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Dense Correspondences Across Scenes and
Scales

Moria Tau and Tal Hassner

Abstract—We seek a practical method for establishing dense correspondences between two images with similar content, but possibly
different 3D scenes. One of the challenges in designing such a system is the local scale differences of objects appearing in the
two images. Previous methods often considered only small subsets of image pixels; matching only pixels for which stable scales
may be reliably estimated. More recently, others have considered dense correspondences, but with substantial costs associated with
generating, storing and matching scale invariant descriptors. Our work here is motivated by the observation that pixels in the image
have contexts – the pixels around them – which may be exploited in order to estimate local scales reliably and repeatably. Specifically,
we make the following contributions. (i) We show that scales estimated in sparse interest points may be propagated to neighboring
pixels where this information cannot be reliably determined. Doing so allows scale invariant descriptors to be extracted anywhere in
the image, not just in detected interest points. (ii) We present three different means for propagating this information: using only the
scales at detected interest points, using the underlying image information to guide the propagation of this information across each
image, separately, and using both images simultaneously. Finally, (iii), we provide extensive results, both qualitative and quantitative,
demonstrating that accurate dense correspondences can be obtained even between very different images, with little computational
costs beyond those required by existing methods.
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1 INTRODUCTION

Establishing correspondences between pixels in two
images is a fundamental step in many computer vi-
sion applications. Typically, this is performed by either
matching a sparse set of pixels, selected by a repeatable
detection method (e.g., the Harris-Laplace [1]), or by
matching all pixels in both images. Here we focus on
the latter case, seeking a practical means for establishing
dense correspondences across images of different scenes
in different local scales.

Corresponding pixels are expected to reflect the same
visual information. This information, however, may ap-
pear at different visual scales in different regions of
each image: A car may be close to the camera in one
photo, and far away in another; appearing large in the
first and small in the second. All the while, buildings
in the background remain at the same distance from
the camera, appearing the same in both images. Sparse
correspondence estimation methods seek stable scales,
which can be repeatably detected in different images of
the same scene, and which would allow extracting the
same visual information regardless of the scales of the
objects in the images. This approach, however, is only
known to work well for very few pixels – those where
stable scales can be reliably detected [2], [3].

Take, for example, the images in Fig. 1 (Top). These
present the same semantic content (a “smiley”), ap-

• M. Tau is with the Department of Mathematic and Computer Science, The
Open University of Israel, Israel.

• T. Hassner is with the Department of Mathematic and Computer Science,
The Open University of Israel, Israel.
E-mail: hassner@openu.ac.il

Source Target 

L
ef

t 
w

ar
p

ed
 o

n
to

 r
ig

h
t 

In
p

u
t 

p
h

o
to

 p
ai

r 

Our result DSIFT 

Fig. 1: Dense correspondences between the same se-
mantic content (“smiley”) in different scenes and
different scales. Top: Input images. Bottom: Results
visualized by warping the colors of the “Target” photo
onto the “Source” using the estimated correspondences
from Source to Target. A good result has the colors
of the Target photo, located in the same position as
their matching semantic regions in the Source. Results
show the output of the original SIFT-Flow method, using
DSIFT without local scale selections (bottom left), and
our method (bottom right).
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pearing in very different scenes and in different scales.
Densely matching the pixels in these two images is a
problem made especially challenging due to the wide
expanses of homogeneous regions, where stable scales
are difficult to determine. In order to estimate correspon-
dences, existing methods therefore make assumptions on
the nature of the scenes, the photos, and the desired
correspondences themselves.

Stereoscopic systems, for example, generally assume
that the images being matched are of the same 3D scene,
present objects in mostly the same scales, and were
obtained under similar viewing conditions [4]. Recently,
the same-scene assumption has been relaxed by the SIFT-
Flow method of [5], [6]. Although an important step,
SIFT-Flow relies on the Dense-SIFT (DSIFT) descriptor
of [7], and therefore implicitly assumes that visual infor-
mation in both images appears at the same (arbitrarily
selected) scale. More importantly, this scale assumption
is the same for all pixels in both images; in essence,
assuming a single global scale for the two images and
so greatly limiting its applicability.

