in the image, we symmetrically sample in the local
neighborhood in the 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, and
7π/4 directions, which are sufficient to summarize the
extension directions of major facial textures. Two pixels
are sampled in each direction. The resulting sampled
points are denoted as {A0, B0;A1, B1; · · · ;A7, B7}. As
illustrated in Fig. 1, A0, A1, · · · , A7 are uniformly spaced
on an inner circle of radius Rin, while B0, B1 · · · , B7 are
evenly distributed on the exterior circle with radius Rex.

2.2 Pattern Encoding

Encoding of the sampled points is realized in two steps.
First, textural information in each of the eight directions
is independently encoded. Second, patterns in all eight
directions are combined to form the DCP codes.

To quantize the textural information in each sampling
direction, we assign each a unique decimal number:

DCPi = S (IAi
− IO)× 2 + S (IBi

− IAi
) , 0 ≤ i ≤ 7, (1)

where

S (x) =

{
1, x ≥ 0
0, x < 0

, (2)

and IO, IAi
, and IBi

are the gray value of points O, Ai,
and Bi, respectively. Therefore, four patterns are defined
to encode the second-order statistics in each direction

and each of the four patterns denotes one type of textural
structure.

By simultaneously considering all eight directions, the
total number of DCP codes is 48 = 65536. This number
is too large for practical face recognition applications;
therefore, we adopt the following strategy. The eight
directions are grouped into two subsets and each subset
is further formulated as an encoder. In this way, the total
number of local patterns is reduced to 44×2 = 512, which
is computationally efficient. Although this strategy re-
sults in information loss, compactness and robustness of
the descriptor are promoted. In the following subsection,
we define the optimal grouping mode.

2.3 Dual-Cross Grouping

The grouping strategy introduced in the previous sub-
section produces 1

2

(
8
4

)
= 35 combinations in total to

partition all eight directions. To minimize information
loss, we look for the optimal combination from the
perspective of maximum joint Shannon entropy.

With the above analysis, DCPi (0 ≤ i ≤ 7) are discrete
variables with four possible values: 0, 1, 2, and 3. With-
out loss of generality, the joint Shannon entropy for the
subset {DCP0, DCP1, DCP2, DCP3} is represented as

H (DCP0, DCP1, DCP2, DCP3)
= −

∑
dcp0

· · ·
∑
dcp3

P (dcp0, · · · , dcp3) log2P (dcp0, · · · , dcp3),

(3)
where dcp0, dcp1, dcp2, and dcp3 are particular values
of DCP0, DCP1, DCP2, and DCP3, respectively. And
P (dcp0, · · · , dcp3) is the probability of these values oc-
curring simultaneously. The maximum joint Shannon
entropy of the four variables is achieved when they are
statistically independent.

In real images, the more sparsely the pixels are
scattered, the more independent they are. Therefore,
the maximum joint Shannon entropy for each sub-
set is achieved when the distance between the sam-
pled points is at its maximum. As a result, we de-
fine {DCP0, DCP2, DCP4, DCP6} as the first subset and
{DCP1, DCP3, DCP5, DCP7} as the second subset. The
resulting two subsets are illustrated in Fig. 2. Since
each of the two subsets constructs the shape of a cross,
the proposed descriptor is named Dual-Cross Patterns.
In Section 5.1, we empirically validate that dual-cross
grouping achieves the maximum joint Shannon entropy
among all grouping modes on the FERET database.

2.4 DCP Face Image Descriptor

We name the two cross encoders DCP-1 and DCP-2,
respectively. The codes produced by the two encoders
at each pixel O are represented as

DCP -1 =

3∑
i=0

DCP2i × 4i, (4)
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Normalized ImageOriginal Image DCP Code Maps DCP‐based Face RepresentationDual‐Cross Encoders

Fig. 2. Face representation using Dual-Cross Patterns. The normalized face image is encoded by the two cross
encoders, respectively. Concatenation of the regional DCP code histograms forms the DCP-based face representation.

DCP -2 =

3∑
i=0

DCP2i+1 × 4i. (5)

The DCP descriptor for each pixel O in an image is
the concatenation of the two codes generated by the two
cross encoders:

DCP =

{
3∑
i=0

DCP2i × 4i,

3∑
i=0

DCP2i+1 × 4i

}
. (6)

After encoding each pixel in the face image using the
dual-cross encoders, two code maps are produced that
are respectively divided into a grid of non-overlapping
regions. Histograms of DCP codes are computed in each
region and all histograms are concatenated to form the
holistic face representation. The overall framework of
the above face representation approach is illustrated in
Fig. 2. This face representation can be directly used to
measure the similarity between a pair of face images us-
ing metrics such as the chi-squared distance or histogram
intersection. The computation of the DCP descriptor,
which doubles the feature size of LBP, is very efficient
by only doubling the time cost of LBP.

We notice that two recently proposed descriptors
DFD [18] and Center Symmetric-Pairs of Pixels (CCS-
POP) [30] adopt similar sampling modes to DCP. How-
ever, they are essentially different from DCP. First, there
is no clear motivation for the two descriptors that why
such a sampling mode is suitable for face images. Sec-
ond, the pattern encoding strategies are different: both
the two descriptors rely on learning algorithms to handle
the large sampling size problem mentioned in Section 1.

3 MULTI-DIRECTIONAL MULTI-LEVEL DUAL-
CROSS PATTERNS
We now present a face representation scheme based on
DCP named Multi-Directional Multi-Level Dual-Cross
Patterns (MDML-DCPs) to explicitly handle the chal-
lenges encountered in unconstrained face recognition.

3.1 The MDML-DCPs Scheme
A major difficulty in unconstrained face recognition is
that many factors produce significant intra-personal dif-
ferences in the appearance of face images, in particular

variations in illumination, image blur, occlusion, and
pose and expression changes. We mitigate the influence
of these factors using multi-directional gradient filtering
and multi-level face representation.

