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Abstract

We consider the energy minimization problem for undi-
rected graphical models, also known as MAP-inference
problem for Markov random fields which is NP-hard in
general. We propose a novel polynomial time algorithm
to obtain a part of its optimal non-relaxed integral solu-
tion. Our algorithm is initialized with variables taking
integral values in the solution of a convex relaxation of
the MAP-inference problem and iteratively prunes those,
which do not satisfy our criterion for partial optimality.
We show that our pruning strategy is in a certain sense
theoretically optimal. Also empirically our method out-
performs previous approaches in terms of the number of
persistently labelled variables. The method is very gen-
eral, as it is applicable to models with arbitrary factors
of an arbitrary order and can employ any solver for the
considered relaxed problem. Our method’s runtime is de-
termined by the runtime of the convex relaxation solver
for the MAP-inference problem.

1 Introduction

Finding the most likely configuration of a Markov ran-
dom field (MRF), also called MAP-inference or energy
minimization problem for graphical models, is of big im-
portance in computer vision, bioinformatics, communica-
tion theory, statistical physics, combinatorial optimiza-
tion, signal processing, information retrieval and statis-
tical machine learning, see [1, 14, 43] for an overview
of applications. This key problem however is NP-hard.
Therefore approximate methods have been developed to
tackle big instances commonly arising in image process-
ing, see [14, 41] for an overview of such methods. These
approximate methods often cannot find an optimal con-
figuration, but deliver close solutions. If one could prove,
that some variables of the solution given by such approx-
imate algorithms belong to an optimal configuration, the
value of such approximate methods would be greatly en-
hanced. In particular, the problem for the remaining vari-
ables could be solved by stronger, but computationally
more expensive methods to obtain a global optimum as

done e.g. in [16].

In this paper we propose a way to gain such a partially
optimal solution for the MAP-inference problem with gen-
eral discrete MRFs from possibly also non-exact solutions
of the commonly used local polytope relaxation (see [44]).
Solving over the local polytope amounts to solving a linear
problem for which any linear programming (LP) solver
can be used and for which dedicated and efficient algo-
rithms exist.

1.1 Related Work

We distinguish two classes of approaches to partial opti-
mality.

(i) Roof duality based approaches. The earliest pa-
per dealing with persistency is [24], which states a persis-
tency criterion for the stable set problem and verifies it
for every solution of a certain relaxation. This relaxation
is the same, as used by the roof duality method in [2]
and which is also the basis for the well known QPBO-
algorithm [2,25]. The MQPBO method [18] extends roof
duality to the multi-label case. The authors transform
multi-label problems into quadratic binary ones and solve
them via QPBO [2]. However, their transformation is de-
pendent upon choosing a label order and their results are
so as well, see the experiments in [39], where the label or-
der is sampled randomly. It is not known how to choose
an optimal label order to obtain the maximum number of
persistent variables.

The roof duality method has been extended to higher
order binary problems in [4, 11, 13, 20]. The general-
ized roof duality method for binary higher order prob-
lems [13,20] computes partially optimal variables directly
for higher order potentials, while Ishikawa’s and Fix et
al’s approaches [4,11] transform the higher order problem
to one with unary and pairwise terms only. Fix et al’s
method [4] is an improvement upon Ishikawa’s [11].

Windheuser et al [45] proposed a multi-label higher-
order roof duality method, which is a generalization of
both MQPBO [18] to higher order and Kahl and Strand-
mark’s work [13] to the multi-label case. However Wind-
heuser et al neither describe an implementation nor pro-
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vide experimental validation for the higher order multi-
label case.

(ii) Labeling testing approaches. A different ap-
proach, specialized for Potts models, is pursued by Kov-
tun [22], where possible labelings are tested for per-
sistency by auxiliary submodular problems. The para-
metric max-flow method for the Potts model by Grid-
chin and Kolmogorov [6] reduces the number of max-flow
computations to compute the persistencies of Kovtun’s
method [22] to log(K), where K is the number of labels.
The dead-end elimination procedure [3] tests, if certain
labels of nodes cannot belong to an optimal solution. It
is a local heuristic and does not perform any optimization.

Since for non-binary multi-labeling problems the sub-
modular approximations constructed by approaches of
class (i) are provably less tight than the standard local
polytope relaxation [34, Prop. 1], we consider class (ii)
in this paper. Specifically, based on ideas in [39] to han-
dle the Potts model, we develop a theoretically substanti-
ated approach to recognizing partial optimality for general
graphical models, together with a competitive comparison
to the 5 approaches [4,11,13,18,22] discussed above, that
define the state-of-the-art.

Unified study. In addition we point to the recent pa-
per [32], which provides a unified study of most mentioned
methods and a systematic way of their analysis. While
their persistency criterion is provably not weaker than
ours, due to the general structure of the resulting LP it
cannot be applied to large-scale problems in a straight-
forward manner. Moreover, our approach is directly ap-
plicable to higher order models and tighter then the local
polytope relaxations, whereas [32] requires generalization
to these cases, though such a generalization is presum-
ably possible. We show that our algorithm solves a spe-
cial case of the maximal presistency problem formulated
in [32]. Shrinking technique. The recent work [27] pro-
poses a method for efficient shrinking of the combinatorial
search area with the local polytope relaxation. Though
the algorithmic idea is similar to the presented one, the
method [27] does not provide partially optimal solutions.
We refer to Section 4 for further discussion.

Furthermore, preliminary shorter version of the our
study was published at a conference as [40].

1.2 Contribution and Organization

Adopting ideas from [39], we propose a novel method for
computing partial optimality, which is applicable to gen-
eral graphical models with arbitrary higher order poten-
tials. Similarly to [39] our algorithm is initialized with
variables taking integral values in the solution of a con-
vex relaxation of the MAP-inference problem and itera-

tively prunes those, which do not satisfy our persistency
criterion. We show that our pruning strategy is in a cer-
tain sense theoretically optimal. Though the used relax-
ation can be chosen arbitrarily, for brevity we restrict our
exposition and experiments to the local polytope relax-
ation. Tighter relaxations provably yield better results.
However even by using the local polytope relaxation we
can often achieve a substantially higher number of per-
sistent variables, than competing approaches, which we
confirm experimentally. We also show how our approach
can be made invariant against reparametrizations. This
improves our partial optimality criterion and we can show
equivalence with the all-to-one improving mapping class
of partial optimality methods proposed in [32]. Our ap-
proach is very general, as it can use any, also approximate,
solver for the considered convex relaxation. Moreover, the
computational complexity of our method is determined
mainly by the runtime of the used solver.

The comparison to existing persistency methods is sum-
marized in Table 1.

Our code together with the experimental setup is avail-
able at http://paulswoboda.net.
Organization. In Section 2 we review the energy min-
imization problem and the local polytope relaxation, in
Section 3 our persistency criterion is presented. The cor-
responding algorithm and its theoretical analysis are pre-
sented in Sections 4, 5 and 6 respectively. Extensions to
the higher order case and tighter relaxations are discussed
in Section 8. Section 9 provides experimental validation
of our approach and a comparison to the existing meth-
ods [4, 11,13,18,22].

