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Abstract

Natural images are scale invariant with structures at all length scales. We formulated a geometric 

view of scale invariance in natural images using percolation theory, which describes the behavior 

of connected clusters on graphs. We map images to the percolation model by defining clusters on a 

binary representation for images. We show that critical percolating structures emerge in natural 

images and study their scaling properties by identifying fractal dimensions and exponents for the 

scale-invariant distributions of clusters. This formulation leads to a method for identifying clusters 

in images from underlying structures as a starting point for image segmentation.

Index Terms

Natural image statistics; scale invariance; percolation theory; fractal structures; image 
segmentation

1 Introduction

AN effective description of scale invariance in natural images is a challenging problem 

because the processes that create the structures in nature happen at multiple scales. Such a 

description is however needed in understanding how images are represented in the retina and 

cerebral cortex [1]. Disentangling the scale invariance in natural images is also important in 

computer vision, since objects and their features come in a variety of scales. In fact the key 

characteristic of natural images is the hierarchy in object sizes, from the smallest with a few 

dozen pixels to large objects the size of the image. Here we provide insights and new results 

for understanding this hierarchy.

The hierarchy of object sizes/features is a geometric view of scale invariance [2]. In contrast, 

the algebraic view is based on the scale-free (power-law) behavior of the second-order 

correlation functions of pixel intensities [3]. How can the geometric view of scale invariance 

be quantified algebraically? We approached the question systematically by mapping images 

to the percolation model. In percolation theory, the key is the concept of cluster, which for 
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images becomes key in forming a geometric formulation of scale invariance. In this 

approach, studying the statistics of natural images is to study the statistics of the clusters. We 

characterize the scale invariance of natural images in the scale-free form of the cluster 

distributions instead of the scale-free form of the pixel intensity correlation function. In 

addition, fractal structures emerge in our analysis, which is particularly appealing since 

fractals are ubiquitous in nature [4]. In the next section we review some of the key concepts 

in percolation theory.

2 Review of Key Concepts in Percolation Theory

Consider a square lattice as shown in Fig. 1. In the figure, the occupied sites are denoted in 

color. Percolation theory studies the clusters that are formed by the occupied sites. Of 

particular interest is systems at the onset of percolation, where a cluster extends from one 

edge of the system to the opposite edge for the first time (the red cluster in Fig. 1). The 

percolation model was originally defined by occupying the sites randomly. However, as we 

will see, images are mapped to a correlated percolation model: if a site is occupied it is more 

likely for its nearest neighbors to be occupied as well.

A cluster is defined as a group of nearest-neighbor squares that are occupied. Percolation 

theory deals with studying clusters that are formed. In Fig. 1, occupied sites that belong to a 

cluster are colored uniformly. The size of a cluster s is defined as the number of sites inside 

that cluster. In the figure, clusters that have the same size are given the same color. There are 

three clusters of size s = 1, one cluster of size s = 2, etc. The cluster number ns is defined as 

the number of clusters with s sites per lattice site, e.g., n2 = 1/64 in this example. Later in the 

paper, we will study ns for images, which take the power-law form ns ∝ s−τ.

Fig. 1 also introduces the concept of percolating cluster (the cluster in red), defined as a 

cluster which extends from one edge of the lattice to its opposite edge. A percolating cluster 

is also known as an “infinite” cluster, because in the thermodynamic limit (i.e., for an 

infinite system) its size becomes infinite. Percolation theory was developed to study 

properties of percolating clusters. Of particular interest are systems at the onset of 

percolation, at which an infinite cluster appears for the first time. Scale invariance emerges 

near the percolation transition, which we exploit in our model.