In MDML-DCPs, the first derivative of Gaussian oper-
ator (FDG) is exploited to convert a gray-scale face image
into multi-directional gradient images that are more
robust to variations in illumination. The FDG gradient
filter of orientation θ can be expressed as follows:

FDG (θ) =
∂G

∂n
= n · ∇G, (7)

where n = (cosθ, sinθ) is the normal vector standing
for the filtering direction and G = exp

(
−x

2+y2

σ2

)
is

a two-dimensional Gaussian filter. The application of
FDG is inspired by the classical work of Canny [31],
which proved that FDG is the optimal gradient filter
according to three criteria, namely signal-to-noise ratio
(SNR) maximization, edge location accuracy preserva-
tion, and single response to single edge. These three
criteria are also relevant for face recognition, where it
is desirable to enhance the facial textural information
while suppressing noise. FDG significantly saves compu-
tational cost compared to other gradient-like filters, such
as Gabor wavelets [7]. We denote the concatenation of
DCP descriptors extracted from the FDG-filtered images
as MD-DCPs.

To build pose-robust face representation, MDML-
DCPs normalizes the face image by two geometric rec-
tifications based on a similarity transformation and an
affine transformation, respectively. The similarity trans-
formation retains the original information of facial con-
tours and facial components and their configuration.
The affine transformation reduces differences in intra-
personal appearance caused by pose variation.

MDML-DCPs combines both holistic-level and
component-level features, which are computed on the
normalized images by the two transformations. Holistic-
level features capture comprehensive information on
both facial components and facial contour. However,
it is also sensitive to changes in appearance of each
component caused by occlusion, pose, and variations
in expression. In contrast, component-level features
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Fig. 3. Framework of the MDML-DCPs face representation scheme. MDML-DCPs-H1 and MDML-DCPs-H2 are
extracted from the rectified image by similarity transformation. MDML-DCPs-H3, MDML-DCPs-C1 to C6 are extracted
from the affine-transformed image. The MDML-DCPs face representation is the set of the above nine feature vectors.

M

(a) (b)

Fig. 4. (a) The 49 facial feature points detected by the
face alignment algorithm. (b) MDML-DCPs-H3 employs
21 facial feature points over all facial components. MDML-
DCPs-C1 to C6 respectively select 10 facial feature points
on both eyebrows, 12 points on both eyes, 11 points on
the left eye and left eyebrow, 11 points on the right eye
and right eyebrow, 9 points on nose, and 18 points on
mouth. Around each facial feature point, MD-DCPs are
extracted from J×J (in this figure, J = 4) non-overlapping
regions within the patch of size M ×M pixels.

focus on the description of a single facial component,
and thus are independent of changes in appearance
of the other components. In this way the information
generated by these two feature levels is complementary
and appropriate fusion of the two promotes robustness
to interference.

3.2 Implementation Details
Similar to most state-of-the-art face representation
schemes, e.g., [25], [9], MDML-DCPs also benefits from
recent progress in face alignment algorithms that ac-
curately locate dense facial feature points in real-time.

The MDML-DCPs face representation scheme is shown
in Fig. 3. In MDML-DCPs, a high performance face
alignment algorithm based on [24] is first employed to
locate 49 facial feature points (as shown in Fig. 4a),
before applying the two geometric rectifications.

The similarity transformation is based on the two
detected eye centers. In the rectified image, we compute
MD-DCPs at two holistic levels: 1) MD-DCPs of non-
overlapping regions of the external cropped face image
(including facial contour), and 2) MD-DCPs of non-
overlapping regions of the internal cropped face image
(without facial contour). The first feature encodes both
facial contour and facial components while the second
feature focuses on encoding facial components only,
which are free from background interference. For clarity,
we denote the two features as MDML-DCPs-H1 and
MDML-DCPs-H2.

The affine transformation is determined by the three
detected facial feature points: the centers of the two
eyes and the center of the mouth. In the rectified image,
one holistic-level feature denoted as MDML-DCPs-H3,
and six component-level features referred to MDML-
DCPs-C1 to MDML-DCPs-C6, are computed based on
the detected dense facial feature points. As shown in
Fig. 4b, the method for feature extraction around each
facial feature point is similar to the approaches used
in [32], [25]: centered on each facial feature point, a patch
of size M ×M pixels is located and further divided into
J × J non-overlapping regions. The concatenated MD-
DCPs feature of the J2 regions forms the description of
the feature point.

MDML-DCPs-H3 and MDML-DCPs-C1 to C6 are
formed by respectively concatenating the descriptions
of different facial feature points. As shown in Fig. 4,
MDML-DCPs-H3 selects 21 facial feature points over all
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facial components, while MDML-DCPs-C1 to C6 select
feature points on only one particular facial component.
Elements of the three holistic-level features and six
component-level features are normalized by the square
root. Together, the set of the nine normalized feature
vectors form the MDML-DCPs face representation.

4 FACE RECOGNITION ALGORITHM

In this section, the face matching problem is addressed
using the proposed MDML-DCPs face representation
scheme. First, one classifier is built for each of the nine
feature vectors. Then, the similarity scores of the nine
classifiers are fused by linear SVM or simple averaging.

Two algorithms are considered: Whitened Principal
Component Analysis (WPCA; an unsupervised learning
algorithm) and Probabilistic Linear Discriminant Analy-
sis (PLDA; a supervised learning algorithm) [33], [34].
The choice of which of the two algorithms to use is
dataset dependent: for datasets that have a training set
with multiple face images for each subject, we choose
PLDA; otherwise, WPCA is used. For more recent high-
performance classifiers, readers can refer to [35], [36].

4.1 WPCA
Principal Component Analysis (PCA) learns an or-
thogonal projection matrix U from training data and
projects high-dimensional feature vector x to the low-
dimensional vector y,

y = UTx. (8)

The columns of U are composed of the leading eigen-
vectors of the covariance matrix of the training data.
However, the first few eigenvectors in U encode mostly
variations in illumination and expression, rather than
information that discriminates identity. The whitening
transformation tackles this problem by normalizing the
contribution of each principal component

y =
(
UΛ−1/2

)T
x, (9)

where Λ = diag {λ1, λ2, · · ·} with λi being the ith leading
eigenvalue. After projecting the facial feature vectors to
the low-dimensional subspace using WPCA, the simi-
larity score between two feature vectors y1 and y2 is
measured by the cosine metric

Sim (y1, y2) =
yT1 y2
‖y1‖ ‖y2‖

. (10)

4.2 PCA combined with PLDA
The feature vectors in MDML-DCPs are high-
dimensional. To effectively apply PLDA, the
dimensionality of the nine feature vectors is first
reduced by PCA.