2 MAP-Inference Problem

The MAP-inference problem for a graphical model over
an undirected graph G = (V, E), reads

min
x∈XV

EV(x) :=
∑
v∈V

θv(xv) +
∑
uv∈E

θuv(xu, xv) , (2.1)

where xu belongs to a finite label set Xu for each node u ∈
V, θu : Xu → R and θuv : Xu×Xv → R are the unary and
pairwise potentials associated with the nodes and edges
of G. The label space for A ⊂ V is XA =

⊗
u∈AXu,

where
⊗

stands for the Cartesian product. For notational
convenience we write Xuv = Xu ×Xv and xuv = (xu, xv)
for uv ∈ E . Notations like x ∈ XA implicitly indicate
that the vector x only has components xu indexed by
u ∈ A. With x|A ∈ XA we denote restriction of the
labeling x ∈ XV to the set A ⊂ V.

More general graphical models with terms depending
on three or more variables can be considered as well. For
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Work non-binary higher order non-Potts Auxiliary problem
Boros & Hammer 2002 [2] − − + QPBO
Kovtun 2003 [22] + − − submodular binary
Rother et al. 2007 [25] − − + QPBO
Kohli et al. 2008 [18] + − + QPBO
Kovtun 2011 [23] + − + submodular multilabel
Ishikawa 2011 [11] − + + QPBO
Fix et al. 2011 [4] − + + QPBO
Kolmogorov 2012 [20] − + + bi-submodular
Kahl & Strandmark 2012 [13] − + + bi-submodular + LP
Windheuser et al. 2012 [45] + + + bi-submodular
Swoboda et al. 2013 [39] + − − iterated local polytope
Shekhovtsov 2014 [32] + − + local polytope with extra variables
Ours + + + any convex relaxation

Table 1: Comparison between partial optimality methods. Detailed descriptions are presented in Section 1.1.

brevity we restrict ourselves here to the pairwise case. An
extension to the higher order case is discussed in Section 8.

Problem (2.1) is equivalent to the integer linear problem

min
µ∈ΛV

∑
v∈V

∑
xv∈Xv

θv(xv)µv(xv) +
∑
uv∈E

∑
xuv∈Xuv

θuv(xuv)µuv(xuv)

s.t. µw(xw) ∈ {0, 1} for w ∈ V ∪ E , xw ∈ Xw , (2.2)

where the local polytope ΛV [43] is the set of µ fulfilling∑
xv∈V µv(xv) = 1, v ∈ V,∑
xv∈V µuv(xu, xv) = µu(xu), xu ∈ Xu, uv ∈ E ,∑
xu∈V µuv(xu, xv) = µv(xv), xv ∈ Xv, uv ∈ E ,

µw(xw) ≥ 0, w ∈ V ∪ E , xw ∈ Xw .

(2.3)

We define ΛA for A ⊂ V similarly. Slightly abusing no-
tation we will denote the objective function in (2.2) as
EV(µ). The formulation (2.2) utilizes the overcomplete
representation [43] of labelings in terms of indicator vec-
tors µ, which are often called marginals. The problem of
finding µ∗ ∈ argminµ∈ΛV EV(µ) (i.e. solving (2.2) with-
out integrality constraints) is called the local polytope re-
laxation of (2.1).

While solving the local polytope relaxation can be done
in polynomial time, the corresponding optimal marginal
µ∗ may not be integral anymore, hence infeasible and not
optimal for (2.2). For a wide spectrum of problems how-
ever most of the entries of optimal marginals µ∗ for the
local polytope relaxation will be integral. Unfortunately,
there is no guarantee that any of these integral variables
will be part of a globally optimal solution to (2.2), ex-
cept in the case of binary variables, that is Xu = {0, 1}
∀u ∈ V, and unary and pairwise potentials [7]. Natural
questions are: (i) Is there a subset A ⊂ V and a mini-
mizer µ0 of the original NP-hard problem (2.2) such that
µ0
v = µ∗v ∀v ∈ A? In other words, is µ∗ partially optimal

Figure 1. An exemple graph con-
taining inside nodes (yellow with
crosshatch pattern) and boundary
nodes (green with diagonal pattern).
The blue dashed line encloses the set
A. Boundary edges are those crossed
by the dashed line.

or persistent on some set A? (ii) Given a relaxed solution
µ∗ ∈ ΛV , how can we determine such a set A? We provide
a novel approach to tackle these problems in what follows.

3 Persistency

Assume we have marginals µ ∈ ΛV . We say that the
marginal µu, u ∈ V, is integral if µu(xu) ∈ {0, 1} ∀xu ∈
Xu. In this case the marginal corresponds uniquely to
a label xu with µu(xu) = 1. If this integrality condi-
tion holds for all u ∈ V the corresponding vector µ will
be denoted as δ(x). The convex hull of marginals cor-
responding to all labelings known as marginal polytope
will be denoted asMV := conv(δ(XV)). The non-relaxed
energy minimization (2.1) can be equivalently written as
minµ∈MV EV(µ).

Let the boundary nodes and edges of a subset of nodes
A ⊂ V be defined as follows:

Definition 1 (Boundary and Interior). For the set A ⊂ V
the set ∂VA := {u ∈ A : ∃v ∈ V\A s.t. uv ∈ E} is called
its boundary. The respective set of boundary edges is
defined as ∂EA = {uv ∈ E : u ∈ A and v ∈ V\A}. The
set A\∂VA is called the interior of A.

An example graph illustrating the concept of interior
and boundary nodes can be seen in Figure 1.
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Definition 2 (Persistency). A labeling x0 ∈ XA on a
subset A ⊂ V is partially optimal or persistent if x0 co-
incides with an optimal solution to (2.1) on A.

In the remainder of this section, we state our novel
persistency criterion in Theorem 1. Taking additionally
into account a convex relaxation yields a computationally
tractable approach in Corollary 1.

As a starting point, consider the following sufficient
criterion for persistency of x0 ∈ XA. Introducing a
concatenation of labelings x0 ∈ XA and x̃ ∈ XV\A as

(x0, x̃) :=

{
x0
v, v ∈ A,
x̃v, v ∈ V\A , the criterion reads:

Proposition 1. A partial labeling x0 ∈ XA is persistent
if there holds

∀x̃ ∈ XV\A : x0 ∈ argmin
x∈XA

EV((x, x̃)) . (3.1)

Proof. Consider the equation

min
x∈XV

EV(x) = min
x̃∈XV\A

min
x∈XA

EV((x, x̃)) . (3.2)

Let x̃ ∈ XV\A be such that it leads to a minimal value on
the right hand side of (3.2). Then x̃ is part of an optimal
solution. By the assumption (3.1), x0 is an optimal so-
lution to the inner minimization problem of (3.2), hence
(x0, x̃) is optimal for (2.1).

This means that the concatenated labeling (x0, x̃) has
to be optimal for minxE(x) s.t. xv = x̃v∀v ∈ V\A. In-
formally this means that the solution x0 is independent
of what happens on V\A. This criterion however is hard
to check directly, as it entails solving NP-hard minimiza-
tion problems over an exponential number of labelings
x̃ ∈ XV\A.