In the past few years, a number of methods have pro-
posed to eliminate this same-scale assumption, thereby
allowing for dense correspondences to be obtained un-
der very general settings. These, however, are either
designed to match images from the same scenes [8], or
require significant computation and storage in order to
deal with unknown variations in scale [9], [10].

In this paper we show that dense correspondences
can be established reliably, even in challenging settings,
such as those exemplified in Fig. 1, with little more
computational and storage requirements than needed for
the original SIFT-Flow algorithm.

Our work follows the observation that previous at-
tempts to produce robust, dense descriptors, did so by
treating each pixel independently, without considering the
scales of other pixels in the image. We turn to those few
pixels where scales have been reliably estimated, and
use them in order to estimate scales for all other pixels.
Realizing this idea, however, requires that we answer an
important question: How should scales be propagated,
from the few pixels where they were reliably determined
to all others, in a way which would ensure repeatable
scale assignments, and consequent accurate dense corre-
spondence estimation, regardless of local scale changes?

We answer this question by examining three means
of propagating scale information across images, from
detected key-points where scale is available to pixels
where scales are not. Each of these methods considers
progressively more information in order to more reliably
propagate scales:

1) Geometric. We propagated scale information from
detected interest points by considering only the
spatial locations where scales were detected
(Sec. 3.1).

2) Image-aware. Scales are propagated as above, but
using image intensities in order to guide scale
propagation. This is described in Sec. 3.2.

3) Match-aware. Finally, in Sec. 3.3 we consider the
two images between which correspondences are to
be estimated, propagating only the scales of pixels
that were selected as (sparse) key-points in both
images.

We test these three approaches on a wide variety of qual-
itative and quantitative experiments, comparing them to
the state-of-the-art. Our results show that more contex-
tual information results in better correspondences. More
importantly, they demonstrate our proposed approach to
not only outperform existing methods, but to do so as
efficiently as the original SIFT-Flow.

2 PREVIOUS WORK

Why dense-flow? Matching all the pixels of two images
is a basic step in stereoscopic vision, and as such has
been the subject of immense research from the early
years of computer vision. Surveying the work on stereo
correspondences is outside the scope of this paper, and
we refer the reader to popular computer vision textbooks
for descriptions of previous related work. A comprehen-
sive treatment of this subject is provided in particular
in [11].

In recent years, a new thread of work has sought to
look beyond the single-scene settings of stereo systems,
attempting to provide dense correspondences between
images, even if they only share the same semantic con-
tent. Here, the motivation rose from the realization that
by densely linking the pixels of two images, local, per-
pixel information can be transferred from one image
to the other. This information can then be used for a
wide range of computer vision applications, including
single-view depth estimation [12], [13], [14], semantic
labels and segmentation [15], [16], image labeling and
similarity [17], and even new-view synthesis [18].

In all cases described above, however, the same scale
was assumed for the images involved. This, either by
enforcing global alignment of the images (e.g., [18])
or by assuming that a large enough collection of
images exists such that at least one will portray the
same information in the same scales [16]. The method
presented here makes neither of these assumptions.

Scale-selection. Objects appear in different scales in
different images. Determining the correct scale at which
an image portion must be processed has therefore been
a long standing challenge in computer vision. Here we
only briefly survey the vast literature on this subject, and
we refer to [19], [20] for more detailed discussions.

In his pioneering work, Lindeberg [21], [22] was one
of the first to suggest seeking image pixels which have
well-defined, characteristic scales. He proposed using
the Laplacian of Gaussian (LoG) function computed over
image scales, which is covariant with the scale changes
of the visual information in the image, and so allows
extracting scale invariant descriptors.
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In a subsequent work, Lowe [2] proposed replacing
the computationally expensive LoG function, with its
Difference of Gaussians (DoG) approximation, in what
has since become one of the standard de facto techniques
for scale selection. Specifically, an image is processed
by producing a 3D structure of x, y and scale, using
three sets of sub-octave, DoG filters. This structure is
scanned in search of pixels with higher or lower values
than their 26 space-scale neighbors (3×3 neighborhood
in the current scale and its two adjacent scales). The scale
which provides these local extrema is selected as the
characteristic scale for the pixel.