PLDA models the face data generation process

xij = µ+ Fhi +Gwij + εij , (11)

Fig. 6. Sample images from LFW. Images in the two rows
are aligned by a similarity transformation and an affine
transformation, respectively.

where xij denotes the jth face data of the ith individual.
µ is the mean of all face data. F and G are factor
matrices whose columns are the basis vectors of the
between-individual subspace and the within-individual
subspace, respectively. hi is the latent identity variable
that is constant for all images of the ith subject. wij and
εij are noise terms explaining intra-personal variance.

It is shown in [33] that the identification and verifi-
cation problems can be solved by computing the log-
likelihood ratio that whether two observed images share
the same identity variable h or not. In this paper, we
refer to the log-likelihood ratio as similarity score for
consistency with the case of the WPCA classifier.

5 EXPERIMENTS
In this section, the proposed DCP and MDML-DCPs
are extensively evaluated in both face identification and
face verification tasks. Experiments are conducted on
four publicly available large-scale face databases: FERET,
CAS-PEAL-R1, FRGC 2.0, and LFW. Example images of
the four databases are shown in Figs. 5 and 6.

The FERET database contains one gallery set Fa and
four probe sets, i.e., Fb, Fc, Dup1, and Dup2. In this
paper, the standard face identification protocol specified
in [26] is employed.

The CAS-PEAL-R1 database includes one training set,
one gallery set, and nine probe sets. Each of the nine
probe sets is restricted to one type of variations. In detail,
the PE, PA, PL, PT, PB, and PS probe sets correspond
to variations in expression, accessory, lighting, time,
background, and distance of frontal faces, respectively.
The PU, PM, and PD probe sets correspond to one type
of pose variation. The standard identification protocol
defined in [27] is followed.

The FRGC 2.0 database incorporates data for six face
verification experiments [28]. We focus on Experiments
1 and 4. The shared target set of Experiments 1 and 4
is collected from frontal facial images taken under con-
trolled illumination, while images in their query sets are
captured under controlled and uncontrolled conditions,
respectively. Verification rates at 0.1% FAR are reported.
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(a) (b)

Fig. 5. (a) Sample images from FERET (first row), CAS-PEAL-R1 (second row) and FRGC 2.0 (third row) containing
typical variations in each database. (b) Samples of normalized images for experiments from Section 5.1 to 5.3.

The LFW database [1] contains 13,233 unconstrained
face images that are organized into two “Views”. View 1
is for model selection and parameter tuning while View
2 is for performance reporting. Two paradigms are used
to exploit the training set in View 2, an image-restricted
paradigm and an image-unrestricted paradigm. In the
first paradigm, only the officially defined image pairs
are available for training. In the second paradigm, the
identity information of the training images can be used.
We report the mean verification accuracy and standard
error of the mean (SE) on the View 2 data.

Four experiments are conducted. First, the dual-cross
grouping mode for DCP is empirically proved to achieve
the maximum joint Shannon entropy. Second, the per-
formance of DCP is compared with eleven state-of-
the-art face image descriptors. Third, the performance
of MD-DCPs is evaluated to determine the contribu-
tion of multi-directional filtering by FDG. Finally, the
power of the MDML-DCPs face representation scheme
is presented. More experimental results, e.g., parameter
selection of DCP, are available in the appendix.

In the first three experiments, we focus on the eval-
uation of face image descriptors. In these three ex-
periments, all face images are cropped and resized to
128 × 128 (rows × columns) pixels with the eye centers
located at (34, 31) and (34, 98), as shown in Fig. 5b. For
LFW, we use the aligned version (LFW-A) [19], while for
the other three databases, images are cropped according
to the eye coordinates provided by the databases. The
cropped images are photometrically normalized using
a simple operator (denoted as TT) developed by Tan
& Triggs [11] and then encoded by one face image
descriptor. Each encoded face image is divided into
N ×N non-overlapping regions. Concatenating the code
histograms of these regions forms the representation for
the image.

In the fourth experiment, we aim to demonstrate that
the proposed MDML-DCPs face representation scheme

(a) (b)

Fig. 7. Another two representative grouping modes for
the eight sampling directions of DCP. Sampled points of
the same colour belong to the same subset.

has excellent performance characteristics. In this experi-
ment, all face images are normalized by two geometric
transformations, as illustrated in Fig. 6. In both transfor-
mations, face images are resampled to 180 × 162 pixels
with the eye centers mapped to (66, 59) and (66, 103).
For the affine-transformed face images, the centers of
the mouths are unified to (116, 81). TT is applied to the
resampled images for photometric normalization.

5.1 Empirical Justification for Dual-Cross Grouping
Section 2.3 intuitively suggests that the dual-cross
grouping mode is optimal from the perspective of the
joint Shannon entropy maximization. In this experi-
ment, we empirically validate this point on the FERET
database. For each of the 35 possible grouping modes,
DCPi (0 ≤ i ≤ 7) are divided into two subsets. Then,
the joint Shannon entropy for each of the two subsets
are calculated on one image using (3) and are summed
together. The above process is repeated on the 1,196
gallery images of the FERET database. The mean value
of the summed joint Shannon entropy is recorded.

Experimental results show that dual-cross grouping
mode achieves the highest joint Shannon entropy among
all 35 grouping modes. Fig. 8 characterizes the joint
Shannon entropy as a function of Rin and Rex and
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Fig. 8. Joint Shannon entropy as a function of Rin and
Rex. Three grouping modes are evaluated in this figure:
modes (a) and (b) in Fig. 7 and the dual-cross grouping.

illustrate the superiority of dual-cross grouping mode by
comparing it with two representative grouping modes,
exampled in Fig. 7. Note that the joint Shannon entropy
is related to the sampling radii of DCP: smaller sampling
radii mean stronger dependence among the sampled
points, which results in a smaller joint Shannon entropy.
The dual-cross grouping mode achieves the highest en-
tropy under all sets of the radii values. Therefore, the
dual-cross grouping mode is empirically optimal.