We relax the above criterion (3.1) so that we have to
check the solution of only one energy minimization prob-
lem by modifying the unaries θv on boundary nodes so
that they bound the influence of all labelings on V\A
uniformly.

Definition 3 (Boundary potentials and energies). For a
set A ⊂ V and a test labeling y ∈ X∂VA , we define for
each boundary edge uv ∈ ∂EA, u ∈ ∂VA the “boundary”
potential θ̂uv,yu : Xu → R as

θ̂uv,yu(xu) :=

{
maxxv∈Xv

θuv(xu, xv), yu = xu
minxv∈Xv

θuv(xu, xv), yu 6= xu
.

(3.3)
Define the energy ÊA,y : XA → R with test labeling y as

ÊA,y(x) := EA(x) +
∑

uv∈∂EA : u∈∂VA

θ̂uv,yu(xu) , (3.4)

min

max

xu

x0
u

xv

u v

θ̂uv,x0
u
(xu)

Figure 2: Illustration of a boundary potential θ̂x0 con-
structed in (3.3). The second label comes from the test
labeling x0, therefore entries are maximized for the first
row and minimized otherwise.

where EA(x) =
∑
u∈A

θu(xu)+
∑

uv∈E:u,v∈A
θuv(xuv) is the energy

with potentials with support in A.

Given a test labeling y ∈ XA, energy (3.4) assigns a
higher value than the original energy (2.1) for all label-
ings conforming to y and makes it more favourable for
all labelings to not conform to y. An illustration of a
boundary potential is depicted by Figure ??.

As a consequence, if the test labeling y from Definition 1
minimizes the energy (3.4), the proof of the following the-
orem asserts that changing an arbitrary labeling x ∈ XV
as follows: x′v =

{
yv, v ∈ A
xv, v /∈ A will always result in a

labeling with not bigger energy (2.1), hence y in particu-
lar fulfills the conditions (3.1) of Proposition 1 and thus
is persistent.

Theorem 1 (Partial optimality criterion). A labeling
x0 ∈ XA on a subset A ⊂ V is persistent if

x0 ∈ argminx∈XA
ÊA,x0(x) , (3.5)

where ÊA,x0 is the augmented energy functional (3.4).

To prove the theorem we need the following technical
lemma.

Lemma 1. Let A ⊂ V be given together with y ∈ X∂VA .
Let x0 and x′ be two labelings on V such that x0|A = y.
Then it holds for uv ∈ ∂EA, u ∈ ∂VA that

θuv(x
0
u, x
′
v) + θ̂uv,y(x′u)− θ̂uv,y(x0

u) ≤ θuv(x′u, x′v) . (3.6)

Proof. The case x′u = x0
u is trivial. Otherwise, by Defini-

tion 3, inequality (3.6) is equivalent to

θuv(x
0
u, x
′
v) + min

xv∈Xv

θuv(x
′
u, xv)

− max
xv∈Xv

θuv(x
0
u, xv)− θuv(x′u, x′v) ≤ 0 . (3.7)

4



Choose x′v for xv in the minimization and maximization
in (3.7) to obtain the result.

Proof of Theorem 1. Let

x̃ ∈ arg min
x∈XV

x|A=x0|A

EV(x) . (3.8)

and let x′ ∈ XV be an arbitrary labeling. Then

EV(x̃) = EA(x0) + EV\A(x̃) +
∑

uv∈∂EA

θuv(x
0
u, x̃v) (3.9)

=EA(x0) +
∑

uv∈∂EA

θ̂uv,y(x0
u)

+ EV\A(x̃) +
∑

uv∈∂EA

[
θuv(x

0
u, x̃v)− θ̂uv,y(x0

u)
]

=ÊA,x0(x0) + EV\A(x̃) +
∑

uv∈∂EA

[
θuv(x

0, x̃v)− θ̂uv,x0(x0
u)
]

≤ÊA,x0(x′) + EV\A(x′) +
∑

uv∈∂EA

[
θuv(x

0, x′v)− θ̂uv,x0(x0
u)
]

(3.10)

=EA(x′) +
∑

uv∈∂EA

θ̂uv,x0(x′u)

+ EV\A(x′) +
∑

uv∈∂EA

[
θuv(x

0
u, x
′
v)− θ̂uv,x0(x0

u)
]

≤EA(x′)+EV\A(x′)+
∑

uv∈∂EA

θuv(x
′
u, x
′
v) = EV(x′). (3.11)

The equality (3.9) is due to definition of x̃ in (3.7). The
first inequality (3.10) is due to x0 ∈ argminx ÊA,x0(x), as
assumed, and of x̃ for (3.8). The second inequality (3.11)
is due to Lemma 1. Hence x0 is part of a globally optimal
solution, as x′ was arbitrary.

Checking the criterion in Theorem 1 is NP-hard, be-
cause (3.5) is a MAP-inference problem of the same class
as (2.1). By relaxing the minimization problem (3.5) one
obtains the polynomially verifiable persistency criterion
in Corollary 1.

Corollary 1 (Tractable partial optimality criterion). La-
beling x0 ∈ XA on A ⊂ V fulfilling the condition

δ(x0) ∈ argminµ∈ΛA
ÊA,x0(µ) (3.12)

is also a solution to (3.5), hence persistent on A.

Proof. Expression (3.12) implies

δ(x0) ∈ argminµ∈ΛA,µ∈{0,1}dim ΛA ÊA,x0(µ) (3.13)

because δ(x0) is integral by definition. As (2.1) and (2.2)
are equivalent and the corresponding labeling x0 satisfies
the conditions of Theorem 1, x0 is partially optimal on
A.

Algorithm 1: Finding persistent variables.

Data: G = (V, E), θu : Xu → R, θuv : Xuv → R
Result: A∗ ⊂ V, x∗ ∈ XA∗

Initialize:
Choose µ0 ∈ argminµ∈ΛV EV(µ)

A0 = {u ∈ V : µ0
u ∈ {0, 1}|Xu|}

t = 0
repeat

Set xtu such that µtu(xtu) = 1, u ∈ At
Choose µt+1 ∈ argminµ∈ΛAt

ÊAt,xt(µ)
t = t+ 1
W t = {u ∈ ∂VAt−1 : µtu(xt−1

u ) 6= 1}
At = {u ∈ At−1 : µtu ∈ {0, 1}|Xu|}\W t

until At = At−1;
A∗ = At

Set x∗ ∈ XA∗ such that µtu(x∗u) = 1

4 Persistency Algorithm

Now we concentrate on finding a set A and labeling x ∈
XA such that the solution of minµ∈ΛA

ÊA,x(µ) fulfills the
conditions of Corollary 1. Our approach is summarized
in Algorithm 1.

In the initialization step of Algorithm 1 we solve the
relaxed problem over V without boundary labeling and
initialize the set A0 with nodes having an integer label.
Then in each iteration t we minimize over the local poly-
tope the energy ÊAt,xt defined in (3.4), corresponding to
the set At and boundary labeling coming from the solu-
tion of the last iteration. We remove from At all variables
which are not integral or do not conform to the boundary
labeling. In each iteration t of Algorithm 1 we shrink the
set At by removing variables taking non-integral values or
not conforming to the current boundary condition.
Convergence. Since V is finite and |At| is monotonically
decreasing, the algorithm converges in at most |V| steps.
Solving each subproblem in Algorithm 1 can be done in
polynomial time. As the number of iterations of Algo-
rithm 1 is at most |V|, Algorithm 1 itself is polynomial as
well. In practice only few iterations are needed.

