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Archetypal Analysis for Nominal Observations
Sohan Seth and Manuel J. A. Eugster

Abstract—Archetypal analysis is a popular exploratory tool that explains a set of observations as compositions of few ‘pure’ patterns.
The standard formulation of archetypal analysis addresses this problem for real valued observations by finding the approximate convex
hull. Recently, a probabilistic formulation has been suggested which extends this framework to other observation types such as binary
and count. In this article we further extend this framework to address the general case of nominal observations which includes, for
example, multiple-option questionnaires. We view archetypal analysis in a generative framework: this allows explicit control over
choosing a suitable number of archetypes by assigning appropriate prior information, and finding efficient update rules using variational
Bayes’. We demonstrate the efficacy of this approach extensively on simulated data, and three real world examples: Austrian guest
survey dataset, German credit dataset, and SUN attribute image dataset.

Index Terms—archetypal analysis, nominal observations, variational Bayes’, clustering, prototype, simplex visualization

F

1 INTRODUCTION

A RCHETYPE is a form of prototype, i.e., represen-
tative observation, that is “an ideal example of a

type”. Similar to medoids, archetypes are interpretable
since they relate to actual observations, but compared to
medoids (or centroids), archetypes are extreme in nature
rather than average. Other observations are seen as com-
position of archetypes rather than variation of prototype.
A simple example is the RGB color space: red, green,
and blue are the archetypal colors. These colors cannot
be composed by other colors, but the three “pure” colors
can compose all the other colors in the color space, see
Figure 1a for an illustration.

Assessing archetypes brings non-trivial understanding
through exploration of pure objects (e.g., pure emission
sources such as stellar populations, nebular emissions,
and nuclear activities that the emission of a galaxy is
composed of, see [1]), unique attributes (e.g., distinctive
facial appearances used for face recognition and face
verification, see [2]), and interesting aspects (e.g., the
archetypal “benchwarmer” when describing and profil-
ing basketball players, see [3]), and thus, it has been a
popular exploratory data analysis tool.

Following [4], archetypal analysis can be viewed as
finding the minimal convex hull of a set of observa-
tions given the number of vertices, i.e., the number
of archetypes. To elaborate, let X be a (real-valued)
data matrix with each column as an observation. Then,
standard archetypal analysis is equivalent to solving the
following optimization problem:

min
W,H

||X−XWH||2F (1)

• S. Seth and M. J. A. Eugster are with Helsinki Institute for Information
Technology HIIT, Department of Computer Science, Aalto University,
Finland E-mail: sohan.seth,manuel.eugster@hiit.fi

• The calculations presented above were performed using computer resources
within the Aalto University School of Science “Science-IT” project.

• Implementations of the presented methods and source code to reproduce
the presented examples are available at http://aalab.github.io.

with the constraint that both W and H are column
stochastic matrices. F denotes the Frobenious norm.
Given n observations, and K archetypes, W is a n×K
dimensional matrix and H is a K × n dimensional
matrix. Here, the columns of Z = XW are the in-
ferred archetypes that exist on the convex hull of the
observations due to the stochasticity of W (actually on
the boundary of the convex hull as shown by [4]) and
for each j-th sample xj , Zhj is its projection on the
convex hull of the archetypes. [4] further simplified this
problem to two alternating nonnegative least squares
optimizations: express archetypes as convex combina-
tions of the observations, and express observations as
convex combinations of the archetypes. This solution has
been extensively used over a decade with only minor
modifications (e.g., [5], [6], [7], [8]).

Recently, [9] has suggested a probabilistic extension
of this framework (Figure 2). Probabilistic archetypal
analysis preserves the principle of archetypal analysis by
finding the minimal convex hull in the parameter space.
To elaborate, assume that xj ∼ f(x|pj). Different data
types, such as binary and count, can be accommodated
through suitable choice of observation model f . Let θj
be the maximum likelihood estimate of pj , i.e., θj can be
seen as the parametric profile that best describes the ob-
servation xj under model f , when one does not impose
any shared latent structure among several observations
in the parameter space. Then, probabilistic archetypal
analysis is equivalent to the following optimization prob-
lem:

max
W,H

n∑
j=1

ln f(xj |ΘWhj) (2)

where the θjs are columns of Θ. Here, Z = ΘW can be
seen as the archetypal profiles that exist in the convex hull
of Θ (actually on the boundary following the same argu-
ment as [4]), and Zhj can be seen as the best approxima-
tion of θj . It can be easily seen that under (multivariate)
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Favorite Marital ...
Obs. sports status Gender

1 Tennis Single Female
2 Golf Divorced Male
3 Soccer Divorced Male
4 Soccer Divorced Male
5 Golf Married Female
6 Tennis Married Female
7 Tennis Married Male
8 Golf Single Male
9 Tennis Single Female

10 Golf Divorced Male
...

(d)

Z·1 Z·2 Z·3
Favorite sports:

Golf 0.35 0.00 0.53
Soccer 0.00 1.00 0.00
Tennis 0.65 0.00 0.47

Marital status:
Single 0.48 0.00 0.00

Divorced 0.52 1.00 0.00
Married 0.00 0.00 1.00

Gender:
Male 0.37 1.00 0.00

Female 0.63 0.00 1.00
...