5.2 Evaluation of the Performance of DCP

In this section, the performance of DCP, DCP-1, and
DCP-2 for both face identification and face verification
tasks are evaluated. To better illustrate the advantages
of DCP, the performance of eleven state-of-the-art face
image descriptors, i.e., LBP [5], LTP [11], LPQ [15],
POEM [16], Local Gabor XOR Patterns (LGXP) [7], Multi-
scale LBP (MsLBP), Multi-scale tLBP (MsTLBP) [12],
Multi-scale dLBP (MsDLBP) [12], LQP [37], DFD [18],
and CHG [30] are also presented. 1

The first eight descriptors are hand-crafted and they
are easy to implement. We therefore test them together
with DCP. It is worth noting that the cropped face
image data for these descriptors are exactly the same.
All of them extract features from photometrically nor-
malized images by TT. The parameters for each of the
descriptors and TT are carefully tuned on each database
and different distance metrics (chi-squared or histogram
intersection) are tested. Finally, the best results for each
descriptor are reported. Therefore, the experimental re-
sults directly compare the recognition capabilities of the
descriptors.

On the other hand, LQP, DFD, and CHG are learning-
based descriptors, which are complicated to implement.

1. For Table 2 to Table 6, a superscript ∗ means that the results are
cited from the original papers. A suffix ‘-Flip’ means that the descriptor
adopts the ‘flip’ trick [37].

TABLE 1
Feature Size of the Investigated Face Image Descriptors

Descriptor Feature Size Descriptor Feature Size

LBP [5] 256 MsDLBP [12] 512
MsLBP [38] 512 LQP [37] 300
LTP [11] 512 DFD [18] 1024
LPQ [15] 256 DCP-1 256
POEM [16] 1024 DCP-2 256
LGXP [7] 640 DCP 512
MsTLBP [12] 512

In this paper, their performance on FERET and LFW
is directly cited from the original papers, even though
the experimental settings are different from that of DCP.
For LQP, we cite its performance with the image fil-
tering step by Gabor wavelets, which is more robust
to illumination variation. Before presenting the detailed
experimental results, the feature size (number of his-
togram bins) for each descriptor except CHG (CHG is
not a histogram-based descriptor) is listed in Table 1.
In the following experiments, LBP-based descriptors are
implemented without using uniform coding [38] (using
uniform coding actually degrades the performance of
LBP, LTP, and POEM, et al.). For POEM, we compute
LBP codes on four-orientation gradient magnitude maps,
so its feature size is 1024 in this paper.

5.2.1 Face Identification: FERET
Face identification experiments are conducted on the
FERET and CAS-PEAL-R1 databases. The rank-1 iden-
tification rates on the four probe sets of FERET are
presented in Table 2. We make four observations:

1) While high performance is achieved by all de-
scriptors on the well controlled Fb and Fc probe
sets, DCP still outperforms MsLBP by over 1%.
In particular, DCP achieves a perfect identification
rate on the Fc set.

2) There is a substantial performance drop for all de-
scriptors on Dup1 and Dup2 probe sets, in which
images contain moderate expression and illumina-
tion variations. DCP performs best on both sets,
with a margin of 1.28% on Dup2 by comparing
with the second best descriptor. The performance
of MsTLBP ranks second on Dup1 and LGXP ranks
second on Dup2. It is worth pointing out that
LGXP depends on 80 expensive convolutions and
produces a larger feature size, while both DCP and
MsTLBP have low computational complexity.

3) Both DCP-1 and DCP-2 perform better than most
of the other descriptors at lower computational
cost. Their time and memory costs are exactly the
same as those of LBP, suggesting the sampling and
encoding strategies of DCP are highly effective.

4) As expected, the performance of DCP is better than
both DCP-1 and DCP-2, which means that DCP-
1 and DCP-2 contain complementary information.
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TABLE 2
Identification Rates for Different Descriptors on FERET

Fb Fc Dup1 Dup2 Mean

LBP 96.90 98.45 83.93 82.48 90.44
LTP 96.90 98.97 83.93 83.76 90.89
LPQ 97.41 99.48 82.69 81.62 90.30
POEM 98.24 99.48 82.83 82.05 90.65
LGXP 97.32 99.48 85.46 85.47 91.93
MsLBP 97.07 98.97 83.38 83.33 90.69
MsTLBP 98.16 99.48 85.73 85.04 92.10
MsDLBP 95.65 97.94 79.09 79.49 88.04
LQP-Flip∗ 99.50 99.50 81.20 79.90 90.03
DFD∗ 99.20 98.50 85.00 82.90 91.40
CHG∗ 97.50 98.50 85.60 84.60 91.55

DCP-1 97.91 98.45 84.49 84.19 91.26
DCP-2 97.99 99.48 84.35 85.04 91.72
DCP 98.16 100.0 86.29 86.75 92.80

When DCP-1 and DCP-2 are combined, the mean
identification rate increases by over 1%.

5.2.2 Face Identification: CAS-PEAL-R1
Identification results on the nine probe sets of CAS-
PEAL-R1 are shown in Table 3. For each descriptor,
results are reported with the set of parameters that
achieves the highest mean identification rate over all
nine probe sets. We make the following observations:

1) In general, the performance of all the descriptors is
good on the PE, PA, PT, PB, and PS probe sets, with
DCP producing the highest mean identification
rate and MsTLBP the second highest. The perfor-
mance of all descriptors is poor on the remaining
PL, PU, PM, and PD probe sets due to serious
illumination and pose variations.

2) DCP outperforms MsLBP and LTP by 2.5% and
3.08% on the PL set, respectively. However, the
performance of DCP is lower than LPQ, POEM,
and LGXP. The PL images contain not only rich
illumination variation, but also serious image blur,
which explains the superior performance of the
blur-invariant descriptor LPQ. LGXP and POEM
benefit from image filtering steps that turn the
gray-scale image into gradient images. We show
in Section 5.3 that by introducing multi-directional
gradient filtering by FDG, the performance of DCP
is significantly improved.

3) DCP exhibits excellent robustness to pose varia-
tions on the PU, PM, and PD probe sets, with
superior mean recognition rate by as much as
3.44%. This result is encouraging, since pose vari-
ation is a major challenge in unconstrained face
recognition [3].