After termination of Algorithm 1, we have

δ(x∗) ∈ argminµ∈ΛA∗
ÊA∗,x∗(µ) . (4.1)

Hence x∗ and A∗ fulfill the conditions of Corollary 1,
which proves persistency.
Choice of Solver. All our results are independent of
the specific algorithm one uses to solve the relaxed prob-
lems minµ∈ΛA

ÊA,y, provided it returns an exact solution.
However this can be an issue for large-scale datasets,
where classical exact LP solvers like e.g. the simplex
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nodes At,
nodes V\At.

Boundary costs are as-
signed to boundary nodes

on ∂VAt .

Having solved the infer-
ence problem:

nodes are fractional,
nodes disagree with pre-

vious labeling,
nodes agree.

Variables are pruned. A
new set At+1 is con-
structed.

Figure 3: Illustration of one iteration of Algorithm 1.

method become inapplicable. It is important that one
can also employ approximate solvers, as soon as they pro-
vide (i) a proposal for potentially persistent nodes and (ii)
sufficient conditions for optimality of the found integral
solutions such as e.g. zero duality gap. These properties
have the following precise formulation.

Definition 4 (Integrally Correct Algorithm). Assume an
algorithm that takes as the input an energy minimization
prboblem and outputs a labeling x∗ ∈

⊗
v∈V(Xv ∪ {#}).

We call such an algorithm integrally correct if x∗v ∈
Xv∀v ∈ V implies x∗ ∈ argminx∈XV EV(x).

Integrally correct algorithms include

• Dual decomposition based algorithms [15, 19, 21, 26,
28] deliver strong tree agreement [42] and algorithms
considering the Lagrangian dual [5, 8, 30] return
strong arc consistency [44] for some nodes. If one
of these properties holds for a node v, we set cv as
the corresponding label. Otherwise we set cv = #.

• Naturally, any algorithm solving minµ∈ΛV E(µ) ex-
actly is integrally correct with

cv =

{
xv, µv(xv) = 1
#, µv /∈ {0, 1}|Xv| .

Proposition 2. Let operations µ ∈ argmin(...) in Algo-
rithm 1 be exchanged with

∀v ∈ V, xv ∈ Xv, µv(xv) :=

 1, cv = xv
0, cv /∈ {xv,#},

1/|Xv|, cv = #

where c are consistent labelings returned by an integrally
correct algorithm applied to the corresponding minimiza-
tion problems. Then the output labeling x∗ is persistent.

Proof. At termination of Algorithm 1 we have obtained
a subset of nodes A∗, a test labeling y∗ ∈ X∂VA , a la-
beling x∗ equal to y∗ on ∂VA and a consistency map-
ping cu = x∗u for u ∈ A∗. Hence, by Definition 4,
x∗ ∈ argminx∈XA

ÊA∗,y∗ and x∗ fulfills the conditions of
Theorem 1.

Remark 1. Note that a bad or early stopped solver, i.e.
one which rarely (or even never) returns an optimality
certificate or solves a weak relaxation, will also work with
Algorithm 1. However it will find smaller (or even empty)
partial optimal solutions.

Comparison to the Shrinking Technique (Com-
biLP) [27]. The recently published approach [27], similar
to Algorithm 1, describes how to shrink the combinatorial
search area with the local polytope relaxation. However
(i) Algorithm 1 solves a series of auxiliary problems on
the subsets At of integer labels, whereas the method [27]
considers nodes, which got fractional labels in the relaxed
solution; (ii) Algorithm 1 is polynomial and provides only
persistent labels, whereas the method [27] has exponential
complexity and either finds an optimal solution or gives
no information about persistence.

From the practical point of view, both algorithms have
different application scenarios: CombiLP [27] will only
work on sparse graphs, as otherwise the combinatorial
part, which one has to solve with exact methods, be-
comes too big, as the boundary ∂VA for A ( V grows
very quickly then. Also, even for sparse graphs, the com-
binatorial part may not grow too big during the appli-
cation of the algorithm, as otherwise the combinatorial
solver will again not be able to cope with it. Our algo-
rithm does not possess these two disadvantages. From
the perspective of running time it does not matter how
big the set V\At becomes during the iterations of Algo-
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CombiLP
[27]

Our method

Dense graphs − +
Very large-scale − +
Big fractional part of LP solution − +
Relaxed MAP-inference is solved
only once

+ −

Provides a complete solution to
Labeling Problem (2.1)

+ −

Table 2: Comparison between our method and Com-
biLP [27].

rithm 1. On the other hand, the subsets of variables to
which the method [27] applies a combinatorial solver to
achieve global optimality are often smaller than V\At in
Algorithm 1, because potentials in CombiLP [27] remain
unchanged in contrast to the perturbation (3.4). Another
advantage of the method [27] is that it needs to solve
the (typically) big LP relaxation of the original problem
only once, whereas our method does this iteratively, which
makes it often slower then CombiLP.

One other possible application scenario which is possi-
ble with our method but not with CombiLP [27] is the
following: Assume we want to solve an extremely big in-
ference problem, one that does not fit even into memory.
To do this, choose a subset A ( V of nodes of the graph-
ical model, solve the inference problem on the induced
subgraph G(A) with some boundary conditions, and find
a partially optimal labeling on it. This is akin to the win-
dowing technique of [33]. By doing so for an overlapping
set of subgraphs, one may try to find a labeling for the
overall problem on G.

The major differences between CombiLP [27] and our
method are summarised in Table 2.

5 Largest Persistent Labeling

Let A0 ⊂ V and µ0 ∈ ΛA0 be defined as in Algorithm 1.
Subsets A ⊂ A0 which fulfill the conditions of Corollary 1
taken with labelings µ0|A can be partially ordered with
respect to inclusion ⊂. In this section we will show that
the following holds:

• There is a largest set among those, for which there
exists a unique persistent labeling fufilling the condi-
tions of Corollary 1.

• Algorithm 1 finds this largest set.

This will imply that Algorithm 1 cannot be improved
upon with regard to the criterion in Corollary 1.

Definition 5 (Strong Persistency). A labeling x∗ ∈ XA

is called strongly persistent on A, if from

x0 ∈ argminx∈XA
ÊA,x0(x) , (5.1)

with ÊA,x∗ as in (3.4) follows x∗ = x0, i.e.
x∗ is the unique labeling on A such that x∗ ∈
argminx∈XA

ÊA,x∗(x).

Lemma 2. Let x∗ ∈ XA be strongly persistent. Then for
any optimal solution x of (2.1) we have x∗ = x|A.

Proof. This follows from Inequality (3.10) being strict in
this case.

Theorem 2 (Largest persistent labeling). Let x0 ∈
XA∗strong

and A∗strong ⊂ V be such that

δ(x0) ∈ argminµ∈ΛA∗strong

ÊA∗strong,x
0(µ) (5.2)

and x0 is the unique such labeling on A∗strong.
Then Algorithm 1 finds a persistent labeling on A∗ such

that A∗strong ⊂ A∗ ⊂ V, i.e. A∗ is a superset of all sets
on which strongly persistent labelings identifiable by the
criterion of Corollary 1 exist.