Next we discuss the simplest example of the percolation transition, where sites/pixels are 

occupied randomly on the square lattice with the occupation probability p. The system can 

be tuned to be at the onset of percolation by varying p. Images are different from this model, 

but it will provide intuition about the percolation transition. For the percolation problem, the 

size of the infinite cluster M(L) normalized by the number of sites in the lattice is the 

percolation order parameter P = M(L)/L2, and is used to describe the degree of percolation 

order in the system. It is intuitively clear that for small p percolating cluster cannot form 

since the sites are rarely occupied, therefore P = 0, and the system is disordered. For p = 1 

all the sites are occupied and the percolating cluster is the whole lattice: P = 1, and the 

system is fully ordered. We therefore expect a phase transition from disorder to order for the 

intermediate values of p. What needs to be verified is that the phase transition is continuous.
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This model despite its simplicity does not have an exact solution at present but the 

continuous phase transition (known as second-order phase transition in physics) is verified 

by numerical experiments. The occupation probability, which marks the onset of the 

percolation transition and the formation of infinite clusters is pc = 0.59274621 [5]. In the 

thermodynamic limit, for all p > pc there is a cluster extending from one side of the system 

to the other, whereas for all p < pc no such infinite cluster exists. Percolation order parameter 

P is zero at p = pc and rises monotonically for p > pc. The plot of samples before p < pc and 

after p > pc are given in Fig. 2. In the figure, the largest cluster in the disordered phase p < pc 

is singled out in blue. The percolating clusters in the ordered phase p > pc are singled out in 

red.

Percolation theory provides a natural framework for quantifying scale invariance and the 

hierarchy of objects sizes in natural images. They key concept is that of clusters. In the next 

section we map natural images to the percolation model, which becomes the foundation for 

studying the geometric aspect of the scale invariance in natural images.

3 Binary Representation of Images

How can we map images to the percolation model? A binary representation will provide a 

natural framework, where the notion of “occupied” and “unoccupied” sites are taken by 0 

and 1 pixel values. Our focus in this paper is on gray-scale images, where pixel values are in 

the range [0, Imax], 0 representing the darkest point, Imax the brightest. Color images can be 

analyzed the same way in red, green and blue (RGB) channels. An analog value I (assumed 

to be integer here for simplicity) can be mapped to a binary representation {B1, B2, …,B∧} 

(Bλ ∈ {0, 1}) by the following decomposition:

(1)

where Bλ is found iteratively by calculating  starting from λ = 1, 

⌊ ⌋ is the floor function, and ∧ is the the bit-depth of the representation (∧ = ⌊log2(Imax) 

+ 1⌋), which is ∧ = 15 for the van Hateren database [6]. The visual representation of the map 

from analog pixel values to its corresponding bits from Eq. (1) is given in Fig. 3.

In the same manner, the gray-scale image ℐ with non-negative integer values is mapped to a 

stack of binary images {ℬ1, ℬ2, …, ℬ∧} with pixel values 0,1:

(2)

Example of an image ℐ in the van Hateren database, and its corresponding bit planes {ℬ3, 

ℬ4, …, ℬ10} are given in Fig. 4. To emphasize the hierarchy in the representation, we refer 

to layer λ = 1 as the top layer, and λ = ∧ the bottom one. There is a qualitative change 

from“order” to “disorder” from the top layer to the bottom layer [7]. We quantify this 
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qualitative change in the next section using the percolation order parameter we defined in the 

previous section.

The binary representation obtained from Eq. (2) is exact. However one can also obtain 

approximate representations by thresholding an image. This was studied in [8] by 

thresholding images by their median intensity (Fig. 4):

(3)

where θ is the step function. There exists a non-linear relation between median-thresholded 

images and the representation {ℬ1, ℬ2, …, ℬ∧} as follows. The average median intensity 

for images in the van Hateren database is the value 215−6 < 637 < 215−5. Therefore, on 

average, activation of a pixel in any of the bit planes above layer 6 (λ ≤ 6) will make the 

pixel value greater than the median. The median-thresholded images Θ can therefore be 

obtained by combining ℬλ above layer 6 using the logical OR operator [9]:

(4)

We applied our analysis for layers ℬλ to the ensemble Θ. As we will see, the median-

thresholded images Θ are close to a percolation transition (Fig. 6), and they lie between 

layer 5 and 6 in the scaling analysis of clusters (Fig. 7).