5.2.3 Face Verification: FRGC 2.0
Face verification experiments are conducted on the
FRGC 2.0 and LFW databases. Verification rates at 0.1%

TABLE 4
Verification Results on the FRGC 2.0 Experiment 1

ROC I ROC II ROC III Mean

LBP 89.93 87.53 84.83 87.43
LTP 90.98 88.63 86.07 88.56
LPQ 89.96 87.38 84.48 87.27
POEM 90.60 88.26 85.63 88.16
LGXP 91.89 88.80 85.33 88.67
MsLBP 90.78 88.45 85.87 88.37
MsTLBP 93.24 91.16 88.83 91.08
MsDLBP 87.65 84.93 81.96 84.85

DCP-1 91.40 89.14 86.65 89.06
DCP-2 92.96 90.78 88.42 90.72
DCP 93.22 91.21 88.93 91.12

TABLE 5
Verification Results on the FRGC 2.0 Experiment 4

ROC I ROC II ROC III Mean

LBP 18.62 19.12 20.07 19.27
LTP 20.21 21.39 22.99 21.53
LPQ 22.53 23.25 24.39 23.39
POEM 29.99 30.60 31.46 30.68
LGXP 32.44 31.81 31.13 31.79
MsLBP 19.34 19.80 20.81 19.98
MsTLBP 20.04 20.25 21.02 20.44
MsDLBP 18.34 18.85 19.60 18.93

DCP-1 20.10 20.57 21.51 20.73
DCP-2 18.22 18.74 19.58 18.85
DCP 21.78 22.49 23.59 22.62

FAR on Experiments 1 and 4 of FRGC 2.0 are listed in Ta-
bles 4 and 5, respectively. As mentioned above, the query
sets of the two experiments are composed of controlled
and uncontrolled images, respectively. The query images
in Experiment 4 are degraded by serious image blur and
significant illumination variation, making this dataset
very challenging. We make the following observations:

1) In Experiment 1, DCP shows the best performance.
Both DCP-1 and DCP-2 achieve better performance
than most of the existing descriptors. These obser-
vations are consistent with the results on FERET.

2) In Experiment 4, the mean verification rate of DCP
is higher than MsLBP and LTP by 2.64% and 1.09%,
respectively. Due to the lack of an image filtering
step in DCP, its performance is lower than that of
LGXP and POEM. This result is consistent with
that seen for the PL set of CAS-PEAL-R1, whose
images also feature serious illumination variation
and image blur.

5.2.4 Face Verification: LFW

LFW is a very challenging dataset since its images con-
tain large pose, expression, and illumination variations.
Experiments in this section follow the image-restricted
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TABLE 3
Rank-1 Identification Rates for Different Face Image Descriptors on the Nine Probe Sets of PEAL

PE PA PT PB PS PL PU PM PD
Mean

(PE-PS)
Mean

(PE-PL)
Mean

(PU-PD)

LBP 94.27 91.82 100.0 99.46 99.64 46.90 60.32 83.66 44.60 97.04 88.68 62.86
LTP 94.39 91.77 100.0 99.46 99.64 47.17 61.32 84.46 44.68 97.05 88.74 63.49
LPQ 93.95 92.39 100.0 99.28 99.27 57.16 57.78 86.46 44.76 96.98 90.34 63.00
POEM 95.54 92.39 100.0 99.46 99.64 54.66 58.14 85.12 42.52 97.41 90.28 61.93
LGXP 94.97 91.33 100.0 99.28 99.64 63.26 39.46 66.83 22.91 97.04 91.41 43.07
MsLBP 95.16 92.04 100.0 99.46 99.64 47.75 61.76 85.16 44.88 97.26 89.01 63.93
MsTLBP 95.41 92.74 100.0 99.46 99.64 48.06 60.98 87.34 45.48 97.45 89.22 64.60
MsDLBP 92.42 90.63 100.0 99.28 99.27 48.11 55.00 82.03 37.03 96.32 88.29 58.02
DFD∗ 99.30 94.40 - - - 59.00 - - - - - -

DCP-1 95.99 92.60 100.0 98.73 99.27 46.37 60.68 85.74 48.14 97.32 88.83 64.85
DCP-2 95.54 91.90 100.0 98.92 99.64 43.91 60.64 83.08 43.62 97.20 88.32 62.45
DCP 96.11 92.82 100.0 99.10 99.64 50.25 65.39 87.44 51.30 97.53 89.65 68.04

TABLE 6
Mean Verification Accuracy on the LFW View 2 Data

Accuracy(%)±SE Accuracy(%)±SE

LBP 72.43 ± 0.49 MsDLBP 72.17 ± 0.59
LTP 72.65 ± 0.52 LQP-Flip∗ 75.30 ± 0.26
LPQ 72.68 ± 0.46 DFD-Flip∗ 80.02 ± 0.50
POEM 73.98 ± 0.56 DCP-1 74.50 ± 0.48
LGXP 70.58 ± 0.43 DCP-2 73.28 ± 0.48
MsLBP 72.88 ± 0.50 DCP 75.00 ± 0.64
MsTLBP 74.12 ± 0.57 DCP-Flip 76.37 ± 0.71

paradigm. For each descriptor, its parameters are tuned
on the View 1 data, and performance on the View 2 data
is reported in Table 6. We observe that:

1) Among the manually-designed descriptors, DCP
achieves the best performance while DCP-1 ranks
second. This result is consistent with the results
on FERET and Experiment 1 on FRGC 2.0. The
robustness of DCP to pose variations is consistent
with the results on CAS-PEAL-R1.

2) LGXP does not perform well on LFW because
LFW images contain significant pose variations.
Although LGXP is robust to serious illumination
variations, it is sensitive to pose variations, consis-
tent with the results seen from experimentation on
the non-frontal probe sets of CAS-PEAL-R1.

3) Compared with the two learning-based descrip-
tors, the performance of DCP is better than that
of LQP, but is worse than that of DFD. However,
DCP has clear advantage in both time and memory
costs. Besides, DFD adopts supervised learning
algorithms to enhance its discriminative power,
while DCP is independent of any learning algo-
rithms. We show in Section 5.4 that by applying su-
pervised learning algorithms to the extracted DCP
feature, superior performance can be achieved.