(e)

Z.1

Z.2

Z.3

(f)

Fig. 1. Illustration of (top) standard archetypal analysis for real-valued observations and (bottom) the extension
we propose for nominal observations. Figure (a) shows a solution with three archetypes Z. Figure (b) shows the
generating observations (in color) for each archetype. Z·1 and Z·2 have two generating observations, whereas Z·3
has one generating observation. Figure (c) shows the H values of the solution in a ternary plot. Observations outside
the archetypes solution are projected onto the boundary. Table (d) shows an excerpt from the dataset with nominal
features. Table (e) shows the solution with three archetypes. Z·3, for example, is a married female who likes golf or
tennis. A few of the generating observations are visible in (d) with respective colors. Figure (f) shows the H values; as
in (c) the individual samples are expressed as compositions of archetypes.

normal distribution model, i.e., f ∝ exp(−|x−p|2), θj =
xj and thus, (2) reduces to (1). For other observation
models, such as (multivariate) Bernoulli, (multivariate)
Poisson and multinomial (one nominal variable), (2) can
be efficiently solved using majorization-minimization
algorithm (for minimizing negative log-likelihood) [9].

1.1 Contribution
Our contributions are, 1. proposing a probabilistic frame-
work to accommodate multiple nominal variables, and
2. discussing a principled approach of choosing a suit-
able number of archetypes by introducing prior infor-
mation over W and H.

Contribution 1: Nominal variables appear naturally
in response to multiple-choice questions, e.g., in marital
status—single, married, divorced, or widowed—or in
political view—agree, disagree, or neural. More general
examples of nominal variables include bag-of-words
representation, e.g., see [10]. We tackle the problem of
archetypal analysis when each i-th feature (row of X)
is a nominal variable, and thus, each entry xij is one
(or more) instance(s) of this variable. See Figure 1d for

an example. It can be easily verified that the standard
formulation in (1) is not applicable here due to the non-
Euclidean nature of the nominal variable. Also, (2) can
not be applied in a straightforward manner since each
nominal variable can have arbitrarily different number
of categories.

We achieve this extension with the realization that
archetypal analysis with d features is equivalent to d
independent archetypal analysis with shared parameters
W and H. To elaborate, the standard archetypal analysis
formulation (1), can be written as,

||X−XWH||2F =

d∑
i=1

||Xi· −Xi·WH||22

where ··i denotes i-th row. Therefore, we treat each i-
th nominal feature as an independent archetypal analy-
sis problem with multinomial observation model. As a
consequence, the Bernoulli and multinomial observation
models in [9] are special cases of this framework. Fig-
ures 1e-f illustrate archetypal analysis for nominal data
following the illustration of standard archetypal analysis
for real-valued observations in Figures 1b-c.
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Fig. 2. (a) Plate diagram of probabilistic archetypal analysis as presented in [9]: here w ∼ Dir(1),h ∼ Dir(1) and x ∼
f(ΘWh). (b) Plate diagram of probabilistic archetypal analysis for nominal observations discussed in this article. We
investigate Dirichlet priors over the coefficient vectors: here w ∼ Dir(η) and h ∼ Dir(α). Additionally, z1 ∼ Mult(h),
z2 ∼ Mult(wz1), and wi ∼ Mult(Θi

·z2). The diagram generalizes two previous cases in [9]: the Bernoulli observation
model (f is Bernoulli distribution) is achieved when vi = 2 (vi being the number of categories in i-th nominal feature)
and t = 1 for each i = 1, . . . , d (t being the number of instances of feature i), whereas the multinomial observation
model (f is multinomial distribution) is achieved when d = 1 (d being the number of features). However, it also allows
other observation models such as multiple-choice questions when t = 1, but d and vi can be arbitrary, and multi-view
textual representation when d, t and vi are all arbitrary.

Contribution 2: Probabilistic archetypal analysis as-
sumes that both wk, k ∈ {1, . . . ,K} and hj , j ∈ {1, . . . , n}
originate from symmetric Dirichlet distribution with
concentration parameters n and K respectively, which do
not effect the maximum likelihood solution. We impose
explicit prior information by varying these coefficients,
and study the approximate posterior distribution of wk

and hj using variational Bayes’. We show that this
provides a principled approach toward selecting an ap-
propriate number of archetypes, which has previously
been done by the popular yet subjective “elbow cri-
terion”. To demonstrate the efficacy of this approach,
we compare it against the maximum likelihood solution
of the same model. We show that while expectation
maximization solution works equally well in finding the
correct archetypes, it has difficulty in finding suitable
number of archetypes. On the other hand, the variational
Bayes’ solution can effectively select suitable number of
archetypes. We show the efficacy of the proposed set-
up on multiple real world questionnaire datasets, and
discuss the archetypes found.

2 METHOD

Consider that we have a (d×n dimensional) set of obser-
vations X where each column is one of n observations,
and each row is one of d features. Each feature i is a
nominal variable with vi categories Ci = {ci1, . . . , civi}.
Thus, each element Xij is one or more instances of this
variable, i.e., Xij = {wij

1 , . . . , w
ij
t , . . . , w

ij
tij} and wij

t ∈ Ci.
tij is the total number of instances in Xij . In this paper,
we particularly focus on tij = 1. See Figure 1d for an
example of X .

Let Ψi
kj be the number of cik in Xij . Thus

∑
k Ψi

kj = tij ,
and each Ψi can be seen as a vi × n dimensional count
matrix. Given this count matrix, the corresponding Θi

can be estimated as follows:

Θi
kj =

Ψi
kj∑

k Ψi
kj

∀k = 1, . . . , vi; i = 1, . . . , d; j = 1, . . . , n.

Thus Θi can be seen as a column stochastic matrix of
dimension vi × n.

Then, following principles of probabilistic archetypal
analysis, we need to solve the following optimization
problem:

max
W,H

d∑
i=1

n∑
j=1

vi∑
k=1

Ψi
kj log(ΘiWH)kj (3)

with the constraint that both W and H are col-
umn stochastic. Notice that under this formulation, the
Bernoulli observation model is a special case with vi = 2,
and multinomial observation model is a special case with
d = 1 [9].

