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Semantic Concept Co-Occurrence Patterns
for Image Annotation and Retrieval

Linan Feng, Student Member, IEEE and Bir Bhanu, Fellow, IEEE

Abstract—Describing visual image contents by semantic concepts is an effective and straightforward way to facilitate various high

level applications. Inferring semantic concepts from low-level pictorial feature analysis is challenging due to the semantic gap problem,

while manually labeling concepts is unwise because of a large number of images in both online and offline collections. In this paper, we

present a novel approach to automatically generate intermediate image descriptors by exploiting concept co-occurrence patterns in the

pre-labeled training set that renders it possible to depict complex scene images semantically. Our work is motivated by the fact that

multiple concepts that frequently co-occur across images form patterns which could provide contextual cues for individual concept

inference. We discover the co-occurrence patterns as hierarchical communities by graph modularity maximization in a network with

nodes and edges representing concepts and co-occurrence relationships separately. A random walk process working on the inferred

concept probabilities with the discovered co-occurrence patterns is applied to acquire the refined concept signature representation.

Through experiments in automatic image annotation and semantic image retrieval on several challenging datasets, we demonstrate the

effectiveness of the proposed concept co-occurrence patterns as well as the concept signature representation in comparison with

state-of-the-art approaches.

Index Terms—Community detection, contextual information, hierarchical co-occurrence patterns, image concept signature

Ç

1 INTRODUCTION

REPRESENTING images by semantic concepts instead of
visual features remains a challenging problem. Gener-

ating semantic descriptors manually is not feasible due to
the ever-growing number of image collections. Current
machine intelligence and statistical learning techniques for
inferring semantic concepts from low-level features struggle
in bridging the semantic gap [1]. However, many image-
based applications such as retrieval, annotation, recommen-
dation, indexing and ranking, require an effective semantic
representation of images. There is a growing need in auto-
matically inferring concepts from visual properties by learn-
ing the correspondence from loosely labeled data.

Semantic concepts cover not only objects that are used in
many recognition tasks but also topics at the semantic levels
beyond single objects. These higher semantic level could be
a scene (e.g., beach), an event (e.g., commencement), and a
piece of knowledge (e.g., how to drive a car). A simple form
of contextual information is the co-occurrence frequencies
of groups of concepts that appear across images with simi-
lar scenes. Visual co-occurrence can be quite important in
providing semantic cues in inferring concepts compared to
other conceptual and perceptual models [42] such as the
WordNet distance [40] which is built upon semantic similar-
ity. It has been shown [41] that co-occurrence of concepts
could consolidate the appearance of each concept in an

image. For example, if “horse” and “windmill” forms a co-
occurrence pattern, then the probability of occurrence of
“horse” could be reinforced by a strong confidence of
“windmill” inference, while the occurrence of “zebra” could
be rejected because it has a weak co-occurrence with
“windmill”. Discovering co-occurrence patterns of semantic
concepts is an essential step to encode contextual informa-
tion into the individual concept inference.

There are two main contributions of this paper. First, we
propose a novel approach to discover the co-occurrence pat-
terns in a network structure where the nodes represent
semantic concepts and edges represent co-occurrences. The
significance of the co-occurrence relationship between two
concepts is denoted by the edge weight. A common prop-
erty that has been discovered in many networks is the com-
munity structure property, which is the partition of network
nodes into groups (communities) with highly inter-con-
nected nodes (more edges with higher weights), and nodes
belonging to different groups being sparsely connected
(fewer edges with lower weights). Inspired by the theories
in network analysis, we discover the concept co-occurrence
patterns by identifying communities in a network. We
adopt modularity optimization [2] based approach to
uncover hierarchical community structure which naturally
reflects the co-occurrence patterns at different closeness
levels. The idea of hierarchical community structure and
co-occurrence patterns is illustrated in Fig. 1. To our knowl-
edge, our work is the first attempt to explore concept
co-occurrences from the network analysis point of view.
Detailed experimental support for this contribution is pro-
vided in Sections 4.4, 4.5.1, and 4.6.1.

Second, we introduce a novel random walk based app-
roach to utilize the discovered co-occurrence patterns to
generate “concept signature”, a new image representation
using high-level semantic concepts to assist in image
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annotation and retrieval. The hypothesis here is that the
probability scores of uncertain semantic concepts in the con-
cept signature that are generated from the inference model
can be promoted or weakened based on the reliably inferred
members in a co-occurrence pattern. We demonstrate that
our concept signature representation can be very useful
in annotation and retrieval of complex scene images.
Experimental results in the proposed application scenarios
on popular benchmark datasets show clear gains from
co-occurrence patterns as compared to other baseline
approaches with/without exploiting concept correlations.
Detailed experimental support for this contribution is pro-
vided in Sections 4.5.2 and 4.6.2.

The remainder of this paper is organized as follows:
Section 2 summarizes the related work and contrasts it with
the contributions of this paper. Section 3 describes the
proposed framework and various algorithms. Section 4
presents experimental results and performance evaluation.
Finally, Section 5 gives the conclusions of the paper.

2 RELATED WORK

In the following, we review those approaches that are most
relevant to our research along three directions: (i) Models
that investigate concept correlations as contextual informa-
tion for image based applications, (ii) Image semantic des-
criptors and (iii) Network analysis approaches for detecting
communities.

2.1 Semantic Concept Co-Occurrence Models

The approaches based on co-occurrence models for concept
inference in complex scene images have gained an increas-
ing popularity [4], [5], [6]. In [40], [41], pairwise concept co-
occurrence has been integrated into the concept categoriza-
tion framework by using a co-occurrence matrix. These
approaches have several advantages over standard concept
inference techniques, for example, incorporating semantic
context compensates the ambiguity of concept visual app-
earance. However, the matrix of the co-occurrence has an
inevitable pairwise constraint on the relationship.

Several recent works explore multi-concept learning/
detection techniques for automated image annotation that
aim to model the co-occurrence information among con-
cepts/annotations. A simple way is to rank the related con-
cepts based on their co-occurrence relations in the training
set and use the ranked relations to refine the annotation
results. The idea is similar to collaborative filtering (CF) [50]

used by the recommender systems [51]. CF has been intro-
duced in image retrieval [52] to collect the relevance feed-
back co-occurrences. One of the challenges for CF is the
data sparsity problem where the image-concept matrix
used for collaborative filtering could be extremely large and
sparse in a large image dataset. Matrix-factorization
(MF) [53] has been found to be accurate and scalable to
address the sparsity problem in CF. By introducing the non-
negative constraint into the MF process (NNMF), Zhou
et al. [54] proposed a CF method for concept correlation esti-
mation, and Liu et al. [55] presented a framework for semi-
supervised multi-label learning using NNMF. Li et al. [56]
proposed a multi-correlation probabilistic matrix factoriza-
tion model to seamlessly estimate the image-concept,
image-image and concept-concept correlations simulta-
neously. Desai et al. [60] examine spatial co-occurrence sta-
tistics and incorporate it as contextual relations. Our
approach in this paper is significantly different from the
above works in discovering the co-occurrence patterns of
concepts of any size by detecting the patterns as social com-
munities in a network structure.

To learn more reliable contextual relationships among
the semantic concepts, multi-task learning [57] has been
introduced for hierarchical image annotation which req-
uires the incorporation of concept ontology. Fan et al. [58]
constructed the concept ontology using semantic and visual
similarity of concepts, in an attempt to explore the inter-con-
cept correlations and to organize the image concepts in a
hierarchy. Multi-task learning is adopted to overcome
the problem of intra-concept visual variations. Bourdev
et al. [59] presented a hierarchical concept learning frame-
work by incorporating concept ontology and multi-task
learning to enhance the image classification performance
with a large concept vocabulary. Our approach not only
avoids the pairwise constraint, but also, more interestingly,
it relies more on the contextual relationships (co-occur-
rences) rather than the perceptual relationships (concept
ontology) that are used in the multi-task learning frame-
works [57], [58], [59].