These feature detectors, as well as others, select pixels
as keypoints if such a characteristic scale can be selected.
Some perform scale selection along with elimination of
low-contrast pixels to obtain more reliable detections.
One popular example is the Harris-Laplace detector [1],
which uses a scale-adapted Harris corner detector for
spatial point localization and LoG filter extrema for
scale selection. The detector performs these two steps
iteratively, searching peaks both in space and in scale,
and rejecting pixels with responses lower than a given
threshold.

Dense-flow with changing scales. A well known limi-
tation of scale selection techniques is that they typically
find reliable scales in only very few image pixels. In [3],
Mikolajczyk estimated that for a scale change factor of
4.4, as few as 38% of the pixels would be selected by a
DoG scale selection criteria, of which only about 10.6%
were actually correct. A bit later, Lowe, in [2] estimated
that only around 1% of an image’s pixels provide sta-
ble features which allow for descriptor extraction and
matching. If our goal is to obtain dense correspondences
between two images, the obvious question becomes: how
should scales be selected for the remaining overwhelm-
ing majority of the pixels in the two images?

In recent years there have been several solutions pro-
posed to this problem. In [8], image intensities around
each pixel were transformed to log-polar coordinate
systems. Doing so converted scale and rotation to trans-
lation. Translation invariance was then introduced by
applying FFT, thus obtaining the Scale Invariant Descrip-
tors (SID). Though SID descriptors were shown to be
scale and rotation invariant, even on a dense grid, their
use of image intensities directly implies that they are not
well suited for matching images of different scenes [9].

The SIFT-Flow method of [5], [6] provided a means
for dense correspondence estimation on a dense grid.
They represented pixels in the image using Dense-SIFT
(DSIFT) descriptors [7], produced at a constant, manu-
ally selected scale. This provides some scale invariance
– due to the inherent robustness of the SIFT descriptors
– but does not address anything beyond small scale
changes.

In [9], the DSIFT descriptors used by the SIFT-Flow
were replaced by the Scale-Less SIFT (SLS) representa-
tion. These are produced by first extracting at each pixel

multiple SIFT descriptors, at multiple scales. The set of
SIFTs extracted at a particular pixel was used to fit a
linear subspace, represented using the subspace-to-point
mapping of [23], [24], [25]. The SLS descriptors were
shown to be highly robust to scale changes as well as
allowing matching between different scenes, but the cost
of this was a quadratic inflation in the descriptor size,
making them difficult to apply in practice.

A different approach, somewhat related to our own
work here, was taken by [26]. They too use SIFT-Flow
as the matching engine, and either DSIFT or SID as
the underlying representations. In their work, soft seg-
mentation is first performed on images to be matched.
When extracting descriptors, pixels contribute to the
value of the descriptor in a manner which is inversely
proportional to the likelihood of their belonging to the
same segment as the keypoint for which the descriptor
is produced. Thus, information from the background, or
from other scales, has a limited effect on the values of the
descriptor. This process requires that all descriptors are
produced at the same scale, relying here on the segmen-
tation to introduce scale-dependent information. Scales
larger than the one used to extract the descriptors may
therefor not be effectively represented. More importantly,
it is unclear how segmentation affects scale, and vice
versa, and so the limitations of this approach are not
clear.

Rather than modify representations, Qiu et al. re-
cently proposed a modified dense-flow estimation pro-
cedure [10]. Building on the cost function optimized
by SIFT-Flow, they add terms reflecting the smoothness
of scales. Specifically, they add a requirement that the
relative scale of two neighboring pixels will be the
same between their matching pixels in the other image.
Though faster than both SID and SLS, their optimization
is slower than the original SIFT-Flow. Moreover, their
method does not allow computing scale invariant rep-
resentations a priori, a desirable property when prepro-
cessing is allowed or descriptors are used for applica-
tions other than dense correspondence estimation. Here
we make a similar smooth scale assumption, yet employ
it in preprocessing, rather than when estimating dense
correspondences.

The method described here uses the original SIFT
descriptors, varying the scales at which a descriptor is
extracted in each pixel. It thus allows for correspondence
estimation in the same computation and storage costs
as the original SIFT-Flow as well as provides scale-
invariant descriptors on a dense grid, usable beyond
dense correspondence estimation applications.