This formulation can be also be viewed as follows: for
each category w in the i-th subproblem (row) and j-th
sample (column), w ∈ Xij ,

1) Choose an archetype, z1 ∼ Mult(hj),
2) Choose a profile, z2 ∼ Mult(wz1),
3) Choose a category, w ∼ Mult(Θi

·z2).
Here z1 ∈ {1, . . . ,K} and z2 ∈ {1, . . . , n}. This ensures
that each category wij

t = cik originates with probability
Pi

kj where Pi = ΘiWH. The archetypal profiles {Zi =
ΘiW, i = 1, . . . , n} are then found by maximizing the
likelihood (3).

We extend the generative framework by adding prior
information to W and H as follows:

hj ∼ Dir(α)∀ j = 1, . . . , n

wk ∼ Dir(η)∀ k = 1, . . . ,K

Dirichlet distribution is a natural choice due to its con-
jugacy to multinomial distribution. Moreover we use
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Fig. 3. The figures illustrate the difference between EM and VB approaches. Figures (a) and (b) show multiple EM
and VB solutions (shown in different colors) achieved on the same set of observations on a 2 dimensional simplex
with K = 10 archetypes. Figure (a’) shows the variation of objective function with varying number of archetypes K:
it stabilizes at K = 6. Figures (a”) and (b”) show the coefficient matrix H for EM and VB solution. While EM solution
assigns weights to all archetypes, VB solution sets certain weights to zero: the archetypes with nonzero factor values
are called ‘active’. Figure (b’) shows the number of active archetypes from different trials for eachK. Since the problem
is simple the VB solution almost always indicates to the correct number of archetypes.

symmetric prior such that we only have two hyperpa-
rameters to control, i.e., α and η.

We infer the approximate posterior distribution using
variational Bayes’ principle. For archetypal analysis, the
variational lower bound is given by,

Eq[log p(X ,Z,W,H|α,η,Θ)] + H(q)

where

q(W,H,Z) =

K∏
k=1

q(wk)

n∏
j=1

q(hj)

d∏
i=1

n∏
j=1

tij∏
t=1

q(z1%, z
2
%)

where we have used % := wij
t due to better readability,

and Θ = {Θi}. We estimate the variational distributions
as

q(wk) ∼ Dir(ςk), q(hj) ∼ Dir(βj), (z1%, z
2
%) ∼ Mult(φijl)

where φijl are distributions over {1, . . . ,K}×{1, . . . , n},
and l = c(t), i.e., the category of the t-th instance.

The variational lower bound can be evaluated as,

Eq log p(X ,Z,W,H|α,η,Θ) =

d∑
i=1

n∑
j=1

vi∑
l=1

Ψi
lj×(

n∑
m=1

K∑
k=1

φijl
km (log Θlm + Eq logWmk + Eq logHkj)

)

+

n∑
m=1

K∑
k=1

(αm − 1)Eq[logWmk]

+

K∑
k=1

n∑
j=1

(βk − 1)Eq[logHkj ]

−
d∑

i=1

n∑
j=1

vi∑
l=1

Ψi
lj

∑
m

∑
k

φijl
km logφijl

km

+

K∑
k=1

H(wk) +

n∑
j=1

H(hj).

Maximizing this expression, the corresponding update
rules are given by

φijlkm ∝ exp(log Θi
lm + Eq logWmk + Eq logHkj)

ςmk = η +

d∑
i=1

n∑
j=1

vi∑
k=1

Ψi
ljφ

ijl
km

βkj = α+

d∑
i=1

n∑
m=1

vi∑
l=1

Ψi
ljφ

ijl
km.

2.1 Hyperparameters

The variational Bayes’ solution provides a principled
approach for finding suitable number of archetypes.
The intuition behind this is as follows: probabilistic
archetypal analysis finds the minimal convex hull of a
set of parameter values. If one selects more archetypes
than actually needed, these archetypes can be placed
anywhere inside the convex hull without effecting the
final outcome in terms of likelihood value. Also, since
they are redundant, the corresponding factor values in
H can be arranged in multiple ways to reach the same
solution. Under such circumstances, while the point
estimate (maximum likelihood) reaches any of these pos-
sible solutions, a sparser and more meaningful solution
can be found by utilizing appropriate prior information.
Thus, the posterior means of the factor values provide a
clue to which archetypes are relevant or ‘active’ for an
observation, and the number of active components can
be controlled by the hyperparameters.

Let us first examine the effect of α. Consider the
approximate convex hull of profiles θj , j = 1, . . . , n
with vertices Θwk, k = 1, . . . ,K. The true profiles are
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Fig. 4. The figures illustrate the difference between EM and VB approaches. Figures (a) and (b) show multiple EM and
VB solutions achieved on the same set of binary observations in 8 dimensions with K = 8 archetypes: the archetypes
are binarized and then shown in decimal. Figure (a’) shows the variation of objective function with varying number of
archetypes: this displays a monotonic increase in likelihood value without a clear elbow. Figures (a”) and (b”) show
the coefficient matrix H for EM and VB solution. While EM solution assigns weights to all archetypes, VB solution sets
certain weights to zero: the archetypes with nonzero factor values are called ‘active’. Figure (b’) shows the number
of active archetypes from different trials for each K. Since the problem is difficult the VB solution indicates different
number of archetypes but around the right ballpark. If we consider the best objective value then it finds the correct
archetypes.