Another problem in existing approaches is that one con-
cept cannot be shared among co-occurrence groups. For
example, the method proposed in [16] attempts to discover
the co-occurrence between objects by learning a tree struc-
ture using Chow-Liu algorithm based on pairwise mutual
information. But in their tree structure a concept at the root
can only have relationships with the children in its subtree,
and cannot have any relationship with the nodes in its sib-
lings’ subtrees. Also the same concept cannot be duplicated
and shared between subtrees. For instance in their tree
structure, “sky” only has a connection with “mountain” but
not with “tree” and “road” which may not be true in many
cases. In contrast, our proposed approach addresses the
overlapping of concepts explicitly.

One of the drawbacks in existing work [40], [42] is the
dataset limitation. To find the co-occurrence relationships
between objects, these papers do not use strongly labeled
data. Instead, they rely on outside sources such as Google
Sets, WordNet and Word Association. However, these
sources usually do not consider the visual co-occurrence,
namely, they are purely based on text or semantic meaning
similarity. For example, Google Sets leverage the word

Fig. 1. An illustration of (a) a network of nodes representing the semantic
concepts and the edges representing the co-occurrence relations,
and (b) the discovered corresponding hierarchical community structure
from the network that shows concept co-occurrence patterns at different
levels.
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co-occurrence on web pages without considering the actual
observations in images. WordNet is purely based on the
semantic meaning similarity to determine the distance
between concepts. It does not reflect the actual co-occur-
rence property in images. However, in our work, we use the
datasets for which the labels are given only when the corre-
sponding concept are observed in an image.

Many algorithms for detecting concept correlations used
graph models which is close to our idea. Probabilistic graph
models that focus on batch-mode concept detection are pro-
posed in [14]. Correlation of concept co-occurrence and rela-
tive spatial locations in images are captured by a tree model
in [16]. Besides the positive correlations, they also modeled
the negative relationships in the tree structure.

2.2 Image Semantic Descriptors

Many papers in computer vision adopt semantic represen-
tations for multimedia understanding and scene analysis,
and for applications such as semantic based image annota-
tion and retrieval [43], [44], [45]. Berg et al. [48] automati-
cally generate natural language sentences from gist features
at different image sizes. Since their final goal is to generate
sentence description for an image, the image descriptor is
only used in an intermediate procedure and it is still based
on visual features which will have a gap between the
semantic meaning of images. Unlike these descriptors, our
image signature representation focuses on mid-level seman-
tic concepts that are not too general (e.g., forest, desert) and
not too specific (e.g., palm tree, NIKE shoes) and addresses
the semantic gap problem explicitly.

Ali et al. [47] generate semantic descriptions for images
in the form of sentence annotations. Instead of predicting
sentence from an image directly, they provide an intermedi-
ate step to compute the meaningful triplet (object, action
and scene). They name the set of triplets as meaning space.
The idea of finding the most matched triplet from the mean-
ing space for an image is similar to our concept of finding
co-occurrence patterns from the network structure. How-
ever, the meaning space is used only as an intermediate
step for predicting the sentences, it is not used as a semantic
descriptor for comparing image similarity as in our work.

Attribute representation has become a trend in image
classification [62], [63] and visual recognition [64], [65] due
to its intuitive way in interpreting images and cross-cate-
gory generalization [66]. Unlike visual words, semantic
attributes are sharable discriminative visual properties that
are machine-detectable and human nameable (e.g., “square”
as a shape property, “silk” as a texture property, “has wing”
as a sub-component property, and “can fly” as a functional
property). One advantage of semantic attributes is that they
naturally bridge the gap between low-level visual features
and high-level concepts. In other words, semantic attributes
can be used to answer not only “how” two images are simi-
lar in a human interpretable way [67], but also “why” an
image is identified to belong to a specific category [68].
Attributes are also used frequently in multimedia retrieval
as an intermediate semantic description [45]. As compared
to the attribute-based representations, our concept signature
is generated from the inference models combined with a
refinement process that utilizes the co-occurrence informa-
tion of the concepts.

The most similar image descriptor to our concept signa-
ture is the Object Bank representation [46]. However, there
are several differences. First, the Object Bank representation
is computed on grids over an entire image but the grids usu-
ally do not fully match the object geometry. Instead, we
compute concept signature for each segmented salient
region and the signatures are concatenated to form the final
image descriptor. Second, each object in the bank is selected
based on the occurrence frequency across different datasets.
However, we do not consider cross-dataset concept occur-
rence because an indoor concept may not have frequent
occurrences in an outdoor dataset. Third, object bank is
used to address the scene classification and object recogni-
tion tasks while our concept signature is used for image
annotation and semantic image retrieval.

2.3 Network Structure and Community Detection

Network structure has drawn great attention in analyzing
relationships between objects. Network structures are pro-
posed in [12], [17] as context graph where individual con-
cepts are nodes and the edges between them are weighted
by multi-modal similarities, and random walk algorithms
along the context graph are used to refine the detected con-
cepts. In [13] a visual conceptual network (VCNet) is con-
structed based on the proposed Flickr distance to represent
the conceptual correlation. A very common property in
many realistic complex networks such as social networks
and biological networks is known as the community struc-
ture. Traditional algorithms for detecting community struc-
ture can be categorized into graph partition based
methods [18], hierarchical clustering algorithms which can
be further classified into agglomerative (e.g., [19]) and divi-
sive (e.g., [20]) algorithms, spectral algorithms [21], modu-
larity-based methods [2], and dynamic algorithms [22].

As compared to the above related work in Sections 2.1 to
2.3, the key contributions of this paper are summarized
towards the end of 1.

3 TECHNICAL APPROACH

The flowchart of the proposed framework with the contri-
butions (see 1) is shown in Fig. 2. To leverage the contextual
information, we only deal with the images with multiple
concepts. In order to acquire a reliable individual concept
detector, the training images are labeled at the object level,
i.e., the concepts are given with the minimum bounding rec-
tangles, and the visual features are extracted regionally. In
the semantic sense, a pool of concepts is collected from the
training set as the vocabulary to construct the co-occurrence
network (described in Section 3.1.1) for concept co-occur-
rence pattern detection (Section 3.1.2).

The semantic concepts are used to build probabilistic
models for inferring the correspondence between a seman-
tic concept and the relevant visual features (Section 3.2). We
use both generative and discriminative models, for compar-
ison, as individual concept detectors to discover the seman-
tic concepts in the test images.

Concept signature is introduced as visual and semantic
description of images with its elements obtained from the
individual concept inference results (described in Section
3.3). With the help of the uncovered concept co-occurrence
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patterns, the concept signature is further refined to app-
roach the ground-truth labels through a random walk pro-
cess. The effectiveness of the proposed framework is
evaluated experimentally in 4 for automatic image annota-
tion and concept-based image retrieval applications. Table 1
summarizes the definition of symbols used in 3.

3.1 Construction of Co-Occurrence Network
and Pattern Detection

3.1.1 Co-Occurrence Network Construction

In this section, we discuss the representation of various co-
occurrence relationships among different semantic con-
cepts. As the number of concepts is large and the relation-
ship among them tend to be complex, we model them by a
network structure. In this paper, we name such a network
of concepts as Concept Co-occurrence Network (CCN). Let
G ¼ ðV;vÞ represent a network structure, where each edge
e 2 E is assigned with a positive weight vðeÞ corresponding
to its importance in the network. Let F ¼ fc1; c2; . . . ; cmg be
the concept vocabulary in the training image set, where m
is the total number of unique concepts annotated to the
images that the system is attempting to detect. Let T ¼
ft1; t2; . . . ; tng denote the training image set with size n. The
CCN is constructed by associating each concept ci with a
node vi in G. Concepts with textual and visual appearances
in the same media resource are likely to have co-occurred
and should be linked together by an edge in E.