3 PROPAGATING SCALES

Scale-invariant correspondences (dense or otherwise) are
typically achieved through scale selection. To establish
dense correspondences, here, we seek dense scale selection:
selecting scales for all the pixels in the image.
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Fig. 2: Visualizing three means of propagating scales. (a) Two input images. (b) Sparse interest point detections,
using the SIFT, DoG-based feature detector implemented by vlfeat [7]. Each detection is visualized according to
its estimated scale. (c-e) Per-pixel scale estimates, SI(p), color-coded. (c) Geometric scale propagation (Sec. 3.1);
(d) Image-aware propagation (Sec. 3.2); finally, (e), match-aware propagation, described in Sec. 3.3. Note how in
(e) similar scale distributions are apparent for both images. On the right, color-bars provide legends for the actual
scale values.

Formally, the scale space of image I(x, y), denoted by
L(x, y, σ), is defined by a convolution of I(x, y) with a
variable-scale Gaussian G(x, y, σ) [27], where

L(x, y, σ) = G(x, y, σ) ? I(x, y) (1)

and
G(x, y, σ) =

1

2πσ2
e−(x

2+y2)/2σ2

. (2)

The scale space of an image is scanned by multi-scale
feature detectors, which seek space-scale locations x, y, σ
where stable scales can be determined reliably, typically
by seeking extrema in a scale-selection function defined
over L(x, y, σ).

Most pixel coordinates, however, do not have such
extreme values, and are therefore left without scale
selection. In the texture rich images of Fig. 2(a), for
example, less than 0.1% of the pixels in each image were
selected by the SIFT, DoG-based, feature detector, and
assigned with scales (Fig. 2(b)). Our goal is to use these
few detected pixels and their scale assignments in order
to estimate scales for all the remaining image pixels.

We define the scale-map SI(p), for pixel p = (x, y),
of image I as providing the scale σp associated with
pixel coordinates p in I . Our goal can be stated
as assigning scale values to all pixels in SI . To this
end, our key underlying assumption is stated as follows:

Assumption 0: Similar pixels should have similar scales.

This assumption, of course, leaves the notion of simi-
larity open for interpretation, as well as the means of
assigning scales in practice. Formally, we express this
general assumption by defining a global cost for a scale
assignment, as follows:

C(SI) =
∑
p

SI(p)− ∑
q∈N(p)

(wpqSI(q))

2

. (3)

Similar expressions have previously been proposed
for image processing tasks ranging from segmentation
(e.g. [28], [29], and others) to colorization [30] and depth
estimation [31]. Here, we assign scales to all image pixels
by minimizing Eq. 3, subject to the constraints expressed
by the known scales – the few pixels selected by a multi-
scale feature detector, their positions in the image, and
their assigned scales.

Intuitively, this cost interprets our assumption by re-
quiring that the scale assigned to pixel p should be as
similar as possible to a weighted average of the scales
of its relevant similar pixels, denoted by q ∈ N(p). The
weight wpq, associated with each of these pixels p and q,
is often referred to as an affinity function and takes values
which sum to one for all pixels q. It reflects the degree
to which the scale of one pixel is assumed to influence
another. In the next sections we consider two alternatives
for this function, based on different interpretations of
pixel similarity.

3.1 Geometric scale propagation
Assuming that the only information available to
us are the pixel locations and scales returned by a
feature detector, we make the following “geometric”
assumption, where pixel scales are influenced by the
scales of their spatially neighboring pixels:

Assumption 1, Influence of feature geometry on scales:
Neighboring pixels (pixels with adjacent coordinates)
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should be assigned with the same scales.

This assumption can be interpreted as using a constant
value for all affinity functions, or wpq = 1/|N | (|N | the
number of spatial neighbors for each pixel). Our cost
function is quadratic and our constraints are linear. This
implies large, sparse systems of equations which may be
solved using a range of existing solvers [28], [30], [31].