To prove the theorem we need the following technical
lemma.

Lemma 3. Let A ⊂ B ⊂ V be two subsets of V and
µA ∈ ΛA marginals on A and xA ∈ XA a labeling fulfilling
the conditions of Corollary 1 uniquely (i.e. xA is strongly
persistent). Let yB ∈ XB be a test labeling such that
yB |A = xA.

Then for all marginals µ∗ ∈ argminµ∈ΛB
ÊB,yB (µ) on

B it holds that µ∗v(x
A
v ) = 1 ∀v ∈ A.

Proof. Similar to the proof of Theorem 1. Replace V by
B.

Proof of Theorem 2. We will use the notation from Al-
gorithm 1. It will be enough to show that for every
A ⊂ V such that there exists a strongly persistent labeling
x ∈ XA we have A ⊂ At in each iteration of Algorithm 1
and furthermore xv = xtv for all v ∈ VA. Hence the union
of sets A′strong, for which a strongly persistent labeling ex-
ists which fulfills the conditions of Corollary 1, is a subset
of At ∀t. Also by Lemma 2 the associated strongly per-
sistent labelings agree where they overlap, hence we are
done.

For t = 0 apply Lemma 3 with A := A and B :=
A0(= V). Condition x = yB |A in Lemma 3 is assured by
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Corollary 1. Hence, Lemma 3 ensures that for all µ0 ∈
argminµ∈ΛV E(µ) it holds that µ0

v(xv) = 1 for all v ∈ A.
Now assume the claim to hold for iteration t − 1.

We need to show that it also holds for t. For this in-
voke Lemma 3 with A := A, B := At−1 and yB :=
xt−1. The conditions of Lemma 3 hold by assump-
tion on t − 1. Lemma 3 now ensures that for all
µt ∈ argminµ∈ΛAt−1

ÊAt−1,xt−1(µ) there holds µt(xAv ) = 1
∀v ∈ A.

From the proof of Theorem 2 we can directly conclude
the existence of the largest set A ⊂ V such that there
is a strongly persistent labeling on A identifiably by the
criterion in Corollary 1.

Corollary 2. There exists a unique largest set A∗strong
with a strongly persistent labeling x0 ∈ A∗strong identifiable
by the criterion in Corollary 1, i.e. such that

δ(x0) ∈ argminµ∈ΛA∗strong

ÊA∗strong,x
0(µ) , (5.3)

and x0 is the unique such labeling.

Also exactly the largest strongly persistent labeling
identifiable by Corollary 1 can be found under a mild
uniqueness assumption.

Corollary 3. If there is a unique solution of
minµ∈ΛAt ÊAt,xt(µ) for all t = 0, . . . obtained during the
iterations of Algorithm 1, then Algorithm 1 finds the
largest subset of persistent variables identifiable by the suf-
ficient partial optimality criterion in Corollary 1.

Remark 2. Above we showed that Algorithm 1 will find
a persistent labeling which contains the largest strongly
persistent one identifiably by Corollary 1. The two
may differ when the optimization problems solved in the
course of Algorithm 1 have multiple optima. The sim-
plest example of such a situation occurs if the relaxation
minµ∈ΛV EV(µ) is tight, but has several integer solutions.
Any convex combination of these solutions will form a
non-integral solution, hence the strongly persistent label-
ing is defined on a smaller set than any integral solution
of minµ∈ΛV EV(µ), which is non strongly persistent. Note
however that a labeling obtained by Algorithm 1, also
when it is not strongly persistent, comes from one glob-
ally optimal labeling, i.e. it can be completed to a globally
optimal labeling by solving for the remaining variables.

6 Optimal Reparametrization

It is well-known [29] (see also [44]) that representa-
tion (2.1) of the energy function is not unique. There are

other potentials, which keep the energy of all labelings
unchanged. Any such potentials θϕ can be represented as

θϕv (xv) := θv(xv)−
∑

u∈nb(v)

ϕv,u(xv) , (6.1)

θϕuv(xu, xv) := θuv(xu, xv) + ϕv,u(xv) + ϕu,v(xu) (6.2)

with some numbers ϕu,v(xu), uv ∈ E , xu ∈ Xu, where
nb(v) := {u ∈ V : uv ∈ E} denotes the set of nodes adja-
cent to v ∈ V. The vector ϕ with coordinates ϕu,v(xu) is
called reparametrization.

The boundary potentials (3.3) and hence the per-
sistency approach described above are dependent on
reparametrization. The natural question is existence of
an optimal reparametrization, that is, the one providing
the largest persistent set.

The only coordinates of the reparametrization vector
ϕ, which can potentially influence the solution of the
test problem (3.5) are ϕv,u(xv), u ∈ ∂VA, uv ∈ ∂EA.
Reparametrization ϕv,u(xv), v ∈ A ”inside” A does not
influence the solution, because it does not change the aug-
mented energy ÊA,y of any labeling y. Similarly, the
reparametrization ϕu,v(xu), u, v /∈ A ”outside” A does
not influence it, because the optimization is performed
over A only.

Considering the reparametrized potentials θϕ and sub-
tracting maxxv∈Xv

θuv(yu, xv) in (3.3) the boundary po-

tentials θ̂ϕuv,yu(xu) can be equivalently exchanged with{
0, yu = xu
min
xv∈Xv

θϕuv(xu, xv)− max
xv∈Xv

θϕuv(yu, xv), yu 6= xu .

(6.3)
It means that the labelings x not coinciding with y on
∂VA will be ”encouraged” with (typically negative) value
∆ϕ
uv(xu) := min

xv∈Xv

θϕuv(xu, xv) − max
xv∈Xv

θϕuv(yu, xv). Intu-

itively clear that the bigger ∆ϕ
uv(xu) is, the better the

proposal labeling y|A comparing to x|A 6= y|A is and
hence the greater the found persistent set A∗ returned
by Algorithm 1 would be. We will prove correctness of
this intuition formally, but first let us find the maximal
possible value of ∆ϕ

uv(xu) w.r.t. the reparametrization ϕ,
where we consider as non-zero only coordinates ϕv,u(xv),
u ∈ ∂VA, uv ∈ ∂EA, xv ∈ Xv.

Clearly

∆ϕ
uv(xu) ≤ min

xv∈Xv

(θϕuv(xu, xv)− θϕuv(yu, xv))

= min
xv∈Xv

(θuv(xu, xv) +ϕv,u(xv)− θuv(yu, xv)−ϕv,u(xv))

= min
xv∈Xv

(θuv(xu, xv)− θuv(yu, xv)) , (6.4)

hence, the right-hand-side of this inequality does not de-
pend on the reparametrization, whereas the left-hand-side
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does. There is indeed such a reparametrization that turns
the inequality (6.4) into equality and in this way guaran-
tees the largest possible values of ∆ϕ

uv(xu) for all xu. This
reparametrization (as we show below it is an optimal one)
is defined as

ϕu,v(xv) = −θuv(yu, xv) , (6.5)

which can be seen when plugging (6.5) into (6.3).
Moreover, since as we mentioned above the

reparametrization ”outside” an ”inside” At does
not influence the criterion (3.3), we can construct a
single, equal for all iterations of Algortihm 1 optimal
reparametrization ψ according to the rule (6.5) as

ψu,v(xv) = −θuv(yu, xv), u ∈ V, uv ∈ E , (6.6)

where y is arbitrarily extended from A0 to V. Now we
are ready to formulate our main result related to the
reparametrization.