The edge weight is determined by three types of co-
occurrence measure, namely, global semantic co-occurrence
measures, global visual co-occurrence measure and local visual
co-occurrence measure. First, We evaluate the global seman-
tic co-occurrence by the normalized Google distance [11]
(NGD). NGD is proposed to compute the pairwise con-
ceptual distance by counting the number of web pages
containing the query concept returned by Google search
engine. NGD is intrinsically a co-occurrence measure that
explores the co-occurrence of words from on-line textual
documents assuming a global meaning of words. Second,
for global visual co-occurrence measure, we adopt Flickr

based normalized tag distance [12] (NTD) measure. NTD
treats the tag list associated with each image in a role simi-
lar to the web page in NGD and it calculates the concep-
tual distance in the same way. Since tag lists indicate
visual co-occurrences of concepts in social media resources,
it is very intuitive to use NTD to reflect the global fre-
quency of concept co-occurrences. Finally, we apply
automatic local analysis [15] (ALA) to identify local visual
co-occurrence of concepts in a particular image dataset
denoted as the training set in order to capture the local co-
occurrence property in the specified image collection. The
motivations and the usefulness of the three measures are
summarized in Table 2.

Algorithm 1. CCN Construction

Input: Training image set T with n images, a vocabulary F

withm individual concepts
Output: Constructed concept co-occurrence network

G ¼ ðV;vÞ
1 Initialize a m�m concept adjacency matrix A for recording

edge weights with every element set to 0.;
2 Measure the global semantic co-occurrence between each

pair of concepts {ci, cj}, i 2 1; . . . ;m, j 6¼ i by normalized
Google distance [11]:

NGDðci; cjÞ ¼ maxflogGðciÞ; logGðcjÞg�logGðci; cjÞ
logV�minflogGðciÞ; logGðcjÞg ;

3 Measure the global visual co-occurrence by normalized Tag

distance [12]:NTDðci; cjÞ ¼ exp
maxflogF ðciÞ; logF ðcjÞg�logF ðci; cjÞ

logC�minflogF ðciÞ; logF ðcjÞg ;

4 Measure the local visual co-occurrence by automatic local
analysis [15]: ALAðci; cjÞ ¼ expð�DÞ, where

D ¼
P

tk2T xik�xjkP
tk2T xik�xikþ

P
tk2T xjk�xjk�

P
tk2T xik�xjk

;

5 Combine the three measures into the final co-occurrence
significance and assign the value to element Aðci; cjÞ;

6 Aðci; cjÞ ¼ h1 �NGDðci; cjÞ þ h2 �NTDðci; cjÞ þ h3� ALAðci; cjÞ.
In our setting we put equal importance on the three measure-
ments, so hi ¼ 1

3;
7 Traverse all the elements in A, add ci as node, connect two

nodes ci; cj with edge weight according to the value of Aij;

Fig. 2. The flowchart of the proposed concept inference framework. The contributions are: (i) a co-occurrence pattern detection method that effec-
tively explores hierarchical correlations among semantic concepts, (ii) random walk based approach to refine the concept signature representation
based on detected concept co-occurrence patterns.
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The motivation for using the three co-occurrence meas-
ures is that they can complement one other. NGD uses the
entire World-Wide-Web as the dataset which is known to
be the largest on earth. The contextual information is given
by billions of independent persons of knowledge, thus, it
can overcome the limitation in the scope of the concepts
represented in image datasets. However, NGD does not
involve any visual information in the distance calculation,
and co-occurred concepts in the textual documents may
have zero probability to appear in the real life images
(e.g., concepts from science-fiction novels). Therefore, visual
co-occurrences are analyzed to decrease the ambiguities
arisen from texts. Global visual co-occurrences from com-
munity-contributed web image collections, e.g., Flickr, are
represented by the rich tags as metadata. However, it

cannot accommodate the changes to the training dataset.
i.e., images and concepts that are added or removed from
the original dataset. Local visual co-occurrence can con-
tribute to dynamic dataset, thus, it is reasonable to be con-
sidered. The steps for constructing the CCN are described
in Algorithm 1.

3.1.2 Co-Occurence Pattern Detection

Finding the co-occurrence patterns of the interconnected
nodes corresponds to uncovering community structures
from the randomness of the network topology which is
close to graph clustering or partitioning problem. However
the problem is computationally intractable. Recently modu-
larity has been used as a criterion for determining the effec-
tiveness of the detected communities, and at the same time

TABLE 1
Definition of Symbols Used in Section 3.1

Symbols Definitions

GðV;vÞ The constructed concept co-occurrence network with V and E representing the node and edge sets separately, and
v denoting the edge weight.

vi The ith element in the node set V .
F The vocabulary of semantic concepts in this work.
m The number of semantic concepts in vocabulary F.
ci The ith element in the concept vocabulary F.
T , ti The training image set and the ith element.
n The number of images in the training set.
Am�m The adjacency matrix used to record the edge weights in G, Aðci; cjÞ denotes the weight of the edge connecting con-

cepts ci and cj.
Hm�n The association matrix, hik ¼ 1 if concept ci appears in image tk in the training set and 0 otherwise.
G(c) The number of pages containing concept c reported by Google search engine.
G(c1, c2) The number of pages containing concepts c1 and c2.
V The number of pages indexed by Google.
F(c) The number of images containing concept c in Flickr.
F(c1, c2) The number of images containing both concepts c1 and c2 in Flickr.
C The number of images indexed by Flickr.
xi;k Equals 1 if concept ci appears in training image tk, 0 otherwise.
h1; h2; h3 The weights set to evaluate the importance of each co-occurrence measure,

P3
i¼1 hi ¼ 1.

C The community detected in the network structure.
QC The modularity measure of community C.
DQ The modularity gain acquired when the community structure changes.
ki The summation of edge weights attached to node vi in the network.
ki;C The summation of edge weights where the edges are connecting node i to the nodes in community C.
G The half of the summation of all the edge weights.
d The delta function used in computing the modularity.
Sin The summation of edge weights inside community C.
Sout The summation of edge weights that link to the nodes outside community C.
Lc The visual variation of semantic concept c.
Rc, jRcj, ric Training region set containing concept c, the size of the set and the ith element.

R�c, jR�cj, rj�c Negative training region set of c, the size of the negative set and the jth element.

fRc The mean of the feature vectors of the regions in Rc.
fric The feature vector of ith region ric in Rc.

f
r
j
�c

The feature vector of jth region rj�c in R�c.

Z The dimension of the above feature vectors.
Dx2 The Chi-square distance between two feature vectors.
G The function that generates the prototype vector.
g The prototype vector generated from a region.
w The weight vector in the SVM objective function.
b The bias vector in the SVM objective function.
e1; e2 The constants for controlling the relative influence of the two competing terms in the SVM function.
h The hinge loss function in the SVM objective function.
CS The concept signature descriptor.
sci The confidence score of concept ci in the signature.
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it can serve as an objective function to maximize. In this
paper we adopt modularity optimization paradigm to address
the problem and propose a method based on Newman-Gir-
van modularity [2] optimization. The modularity measures
the quality of a partition by comparing the link density of
nodes inside a community with the links to the outside
nodes. Usually high values of modularity suggests good
partitions. In the case of weighted network, we define the
modularity of community C as:

QC ¼ 1

2G

X
i;j

Aij � kikj
2G

� �
dðIDi; IDjÞ (1)

Typically modularity score is in the range of ½�1; 1�, and
in practice a value greater than 0:3 indicates a significant
community. The modularity is calculated over all the
pairs of nodes in the network, where IDi and IDj are
their community IDs, dðIDi; IDjÞ ¼ 1 if IDi ¼ IDj for two
nodes vi and vj, otherwise ¼ 0. We consider iteratively
merging the nodes into a hierarchical community struc-
ture with different levels of resolution by maximizing
the modularity gain at each iteration. The modularity gain
of moving an outside node vi into a community C is eval-
uated by:

DQ ¼ Sin þ ki;C
2G

� Sout þ ki
2G

� �2
" #

� Sin

2G
� Sout

2G

� �2

� ki
2G

� �2
" # (2)

Please see Table 1 for the definitions of symbols.
Algorithm 2 is given for detecting the hierarchical con-
cept co-occurrence patterns (communities) in a network.
The runtime of the algorithm for co-occurrence pattern
detection is OðjV jðjEj þ jV jÞÞ where jEj is the number of
edges and jV j is the number of nodes in the network.
The algorithm iteratively generates a hierarchical com-
munity structure with different resolutions, in other
words, the communities of individual concepts, and the
communities of communities. To point out, our algo-
rithm addresses the share of nodes problem between
communities explicitly.