Fig. 2(c) presents the scale-maps produced for each im-
age using geometric scale propagation. As scale assign-
ments are covariant with the underlying scale changes
in the images, their ranges are somewhat different. Scale
color codes are therefore provided on the right of Fig. 2.
Visually, these maps may appear too noisy to be mean-
ingful. In practice, as we show in Sec. 5, scales computed
this way can still be beneficial for correspondence esti-
mation.

3.2 Image-aware scale propagation
The use of constant affinity values is convenient
whenever recomputing them for each image pair is
impractical. Propagating scales using only the geometry
of the feature point detections, however, ignores image
intensities as valuable cues for scale assignment. We
now consider the influence of intensities by revising
our previous assumption.

Assumption 2, Influence of intensities on scales:
Neighboring pixels with similar intensities, should be
assigned with similar scales.

This assumption can be expressed by assigning affinity
values using the normalized cross-correlation of the
intensities of the two pixels, or:

wpq = 1 +
1

σp2

((I(p)− µp)(I(q)− µp)) . (4)

Here, µp and σp are the mean and variance of the
intensities in the neighborhood of pixel p.

This expression has successfully been used in the past
for image colorization in [30]. Earlier, it was shown to
reflect a linearity assumption on the relation of color and
intensities in [32] and [33]. By using it here, we assume
a linear relation between intensities and scales, rather
than color. That is, that SI(p) = apI(p) + bp with the
coefficients ap and bp being the same for all the pixels
in the immediate neighborhood of p.

Of course, this is a simplifying assumption; the rela-
tion between scales and intensities can be more com-
plex than a linear one. For our purposes, however, this
assumption need not be strictly true: We only need
for similar scales to be selected by considering similar
intensity values in corresponding image regions.

Fig. 2(d) visualizes the scale-maps produced by image-
aware propagation. These capture more of the under-
lying image appearance than the ones produced by
the simpler geometry based method. In particular, the

distribution of scale assignments for the two images has
more regions in common, suggesting better repeatability.
Still, quite a lot of both images includes non-matching
scale assignments, which we attempt to minimize next.

3.3 Match-aware scale propagation

As evident in Fig. 2(b), the sets of feature point
detections in the two images are not identical. In fact,
we expect only a small number of features to be correctly
detected and common to both images (as discussed in
Sec. 2). Here, these few corresponding pixels are used
to seed the scale-map assignment process:

Assumption 3, Influence of matching feature points:
When two images are being matched, scales should
be assigned by considering feature point detections
common to both images.

Rather than using all the detected feature points to seed
the scale assignments, we first seek correspondences
between the scale invariant descriptors, extracted at
these sparse locations. This, in the same way that such
correspondences are computed and used for parametric
image alignment [2]. We take the 20% of the corre-
spondences with the best closest to second-closest SIFT
match ratio [2], and use only their scales to seed scale
propagation in each image.

The result of this process is visualized in Fig. 2(e),
which clearly shows corresponding regions of scale
assignments: the same regions are assigned with high
(low) scales in the two images.

Comparison with [34]: It is instructional to compare the
process described here with the one used for 3D recon-
struction from multiple views in [34]. They too begin
with feature point extraction and sparse correspondence
estimation. Their correspondences are used to build a
preliminary 3D point cloud and estimates for the camera
matrices of each input image. A continuous 3D surface is
then produced by an “expansion” process which uses the
initial correspondences to seed a search for neighboring
matches in an effort to obtain dense correspondences.

We also use an initial, sparse set of correspondences to
seed a search for dense correspondences, by propagating
information to neighboring pixels. Here, however, we
expand the scale estimates, not the correspondences
themselves. This is performed for a single pair of images
and without going through the process of 3D reconstruc-
tion and camera parameter estimation.

4 DISCUSSION: SCALE ACCURACY VS. FLOW
ACCURACY

The assumptions underlying our method guarantee that
some scales will be repeatable from one image to the
next. In particular, the scales at interest points com-
mon to both images, in the match-aware propagation



6

of Sec. 3.3, will be covariant and would allow extraction
of invariant descriptors. We expect that others, however,
may still be inconsistent, resulting in descriptors pro-
duced at wrong scales with different feature values. It
is therefor reasonable to consider: What effect would
wrong scale assignments have on the overall quality of
the flow?