Let us denote by ÊϕA,y the energy with boundary la-
beling defined as in Definition 3 w.r.t. the potentials θϕ.
Then for the reparametrization ψ defined as in (6.6) there
holds

Lemma 4. From

δ(x0) ∈ arg min
µ∈ΛA

ÊA,x0(µ) (6.7)

follows δ(x0) ∈ arg minµ∈ΛA
ÊψA,x0(µ), which means: if

x0 satisfies the persistency criterion of Corollary 1 w.r.t.
potentials θ then it satisfies it w.r.t. the reparametrized
potentials θψ.

Proof. From (6.4) and (6.7) it follows that for all uv ∈
EA, xu ∈ Xu there holds θ̂ψuv,x0

x
(xu) − θ̂ψuv,x0

u
(x0
u) ≥

θ̂uv,x0
u
(xu)− θ̂uv,x0

u
(x0
u) and hence

ÊψA,x0(µ) − ÊψA,x0(x0)
(6.4)

≥ ÊA,x0(µ) − ÊA,x0(x0) ≥ 0

(6.8)

for all µ ∈ ΛA. Thus ÊψA,x0(x0) ≤ ÊψA,x0(µ), which proves
the statement of the lemma.

Remark 3. Lemma 4 holds for any polytope containing
all integer solutions, i.e. ΛA ⊇ MA and hence it holds
also when ΛA = MA. In this case it corresponds to the
non-relaxed persistency criterion provided by Theorem 1.

Let now Aϕ,∗x0 be the largest set containing all strongly
persistent variables satisfying Corollary 1 w.r.t. the
reparametrized potentials θϕ and test labeling y ∈ XV .
Let also A∗x0 correspond to the trivial reparametrization
ϕ ≡ 0.

Applying Lemma 4 to the set A∗x0 leads to the following

Theorem 3. For any test labeling x0 ∈ XV there holds
A∗x0 ⊂ Aψ,∗x0 .

Proof. Same proof as in Lemma 4 applied to A∗x0 .

Remark 4. For Potts models, where θuv(xu, xv) ={
0, xu = xv
α, xu 6= xv

, the inequality (6.4) holds as equal-

ity also for the trivial reparametrization ϕv,u(xv) = 0
∀u, v ∈ V, uv ∈ E , xv ∈ Xv. For such models Algorithm 1
with the trivial reparametrization delivers the same per-
sistent set as with the optimal one (6.6).

7 Optimality of the Method

Theorem 2 proves optimality of Algorithm 1 w.r.t. the
formulated persistency criterion provided by Theorem 1.
However it does not prove optimality of the method with
respect to other possible criteria and hence does not guar-
antee its superiority over other partial optimality tech-
niques. There is however a recent study [31, 32], which
provides such an optimal relaxed persistency criterion cov-
ering all existing methods. In what follows we will intro-
duce key notions from [32] and show that our persistency
criterion coincides with the optimal one provided in [32]
for a certain class of persistency methods, those provid-
ing only node-persistency, i.e. either eliminating all labels
except one in a given node or not eliminating any.

Definition 6. A mapping p : XV → XV is called (strictly)
improving if for all x ∈ XV such that p(x) 6= x there holds
EV(p(x)) ≤ EV(x) (resp. EV(p(x)) < EV(x)).

In what follows we will restrict ourselfs only to idempo-
tent mappings p, i.e. satisfying p(p(x)) = p(x).

Following [32] we consider only node-wise maps of the
form p(x)v = pv(xv), where pv : Xv → Xv are idempo-
tent, i.e. pv(pv(xv)) = pv(xv) for all xv ∈ Xv. This class
is already general enough to include nearly all existing
techniques.

Improving mappings define persistency due to the fol-
lowing proposition:

Proposition 3 (Stat.1 [32]). Let p be an improving map-
ping. Then there exists an optimal solution x of (2.1)
such that for all v ∈ V from pv(i) 6= i follows xv 6= i.
In case p is strictly improving this holds for any optimal
solution.

For an idempotent mapping p a linear mapping
P : RI → RI satisfying δ(p(x)) = Pδ(x) for all x ∈ XV is
called its linear extension. A particular linear extension
denoted as [p] is defined as follows. For each pv we define
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the matrix Pv ∈ RXv×Xv by Pv,ii′ =

{
1, pv(i

′) = i
0, pv(i

′) 6= i
.

The linear extension P = [p] is given by

(Pµ)v =
∑

i′∈Xv

Pv,ii′µv(i
′) = Pvµv; (7.1)

(Pµ)uv = PuµuvP
>
v .

In what follows we will employ the commonly used repre-
sentation of energy EV(µ) in a form of an inner product
〈θ, µ〉, where vectors of potentials θ and marginals µ be-
long to the vector space RI with the suitably selected
dimension I =

∑
v∈V
|Xv| +

∑
uv∈E

|Xuv|. Denote by I the

identity matrix. From Definition 6 follows that p is im-
proving iff the value of

min
x∈XV

(EV(x)− EV(p(x))) = min
x∈XV

〈θ, (I − [p])δ(x)〉

= min
x∈XV

〈
(I − [p])>θ, δ(x)

〉
= min
µ∈MV

〈
(I − [p])>θ, µ

〉
(7.2)

is zero. If additionally p(x) = x for all minimizers of (7.2)
then the mapping p is strictly improving.

Problem (7.2) is of the same form as energy minimiza-
tion (2.1) and is therefore as hard as Problem (7.2). Its
relaxation is obtained by letting µ to vary in the local
polytope ΛV ⊂ RI , an outer approximation to MV .

Definition 7. An idempotent mapping p : XV → XV is
ΛV -improving for potentials θ ∈ RI if

min
µ∈ΛV

〈
(I − [p])>θ, µ

〉
= 0 . (7.3)

If additionally [p]µ = µ for all minimizers µ of (7.3) then
p is strictly ΛV -improving.

Compared to (7.2), only the polytope was changed to
ΛV ⊃MV . This implies the following simple fact:

Proposition 4. If mapping p is (strictly) ΛV -improving
then it is (strictly) improving.

The method presented in this work can be inter-
preted as considering all-to-one node-wise idempotent
mappings p having the form

pv(i) =

{
yv, if v ∈ A
i, if v /∈ A (7.4)

for a fixed test labeling y. All labels in the nodes v ∈ A ⊂
V are mapped to yv. Among all all-to-one (strictly) ΛV -
improving mappings the one with the largest set A will
be called maximal.

Corollary 1 determines ΛV -improving mappings, as
stated by

Lemma 5. The relaxed persistency criterion provided by
Corollary 1 with the reparametrization given by (6.6) is
equivalent to Definition 7 with the improving mapping p
defined as in (7.4) for a given test labeling y.