Algorithm 2. Concept Co-occurrence Pattern Detection

Input: Co-occurrence network built from Algorithm 1
Output:Hierarchical concept co-occurrence patterns
1 while Positive Modularity Gain can be achieved do
2 Partitioning phase;
3 foreach ci in the vocabulary (i ¼ 1; . . . ; N) do
4 Assign Node ni represents ci in the network;
5 Label ni with community tag Ci;
6 Each node will have an unique community tag after above

step;
7 while Positive Modularity Gain can be achieved do
8 foreach ni in the network
9 Remove ni from its original community Ci;
10 foreach neighboring community Cj of ni do
11 Add ni to Cj;
12 Calculate modularity gain DQ (eq.(2)) after chang-

ing the community structure;
13 if DQ > 0 then
14 Let Cold and Cnew denote the original community

and new community of node ni;
15 Compute modularity scores QCold

and QCnew by
eq.(1);

16 if QCold
>¼ 0:3 and QCnew >¼ 0:3 then

17 ni is shared by both communities;
18 Split ni into ni and n

0
i;

19 Add ni into Cold and add n
0
i into Cnew;

20 Copy the edges of ni that are incident to other

nodes for n
0
i;

21 else if QCold
< 0:3 and QCnew >¼ 0:3 then

22 Change the community tag of ni from Cold

to Cnew;
23 else
24 ni stays in the original community;
25 else
26 ni stays in the original community;
27 Coarsening phase: generates the hierarchical structure;
28 Replace the nodes in the same community detected from

the above steps as a single node;
29 Replace the edges between the nodes in two adjacent com-

munities by a single edgewith summed edgeweights;
30 Represent edges in the same community as a self-looped

edge with weight equal to the sum of the internal edge
weights;

TABLE 2
The Summarization of the Usage and Motivation for Adopted Co-Occurrence Measures

Co-occurrence Measure Usage & Motivation

Normalized Google
Distance (NGD)

Captures the global semantic co-occurrences. The number of semantic concept co-occurrences in a
local dataset is far below than what is generated by the massive web users. For example, there
are 434 million concepts/annotations found from web images [3]. NGD can actually reflect the
confidence that two semantic concepts can co-occur among online textual resources.

Normalized Tag
Distance (NTD)

Captures the global visual co-occurrences. NGD assumes concept relationships only depend
on semantic co-occurrences in the text field which cannot guarantee the existence of these
co-occurrences from the visual perspective (i.e., the presence in the images). NTD treats the tags
that are associated with the images as the general semantic concepts used in NGD and calculates the
co-occurrence in the same way as NGD. It strengthens the visual co-occurrences between concepts.

Automatic Local
Analysis (ALA)

Captures the local visual co-occurrences. NGD and NTD utilize the global information that is out
of the scope of a local dataset. However, global co-occurrences may not exactly match the local
co-occurrence in an image collection. Therefore, ALA is introduced to strengthen the local visual
co-occurrences.
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3.2 Concept Occurrence Inference Models

We integrate the detected concept co-occurrence patterns
for individual concept inference. We use probabilistic infer-
ence models to build the correspondence between concepts
and regional visual features from training data. The outputs
of the model running on testing images are vectors of con-
cepts with corresponding probabilities scores of the occur-
rence. We name this vector representation as concept
signature which captures both the semantic and visual infor-
mation about images.

Individual concept inference is the baseline and key fac-
tor to the overall performance although we demonstrate
later that it can be improved by utilizing the co-occurrence
patterns. In order to compare the effect of the baselines, we
implement two individual concept inference models based
on generative and discriminative training.

The generative model is built by jointly estimating the
probability of visual and semantic representations. Suppose
T is the training set of annotated images and R is the set of
corresponding segmented regions, and let r be an element
of R. We specify the process of feature vector generation
and vector quantization as an integrated function G, with

g ¼ GðrÞ 2 RJ . Each image t in T can be represented as a set
of regions rt ¼ fr1; r2; . . . ; rng along with the corresponding
concept from the set fc1; c2; . . . ; cng. Given an image region
r, first, we model the probability of obtaining concept c by
sampling from a multinomial distribution PMðcjrÞ that will
split probability mass among multiple concepts. Subscript
M represents the multinomial distribution [61]. Second, we
model the relation between a region r in the training set and
a possible prototype vector g as a distribution PRðrjgÞ.
Finally, when given a region r from the unknown set, we
model the probability of getting a prototype vector g by
sampling from a distribution P GðgjrÞ. For an unknown
region ri from a test image, the probability of observing cj is
given by the joint probability:

P ðri; cjÞ

¼
X

rt2Rcj

P ðrtÞ�PMðcjjrtÞ�
X
gt

PRðrijgtÞ�P GðgtjrtÞ
( )( )

(3)

We assume that the training set is sufficient to cover all
possible instances of the region-concept pair in the test set.
The larger the size of the training set, the more correct
knowledge about the generative model that we can obtain.
The details of the probabilities in eq. (5) are given in [61].

The discriminative model is created by an ensemble of
instance-SVMs for each concept where the idea is similar
to [49]. For each concept, the positive instances are the
regions containing that concept and the rest are negatives.
We first train a separate linear SVM classifier for each posi-
tive instance of a given concept with the negatives. For each
positive instance with feature fric of concept c, and the nega-
tive set R�c with instance feature f

r
j
�c
, the weight vector w are

learned by optimizing the convex objective:

Iðw; fric ; bÞ ¼ jjwjj2 þ e1hðwTfric þ bÞ þ e2
X
j

h
�� wTf

r
j
�c
� b

�
(4)

where h represents the hinge loss function hðxÞ ¼ ð0; 1� xÞ
which permits hard-negative mining to find the small sub-
set of dominating negative support vectors from R�c. For a
test region, the instance-SVM classifiers of a concept are first
applied. The outputs from individual classifiers are fused
by weighted averaging to generate the final concept score.
The weight w attached to each single classifier is determined
by adaptive linear neural network (ALNN) in a validation
process. We give the details of the implementation in [61].

3.3 Concept Signature and Its Refinement

We propose concept signature as image descriptor. Concept
signature is a vector in which each entry contains a tuple of
concept and its occurring probability from the inference
model. Compared to other image descriptors, concept sig-
nature: 1) records both the visual and semantic information
of an image, thus, image can be compared and retrieved
based on high-level semantic concept similarity, which we
denote as concept-based image retrieval in this paper. 2) has a
very simple form, therefore, it can lower the memory cost
for storing large image collections and decrease the compu-
tational costs. 3) can keep all the concept occurrence proba-
bilities which can be revised later on when individual
concept inference accuracy is improved.

We refine the original scores in the concept signature in a
re-ranking manner formulated as a random walk process
over the contextual co-occurrence patterns. Suppose the hier-
archy has L levels, we set the lowest level that contains the
semantic concepts as level-1 and the highest level as level-L.
Assume initially concept ci has occurring score sci given by
the inference model, and let lowestðci; cjÞ denote the function
to compute the level of the lowest superordinate (common
ancestor) between ci and cj. In the kth updating iteration, the
score sci is refined by the randomwalk process:

skci ¼ a
X
cj 6¼ci

sk�1
cj

� lowestðci; cjÞ
L

þ ð1� aÞ � sk�1
ci

(5)

We set a to 0.5 which means the effects from its own
score and the scores from neighboring concepts are treated
equally. The scores are updated recursively until all the
scores converge. Eq. (5) can strengthen the scores of con-
cepts in more closely related patterns and weaken the more
isolated ones. Finally, we give Algorithm 3 for generating
image concept signature and random-walk refinement.