To answer this question, we consider the method used
for dense correspondence estimation, here, the SIFT-
Flow of [6]. It uses belief propagation to minimize the
following cost, defined over the estimated flow field
(warp) w(p) = [u(p), v(p)]T from each pixel in the
source image IA to its corresponding pixel in the target
image IB :

F (w) =
∑
p

min (||f(IA,p, SA(p))

− f(IB ,p+w(p), SB(p+w(p)))||1, k)

+
∑
p

ν (|u(p)|+ |v(p)|) (5)

+
∑

(p1,p2∈N)

[ min (α|u(p1)− u(p2)|, d)+

min (α|v(p1)− v(p2)|, d) ]

Here, k and d are constant threshold values and N
defines a neighboring pixel relationship (e.g., p1 and p2

are nearby). The function f represents the SIFT feature
transform, where we make explicit the scales used for
computing the descriptors, represented by the scale-
maps SA and SB .

The second term in Eq. 5 represents a requirement
for small displacement. The third term, reflects a re-
quirement for a smooth flow-field. Only the first term
is affected by scale estimates, and so presumably, the
minimization of Eq. 5 should be at least partially robust
to scale estimate errors. In practice, the success of SIFT-
Flow using Dense-SIFT (DSIFT) descriptors, implies that
this is indeed the case: DSIFT uses a single, arbitrarily
selected scale for all image pixels, and so one would
expect that at least some pixels would have wrong scale
estimates.

We empirically evaluate this tie between scales and
accurate flow estimates, in order to obtain a measure of
the robustness of SIFT-Flow to scale estimation errors.
To this end, we compute the SIFT-Flow between images
and themselves using increasing amounts of scale as-
signment errors.

Initially, the same constant scale is used for all pixels
in each image pair. Using the default parameters of
the SIFT extraction routine of [7], we take the SIFT
bin size to be 8 pixels and the magnification factor to
be 3, resulting in a scale value of 8/3 = 2.667. We
then progressively add noise to the scale-map of the
target image by randomly selecting increasing numbers
of pixels and adding Gaussian noise, with mean zero
and STD of 2, to their assigned scales.

Fig. 3: Effect of wrong scale estimates on flow accuracy
using SIFT-Flow [6]. Top: Scale-maps for 20%, 50%, and
80% scale assignment errors, visualized by color coding
scales (color-bar on the right). The correct scale is the
default value of 2.667 for all pixels. Mid: Visualizing the
assigned scales, for every 15th pixel. Bottom: Angular
errors (left) and endpoint errors (right), ± SE, for increas-
ing errors in scale estimates. Evidently, flow remains
accurate up until about 20% errors rates.

Fig. 3(top) shows scale-maps with noise added to 20%,
50%, and 80% of the pixels. These synthetically modified
scale-maps were used to extract SIFT descriptors (visu-
alized in Fig. 3(mid)), which were then matched using
SIFT-Flow. The quality of the resulting flow is evaluated
by considering the angular and endpoint errors [35].

Fig. 3(bottom) plots the effect of wrong scale estimates
vs. these two errors measures (± SE not shown as it
was very small). Evidently, the endpoint errors reported
in Fig. 3(bottom) remain almost zero, up until a rate
of half the image pixels being assigned with wrong
scales. Angular errors appear more sensitive to the noise,
beginning to grow at 20% scale assignment errors.

These experiments are synthetic: In a practical sce-
nario, simply resizing one of the images would result
in all its pixels being assigned wrong scales. Fig. 3 sug-
gests that in such cases dense correspondence estimation
would fail completely, which was indeed shown to be
true for SIFT-Flow in [9]. The figure also suggests, how-
ever, that it may be sufficient to bring scale assignment
errors down to only 20% in order for accurate dense
correspondences to be obtained.

5 EXPERIMENTS

We tested our proposed methods on tasks involving
images from different scenes (Sec. 5.2), and stereo with
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scale changes (Sec. 5.3). These tests demonstrate the ap-
plication of our method for the tasks of stereo matching
and image hallucination1.