Proof. For future references we write down potentials θψ

with ψ defined by (6.6) explicitly:

θψu (xu) = θu(xu) +
∑

v∈nb(u)

θuv(xu, yv) , (7.5)

θψuv(xu, xv) = θuv(xu, xv)− θuv(xu, yv)− θuv(yu, xv) .

In what follows we will show that the criteria (3.12)
and (7.3) coincide. Both of them represent the local poly-
tope relaxation of specially constructed energy minimiza-
tion problems. To prove that the relaxations coinside it is
sufficient to prove that the non-relaxed energies are equal.
Energy of Criterion 1. First we write down the non-
relaxed test problem (3.5) with potentials θψ as

arg min
x∈XV

∑
v∈V

βv(xv)+
∑
uv∈E

βuv(xu, xv)+
∑

uv∈∂EA : u∈∂VA

θ̂ψuv,yu(xu)

(7.6)
with potentials β equal to θψ on A and vanishing outside
it, i.e.

βu(xu) =

{
θu(xu) +

∑
v∈nb(u)

θuv(xu, yv), u ∈ A

0, u ∈ V\A
(7.7)

βuv(xu, xv) ={
θuv(xu, xv)− θuv(xu, yv)− θuv(yu, xv), u, v ∈ A

0, otherwise .

(7.8)

Border potentials θ̂ψ for uv ∈ E , u ∈ VA, v ∈ V\A and
xu 6= yu read:

θ̂ψuv,yu(xu) = min
xv∈Xv

θψuv(xu, xv) =

= min
xv∈Xv

(θuv(xu, xv)− θuv(xu, yv)− θuv(yu, xv))

= −θuv(xu, yv) + min
xv∈Xv

(θuv(xu, xv)− θuv(yu, xv)) ;

(7.9)

for xu = yu:

θ̂ψuv,yu(yu) = max
xv∈Xv

θψuv(yu, xv) =

= max
xv∈Xv

(θuv(yu, xv)− θuv(yu, yv)− θuv(yu, xv))

= −θuv(yu, yv) . (7.10)
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Note that (7.9) turns into (7.10) when xu = yu, hence it
is sufficient to use only expression (7.9).
Energy of Definition 7. The non-relaxed version of
condition (7.3) defining ΛV -improving all-to-one mapping,
with the labeling proposal y can be formulated as checking
whether

y ∈ arg min
x∈XV

∑
v∈V

γv(xv)+
∑
uv∈E

γuv(xu, xv)+
∑
u∈∂EA

γ̂uv,yu(xu)

(7.11)
with potentials γ defined as:

γu(xu) =

{
θu(xu)− θu(yu), u ∈ A

0, u ∈ V\A (7.12)

γuv(xu, xv) ={
θuv(xu, xv)− θuv(yu, yv), u, v ∈ A

0, otherwise .
(7.13)

and the border term

γ̂uv,yu(xu) = min
xv∈Xv

(θuv(xu, xv)− θuv(yu, xv)) . (7.14)

Equivalency of Energies. Comparing (7.12), (7.13)
and (7.14) to (7.7), (7.8) and (7.9) respectively it can
be seen that they can be transformed to each other by
several operations, which equally change energies of all la-
belings and thus do not influence the criterions provided
by Theorem 1 and [32, eq.(14)]. These operations are:

1. Subtract θu(yu) from βu(xu) for all u ∈ VA, xu ∈ Xu.

2. Subtract θuv(yu, yv) from βuv(xu, xv) for all uv ∈ EA,
(xu, xv) ∈ Xu ×Xv.

3. Reparametrize β with the reparametrization vector
φ defined as

φu,v(xu) =

{
−θuv(xu, yv), u ∈ A

0, u ∈ V\A . (7.15)

The following theorem states that our method provably
delivers the best results among the methods providing
node-persistency:

Theorem 4. Under conditions of Corollary 3, Algo-
rithm 1 with the reparametrizations given by (6.6) finds
the maximal strict ΛV -improving all-to-one mapping for
a given proposal labeling x0.

Proof. Under condition of Corollary 3 (i.e. when on each
iteration there is a unique solution µt) Lemma 5 guar-
antees equivalence of our criterion (Corollary 1 with
reparametrization ψ) to Definition 7 for the strict ΛV -
improving all-to-one mapping. Theorem 2 states that Al-
gorithm 1 delivers the largest set A∗ satisfying this crite-
rion, which in turn proves the theorem.

8 Extensions

Higher Order Models. Assume now we are not in the
pairwise case anymore but have an energy minimization
problem over a hypergraph G = (V, E) with E ⊂ P(V) a
set of subsets of V:

min
x∈XV

EV(x) :=
∑
e∈E

θe(xe) . (8.1)

All definitions, our persistency criterion and Algorithm 1
admit a straightforward generalization. Analoguously to
Definition 1 define for a subset of nodes A ⊂ V the bound-
ary nodes as

∂VA := {u ∈ A : ∃v ∈ V\A,∃e ∈ E s.t. u, v ∈ e} (8.2)

and the boundary edges as

∂EA := {e ∈ E : ∃u ∈ A,∃v ∈ V\A s.t. u, v ∈ e} . (8.3)

The equivalent of boundary potential in Definition 3 for
e ∈ ∂EA is

θ̂e,y(x) :=


max

x̃∈Xe : x̃|A∩e=x|A∩e
θe(x̃), x|A∩e = y|A∩e

min
x̃∈Xe : x̃|A∩e=x|A∩e

θe(x̃), x|A∩e 6= y|A∩e
.

(8.4)
Now Theorem 1, Corollary 1 and Algorithm 1 can be di-
rectly translated to the higher order case.
Tighter Relaxations. Essentially, Algorithm 1 can be
applied also to tighter relaxations than ΛA, e.g. when one
includes cycle inequalities [35]. One merely has to replace
the local polytope ΛA for A ⊂ V by the tighter feasible
convex set:

Proposition 5. Let the polytopes Λ̃A ⊇ MA satisfy
Λ̃A ⊂ ΛA ∀A ⊂ V. Use Λ̃At in place of ΛAt in Algo-
rithm 1 and let Ã∗ be the corresponding persistent set re-
turned by the modified algorithm. Let A∗strong ⊂ A∗ be
the largest subset of strongly persistent variables identifi-
able by Corollary 1 subject to the relaxations Λ̃A and ΛA.
Then A∗strong ⊂ Ã∗strong.

Remark 5. For approximate dual solvers for tighter re-
laxations like [36, 37] there are analogues of strict arc-
consistency, hence these are also integrally correct algo-
rithms as in Definition 4 and we can also use these algo-
rithms in Algorithm 1 with the obvious modifications.

Optimal reparametrization for tighter relaxations and
higher order models is beyond the scope of this paper.

9 Experiments

We tested our approach with initial and optimal
reparametrizations (described in Section 6) on several
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datasets from different computer vision and machine
learning benchmarks, 47 problem instances overall, see
Table 3. We describe each dataset and the corresponding
experiments in detail below.