Algorithm 3. Concept signature refinement

Input: Testing image set
Output: Refined concept signature representation for each
testing image

1 foreach Image T in the testing set do
2 Detect the salient regions r1; . . . ; rm by mean shift based

segmentation [25];
3 foreach Salient region ri do
4 Apply the inference models defined in eq.(3) or eq.(4);
5 Compute the original regional signature

CSri ¼ ððc1; sc1Þ; . . . ; ðcn; scnÞÞ;
6 Compute the intermediate image-level signature by

CSI ¼ 1
m

Pm
i¼1 CSri;

7 Obtain the final image concept signature by random walk
based refinement (eq.(5));
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4 EXPERIMENTAL RESULTS

4.1 Image Datasets and System Parameters

4.1.1 Image Datasets

� The LabelMe [26] dataset is a collection of 72,852
images containing more than 10,000 concepts. We
use a subset which contains 10,000 images and 2,500
concepts. The raw images have different resolutions
(e.g. 2;560� 1;920, 1;600� 1;200, 256� 256, etc.). In
this paper, we use the resolution of 1;600� 1;200
downloaded from the website by using the Toolbox
provided by the dataset creators.

� The Scene Understanding (SUN’09) [16] dataset
contains 12,000 images and more than 5,800 concepts
covering a variety of indoor/outdoor scenes. The
total number of annotated labels is 85,456 which
results in an average of seven labels per image. The
images are collected from multiple sources (Google,
Flickr, Altavista, LabelMe) and are labeled by a sin-
gle annotator using the LabelMe tool. The labels are
manually verified for consistency.

� The Outdoor Scene Recognition (OSR) [27] dataset
has 2,682 images with 520 concepts across eight out-
door scene categories: coast, forest, highway, inside-
city, mountain, open-country, street, tall-building.
All the concepts are labeled with corresponding
bounding boxes manually.

The selected datasets have the following advantages com-
pared to other datasets (e.g., TinyImages [28], MSRC [29],
Caltech-101 [30]): (i) All the datasets present complex scenes
containing multiple concepts in a single image which is suit-
able for exploring the concept co-occurrence correlations. (ii)
Compared to the general and specific terms defined in the
synonym set inWordNet (e.g., “mammal”, “tool”, “geological
formation”) and used by ImageNet (e.g., “coconut tree”,
“ocean floor”, “Davy Jones”), most of the concepts are at the
intermediate level of semantics (e.g., “tree”, “sea”, “people”)
which are more relevant to Folksonomy-style tags used in
daily life. (iii) The datasets have a large number of concepts
that cover a great majority of object categories. (iv) The
bounding boxes for the concepts are available in standard
XML format which can be easily parsed by programs (e.g.,
the open source tool TinyXML [39] used in our framework).

4.1.2 System Parameters

The weighting parameter v (Section 3.1.1) is set to 1=3
for the three measures. The modularity threshold QC

(Section 3.1.2) is set to 0.3, and the weight parameter a in
the random walk process (eq. (7)) in this paper is set to
0.5. All the parameters are set empirically and they are kept
constant for all the experiments reported in this paper.

4.2 Visual Features

We extract visual features locally from the regions enclosing
the concepts defined by minimum bounding rectangle
(MBR). For test images, the features are extracted from the
MBRs of the segmented salient regions. The features are:

� Color GIST feature [27] is computed on 4� 4 grids
over the concept bounding box. The MBRs are
resized to 32� 32 (we do not maintain the aspect

ratio) and then the orientation histograms are calcu-
lated at three scales with 8, 8 and 4 bins.

� The pyramid of histogram of oriented gradients
(PHOG) feature [31] is computed by following steps:
1) extract the Canny edges in the concept bounding
box, 2) quantize the gradient orientation on theCanny
edges (from 0 to 180 degree) into 20 bins, 3) Four spa-
tial pyramid levels are used (1� 1, 2� 2, 4� 4, 8� 8).
Each level is used in an independent kernel.

� PHOG with oriented edges [32] considers the dir-
ection (0 to 360 degree divided into 40 bins) of the
salient Canny edges. We use four-level spatial
pyramid.

� The pyramid of Shechtman and Irani self similarity
feature [33] is computed at every 5 pixels and quan-
tized into 300 clusters using k-means, and then the
histograms are calculated at three levels.

� The bag of visual words feature [32] is obtained by
first computing the SIFT descriptors [34] at the inter-
est points detected by Hessian-Affine detector [35],
and then quantizing them into a vocabulary of visual
words with the size of 1,000. Finally, a sparse histo-
gram is generated based on the visual words.

4.3 Applications and Evaluation Criteria

4.3.1 Application 1: Automatic Image Annotation

The goal is to predict concept occurrences for an image from
a given concept vocabulary. The predictions are then used
to annotate the image based on the rank of the probability
scores. Most existing approaches for AIA neglect the co-
occurrence patterns among concepts and annotate the con-
cepts individually. In our framework, the concepts ranked
as top-M in the refined concept signature based on the
inferred probability scores are used as the annotations. An
alternative way with unfixed annotation length is to use all
the annotations with scores passing certain threshold.

4.3.2 Application 2: Concept-Based Image Retrieval

For a given query, we compute the similarity to the database
images based on the concept signature representation using
the Earth Mover’s Distance (EMD) [36] as the distance
metric. Given two concept signatures p and q, the EMD

is defined as: EMD(p, q) ¼
Pm

i¼1

Pn

j¼1
oijdðpi;qjÞPm

i¼1

Pn

j¼1
oij

, where oij

denotes the flow and it follows the constraints of the scores

in the concept signature and dðpi; qjÞ is the pre-defined

ground distance between each pair of individual concepts.
In our setting, we use the reciprocal of the edge weight

in the co-occurrence network as the measure of ground

distance. EMD measures the least amount of work to

completely transfer one signature into another, it is calcu-

lated by linear programming [36].

4.3.3 Evaluation Criteria

� Automatic image annotation: The performance is
evaluated by Top-M F0:5 measure, Top-M F1 measure
and Precision measure for a given annotation length
M. In our case, we set M to 5. Fb measure is defined

792 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 4, APRIL 2016

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 18,2020 at 20:41:40 UTC from IEEE Xplore.  Restrictions apply. 



as ð1þ b2Þ � ðP �R=b2P þRÞ, where P is the aver-
aged per-image precision and R is the averaged per-
image recall. When we set b to 0.5, we put more
emphasis on precision than recall. The reason is that
the ground-truth annotation length is usually more
than the fixed length we used for most of the images.
Therefore, even we get all the annotations correct,
we still cannot reach the best recall score. Instead,
we look for better performance by considering the
true positives in the total five annotations. However,
to give more information on the performance, we
also provide the results evaluated by standard F1

measure and Precisionmeasure.
� Image retrieval: The performance is evaluated by the

ranks of the relevant images in the returned results.
We have five human assessors launched queries
using each database image and provide relevance
information on the retrieved images. The degree of
relevance of a retrieved image is calculated by the
total number of assessors who submit “relevant”
decision divided by five. Further statistical evalua-
tion relies on the standard image retrieval measure:
Mean average precision (MAP) of top D retrieved images
over all the images. Let D be the retrieved image
set and R be the relevant ones with size jRj. Given
a query Q, the average precision is defined as

AP ðQÞ ¼ 1
jRj

PjRj
i¼1

i
RankðRiÞ, and the mean average pre-

cision is the averaged AP over all the images.

4.4 Co-Occurrence Pattern Detection Results

4.4.1 Experiment I: Co-Occurrence Measure Study

We apply our co-occurrence pattern detection approach on
a network built from the training set of each dataset.
LabelMe contains 2,500 individual concepts, SUN’09 con-
tains 5,800 concepts, and OSR has 520 concepts.