then represented in terms of projections hj , j = 1, . . . , n.
Now, if a profile exists outside the convex hull, then the
corresponding projection values are sparse, because this
profile is projected on one of the surfaces of the hull,
and thus, the factors corresponding to non-contributing
vertices of that hyperplane are zero. On the other hand,
if a profile is inside the convex hull then there is a
possibility that more vertices are contributing to this
profile. Therefore, a small value of α encourages profiles
to lie outside the convex hull—in other words, it shrinks
the convex hull—whereas, a large value of α encourages
profiles to lie inside the convex hull—in other words, it
inflates the convex hull, and in extreme case it overfits
the profiles. Since our objective is to automatically set
the factors corresponding to some loadings to zero, i.e.,
to encourage sparsity, we suggest setting α < 0.5. In
our experiments, we set this value to 0.3. In practice,
however, the loadings are not exactly zero. Therefore,
we consider an archetypal profile (k-th) to be ‘active’ if
the maximum projection value related to this archetype
over all observations, i.e., maxj Hkj , is greater than 0.15.
Also, unless otherwise stated, we always use K = 20,
i.e., we run the variational Bayes’ update rules for
20 archetypes, and select active archetypes as a post-
processing step. To show the dependence of inferred
number of archetypes on the hyperparameter α, we gen-
erate n = 200 binary observations in d = 10 dimensions
with 8 true archetypes, and vary the hyperparameter
values in the range (0.1, 0.2, . . . , 1). We observe that the
inferred number of archetypes increases monotonically
as the hyperparameter value is increased. We present
the result in Figure 5.

Similarly, a large η encourages sharing profiles (non-
sparse wk) to construct archetypal profile whereas small

Fig. 5. The figure illustrates the dependence of number
of inferred archetypes on hyperparameter α as a “bubble
chart”, the width of the bubble is the fraction of times the
number of inferred archetypes is y given hyperparameter
value x. We observe that as hyperparameter is increased,
more active archetypes have been found.

η prefers lack of sharing (sparse wk): therefore, a large
η assists the convex hull to shrink. However, more im-
portantly, the function of w is to construct an archetypal
profile from the profiles, and it is usually a very sparse
vector–set to a small value to assist sparsity of this vector.
We suggest setting η = 0.1.

2.2 Related methods
Topic modeling: The proposed formulation shares sig-
nificant resemblance with probabilistic latent semantic
analysis [11], and its extension latent Dirichlet allocation
[10]. To summarize, PLSA achieves the decomposition
X = Z0H compared to archetypal analysis that achieves
the decomposition X = ΘWH, thus in essence the
archetypal profiles Z = ΘW inferred by archetypal
analysis are data-driven topics. Notice that here we have
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only discussed the case when d = 1, i.e., the single view
case. For d > 1, multi-view extension of LDA has also
been explored in the literature [12].

The dependence of topics on observations plays a
significant role in the interpretability of the topics: while
in PLSA or LDA the topics can be abstract concepts,
in AA the topics are more ‘grounded’ (related to orig-
inal documents through W). Thus, in AA the topics
can be explained by the documents that are actually
contributing to the topic, whereas in PLSA/LDA the
topics might not be (and often not) related to some
specific documents. That said, the solution achieved by
PLSA/LDA is nonetheless interpretable in its own way
(usually by observing the top set of words) and is a
widely popular tool for exploring abstract concepts that
compose a document.

Finding prototypes: Archetypal analysis offers an al-
ternate, and arguably more interpretable, representation
of a set of observations. To elaborate, consider that we
have three groups of observations that are well separated
from each other, i.e., they form well defined clusters.
Then one can choose the centroid of a set of observations
(in a cluster) as the representative (or, a typical example)
of the corresponding group. Now consider the case when
these groups are not well separated. In this situation,
although centroids remain a valid representation of the
groups for computational purposes, their interpretability
degrades since now they are closer to each other than
before. Here, it is arguably more reasonable to choose
the representatives of the groups (or, typical example of
the group) to be more extreme. This makes the repre-
sentatives easier to interpret since now they are further
apart from each other. Archetypal analysis finds the
latter representation.

The intuitive nature of archetypal analysis and its
connection to topics and cluster centers are illustrated
in Figure 7. Here the observations lie on a probabil-
ity simplex (only first two dimensions are shown). We
show the topics inferred by LDA, the archetypal profiles
inferred by probabilistic AA, and the cluster centers
inferred by k-means. We notice that topics can be abstract
concepts whereas archetypal profiles are closely related
to the observations. Also, the cluster centers may not
lead to meaningful representation when the observa-
tions are close to each other. Although these aspects
are rather intuitive here, this intuition seemingly breaks
down for nominal observations since, for example, in
case of binary data the observations exist on corners
of a hypercube in d-dimensions. However, in the later
part of next section, we demonstrate that the intuition
of archetypes prevails in this extreme case as well.

3 SIMULATION

Comparison with EM solution: To illustrate the advan-
tage of the proposed approach, we compare it against the
point estimate of W and H achieved by maximizing (3)
using expectation maximization. For archetypal analysis

model, we have

log p(X ,Z|W,H,Θ)

=

d∑
i=1

n∑
j=1

tij∑
t=1

(
log Θ%z2

%
+ logWz2

%z
1
%

+ logHz1
%j

)
with Zij = {(z1%, z2%); t = 1, . . . , tij}, and Θ = {Θi}. Here
we have used % := wij

t for better readability. With slight
abuse of notation, Θi

%· is the (k, ·) entry of Θi where % =
cik. Then, W and H can be inferred using expectation-
maximization algorithm with the following update rules:

Ht+1
kj =

d∑
i=1

n∑
l=1

vi∑
m=1

Xi
mjΘ

i
mlWlkHkj

(ΘiWH)mj
,

Ht+1
kj =

Ht+1
kj∑

k H
t+1
kj

and

Wt+1
jk =

d∑
i=1

n∑
l=1

vi∑
m=1

Xi
mlΘ

i
mjHklWjk

(ΘiWH)ml
,

Wt+1
jk =

Wt+1
jk∑

j W
t+1
jk

.