Competing methods. We compared our method to
MQPBO [18, 34], Kovtun’s method [22], Generalized
Roof Duality (GRD) by Kahl and Strandmark [13], Fix
et al’s [4] and Ishikawa’s Higer Order Clique Reduction
(HOCR) [11] algorithms. For the first two methods we
used our own implementation, and for the other the freely
available code of Strandmark [38]. We were unable to
compare to the method of Windheuser et al. [45], because
the authors do not give a description for implementing
their method in the higher order case and only provide
experimental evaluation for problems with pairwise po-
tentials, where their method coincides with MQPBO [18].

Implementation details. We employed TRWS as an
approximate solver for Algorithm 1 and strong tree agree-
ment as a consistency mapping (see Proposition 2) for
most of the pairwise problems. We stop TRWS once it
has either arrived at (i) tree-agreement; (ii) a small du-
ality gap of 10−5; (iii) when number of nodes with tree
agreement did not increase over the last 100 iterations or
(iv) overall 1500 iterations. For the higher-order models
protein-interaction, cell-tracking and geo-surf

we employed CPLEX [10] as an exact linear program-
ming solver. We have run Algorithm 1 with bound-
ary potentials computed as in (3.3) for all problems and
with boundary potentials computed with the optimal
reparametrization as in (6.3) for the pairwise problems.

Datasets and Evaluation. We give a brief charac-
terization of all datasets and report the obtained total
percentage of persistent variables of our and competing
methods in Table 3. The percentage of partial optimality
is computed as follows: Suppose we have found a per-
sistent labeling on set A ⊂ V. Then the percentage is

1 −
∑

u6∈A log |Xu|∑
u∈V log |Xu| . Note that by this formulation we take

into account the size of the label space for each node. For

an uniform label space the above formula equals |A||V| . The

latter measure was used in [40].

Remark 6. Note that in comparison to our conference pa-
per [40], persistency results for some datasets with higher
order potentials, which were solved with CPLEX are lower
now. This is due to two reasons: First, we weight the size
of the label space instead of simply counting the number
of variables which are partially optimal. In models with
nonuniform label space our method tends to find partial
optimality for nodes with small label space, hence the new
formula gives a smaller percentage. Second, our original
research implementation contained subtle bugs which re-
sulted in a higher number of wrongly assigned partially

optimal nodes for these models. We apologize for report-
ing incorrect results in the experimental section of [40].

The problem instances teddy, venus, family, pano,
Potts and geo-surf were made available by [14], while
the datasets side-chain and protein-interaction were
made available by [1].

The problem instances teddy and venus come from the
disparity estimation for stereo vision [41]. None of
the competing approaches was able to find even a single
persistent variable for these datasets, presumably because
of the large number of labels, whereas we labeled over
one third of them as persistent in teddy, though none in
venus.

Instances named pano and family come from the pho-
tomontage dataset [41]. These problems have more com-
plicated pairwise potentials than the disparity estimation
problems, but less labels. For both datasets we found
significantly more persistent variables than MQPBO, in
particular, we were able to label more than a third of the
variables in pano.

We also chose 12 relatively big energy minimization
problems with grid structure and Potts interaction terms.
The underlying application is a color segmentation prob-
lem previously considered in [39]. Our general approach
reproduces results of [39] for the specific Potts model.

We considered also side-chain prediction problems in
protein folding [46]. The datasets consist of pairwise
graphical models with 32 − 1971 variables and 2 − 483
labels. The problems with fewer variables are densely
connected and have very big label spaces, while the larger
ones are less densely connected and have label space up
to 81 variables.

The protein interaction models [12] aim to find the
subset of proteins, which interact with each other. Roof-
duality based methods, i.e. Fix et at, GRD, HOCR [4,
11,13] gave around a quarter of persistent labels. This is
the only dataset where our methods gives worse results.
Note that for higher-order models we do not provide an
optimal reparametrization and hence our method is not
provably better then the competitors. We consider this
as a direction for future work.

The cell tracking problem consists of a binary higher
order graphical model [17]. Given a sequence of mi-
croscopy images of a growing organism, the aim is to find
the lineage tree of all cells. For implementation reasons
we were not able to solve cell-tracking dataset with
Ishikawa’s [11] method. However Fix [4] reports that his
method outperforms Ishikawa’s method [11]. Other meth-
ods are not applicable even theoretically.

Last, we took the higher order multi-label geometric
surface labeling problems (denoted as geo-surf in
Table 3) from [9]. The only instance having an integrality
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teddy 1 60 168749 2 0 † † † † 0.3820 0.3820
venus 1 20 166221 2 0 † † † † 0 0
family 1 5 425631 2 0.0432 † † † † 0.0044 0.0611
pano 1 7 514079 2 0.1247 † † † † 0.2755 0.3893
Potts 12 ≤12 ≤424720 2 0.1839 0.7475 † † † 0.9220 0.9220
side-chain 21 ≤483 ≤1971 2 0.0247 † † † † 0.1747 0.2558
protein
-interaction 8 2 ≤14440 3 † † 0.2603 0.2545 0.2545 0.0008 †
cell-tracking 1 2 41134 9 † † † 0.1771 † 0.2966 †
geo-surf † † † † † † † † † 0.0743 †

Table 3: Percentage of persistent variables obtained by methods [18], [22], [13], [4], [11] and our methods with boundary
potentials computed as in (3.4) (Ours original) and as in (6.3) (Ours optimal). Notation † means inapplicability of the
method. The columns #I,#L,#V,O denote the number of instances, labels, variables and the highest order of potentials
respectively.
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Figure 4: Iterations needed by TRWS [19] in Algorithm 1 for three instances from the Potts dataset.
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gap has 968 variables with 7 labels each and has ternary
terms. Note that MQPBO cannot handle ternary terms,
Fix et al’s [4] Ishikawa’s [11] methods and the generalized
roof duality method by Strandmark and Kahl [13] cannot
handle more than 2 labels. Hence we report our results
without comparison.

Runtime. The runtime of our algorithm mainly depends
on the speed of the underlying solver for the local polytope
relaxation. Currently there seems to be no general rule
regarding the runtime of our algorithm, neither in the
number of Algorithm 1-iterations nor in the number of
TRWS [19]-iterations. We show three iteration counts for
instances of the Potts dataset in Figure 4.

Exemplary pictures comparing the pixels optimally la-
belled between Kovtuns’s method [22] and our method for
some Potts-models can be seen in Figure 9.

10 Conclusion and Outlook

We have presented a novel method for finding persis-
tent variables for undirected graphical models. Empir-
ically it outperforms all tested approaches with respect
to the number of persistent variables found on every sin-
gle dataset. Our method is general: it can be applied to
graphical models of arbitrary order and type of potentials.
Moreover, there is no fixed choice of convex relaxation for
the energy minimization problem and also approximate
solvers for these relaxations can be employed in our ap-
proach.

In the future we plan to significantly speed-up the im-
plementation of our method and consider finer persistency
criteria, as done in [32], where the subset-to-one class of
persistency conditions was introduced, but no efficient al-
gorithm for finding persistency in this class was proposed.
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C. Schnörr. Global MAP-optimality by shrinking the
combinatorial search area with convex relaxation. In
NIPS, 2013. 2, 6, 7

[28] B. Savchynskyy, S. Schmidt, J. H. Kappes, and
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