We demonstrate that our combined co-occurrence mea-
sure of NGD, NTD, and ALA is more effective than each
of the individual measures in co-occurrence network con-
struction as well as co-occurrence pattern detection in the

following experiments. First, we compare example pairwise
concept co-occurrence scores computed by different meas-
ures in Table 3. The scores are averaged over the three data-
sets and normalized to the range ½0; 1�. Generally, we find
the results from NGD, NTD, ALA are more coherent on the
pairs with degrees of co-occurrences that are more consis-
tent to human perception (e.g., “mountain-tree”, “sky-
cloud”, and “road-car”) than the less consistent ones (e.g.,
‘sand-sea‘”, “person-terrance” and “rock-hill”). However,
our combined measure is able to reach the maximum con-
sensus among the three. For example, our combined mea-
sure is able to leverage the information from NGD and
NTD to increase the co-occurrence score of ALA from 0:448
to 0:532 for the pair of “mountain-tree”, and is able to use
local information from ALA to improve the co-occurrence
measure of NGD and NTD for the pair of “wall-staircase”.
From Table 4 we can observe the effectiveness of using the
combined measure in co-occurrence pattern detection eval-
uated by the modularity score (eq. (1)). Our combined mea-
sure gives the best performance in modularity measure
from 5th level to 10th level in the hierarchy. The reason
for this is that the combined measure can leverage both the
global and local co-occurrences as well as utilize both the
semantic and visual information.

4.4.2 Experiment II: Impact from the Hierarchy

Fig. 3a shows the change in modularity for different levels
of hierarchy in the three datasets. We observe that the maxi-
mum of modularity for LabelMe occurs at level 6 with
Q � 0:354, the maximum for SUN’09 occurs at level 7
with Q � 0:513 and the maximum for OSR occurs at level 5
with Q � 0:402. This indicates that the individual concepts
in SUN’09 have significant community property than OSR
and LabelMe, and even appear at lower level of SUN’09
(from level 7 to level 12), the community property is com-
paratively large compared to the LabelMe and OSR data-
sets. Fig. 3b shows the correspondence between the number
of co-occurrence patterns and the modularity values at

TABLE 4
Averaged Modularity Scores (Q) from 5th to 10th Level

Modularity Scores

Datasets NGD NTD ALA Combined

OSR 0.218 0.259 0.224 0.275
SUN09 0.152 0.170 0.143 0.212
LabelMe 0.173 0.164 0.139 0.197

TABLE 3
Pairwise Co-Occurrence Scores for Example Concept Pairs by

Using NGD, NTD, ALA and the Combination of the Three

Pairwise Co-occurrence Scores (normalized to [0,1])

Concept Pairs NGD NTD ALA Combined

mountain-tree 0.551 0.597 0.448 0.532
sky-cloud 0.713 0.825 0.629 0.722
road-car 0.533 0.614 0.687 0.611
street-building 0.429 0.475 0.512 0.472
sand-sea 0.217 0.483 0.359 0.353
ground-grass 0.261 0.385 0.297 0.314
person-terrance 0.097 0.152 0.219 0.156
door-window 0.483 0.509 0.411 0.468
rock-hill 0.202 0.317 0.384 0.301
sun-land 0.215 0.158 0.278 0.217
river-boat 0.343 0.416 0.357 0.372
sidewalk-sign 0.294 0.187 0.371 0.284
field-fence 0.482 0.359 0.411 0.417
wall-staircase 0.128 0.119 0.274 0.174
curb-streetlight 0.213 0.319 0.307 0.280

Fig. 3. (a) Modularity versus level of the hierarchy. (b) Modularity versus
the number of co-occurrence patterns.
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different levels of the hierarchical community structures.
From Fig. 3b we can compute the average number of con-
cepts in the co-occurrence patterns by dividing the total
number of concepts by the number of co-occurrence pat-
terns. LabelMe has approximately five concepts averaged
over all the co-occurrence patterns at the maximum modu-
larity point, similarly, SUN’09 has six concepts and OSR has
four concepts. Note the averaged number of concepts in the
co-occurrence patterns are consistent with the averaged
number of concepts contained in the training images.

4.5 Automatic Image Annotation Results

4.5.1 Experiment I: Co-Occurrence Measure Study

Table 5 presents the precisions obtained for the three data-
sets at different annotation length (Pre@1, Pre@3, Pre@5,
Pre@10) by using four co-occurrence measures: NGD, NTD,
ALA, and our Combined. Pre@N denotes the precision of
annotations in the first N words using 60 percent of the
dataset for training. Overall, our combined co-occurrence
measure achieves the best performance especially when
the annotation length is larger than 1. The reason is that for
more annotations more co-occurrence information can be

utilized. Generally, when the length of the annotation
becomes larger, it deteriorates the annotation precision, how-
ever, using combined co-occurrence information our pro-
posedmeasure still can achieve relatively stable performance
regardless of the dataset complexity differences. Further-
more, the number of true positives exceeds 30 percent for our
co-occurrencemeasure at the length of ten annotations which
implies that at least three annotations on average are correctly
given by our approach. Note that, in general, the contribution
from local visual co-occurrence, which is adopted by ALA,
surpasses the contributions from global semantic co-occur-
rence and global visual co-occurrence which are adopted by
NGD and NTD, respectively. This demonstrates that each
dataset has unique co-occurrence patternswhich are different
from the global ones. However, by introducing the global
information, we can actually consolidate the common pat-
terns which may lack enough samples in a local dataset and
weaken the unusual patterns.

4.5.2 Experiment II: Annotation Performance

To demonstrate the effectiveness of our proposed frame-
work for the image annotation application, we evaluate the
following approaches as shown in Table 6:

� Baseline-Gen model: Our generative implementation
for individual concept inference unified with con-
cept signature representation served as the base
model. (The base model does not include co-occur-
rence pattern detection and random walk boosting).

� Baseline-Dis model: The discriminative version of the
baseline-gen model. The other setup is the same as
in baseline-gen.

� conditional random field (CRF): The conditional ran-
dom field based image annotation approach by
Xiang et al. [14] that uses the original pairwise co-
occurrences from a network structure without hier-
archical co-occurrence pattern detection. We re-
implemented it to compare it with our hierarchical
pattern scheme.

� Context: The object detection and localization
approach by Choi et al. [16] that is used for image
annotation. They introduced a tree-structured context
model which is comparable to our network structure
and hierarchical patterns. We re-implemented it to
compare its performancewith our approach.

TABLE 5
Precisions at Different Annotation Lengths by Using Different

Co-Occurrence Measures

LabelMe

Co-occurrence Measure Pre@1 Pre@3 Pre@5 Pre@10

NGD 0.3393 0.2584 0.2230 0.1276
NTD 0.3752 0.2772 0.2481 0.2025
ALA 0.3806 0.2857 0.2564 0.1847
Combined 0.4628 0.4533 0.4279 0.3104

SUN09
Co-occurrence Measure Pre@1 Pre@3 Pre@5 Pre@10

NGD 0.3528 0.2693 0.2432 0.1384
NTD 0.3423 0.2537 0.2593 0.1457
ALA 0.3516 0.2714 0.2581 0.1543
Combined 0.4332 0.4233 0.4017 0.3042

OSR
Co-occurrence Measure Pre@1 Pre@3 Pre@5 Pre@10

NGD 0.3393 0.2584 0.2230 0.1276
NTD 0.3752 0.2772 0.2481 0.2025
ALA 0.3806 0.2857 0.2564 0.1847
Combined 0.4423 0.4323 0.4264 0.3504

TABLE 6
The Top-5 F0:5 Score and the Standard Deviation (Show in the Parentheses) of Automated Annotation with Different

Training Set Sizes

LabelMe Dataset [26] (%) SUN09 Dataset [16] (%) OSR Dataset [27] (%)

Methods / % of
training data

40% 60% 80% 40% 60% 80% 40% 60% 80%

Baseline-Gen 21.85 (3.253) 29.57 (2.857) 32.81 (2.772) 23.44 (3.157) 32.52 (2.684) 35.14 (2.435) 25.81 (2.217) 35.33 (1.936) 40.47 (1.854)
Baseline-Dis 21.51 (2.857) 31.27 (2.864) 33.03 (2.513) 21.73 (2.679) 33.03 (2.324) 35.94 (2.185) 23.33 (1.906) 34.52 (1.873) 39.72 (1.535)
CRF [14] 25.59 (2.095) 33.81 (2.137) 36.04 (2.241) 26.93 (1.958) 35.71 (1.742) 40.15 (1.699) 27.93 (1.732) 38.91 (1.589) 43.93 (1.489)
Context [16] 26.33 (1.964) 34.13 (1.842) 36.23 (1.765) 27.71 (1.753) 36.58 (1.689) 40.81 (1.626) 28.14 (1.541) 38.63 (1.439) 44.18 (1.387)
HCP-Gen (This paper) 28.74 (1.154) 39.92 (1.112) 41.37 (1.037) 29.52 (1.096) 39.11 (0.965) 44.32 (0.854) 28.71 (0.896) 42.64 (0.859) 48.36 (0.791)
HCP-Dis (This paper) 28.13 (1.032) 40.85 (1.006) 43.46 (0.987) 28.23 (1.043) 40.71 (0.958) 45.68 (0.875) 28.47 (0.955) 41.92 (0.890) 47.71 (0.873)
maximum% gain over
CRF

12.30% 20.82% 20.59% 9.61% 14.00% 13.77% 2.79% 9.59% 10.08%

maximum% gain
over Context

9.15% 19.69% 19.96% 6.53% 11.29% 11.93% 2.03% 10.38% 9.46%
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� HCP-Gen: This is our proposed framework integrat-
ing generative concept inference, co-occurrence pat-
tern and random walk boosting. HCP refers to
hierarchical co-occurrence pattern.