4 Percolation Order Parameter and Correlated Percolation Transition

The map from analog images ℐ to the binary representation {ℬ1, ℬ2, …, ℬ∧} is the starting 

point for defining the percolation model for images. We define pixels with value 1 (white) 

empty, and pixels with value 0 (black) occupied. A cluster is defined as a group of nearest-

neighbor pixels that are occupied as in Figs. 1 and 2. The reason behind the choice 0 ≡ 

“occupied” and 1 ≡ “empty” is as follows. Only with this choice the top layers, which we 

consider “ordered” in our model, have the percolation order parameter close to 1. If we had 

chosen pixels with value 0 as empty the percolation order parameter would have been zero 

for the top layers, and indistinguishable from the bottom layer regarding percolation. This 

will become clear shortly.

The percolation properties for the top (ordered) and bottom (disordered) layers in the image 

decomposition {ℬ1, ℬ2, …, ℬ∧} are easily understood. The top layers are mostly 0 

(occupied) and the percolation order parameter P ≈ 1 (see Fig. 6). For the bottom layers the 

pixel values are uniformly distributed and not correlated (white noise). This maps to the 

classic percolation model on the square lattice with occupation probability p = 0.5 < pc we 

discussed earlier (Section 2, Fig. 2). Therefore percolation order parameter P = 0 for the 

bottom layers. In Fig. 5, we highlight the percolation clusters for bit planes ℬ5 and ℬ6 (from 

Fig. 4) close to the percolation phase transition. In the same figure, bit planes ℬ7 and ℬ8 are 

in the disordered phase and not percolating, but we highlight the largest cluster in blue.

We study the percolating properties of all bit planes for all the images in the van Hateren 

database. The plot of the average of the percolation order parameter < P > vs. λ is given in 

Fig. 6. Here as in [7] we also considered non-binary systems by forming the decomposition 
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of Eq. (2) in base b > 2. Like the binary case, P was determined by finding percolating 

clusters of 0 (ignoring nonzero pixel values), λ in base b was then mapped to base 2 by the 

relation ⌊log2(Imax) + 1⌋ − log2(b⌊logb(Imax)+1⌋−λ), which may not necessarily be an integer. 

Non-binary decomposition was therefore considered to have some limited continuity (away 

from integer values) in the “tuning” parameter λ. We fit second-order phase transition curve 

P = θ(λc − λ) (λc − λ)β/C near the phase transition, where the best fit was obtained for λc = 

6.1, β = 0.6, C = 1.6. We emphasize that the percolation transition here is correlated, since 

the pixels near layer 6 are correlated [7]. The percolating cluster for layer 6 of Fig. 4 is 

singled out in red in Fig. 5b. The percolating cluster is highly structured, which highlights 

the fact that this is a correlated percolation transition.

5 Geometric Characterization of the Scale Invariance in Natural Images

Percolation theory provides the framework to characterize a geometric view of the scale 

invariance in natural images by studying the scaling properties of the clusters that emerge in 

the model. Instead of studying the second-order correlation function of pixel intensities, we 

are concerned with A) How the size the percolating clusters M(L) scale as a function of the 

system size L, B) How ns, the number of clusters with size s per lattice site, scales as a 

function of s. Next we study the scaling properties of these two quantities. Near the 

percolation transition both these quantities take power law forms with anomalous exponents 

deviating from mean-field values. See Fig. 1 for a review of the definitions of M(L) and ns.

5.1 Fractal Dimension

Fractal structures are ubiquitous in nature from coastlines to turbulent flows [4]. It is perhaps 

not surprising to see signatures of fractals in natural images. In our formulation fractal 

dimensions appear in the scaling properties of the percolating clusters close to the phase 

transition. Near the percolation transition the infinite cluster has many holes in it, where 

some of them could be large. The size of the largest hole is a measure of the correlation 

length ξ, which becomes “infinite” at the percolation transition. Because of these holes, 

which appear in all scales, the size the percolating cluster does not scale with an integer 

Euclidian dimension, instead with a fractal non-integer dimension. The fractal dimension D 
is the effective dimension for how M grows with the system size L: M ∝ LD.