Our experiments all use SIFT-Flow [6] to compute the
dense correspondences, varying the representations used
in order to compare the following alternatives: Dense
SIFT (DSIFT) [7]; Scale Invariant Descriptors (SID) [8];
Scale-Less SIFTs (SLS) [9]; and the two segmentation
aware descriptors of [26], the segmentation aware SID
(Seg. SID) and the segmentation aware SIFT (Seg. SIFT).
In all cases, we used the code published by the re-
spective authors of each method, with their recom-
mended parameters unchanged. These methods were
compared against our own geometric scale propagation
(Geo.), image-aware propagation (Image) and match-
aware propagation (Match).

5.1 Implementation and run-time
We implemented all three versions of our scale prop-
agation technique in MATLAB. The multi-scale feature
detections used by our proposed methods were obtained
using the standard SIFT detector, implemented in the
vlfeat library [7]. Minimizing the sparse system of equa-
tions resulting from the cost of Eq. (3) was performed
using the built-in MATLAB solver, computed on neigh-
borhoods of 3 × 3 pixels. Finally, scale-varying, dense
SIFT descriptors were extracted with vlfeat [7].

Run-time was measured on an Intel Core i5 CPU,
1.8GHz, with 4GB of RAM and running 64Bit Windows
8.1. We use very small images for these tests (78 × 52
pixels) in order to avoid measuring run-time required
for swapping memory, when using the more memory
intensive representations (SID and SLS).

Descriptor sizes and flow-estimation run-times are
summarized in Table 1. Descriptor dimensions were
those measured in practice when running the code
provided by the authors of each method. We extract a
single, 128D SIFT descriptor per pixel – the same storage
required by the standard SIFT-Flow method, and an order
of a magnitude less storage than required by both the
SID and SLS representations. Not surprisingly, the time
required for establishing flow using our own method is
the same as the time required for the original SIFT-Flow,
an order of magnitude less than the SID descriptors, and
two orders of magnitude less than SLS.

Finally, we compared the time required for optimizing
our cost function of Eq. (3) (propagating the scales) with
the time required by SIFT-Flow to estimate correspon-
dences. Here, we varied the size of the images from the
original 78× 52 pixels to 780× 520 pixels. For all image
sizes, scale propagation required less than 7% of the time
for computing the correspondences themselves, using
SIFT-Flow. Consequently, SIFT-Flow performed follow-
ing scale propagation requires only slightly more time
than runing SIFT-Flow once, without scale propagation.

1. More results are reported in a longer version of this paper, sub-
mitted for publication. Please see author home-page, for an updated
version: www.openu.ac.il/home/hassner

TABLE 1: Comparison of different descriptor dimen-
sions, and flow-estimation run-time. Mean run-times
were measured using SIFT-Flow, on 78×52 pixel images.

Method Flow run-time (sec.) Dim.
DSIFT [6] 0.8 128D
SID [8] 5 3,328D
SLS [9] 13 8,256D
Seg. SID [26] 5 3,328D
Us 0.8 128D

5.2 Qualitative results

Figures 1, 4 and 5 present image hallucination results ob-
tained by computing dense correspondences from source
to target images, and then warping the target colors back
to the sources using the estimated flows. In all cases,
good results would have the target image colors warped
to the shapes appearing in the source photos.

The results included in these figures were all selected
in an effort to reflect the most challenging instances
of the dense correspondence estimation problem. Image
pairs exhibit extreme variations in local scales, differ-
ent scenes, different viewing conditions and more. We
additionally emphasize cases where images have large
homogenous regions. Existing feature detectors typically
cannot estimate local scales in such image regions. By
propagating scale estimates, we allow for scale-invariant
descriptors to be extracted and dense correspondences to
be estimated even in such cases.

Fig. 5 provides a comparison of the three proposed
methods of propagating scales: Geometric scale propa-
gation (Sec. 3.1), image-aware propagation (Sec. 3.2), and
match-aware propagation (Sec. 3.3). Evidently match-
aware propagation provides the most coherent results,
though its two simpler alternatives are comparable in
the quality of their results.

Though the results obtained with our Match-aware
scale propagation (Fig. 4, rightmost column) are some-
times qualitatively similar to those obtained by other
representations, ours consistently produces good results.
This, despite much lower run-time and storage re-
quirements compared to the scale-invariant descriptors,
SID, SLS, and Seg. SID. Unsurprisingly, DSIFT performs
worst when applied to image pairs with scale changes.