� HCP-Dis: A framework with a discriminative con-
cept inference model and everything else is the same
as in HCP-Gen.

We evaluate the impact of the training set size by Top-5
F0:5 measure averaged over all the testing images. We split
the datasets into training and testing sets with three size
configurations. For each split configuration we repeated the
experiment 10 times by using each of the approaches.
Table 6 summarizes the data splits, mean performance and
standard deviations. For results on Top-5 F1 and Precision
measures, please see [61]. The tables show that the impact
of training set size is obvious and consistent across different
datasets. The larger the training set, the better performance
can be achieved for all the approaches. Our approach shows
clear improvements over the other models reflected by the
maximum percent gain (achieved by using HCP-Gen or
HCP-Dis). Also, there is a significant performance gain
when the training data size exceeds the testing data size for
all the three datasets (see the last two columns for each data-
set in Table 6. In general, all the approaches require at least
50 percent of the dataset used for training to have reason-
able annotation performance. Even the performance of our
framework is deteriorated when the training data is under
40 percent.

Next, to analyze the scalability of our approach, we com-
pare the results on the three datasets with increased com-
plexity (OSR < SUN09 < LabelMe) evaluated by the total
number of concepts in the datasets and the number of con-
cepts per image. Table 6 shows that generally when the
images are complex the performance of the approaches
drop. This is demonstrated by the Top-5 F0:5 measure (as
well as Top-5 F1 and precision measures [61]). In particular,
we observe that our approach achieves better maximum
performance gain when the images have higher complexi-
ties. For example, LabelMe usually has more than 10 con-
cepts in an image, the maximum performance gain reaches
20:59 percent when the training set contains 80 percent of
the images. SUN09 contains on average 5-10 concepts per
image, the maximum performance gain is between 11:29
and 14:00 percent. OSR has the least number of concepts in
an image, and the maximum gain is the lowest as well

which is approximately 10:00 percent only. This indicates
that our approach is well suited for understanding images
with complex scenes. Table 6 also shows that the perfor-
mance increase by our approach is less compared to other
approaches when the images are relatively simple as in the
OSR dataset.

We further compare the recall rates at top-5 annotation
length obtained by CRF [14], Context [16] and our HCP-Dis
approach on selected common concepts across the three
datasets. The results are given in Fig. 4. We observe that the
contextual information from the three datasets have differ-
ent effects on individual concept inference. For example,
the recall rates for most of the concepts in LabelMe are
relatively lower than SUN09 and OSR. The reason for this is
that there are more noisy annotations, such as the mis-
spelling and meaningless words in LabelMe from the folk-
sonomy-style annotations, and these noisy annotations
deteriorate the co-occurrence pattern detection performance
and have adverse impact on the individual concept refine-
ment. OSR dataset has larger recall rates on outdoor con-
cepts while has smaller recall rates on other concepts. We
stack the recall rates obtained by different approaches into a
single column and we observe that Context [16] (with hier-
archy) performs better than CRF [14] (without hierarchy)
while our approach always has the highest performance
gain on the recall rate. This demonstrates the effect of using
hierarchical co-occurrence patterns vs. no hierarchy. Addi-
tionally, the recall rates of CRF [14], Context [16] highly
depend on the visual consistency of the semantic concepts.
For concepts have large intra-concept visual variations (e.g.,
“road”, “ground”, “streetlight”, and “skyscraper” in Fig. 4),
the performance drops greatly especially for CRF which
only considers the original pairwise concept co-occurrences.
On the other hand, our approach can maintain relatively
stable performance which demonstrates the effectiveness of
utilizing contextual information obtained from the detected
co-occurrence patterns.

Figs. 5a, 5b show the performance comparison based on
the Top-M F0:5-measure for the three datasets as a function
of the annotation length M. As the number of annotations
increases, we observe that the performance of baseline
approaches, CRF [14] and Context [16] drops faster than our
proposed HCP approaches, which demonstrates that our
co-occurrence pattern and refinement has a boosting effect
on individual concept inference. Further, our approach is
more effective in using contextual information than
CRF [14] and Context [16] because we explore the correla-
tions of concepts beyond pairwise relationships. We also

Fig. 4. The recall rate of common concepts in the three datasets.

Fig. 5. (a),(b) show the image annotation performance of the approaches
applied to the three datasets measured by Top-5 F0:5-measure with
annotation lengthM ¼ 5.
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observe that our discriminative model and generative
provide approximately the same boost in performance com-
pared to the other approaches. However, HCP-Dis performs
better than HCP-Gen for the datasets such as LabelMe and
SUN’09 that have more complex scenes and more semantic
concepts in a single image. Therefore, we conclude that
HCP-Dis has a stronger discriminative power when the
number of semantic concepts that share increasingly high
visual similarity in an image. Also HCP-Gen can better tol-
erate the intra-concept visual variation in simple scenes.

Fig. 6 shows the top-5 annotation results for some exam-
ple images that are produced by our approach. The annota-
tions in green color are the correctly predicted labels and
red ones are mistakenly predicted. It is interesting to look at
the annotations in blue. These concepts are inferred from
the detected individual concepts and co-occurrence pat-
terns. Although they are not exactly the same as the annota-
tions in the ground-truth, but they are close in the meaning
for a specific scenario, e.g., “road” and “path” in an
“outdoor - street view” scenario, “people” and “pedestrian”
in an “indoor - hall” scenario. This shows that our proposed
approach can effectively enrich the annotations by consider-
ing the scene concepts implicitly contained in the co-occur-
rence patterns. The refinement capacity of our approach can
be seen from the annotation results of the right image in
the second row and left image in the last row where
the ground-truth concepts “check-in-desk” and “bus” are
occluded in the image and the similar concept “table” and
“car” are enriched by our proposed refinement strategy.
More results are given in [61].

4.6 Concept-Based Image Retrieval Results

4.6.1 Experiment I: Co-Occurrence Measure Study

Table 7 gives the mean average precisions for the datasets
at four different sizes of retrieved images (MAP@5,
MAP@10, MAP@15, MAP@20) by using four co-occurrence
measures: NGD, NTD, ALA, and combined. MAP@N rep-
resents the mean average precision of retrieved images in
the size of N using 60 percent of the dataset for training.
The results in Table 7 show that our combined co-occur-
rence measure achieves the best performance at all sizes of
the retrieved images.

From Table 7 we can observe that the combined co-
occurrence measure achieves the best performance and
the performance is stable when the size of the retrieved

images is less than 15. Even when the size is 20, the com-
bined co-occurrence measure can still have reasonable
results in all three datasets. Note that, in general, the con-
tributions from the three individual measures are rela-
tively the same for all sizes of retrieved images. But the
boost in MAP values is clear when combining the three
measures. This demonstrates that the co-occurrence infor-
mation from the three measures will compensate each
other and it is helpful in learning more accurate concept
relationships. Note that the MAP measure is affected by
two factors: the difficulty of the dataset and the number
of retrieved images. The combined measure can achieve
a better MAP compared to the individual measures for
all datasets of varying difficulty levels and retrieved
image sizes.