The likelihood of the model increases monotonically
as more archetypes are added, since that better approx-
imates the true convex hull. Therefore, to choose an ap-
propriate number of archetypes one usually follows the
‘elbow criterion’ (terminology usually used while min-
imizing error rather then maximizing likelihood): find
several solutions with increasing number of archetypes,
and observe if the resulting likelihood value stabilizes.
If the problem is simple, it is expected to happen (e.g.,
Figure 3), whereas if the problem is difficult then a
proper plateau may not be observed (e.g., Figure 4).
Thus, although quite popular, this approach is not in-
fallible, and also since it is based on visual inspection,
it is subject to human error. We demonstrate this aspect
on two simulated examples: one where there exists a
clear convex hull, and the other where the convex hull
is vague.

In the first example, we consider selecting appropri-
ate number of archetypes on 2 dimensional probability
simplex. We generate 5 equispaced samples on a circle
on the 2 dimensional simplex, which act as archetypal
profiles. We generate n = 100 samples in the convex
hull formed by the archetypes: for each of these resulting
probability vector we generate multinomial observations
with arbitrary number of trials, generated from a Poisson
distribution with rate 1000. The large rate ensures that
the empirical distribution is close to the true distribution.
Thus, we need to decompose a 3×100 dimensional count
matrix. We present the solution achieved by K = 10
archetypes in Figure 3. It is observed that VB can effec-
tively find the correct number of archetypes by ‘shutting
down’ redundant archetypes provided we start with
sufficiently large number of archetypes.
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Fig. 6. The figure shows the inferred number of
archetypes for varying number of true archetypes found
by VB solution for two different sample sizes n as a
“bubble chart”, the width of the bubble is the fraction of
times the number of inferred archetypes is y given true
number of archetypes x.
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Fig. 7. Comparison among topic modeling, probabilistic
archetypal analysis, and clustering. The gray circles are
observations, blue circles are topics, green circles are
archetypal profiles, and red circles are centroids. We ob-
serve that: 1) archetypal profiles offer better interpretabil-
ity when the observations are close to each other, and
2) topics can be abstract whereas archetypal profiles are
closely related to the observations. Refer to Section 2.2
for more information.

In the second example, we consider selecting appro-
priate archetypes for binary data. Since binary observa-
tions exist on corners of a hypercube, there is no explicit
convex hull, and thus selecting appropriate number of
archetypes is more challenging. We randomly generate 5
binary archetypes in d = 10 dimension, and generate n =
100 binary observations from probability values within
the convex hull of the binary archetypes. We represent
the solution achieved by K = 10 archetypes in Figure 4.
It is observed that the number of ‘active’ components
in VB solution strongly agrees with the correct number
of archetypes over multiple trials, whereas EM solution
displays a monotonic increase in likelihood without a
clear plateau.

To further explore if we can deduce the correct number
of archetypes, we randomly generate binary observa-
tions in d = 16 with T archetypes. For each observation
set we find the best archetypal solution (in terms of
maximum lower bound) over 10 random initializations
with K = 20 archetypes. We present the result in Fig-

ure 6. We observe that the inferred number of archetypes
is highly accurate when T is small. However, when
T is large, the inferred number of archetypes drops.
This is expected since as the number of true archetypes
grows the binary observations gets scattered around the
hypercube, and a fixed number of observations do not
contain sufficient evidence for detecting the archetypes
reliably. In such situation, it is actually preferable that a
regularized solution is estimated.

Comparison with standard AA We demonstrate the
efficacy of the proposed approach over standard archety-
pal analysis framework by generating binary observa-
tions in d = 10 dimensions. We generate n = 100
observations from K = 6 archetypes, and find archety-
pal profiles using both the proposed framework and
standard archetypal analysis framework. We evaluate
both methods in terms of how many inferred archetypes
uniquely (no two inferred archetype match the same true
archetype) match a true archetype with maximum log-
likelihood. Since the dataset does not display a clear
‘elbow criterion’, we use K = 6 for standard formulation,
while for the proposed formulation, we use K = 20
as mentioned before. We observe that the proposed
approach has been able to infer the true archetypes
with reasonable accuracy: 4.8/6 on an average (using
K = 20 archetypes), compared to 5.4/6 on an average for
standard formulation (using K = 6 archetypes). Notice
that we have not a priori specified the true number of
archetypes for the former, but have done so for the latter.

Comparison with binary clustering: To further ex-
plore the difference between archetypal analysis and
clustering for nominal observations we compare it
against clustering of binary observations. We use EM in-
stead of VB to keep the number of prototypes same over
all datasets for consistent visualization, and qualitative
assessment. We use the tool BernoulliMix1 [13] for clus-
tering. We keep the number of prototypes the same, 4, for
both methods, i.e., four cluster centers and 4 archetypal
profiles. We use four datasets, 1) DNA: 342 samples in
12 dimensions, available in the BernoulliMix package, 2)
SPECT: 267 samples in 22 dimensions, 3) CONGRESS: 435
samples in 16 dimensions, both congress and spect are
available at the UCI machine learning repository [14],
and 4) RANDOM: 200 samples in 25 dimensions, each
entry randomly generated with probability 0.5. Each
former dataset has a clearer cluster structure than the
latter, i.e., while DNA has a very clear cluster structure,
RANDOM does not have any, and the other two datasets
fall in between. We present the solution achieved by the
two methods in Figure 8. We observed the following
aspects which are in line with our general intuition about
archetypes.