The dimension D deviates from the Euclidean dimension near the percolation transition for 

length scales below the correlation length. Thus for length scales L < ξ, M(L) ~ LD with D < 

2. For length scales L > ξ the Euclidean dimension D = 2 is recovered. The dimension D is 

obtained by taking L × L samples and finding the linear fit in the log-log scale (Fig. 7, Table 

1). The curve deviates from linear for large L (when it is comparable to system size) due to 

limited sampling, which were not used for obtaining the exponents.

5.2 Scale-Invariant Distribution of Cluster Sizes

Another signature of scale invariance at the percolation transition is that the distribution of 

number of clusters as a function of their size takes a power-law form. The number of clusters 

of size s (s-clusters) per lattice site is denoted by ns. Large clusters are less frequent than 

smaller clusters. Above the critical point, ns takes the algebraic form ns ∝ s−τ, where τ is 
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close to 2 away from the critical point, and becomes anomalous deviating from the mean-

field value τ = 2 at the critical point [10]. This scaling is demonstrated in Fig. 7b for layers 

{4, 5, 6} and the exponents t are given in Table 1.

6 Clusters for Image Segmentation

In this section we outline an application of the framework we introduced here in identifying 

clusters in images for image segmentation and edge detection [11]. For the case of binary (b 
= 2) decomposition, the clusters of 1 and 0 in each layer ℬλ segment the image into regions. 

By analogy, clusters of 1 form “islands” in the “seas” of 0, and they could correspond to 

parts of objects in the original image. Furthermore, the islands and seas can be merged if 

their size is less than a cutoff. We use the notation  to denote the transformed pixel 

values after merging clusters of 1 and 0 into their surrounding, i.e., 0 and 1 respectively, if 

the size of the cluster is less than 2n (Fig. 8). The boundaries between clusters are then 

identified as edges denoted by  (Fig. 8).

This approach at the current stage is limited as can be seen by looking at an example of the 

Berkeley segmentation database in Fig. 9. These images are jpeg with the bit-depth of L = 8 

(as opposed to 15 in the van Hateren database) [12]. The bit-depth disparity requires a 

different analysis when it comes to the information content of different bit planes. For 

example for the jpeg image shown in Fig. 9 the median intensity is 28−2 < median(ℐ) = 86 < 

28−1, the median-thresholded image thus lies between layer 1 and 2 in the binary 

decomposition. The boundaries between clusters for layer 1 and 2 in this example are 

highlighted in red in Fig. 9. We emphasize that in this approach different layers give rise to 

different segments and it is an open question how to integrate different segmentations thus 

obtained.

In the mainstream approach to image segmentation, one is interested in smooth contours for 

traces of objects. However for natural images, they will not necessarily be smooth especially 

for textures and fractal structures in images. A strength of our approach is the capability to 

segment structures in natural images that do not necessarily have smooth boundaries. We 

have also introduced a notion of scale in image segmentation for natural images based on 

introducing a cutoff for cluster sizes. But more work needs to be done for finding 

meaningful semantics for the clusters and integrating different clusters across different bit 

planes.

On the conceptual level, the picture we have provided here is appealing because clusters 

could be large and edges detected this way were not obtained by a local (Gabor-like) filter. 

The problems with the view of primary visual cortex as a “Gabor filter bank” and its 

limitations in computer vision applications are discussed by Olshausen and Field [13].

7 Discussion

What would the “ultimate theory” for the scale invariance of natural images look like? The 

well-established framework in physics for understanding scale invariance is the 

renormalization group, which explains the scale invariance found in nature in a single 
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framework. The renormalization group is based on removing high spatial/temporal 

frequency fluctuations in a hierarchical fashion, and finding how interactions change by this 

process. It is powerful for explaining systems with “fluctuations in structure over a vast 

range of sizes” [14]. We know that the key signature of natural images is that they have 

structures over a vast range of sizes, but how can we formulate the renormalization group for 

images? Answering this question is especially timely for machine learning and the deep 

learning community in light of the recent observations about connections between deep 

learning and the renormalization group [15]. The renormalization group’s behavior is 

especially well-understood for systems near second-order phase transitions and our results 

for the percolation phase transition in natural images lays the foundation for studying the 

renormalization group for images.
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Fig. 1. 
Percolation in 2d square lattice of size L = 8. The “occupied” sites are shown in color, sites 

in the same cluster are colored uniformly and different colors denotes clusters of difference 

sizes. In this example, there are three clusters of size 1 (n1 = 3/64), one cluster of size 2 (n2 