4.6.2 Experiment II: Image Retrieval Performance

The goal is to show the effectiveness of our concept infer-
ence framework for image retrieval task. We implement
and evaluate the following approaches for comparison as
summarized in Table 3. We also vary the training set size to
show its impact on the retrieval performance.

� Baseline-I: The content-based image retrieval frame-
work that compares the image similarity by directly
computing the euclidean distance between the visual
feature vectors as described in Section 4.2.

� Baseline-II: The proposed framework integrated with
SVM-based individual concept inference. The con-
cept signatures are used directly without refinement
by co-occurrence patterns.

� Semi-supervised graphical model (SSG): The approach
in [43] uses a latent-tree to find the relationship
between semantic concepts. The pairwise relevance
is obtained from the graphical model directly. No
hierarchical co-occurrence patterns are detected.

� Hierarchical semantic indexing (HSI): The retrieval
framework proposed in [38] uses the information

Fig. 6. The annotations for the test images from the three datasets by
our approach. They are compared with the ground-truth. Green labels
are correctly predicted, red ones are wrongly predicted and blue ones
have very close semantic meaning to the ground-truth.

TABLE 7
Mean Average Precision for Different Sizes of Retrieved
Images by Using Different Co-Occurrence Measures

LabelMe

Co-occurrence Measure MAP@5 MAP@10 MAP@15 MAP@20

NGD 0.2564 0.2317 0.1869 0.1003
NTD 0.2616 0.2484 0.2195 0.1574
ALA 0.2543 0.2336 0.1752 0.1249
Combined 0.2825 0.2617 0.2797 0.1809

SUN09
Co-occurrence Measure MAP@5 MAP@10 MAP@15 MAP@20

NGD 0.2646 0.2334 0.1954 0.1172
NTD 0.2476 0.2318 0.2094 0.1290
ALA 0.2584 0.2027 0.1853 0.1274
Combined 0.2923 0.2898 0.2517 0.1972

OSR
Co-occurrence Measure MAP@5 MAP@10 MAP@15 MAP@20

NGD 0.2738 0.2418 0.1989 0.1373
NTD 0.2864 0.2529 0.2046 0.1508
ALA 0.2953 0.2591 0.2153 0.1643
Combined 0.3394 0.3004 0.2846 0.2038
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from generated hierarchical semantic relationships
between concepts for comparing image similarity.
However, as compared to our work, they do not con-
sider the co-occurrence between concepts, and their
concept distance is defined on WordNet.

� HCP-IR: Our proposed approach integrated with
hierarchical co-occurrence pattern detection and con-
cept signature refinement. We implemented the dis-
criminative model here.

We repeat the split of each of the dataset for 10 times.
From Table 8 we can observe that the larger the training
set size for all the three datasets, the larger MAP can be
achieved by all the approaches. The standard deviations
are also given in this table. Baseline-I achieves the worst
performance which concludes that traditional content-
based image retrieval paradigm is not suitable for retriev-
ing images containing many semantic concepts with a
large visual variations. SSG is only marginally better than
our Baseline-II approach, for the reason that it only con-
siders the pairwise relationship between individual con-
cepts and the approach is not intended to use images
from complex scenes. HSI outperforms SSG while our
HCP-IR significantly outperforms both SSG and HSI by
5.74-20.53 percent. This result validates our assumption
that the proposed hierarchical concept co-occurrence pat-
terns can boost the individual concept inference. In par-
ticular, we can observe that when using only 40 percent
of the dataset for training, our method can still achieve
comparatively good performance than SSG and HSI. An
example of the retrieval results by using our HCP-IR

approach with 80 percent training data for the three data-
sets is shown in Fig. 7. We can observe that the returned
images are more semantically related to the scene concept
reflected in the query images rather than just visually
related. The overall performance of all the approaches
decrease when the dataset becomes more complex. How-
ever, our approach can maintain a stable maximum gain
over SSG [43] and HSI [38].

Figs. 8a, 8b summarize the results for MAP at top-D
retrieval results. Our model (HCP-IR) consistently outper-
forms the other approaches with varying number of
retrieved images on the three datasets. This shows the effects
of semantic concept correlations and the concept signature
descriptor in the context of image retrieval. The results
demonstrate that all the components of our framework are
essential: (1) detecting individual semantic concepts is
important for retrieving images of complex scenes (LabelMe,

TABLE 8
Mean Average Precision of Top-10 Retrieved Images with Different Training Set Size

LabelMe Dataset [26] (%) SUN09 Dataset [16] (%) OSR Dataset [27] (%)Methods /
% of training 40% 60% 80% 40% 60% 80% 40% 60% 80%

Baseline-I 7.64 (2.857) 11.93 (3.383) 14.82 (2.754) 9.46 (2.953) 13.53 (2.714) 15.74 (2.906) 15.82 (2.186) 25.37 (2.346) 28.27 (1.974)
Baseline-II 14.43 (2.952) 21.58 (2.742) 26.03 (2.563) 12.71 (3.126) 18.14 (3.064) 22.17 (2.547) 18.93 (2.836) 25.12 (2.914) 29.79 (2.464)
SSG [37] 17.78 (2.532) 24.61 (2.734) 26.94 (2.513) 19.53 (2.631) 25.71 (2.345) 28.45 (2.194) 21.22 (3.126) 28.54 (2.432) 31.82 (1.987)
HSI [38] 17.93 (2.964) 25.17 (2.347) 27.27 (2.146) 19.71 (3.156) 26.15 (2.343) 28.61 (3.134) 21.78 (2.432) 28.78 (1.524) 32.15 (1.768)
HCP-IR
(This paper)

18.96 (1.532) 28.97 (1.123) 32.47 (1.233) 21.06 (1.518) 30.17 (1.425) 34.22 (1.236) 23.11 (1.435) 33.46 (1.346) 37.99 (0.983)

% gain
over SSG

6.64% 17.72% 20.53% 7.83% 19.86% 20.28% 8.91% 17.23% 19.39%

% gain
over HSI

5.74% 15.10% 19.07% 6.85% 15.37% 19.60% 6.11% 16.26% 18.16%

Fig. 7. An example of the top-10 retrieved images by our proposed approach. The retrieved images are ranked based on their semantic distance to
the query. The top row shows the correctly retrieved images with street view and the stop sign. In the middle row, the top retrieved images correctly
match the bedroom scene represented in the query. And in the last row, the images with a beach scene and people are placed at the top positions.

Fig. 8. (a), (b) show the image retrieval performance of the approaches
applied to the three datasets measured by Top-D MAP with varied num-
ber of retrieved images D.
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SUN’09) as Baseline-II is more effective than Baseline-I
(directly using low-level features without semantic learn-
ing), but for simple scenes (OSR) the two approaches have
similar performance (see [61]). (2) learning more sophisti-
cated concept correlation models (HSI, HCP-IR) improves
performance over simple pairwise relationships (SSG). We
also note a higher precision for OSR than for the other two
datasets. This is due to a relatively small number of individ-
ual concepts present in the dataset, and therefore, the
detected co-occurrence patterns are more significant in more
compact forms. For additional results, please see [61].

5 CONCLUSIONS

This paper has made a novel contribution to the literature
on context-based co-occurrences in computer vision where
co-occurrences of concepts are used as contextual cues for
improved concept inference. It introduced a framework for
individual concept inference and refinement by exploring
the concept co-occurrence patterns in images with network
community detection algorithms. The framework is evalu-
ated for automated image annotation and concept-based
image retrieval tasks using the new concept signature repre-
sentation. The approach is tested on recent practical data-
sets and compared with the state-of-the-art methods. The
experimental results convincingly show the following: (a)
The importance of the hierarchy of co-occurrence patterns
and its representation as a network structure, (b) The effec-
tiveness of the approach for building individual concept
inference models and the utilization of co-occurrence pat-
terns for refinement of concept signature as a way to encode
both visual and semantic information. In the future we will
explore the message-passing approach for concept signa-
ture refinement and compare it with the randomwalk based
approach.
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