First, there is a common trend that the archetypal
profiles are more extreme than the cluster centers in the
sense that the values of each entry is closer to zero or
one. This is very much in line with the intuition that

1. http://users.ics.aalto.fi/jhollmen/BernoulliMix/
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archetypal profiles exist on the boundary of the set of
observation. For binary observations, such representa-
tion has the benefit of being more easily interpretable
in terms of presence and absence of attributes. For
example, consider the first and fourth archetypes in DNA
(Figure 8: top-left) and the corresponding cluster centers.

Second, the archetypes are further away from each
other than the cluster centers, and thus, they are more
easily distinguishable from each other. For example,
consider the first and third archetypes of SPECT (Fig-
ure 8: top-right) and corresponding centers. This is more
visible in RANDOM (Figure 8: bottom-right) which does
not have any cluster structure by design.

Third, when the observations can be clustered easily,
the solutions found by both methods are almost the
same, e.g., see DNA, and SPECT (Figure 8: top), whereas
they become very different when clear clusters do not ex-
ist, e.g., see CONGRESS and RANDOM (Figure 8: bottom).
Indeed if we assign observations to archetypal profiles
by the maximum H value, then the Rand index between
this assignment and that of the clustering solution for
the four datasets are (Rand index by chance within
brackets), DNA: 0.90 (0.58), SPECT: 0.80 (0.62), CONGRESS:
0.77 (0.58), and RANDOM 0.65 (0.6). Rand index [15] is
defined as the proportion of observation pairs that either
fall in the same cluster or in different clusters in both
solutions together, i.e., given

α =
∣∣{(xi, xj) : i 6= j, xi, xj ∈ C1

k , xi, xj ∈ C2
l

}∣∣
β =

∣∣{(xi, xj) : xi ∈ C1
k , xj ∈ C1

l , xi ∈ C2
m, xj ∈ C2

n

}∣∣ ,
the Rand index between C1 = {C1

k} and C2 = {C2
l } is

defined as RandIndex(C1, C2) = (α+ β)/n(n− 1)/2. A
higher Rand index implies better conformity between
two assignments.

4 EXPERIMENTS
In our experiments, we run the VB approach with K =
20 archetypes and 100 trials, and present the solution
with the maximum VB lower bound. Figure 9 shows the
VB lower bound versus the number of active archetypes
for each of the datasets, along with the best solution. To
interpret the prototypes qualitatively, we binarize them,
i.e., given a threshold τ , for each view, say marital status,
we present the categories, e.g., single, married, divorced
whose value in the archetypal profile is greater than τ
(it is easily seen that if τ > 0.5 then there is at most
one active category for each view). However, instead of
investigating only a specific threshold, we explore results
for a few of them: a relaxed threshold reveals commonal-
ities among prototypes whereas a strict threshold reveals
prototype specific attributes. Albeit, it is easily seen that
the categories present in the stricter threshold are also
present in the relaxed threshold.

4.1 Austrian guest survey
The analysis of binary survey data is important in social
sciences. Binary questions in comparison to a corre-
sponding multi-category format are quicker, perceived

easier, equally reliable; and the managerial implications
derived do not substantially differ [16]. In this example,
we analyze binary survey data from the Austrian Guest
Survey conducted in the winter season of 1997 (for a
cluster analysis of the summer season of 1997 see [17]).
The goal is to identify archetypal profiles of winter
tourists. This enables, e.g., to target potential winter
tourists by sending very specific advertising material.
The data consists of 1571 tourists. For each tourist 45
variables are collected: Part A (25) of the variables de-
scribes whether the tourist is engaged in a certain winter
activity (e.g., alpine skiing, relaxing, or shopping); Part B
(6) the accommodation (e.g., hotel or private room);
Part C (1) the gender; Part D (5) the company (e.g., alone
or with family); and Part E (8) the source of information
(e.g., from a brochure or the Internet). In the best solution
five archetypes are active (see Figure 9a).

We present the prototypes obtained by archetypal
analysis and Bernoulli mixture modeling in Table 1. We
observe that the prototypes are very similar to each
other. This is expected from the high Rand index be-
tween the assignments to prototypes for two methods:
0.82 (0.62 by chance). However, the archetypes are more
extreme representation, and thus, provide additional in-
formation about the prototypes at any given binarization
threshold. Below we provide a brief overview of the
prototypes.

2 At threshold 0.9, the second prototype does not re-
veal any information in the clustering solution, but
the archetype still indicates a ‘minimal’ person who
comes with partner to enjoy alpine ski, and additionally
relaxes and goes to dine (threshold 0.7).

3 The third prototype is almost the same in two cases,
and points toward a person who comes alone to just
relax without any activity.

1 The first prototype is very similar to the second
prototype and indicates to person who only enjoys
alpine skiing, but does not prefer dining and relaxation.

4 The fourth prototype points toward a tourist who is
not sportive and mostly comes for indoor excursion and
sightseeing.

5 The fifth prototype, very similar to the fourth proto-
type, however, points toward a person who is a bit
more active and enjoys other less-sportive activities such
as sauna, sledge, hiking and also goes to local events.

These archetypal profiles are very similar to the ones
found in [9].

4.2 German credit dataset
In this example, we analyze a dataset in which people
and their credit applications are described. Given are a
set of multiple-choice attributes together with a classifi-
cation into having “good” or “bad” credit risks (dataset
available from [14]). The data consist of 1000 people.
We use five out of 21 possible features (number of
categories in bracket): credit purpose (10), employment
period (5), personal status and sex (4), job situation
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TABLE 1
Prototypes obtained by archetypal analysis and Bernoulli mixture modeling for Austrian guest survey (Section 4.1).