= 1/64), two clusters of size 3 (n3 = 2/64), and there is a percolating cluster of size 17 (n17 = 

1/64, M(L = 8) = 17) shown in red. See Fig. 7 for the scaling of M(L) and ns in images.
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Fig. 2. 
Samples from the percolation model before and after the phase transition. The system size is 

1,024 × 1,536 pixels, the same as the van Hateren database. The white pixels are empty sites, 

which are occupied with black pixels at random. The occupation probability is given under 

each sample. The phase transition on the square lattice happens at the occupation probability 

pc = 0.59274621. In (a) and (b) (p < pc, disordered) the largest cluster is singled out in blue. 

In (c) and (d) (p > pc, ordered) the percolating cluster is singled out in red.
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Fig. 3. 
The binary representation for the ∧− bit integer value I in the range [0,2∧ − 1]. Bλ ∈ {0, 1} 

is found iteratively by calculating  starting from λ = 1, ⌊ ⌋ is the 

floor function. The map from the analog to binary for the first three bits is shown 

schematically here, where each bit divide the interval in half iteratively starting from the 

most significant bit B1.
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Fig. 4. 
Example of an image ℐ from the van Hateren database of natural images [6]. Its median 

thresholded image Θ, and the bit planes {ℬ3, ℬ4, …, ℬ10} are shown.
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Fig. 5. 
This figure singles out the percolating clusters (shown in red) of the bit planes ℬ5 and ℬ6. 

For bit planes ℬ7 and ℬ8 which are not percolating the largest cluster is singled out in blue. 

Notice that in comparison with Fig. 2, the percolating clusters are much more structured, 

which highlights the fact that this is a correlated percolation phase transition.
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Fig. 6. 
Plot of the average percolation order parameter < P > for natural images for binary and 

general base decomposition b = {2, 3, …, 11} (color-coded in the figure) as a function of λ. 

The λ in base b is transformed to base 2 by the relation ⌊log2(Imax) + 1⌋− 

log2(b⌊logb(Imax)+1⌋−λ). The standard deviation is indicated by the error bars. The black curve 

is the best fit near the phase transition P = θ(λc − λ) (λc− λ)β/C (where θ is the step function) 

was obtained for λc = 6.1; β = 0.6, C = 1.6. Percolation order parameter was also calculated 

for the ensemble Θ and is given in black at the position λ = 5.7 obtained from the average 

median values in the van Hateren database.
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Fig. 7. 
(a) Plot of the size of the percolating clusters M(L) as a function of L, obtained by taking 

random samples of size L × L from bit planes λ = {4, 5, 6}, and for the ensemble Θ (see Fig. 

4). The fractal dimension D: M(L) ∝ LD obtained from the linear fit in the log-log scale is 

given in Table 1. (b) Plot of ns (the number of s-clusters per lattice site) as a function of s. 

The exponent τ: ns ∝ s−τ obtained from the linear fit in the log-log scale is given in Table 1.
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Fig. 8. 

 is the layer ℬ6 of Fig. 4 after dissolving clusters smaller than 2n into their 

surroundings.  are the corresponding edges between the clusters. They are 

demonstrated for n = 6 and n = 10.
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Fig. 9. 
Example of an image in the Berkeley segmentation database. The top figure highlights in red 

the boundaries  of the clusters in the first layer ℬ1 after dissolving clusters of size 

smaller than 26. The bottom figure is the same but for layer two ℬ2. This figure highlights 

the limitations of the correspondence between clusters and image segments at the present 

stage.
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TABLE 1

Exponents D and τ

λ = 4 λ = 5 λ = 6 Θ

D 1.99 1.93 1.68 1.66

τ 1.98 1.81 1.76 1.79
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