FERET
(Mean)

CAS‐
PEAL‐R1
(Frontal)

CAS‐
PEAL‐R1
(Pose)

FRGC 2.0
Exp1
(Mean)

FRGC 2.0
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LFW

MsLBP 90.69% 89.01% 63.93% 88.37% 19.98% 72.88%
DCP 92.80% 89.65% 68.04% 91.12% 22.62% 75.00%
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Fig. 9. Performance comparison between DCP and
MsLBP on the four face datasets.

5.2.5 Discussion
The experimental results in Section 5.2 reveal that DCP
performs quite well across a range of evaluations. In
particular, DCP significantly outperforms MsLBP, which
is of exactly the same time and memory costs as DCP, as
shown in Fig. 9. The performance of MsTLBP is usually
slightly worse than DCP on well-controlled datasets.
However, DCP considerably outperforms MsTLBP on
the challenging PU and PD probe sets of CAS-PEAL-R1,
and the Dup2 probe set of FERET. This indicates DCP is
a more robust descriptor to pose and aging factors.

The excellent performance of DCP can be explained
as follows. It has large sampling size to encode more
discriminative information; it encodes the second-order
statistics in the most informative directions on human
face; and the dual-cross grouping strategy ensures good
complementarity between the divided two encoders.

5.3 The Contribution of Multi-directional Filtering
In Section 5.2, DCP is shown to have strong discrimina-
tive power and excellent robustness to expression, pose,
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and moderate illumination variations. It has also been
shown that when there is serious illumination variation
and image blur, the performance of DCP is degraded
due to the lack of an image filtering step. In this section,
we show that MD-DCPs that extracts the DCP feature on
FDG-filtered images is robust to illumination variation.
The roles of FDG are two-fold: first, it converts the face
image into gradient maps, which are more robust to
illumination variation, and second, FDG is proven to
achieve high SNR [31], which is vital for the performance
of face image descriptors for low quality images.

Throughout this paper, the number of filtering orien-
tations by FDG is fixed to 4 (θ = 0, π/4, π/2, and 3π/4)
and the parameter σ of the Gaussian kernel is set at 1.0.
Experiments are conducted on three datasets:

• A new FERET probe set is constructed by collect-
ing the 146 most challenging FERET probe images.
The FERET Fa set is still utilized as the gallery set.
The identification rate of DCP on this probe set
is only 17.12%. In contrast, the identification rate
when MD-DCPs is used increases to 33.56%.

• For the PL probe set of CAS-PEAL-R1, the iden-
tification rates of DCP and MD-DCPs are 50.25%
and 65.23%, respectively. When considered along
with the previously best results shown in Table 3,
it is evident that the performance of MD-DCPs is
superior to that of LPQ (57.16%), POEM (54.66%),
and LGXP (63.26%).

• For the face verification task on FRGC 2.0 Experi-
ment 4, the mean verification rate of MD-DCPs at
0.1% FAR for ROC I, ROC II, and ROC III is 30.74%.
Together with the previously best results shown
in Table 5, it is clear that MD-DCPs outperforms
LPQ (23.39%) and POEM (30.68%). LGXP outper-
forms MD-DCPs with the mean verification rate of
31.79%, but at the cost of 80 expensive convolution
operations.

In conclusion, MD-DCPs consistently achieves excel-
lent performance, which means that multi-directional
filtering by FDG is indeed helpful for removing illumi-
nation variation and enhancing the robustness of face
image descriptors on low SNR images.

5.4 Performance Evaluation of MDML-DCPs
Before presenting the performance of MDML-DCPs, we
first unify most of its parameters for testing the four
databases. For the holistic-level feature MDML-DCPs-
H1, we compute it within the area whose top left corner
is located at (33, 27), while the bottom right corner is lo-
cated at (154, 136) in the normalized image by similarity
transformation. The holistic-level feature MDML-DCPs-
H2 is computed within the area where the two corners
are located at (36, 41) and (140, 122), respectively. Both
areas are divided into 9 × 9 non-overlapping regions.
For MDML-DCPs-H3 and MDML-DCPs-C1 to C6, we
consistently use a patch size M ×M of 40× 40 and the
number of regions J × J within the patch to be 4× 4.

TABLE 7
Identification Rates for Different Methods on FERET

Fb Fc Dup1 Dup2

AMFG07‘ (L,G) + KDCV [40] 98.00 98.00 90.00 85.00
TIP10‘ LGBP + LGXP + LDA [7] 99.00 99.00 94.00 93.00
BMVC12‘ G-LQP + WPCA [37] 99.90 100.0 93.20 91.00
PAMI14‘ DFD + WPCA [18] 99.40 100.0 91.80 92.30
MDML-DCPs + WPCA 99.75 100.0 96.12 95.73

The two parameters σ1 and σ2 for TT are set to 1.4 and
2.0 on FERET, CAS-PEAL-R1, and FGRC 2.0. Since TT in
fact slightly degrades the performance of MDML-DCPs
on the LFW View 1 data, the photometric normalization
step is omitted for the experiment on LFW. The subspace
dimensions of WPCA and PCA for all nine features
are set to 600. The dimensions of both the between-
individual subspace and within-individual subspace of
PLDA are set to 100. There are only two remaining sets
of parameters to tune over the four databases: the first is
the sampling radii Rin and Rex of DCP, and the other is
the cost parameter c of the linear SVM [39]. The optimal
values of Rin and Rex for FERET, CAS-PEAL-R1, and
FGRC 2.0 are Rin = 2 and Rex = 3. c is set at 10−4 for
FRGC 2.0. For LFW, Rin, Rex, and c are set to 4, 6, and
1.0, respectively, based on the results on the View 1 data.

5.4.1 Face Identification: FERET

As there is no officially defined training set for FERET,
we test MDML-DCPs with the WPCA-based classifiers.
The nine WPCA projection matrices are trained on the
1,196 FERET gallery images. For simplicity, the similarity
scores computed by the nine classifiers are fused by
averaging with equal weights. Performance compari-
son between MDML-DCPs with the state-of-the-art ap-
proaches is shown in Table 7. The first two approaches
use supervised learning algorithms. The others utilize
the unsupervised learning algorithm WPCA. The per-
formance of MDML-DCPs is superior even to those that
employ a supervised learning algorithm. In particular,
MDML-DCPs achieves the best results on the Fc, Dup1,
and Dup2 probe sets. On the Fb set, three images are
misclassified by MDML-DCPs, two of which are due to
the mislabeling of subjects in the database itself.