Archetypes Centers

5

alpine ski sledge walk hotel walk pool/sauna
sledge pool/sauna relax partner relax walk
pool/sauna walk hotel hotel relax
hiking relax partner partner shopping
walk local event hotel
ind. excursion hotel partner
relax partner
shopping
sightseeing
local event
hotel
partner

4

walk walk walk walk walk walk
ind. excursion ind. excursion ind. excursion sightseeing ind. excursion ind. excursion
relax relax sightseeing relax relax
shopping sightseeing partner sightseeing sightseeing
sightseeing hotel partner partner
hotel partner
partner

1

alpine ski alpine ski alpine ski alpine ski alpine ski alpine ski
hotel hotel hotel hotel hotel hotel
partner partner partner partner
none

3

relax relax alone alone alone relax
hotel alone alone
alone
friends

2

alpine ski alpine ski alpine ski alpine ski alpine ski
relax dinner partner dinner relax
dinner partner partner dinner
partner partner

0.7 0.8 0.9 0.9 0.8 0.7
−→ Threshold ←−

TABLE 2
Prototypes obtained by archetypal analysis and latent Dirichlet allocation for German credit dataset (Section 4.2).

The table shows the three prototypes explained in more detail in the text; the full table with all ten prototypes can be
found online at http://aalab.github.io.

Archetypes Topics

7

domestic appliances domestic appliances domestic appliances furniture furniture furniture
. . . ≥ 7 years . . . ≥ 7 years . . . ≥ 7 years . . . ≥ 7 years . . . ≥ 7 years . . . ≥ 7 years
male, single male, single male, single female female female
skilled employee skilled employee skilled employee unemployed unemployed unemployed
good good good bad bad bad

42 42 42 0 0 0

3

∗ ∗ ∗ ∗ ∗ radio/televison
1 ≤ . . . < 4 years 1 ≤ . . . < 4 years 1 ≤ . . . < 4 years . . . ≥ 7 years . . . ≥ 7 years . . . ≥ 7 years
male, single male, single male, single male, separated male, separated male, separated
skilled employee skilled employee skilled employee unskilled-resident unskilled-resident unskilled-resident
∗ ∗ ∗ bad bad bad

112 112 112 1 1 0

4

car (new) car (new) car (new) ∗ ∗ ∗
. . . < 1 year . . . < 1 year . . . < 1 year ∗ ∗ ∗
female female female ∗ female female
skilled employee skilled employee skilled employee ∗ ∗ unemployed
bad bad bad bad bad bad

6 6 6 300 109 5
0.7 0.8 0.9 0.9 0.8 0.7

−→ Threshold ←−
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Fig. 9. The VB lower bound versus the number of active archetypes for the experiments (Section 4). The best solution
out of 100 trials is marked by a red plus.

A1
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A6

A7

A8A9

A10

unskilled−resident
highly qual. employee

(a) Job

A1

A2

A3

A4

A5
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A7

A8A9

A10

good
bad

(b) Credit risk

Fig. 10. Simplex visualization for the German credit dataset. The individual factors hj are projected into the circle
spanned by the K archetypes (see [9] for a detailed explanation of the simplex visualization). Figure (a) highlights
the two options “unskilled-resident” (blue) and “highly qualified employee” (purple) of the Job attributes. We can see
that “unskilled-resident” observations are mainly located towards A1; and “highly qualified employee” observations
are mainly located towards A4. Figure (b) highlights the two options “good” (red) and “bad” (blue) for the Credit risk
attribute. We can see that “good” observations are basically located everywhere, but “bad” observations are located
towards A3 and A4.

(4), and credit risk (2). The goal in this example is to
identify archetypal profiles of credit applications. In the
best solution 10 archetypes are active (see Figure 9b). We
present the prototypes achieved by archetype analysis
and polylingual latent Dirichlet analysis2 in Table 23.
For the sake of visualization, if no categories exceed the
binarization threshold for a feature, we represent it as a
‘wildcard’ (∗).

The objective of archetypal analysis is to find patterns
that are realistic, compared to topics that can be abstract
concepts. To observe the ‘reality’ of a prototype we
observe if there are actual observations that match the
active categories, i.e., we compute the number of obser-
vations where the active categories are present, and the

2. https://bitbucket.org/trickytoforget/polylda
3. Complete table available online at http://aalab.github.io

wildcard categories can be anything. These numbers are
reported in bold in the table. The Rand index between
two solutions are 0.79 (0.78 by chance).

Below we present a brief overview of the prototypes,

7 the seventh topic points to a bad credit risk situation
where a person, female and unemployed, but with more
than seven years of experience, is buying furniture.
However, such observation is not present in the
dataset. On the contrary, there are 42 observations
present for the corresponding archetypal profile, a
good credit risk situation where a person, male and skilled
with more than 7 years for experience, is buying domestic
appliances.

4 the fourth archetype points to a bad credit risk situa-
tion where a person, female and skilled, but with only less
than a year of experience is buying a new car. There are



JOURNAL 12

TABLE 3
Prototypes obtained by archetypal analysis and Bernoulli mixture modeling for SUN attribute dataset (Section 4.3).