5.3 Scaled-Middlebury results

We repeat the qualitative experiments reported in [9],
measuring the accuracy of stereo correspondences in the
presence of extreme scale changes. We use the well-
known Middlebury data set [35], containing pairs of
images of the same scenes, acquired from different view-
points. Since these images do not include scale changes
these are introduced by re-sizing both images in each
pair, one to 0.7 its size and one to 0.2 (the original sizes
are not used, due to limitations of memory for the SLS
and SID descriptors). Our tests include the image pairs
with ground truth dense correspondences, which we use

www.openu.ac.il/home/hassner
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Fig. 4: Image hallucination results. Each row presents dense correspondences established from source images to
target images, illustrated by warping the target photos back to the sources using the estimated flows. We compare
the following representations, from left to right: DSIFT [7], SID [8], SLS [9], Segmentation aware SID (Seg. SID) [26],
and SIFT descriptors extracted using our own Match-aware scale propagation. Good results should have the colors
of the target photos, warped to the shapes appearing in the source photos.

to compute Angular Error (AE) and Endpoint Error (EE)
rates, along with standard deviations (± SD) [35] for each
of the representations tested.

Our results are reported in Table 2. These demonstrate
that by propagating scales we achieve better accuracy on
almost all of the tested pairs, falling in only slightly be-
hind the far more expensive multi-scale representations,
when this is not the case.

6 CONCLUSIONS

Modern computer vision systems owe much of their
success to the development of effective scale selection
techniques, key to the extraction of local, scale-invariant
descriptors. These widely used techniques have focused
almost entirely on the few image locations where local
appearance variations provide sufficient cues for select-
ing reliable (repeatable) scales. In contrast, we propose
a means for determining reliable scales for all the pixels
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Fig. 5: Image hallucination results - comparison of proposed methods. Each row presents dense correspondences
established from source images to target images, illustrated by warping the target photos back to the sources
using the estimated flows. We compare our three proposed methods for propagating scales, from left to right:
Geometric scale propagation (Sec. 3.1), image-aware propagation (Sec. 3.2), and match-aware propagation (Sec. 3.3).
Each hallucination result provides also a visualization of the estimated flow field. Flow legend is provided on the
bottom right.

in the image, regardless of their local appearances.
We describe three means of propagating scales from

pixels selected by a standard, multi-scale, feature de-
tector to all other image pixels. Our approach allows
for truly scale-invariant dense SIFT descriptors to be
extracted and then matched between images. An im-
portant aspect of our method, is that unlike alternatives
proposed in the recent past, it makes very little computa-
tion and storage requirements beyond those needed for
matching standard, non scale-invariant, dense SIFT de-
scriptors. The result is a practical, effective, and efficient
method for establishing dense correspondences across
scenes, which does not make any assumptions on local
scale variations in the images being matched.

Our method was tested qualitatively, by producing
image hallucination results for challenging image pairs,
as well as quantitatively for its flow accuracy. These
have all shown how propagating scales contributes to
reliable and robust dense correspondence estimation.

Future work. This paper opens a number of prospective
directions for future research. One immediate direction is
to explore how well other transformations, chiefly local
orientation, may benefit from a similar approach. Our
initial experiments conducted by adding an orientation-
map, analogous to the scale-maps used here, were in-
conclusive. We believe this is because rotation may be

a more global phenomenon compared to scale; rotations
are often applied to entire images whereas scales fre-
quently change from one portion of the image to another.
Further study is required to see if and how orientation
can also benefit from a similar approach.

Applications of dense correspondence estimation were
surveyed in Sec. 2. An additional line of work would
be to explore the impact of our method’s improved
robustness on existing and new label transfer tasks.

Finally, showing that robust dense correspondences
can be established with reasonable computation and
storage requirements, raises intriguing questions regard-
ing the possible roles of dense correspondence estima-
tion in biological vision. Correspondence estimation is
well known to play a key part in depth perception by
stereo vision. The success of label transfer approaches in
computer vision suggests that it may be worth while to
explore the existence of similar mechanisms in biological
visual systems.
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