5.4.2 Face Identification: CAS-PEAL-R1

For experiments on CAS-PEAL-R1, we present MDML-
DCPs results with both WPCA and PLDA, with DCP set
as the baseline. Both WPCA and PLDA are trained on all
1,200 training images. In both approaches, the similarity
scores are fused by simple averaging without weight-
ing. A comparison between the performance of MDML-
DCPs with other state-of-the-art methods is presented in
Table 8. We make the following observations:

1) “MDML-DCPs + WPCA” achieves the best perfor-
mance for eight of the nine probe sets of CAS-
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TABLE 8
Rank-1 Identification Rates for Different Methods on the Nine Probe Sets of PEAL

PE PA PL PT PB PS PU PM PD

TIP07‘ LGBPHS [14], [13] 95.20 86.80 51.00 100.0 98.70 98.90 - - -
TIP07‘ HGPP [13] 96.80 92.50 62.90 98.40 99.80 99.60 - - -
SP09‘ Weighted LLGP [41] 98.00 92.00 55.00 - - - - - -
PAMI14‘ DFD + WPCA [18] 99.00 96.90 63.90 - - - - - -
DCP + χ2 96.11 92.82 50.25 100.0 99.10 99.64 65.39 87.44 51.30
MDML-DCPs + PLDA 98.22 97.51 63.26 100.0 100.0 100.0 34.31 70.24 33.59
MDML-DCPs + WPCA 99.62 99.21 82.92 100.0 99.82 100.0 68.29 98.10 53.92

PEAL-R1. In particular, it outperforms DCP by
32.67% on the challenging PL probe set.

2) Compared with DCP, there is limited performance
promotion made by “MDML-DCPs + WPCA” on
the PU and PD sets. The reason is that the training
set contains only frontal images while the PU and
PD images possess large pose variations. Therefore
the two probe sets benefit little from training.

3) The identification rates by “MDML-DCPs + PLDA”
are lower than “MDML-DCPs + WPCA”, which
suggests that there might be a gap between the
distribution of training and testing data. In partic-
ular, the discriminative subspace learnt by PLDA
on the frontal images does not generalize to the
three non-frontal probe sets.

5.4.3 Face Verification: FRGC 2.0
The performance of MDML-DCPs on Experiments 1 and
4 of the FRGC 2.0 database is discussed. The FRGC
2.0 database provides a large training set, on which
PLDA and linear SVM are trained. For each subject
in the training set, 12 images are randomly selected
and there are 2,664 images in total for SVM training,
for which 13,320 intra-personal images pairs and 13,320
inter-personal image pairs are generated according to the
method described in [1]. All the remaining images are
used to train the PLDA model. The performance of the
proposed algorithm, together with other state-of-the-art
approaches, is shown in Table 9. We observe that:

1) The MDML-DCPs approach achieves superior per-
formance on both Experiment 1 and 4 with the
single descriptor DCP. Score fusion by linear SVM
also works slightly better than score averaging.

2) On Experiment 1, the performance of MDML-
DCPs is nearly perfect. On Experiment 4, it out-
performs the current state-of-the-art method [21]
by 0.9%. Moreover, MDML-DCPs utilizes only a
single face image descriptor, while the method
in [21] relies on color information and makes use of
three descriptors: LBP, Gabor, and Fourier features.

Different from the approaches in Table 9, it is shown
in [44] that by conducting normalization on the simi-
larity matrices which contain similarity scores of each
pair of target and query images, verification rates can
be improved significantly. However, this operation may

not be suitable for the general face verification problems,
where only a pair of target and query images is available
each time. Therefore, we provide results of MDML-DCPs
without score normalization in this paper.

5.4.4 Face Verification: LFW
Experiments in this section follow the image-unrestricted
paradigm of the LFW database. Both the PLDA classifier
and the more recently proposed Joint Bayesian (JB)
classifier [35] are tested for face matching, and both
linear SVM and score averaging are tested for the score
fusion. For each of the 10-fold cross validations, the
remaining nine subsets are partitioned into two: the first
eight subsets are used for the training of PCA, PLDA,
and JB models, while the last subset is used to train the
linear SVM or learn the optimal threshold of similarity
scores fused by averaging. According to the description
in [1], 2,500 intra-personal image pairs and 2,500 inter-
personal image pairs are generated using the images in
the last subset. No outside training data are employed.
In addition, following [19], [33], all images with right
profile faces are flipped to the left profile faces.

A comparison of the classification accuracies is pre-
sented in Table 10. All the methods in Table 10 follow
the image-unrestricted training paradigm and do not use
outside training data. The ROC curves are plotted in
Fig. 10. We make the following observations:

1) MDML-DCPs outperforms the current state-of-
the-art method [25] by over 2.2%. It is worth
noting that [25] also employs dense facial land-
marks for face representation. MDML-DCPs out-
performs [33], which also employs the PLDA-
based classifier, by over 5%. The above facts sug-
gest that the MDML-DCPs face representation
scheme is more effective than previous approaches.

2) Score fusion by linear SVM results in better per-
formance than using score averaging. Moreover,
with either linear SVM or score averaging, MDML-
DCPs is able to achieve better performance than
existing methods, and using both fusion methods
the standard error of classification accuracy is con-
sistently smaller than the other approaches.