Archetypes Centers

4

sailing/ boating sailing/ boating sailing/ boating open area natural light
swimming open area open area open area
natural light
natural
open area
far-away horizon

1

competing competing competing natural light natural light
sports sports sports open area open area
exercise exercise exercise
natural light
open area

5 enclosed area enclosed area enclosed area enclosed area enclosed area
no horizon no horizon no horizon no horizon

2 no horizon man-made

3
natural light natural light natural light natural light natural light
man-made man-made man-made man-made man-made
open area open area open area

6

trees vegetation vegetation trees
vegetation foliage foliage vegetation
foliage natural light natural light foliage
leaves open area natural light
natural light open area
open area

0.7 0.8 0.9 0.9 0.8 0.7
−→ Threshold ←−

6 such instances. This is the only archetype where a
credit risk is found to be bad.

3 the third topic points to a bad credit risk situation
where a person, male and unskilled but with more than
7 years of experience is buying a television. However,
there are no such observation in the dataset.

In Figure 10 we use simplex visualizations to interpret
certain aspects of the computed archetypes solution to a
greater extent. The stochastic nature of hn implies that
Zhn exists on a standard (K − 1)-simplex with the K
archetypes Z as the corners, and hn are the coordinates
with respect to these corners. A standard simplex can
be projected to two dimensions via a skew orthogonal
projection, where all the vertices of the simplex are
shown on a circle connected by edges. The individual
factors hn can be then projected into this circle. We
refer to [9] for a detailed explanation of the simplex
visualizations. Figure 10a shows a clear discrimination
between the options “unskilled-resident” and “highly
qualified employee” of the Jobs attribute. Figure 10b,
on the other hand, shows for the Credit risk attribute,
no clear pattern in terms of “good” observations are
visible. For “bad” observations, however, we can see a
clear pattern towards the archetypes A3 and A4.

4.3 SUN attribute dataset
In this example, we analyze the SUN attribute image
database: a subset of SUN image database where each
image has been manually labeled to have an attribute or
not [18]. There are 14340 images and 102 attributes. Each
image has been labeled by 3 independent annotators,
and thus, for each attribute there are 0 to 3 votes. We
binarize each attribute value: if an attribute has at least

2 votes then we consider it to be present (1) or absent
otherwise (0). Our goal in this example is to identify the
archetypal image profiles, and explore their nature4. In
the best solution 6 archetypes are active (see Figure 9c).
We present the prototypes achieved by archetypal anal-
ysis and Bernoulli mixture model in Table 3.

We observe that the profiles obtained by archetypal
analysis are more diverse than those obtained by clus-
tering. The Rand index between two solutions are 0.76
(0.67 by chance). Also, for a higher threshold value the
clustering solutions are not present. For example,

1,4 the first and fourth archetypes (threshold 0.7) point
towards an image of a natural place (with natural light)
that is open (with far away horizon) and is related to
water related activities such as sailing, swimming, and
image of an open area with natural light but related
to physical activity such as sport, competition, and
exercise. Both these prototypes are missing in the
clustering solution. The corresponding clustering
solutions are very similar to each other, and to fifth
and third prototype. A possible reason being that
these attributes are present in most images, and
thus clustering solution tries to model those.

3,5,6 the sixth, third, and fifth prototypes (threshold 0.7)
match quite well between two solutions, and points
toward an image of an open area with natural light
and greenery, image with natural light and open area
but having man made objects, and image with enclosed
area and without a horizon.

2 the second prototype (threshold > 0.7) is also sim-
ilar in both solutions and points toward an abstract
image with no particular attributes.

4. Note that the corresponding hn can be used in image retrieval.
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(b)

Fig. 11. Visualization of the archetypal analysis solution for the SUN attribute dataset. (a) The top ten generating
images for each one of the six archetypes. (b) The simplex visualization with eight images highlighted that are
composed of three archetypes. For example: the blue image is composed of A1 (competing, sports exercise), A2
(no horizon), and A3 (natural light, man-made); the red image is composed of A2 (no horizon), A3 (natural light, man-
made), and A6 (trees, vegetation, foliage); the orange image is composed of A1 (competing, sports, exercise), A3
(natural light, man-made), and A5 (enclosed area, no horizon).
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We present the generating (observations with wik > ε)
images for each (k-th) archetype in Figure 11 and also
highlight eight images where each image is composed by
three archetypes. We observe that both the generating
images and the composed images are rather intuitive.
For example, the image of a bullring (blue) (for bullfight-
ing, not a sport) is composed of A1 (sports activity), A2
(abstract), and A3 (man-made), whereas the generating
images of A1 (sports activity) are all related to popular
sports, and usually with people actively participating.

5 CONCLUSION
In this paper, we have introduced probabilistic archety-
pal analysis for nominal observations, e.g., multiple-
option questionnaires. The core of this extension is to
construct a generative model which ultimately treats
each feature as an independent archetypal analysis prob-
lem with multinomial observation model. This construc-
tion allows us to derive efficient update rules using
principle of variational Bayes’. Additionally, it provides
a principled approach for selecting appropriate number
of archetypes by utilizing suitable prior information
over the coefficient vectors, which so far has been done
by the elbow criterion, a heuristic approach. Together
these extensions expand the applicability of archetypal
analysis to a wider range of practical problems, e.g., mar-
keting research where multiple option questionnaires are
popularly used to understand customer behavior. We
have demonstrated the effectiveness of the proposed ap-
proach over related methods such as clustering and topic
modeling on three real world questionnaire datasets.

Although the proposed approach has been formulated
in the context of nominal variables, it is actually a
generic formulation since one can always view a d-
dimensional archetypal observation problem as d inde-
pendent single dimensional problem, and each subprob-
lem can originate from a separate exponential family
distribution. This allows extending archetypal analysis
to tackle mixed data types. An issue with the proposed
approach is the computational complexity. It increases
quadratically with the number of samples, and linearly
in number of features. Recently, faster methods for
archetypal analysis is being explored actively [19], and
this remains to be explored for the current extension.
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