3) The JB-based classifiers slightly outperform PLDA-
based classifiers. By fusing the 18 similarity scores
produced by the two kinds of classifiers with linear
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TABLE 9
Verification Rates at 0.1% FAR for Different Methods on the FRGC 2.0 Experiments 1 and 4

Experiment 1 Experiment 4
ROC I ROC II ROC III ROC I ROC II ROC III

Si
ng

le
D

es
cr

ip
to

r TIP09‘ Gabor + LDA [42] - - 97.00 - - 83.00
TIP10‘ Gabor + Kernel LDA [11] - - - - - 80.00
PAMI13‘ Multiscale LPQ (MLPQ) + Kernel fusion [8] 98.99 98.68 98.37 89.26 89.80 90.36
PAMI13‘ Multiscale LBP (MLBP) + Kernel fusion [8] 98.79 98.50 98.21 86.77 87.54 88.21
MDML-DCPs + PLDA + Score averaging 99.59 99.41 99.22 93.40 93.18 92.89
MDML-DCPs + PLDA + Linear SVM 99.61 99.43 99.25 93.91 93.64 93.39

M
ul

ti
pl

e
D

es
cr

ip
to

rs AMFG07‘ Gabor + LBP + KDCV [40] - - - - - 83.60
TIP09‘ Gabor + DCT + LDA [42] - - 98.00 - - 89.00
ICB09‘ Hybrid RCrQ with Gabor + MLBP + DCT [21] - - - - - 92.43
TIP10‘ Gabor + LBP + Kernel LDA [11] - - - - - 88.10
TIP10‘ LGBP + LGXP + Block-based LDA [7] 98.60 98.00 97.30 83.90 84.70 85.20
TIP11‘ Hybrid Fourier feature + LDA [43] 96.38 95.11 93.90 81.82 81.50 81.14
PAMI13‘ MLPQ + MLBP + Kernel fusion [8] 99.04 98.77 98.49 90.30 90.94 91.59

TABLE 10
Mean Verification Accuracy on the LFW View 2 Data

Accuracy(%) ±SE

PAMI12‘ Combined PLDA [33] 90.07 ± 0.51
ECCV12‘ Combined Joint Bayesian [35] 90.90 ± 1.48
ICCV13‘ VMRS [45] 92.05 ± 0.45
BMVC13‘ Fisher vector faces [46] 93.03 ± 1.05
CVPR13‘ high-dim LBP + JB [25] 93.18 ± 1.07
MDML-DCPs + PLDA + Score averaging 94.57 ± 0.30
MDML-DCPs + PLDA + Linear SVM 95.13 ± 0.33
MDML-DCPs + JB + Linear SVM 95.40 ± 0.33
MDML-DCPs + PLDA + JB + Linear SVM 95.58 ± 0.34

SVM, we achieve a better mean verification rate of
95.58%.

6 CONCLUSION

Due to the degradation of face image quality and large
variations of illumination, pose, and expression, the
recognition of unconstrained face images is a challenging
task. Solving this problem demands work in at least two
areas: development of an effective face image descriptor
and a comprehensive face representation scheme. To
achieve this goal, we make the following contributions:

1) We presented a novel face image descriptor named
Dual-Cross Patterns. DCP encodes second-order
statistics in the most informative directions within
a face image. Experimentation on four large-scale
face databases shows that DCP has superior dis-
criminative power and is robust to pose, expres-
sion, and moderate variations in illumination.

2) A comprehensive and systematic comparison of
fourteen state-of-the-art face image descriptors is
conducted on the four face databases. Detailed
analysis is provided. Conclusions about the advan-
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Fig. 10. ROC curves of the MDML-DCPs method
and other state-of-the-art methods in the unrestricted
paradigm.

tages and disadvantages of the descriptors can be
drawn from these results.

3) The proposed MDML-DCPs face representa-
tion scheme comprehensively incorporates both
holistic-level DCP features and component-level
DCP features. Exploiting the single descriptor DCP,
MDML-DCPs consistently achieves the best results
on the four databases. In particular, MDML-DCPs
improves the verification rate of ROC III in Exper-
iment 4 of FRGC 2.0 to 93.39% and outperforms
the state-of-the-art result on LFW by 2.4%.

This work helps to expedite the design of practical face
image descriptors and face representation schemes.
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Fig. 11. The mean rank-1 identification rates of DCP and
LBP on four FERET probe sets as a function of N .

APPENDIX A
PARAMETER SELECTION OF DCP

In this experiment, we take the FERET database [26] for
example to illustrate the influence of the DCP parameters
on its performance. The face images are normalized to
128 × 128 pixels, as described in Section 5 of the paper.
There are three parameters in DCP, the radii Rin and
Rex (with different values of Rin and Rex capturing in-
formation on different scales) and the region number N .
A larger value of N helps to preserve spatial information
but makes the descriptor more sensitive to misalignment
errors. The chi-squared metric is used to measure the
similarity of two face images. In this experiment, LBP
is also evaluated for comparison with a sampled points
number of eight and exploiting all 256 LBP codes. The
radius of LBP is restricted to the value of Rin to highlight
the importance of including more sampling points for
effective pattern encoding.

The mean rank-1 identification rates against N for the
four FERET probe sets using DCP and LBP are plotted in
Fig. 11. Optimal performance of DCP is achieved when
N = 9, Rin = 4 and Rex = 6. DCP consistently achieves
better performance than LBP with all sets of parameters.
In particular, DCP outperforms LBP by 10% to 30% when
N ≤ 2, which justifies the motivation of DCP to include
more sampling points for pattern encoding.

The chi-squared metric has been used to measure the
similarity of two face images, but it is noted that DCP
works equally well when assessed using the histogram
intersection metric. The mean identification rates using
DCP measured with the chi-squared and histogram in-
tersection metrics are 92.80% and 92.66%, respectively.

TABLE 11
AUC Values of Face Image Descriptors on the Morph

Database

Mean± Std Mean± Std

LBP 0.9479 ± 0.0045 MsTLBP 0.9506 ± 0.0037
LTP 0.9499 ± 0.0048 MsDLBP 0.9393 ± 0.0044
LPQ 0.9454 ± 0.0044 DCP-1 0.9499 ± 0.0035
POEM 0.9500 ± 0.0045 DCP-2 0.9529 ± 0.0034
LGXP 0.9369 ± 0.0040 DCP 0.9557 ± 0.0044
MsLBP 0.9494 ± 0.0037

APPENDIX B
PERFORMANCE OF DCP ON FACIAL AGING
DATABASE

We have also tested the performance of the face image
descriptors on the Morph database [47]. The face images
in Morph are geometrically and photometrically normal-
ized as described in Section 5 of the paper. We follow
the protocol defined in [29] and report the performance
of the face image descriptors in Table 11. The same
as [29], a subset of 1,700 images in the Morph database
is randomly selected for experiment. It is shown that the
proposed DCP descriptor achieves the best performance
on the Morph database, indicating that DCP is also
robust to the aging factor.
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