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Network Consistent Data Association
Anirban Chakraborty, Member, IEEE, Abir Das, Member, IEEE,

and Amit Roy-Chowdhury, Senior Member, IEEE

Abstract—Existing data association techniques mostly focus on sequentially matching pairs of data-point sets and then
repeating this process along space-time to achieve long term correspondences. However, in many problems such as person
re-identification, a set of data-points may be observed at multiple spatio-temporal locations and/or by multiple agents in a
network and simply combining the local pairwise association results between sets of data-points often lead to inconsistencies
over the global space-time horizons. In this paper, we propose a novel Network Consistent Data Association (NCDA) framework
formulated as an optimization problem that not only maintains consistency in association results across the network, but also
improves the pairwise data association accuracies. The proposed NCDA can be solved as a binary integer program leading
to a globally optimal solution and is capable of handling the challenging data-association scenario where the number of data-
points varies across different sets of instances in the network. We have tested NCDA in two application areas, viz., person
re-identification and spatio-temporal cell tracking and observed consistent and highly accurate data association results in both
the cases.

Index Terms—Data association, Network consistency, Integer program, Person Re-identification, Spatio-temporal cell tracking.

F

1 INTRODUCTION

IN many computer vision problems such as tracking,
re-identification etc., associating detected targets

across space and/or time is of utmost importance.
Most data association approaches are sequential in
nature, i.e. they try to find correspondences between
pairs of instances of a set of datapoints and repeat this
process along space/time to obtain long term corre-
spondences. However, this local approach for finding
correspondences may lead to inconsistencies over the
global space-time horizons. The goal of this paper
is to show how globally consistent correspondence
results can be obtained by enforcing suitable network-
level constraints over the entire set of observation
data points. We explain the problem more precisely
through two examples below.

Consider the well studied person re-identification
problem where the objective is to associate targets
across cameras with non overlapping field-of-views
(FoVs). Most widely used approaches focus on pair-
wise re-identification, i.e., association between two
camera FoVs. Even if the re-identification accuracy for
each camera pair is high, it might contain many global
association inconsistencies over the entire network
if three or more cameras are considered. Matches
between targets given independently by every pair
of cameras might not conform to one another and,
in turn, may lead to inconsistent mappings. Thus,
in person re-identification across a camera network,

• A. Chakraborty, A. Das and A. Roy-Chowdhury are with the Depart-
ment of Electrical and Computer Engineering, University of California,
Riverside, CA 92521.
E-mail: amitrc@ee.ucr.edu

multiple paths of correspondences may exist between
targets from any two cameras, but ultimately all these
paths must point to the same correspondence maps
for each target in each camera. An example scenario
is shown in Fig. 1(a). Even though camera pairs 1-
2 and 2-3 have correct re-identification of the target,
the false match between the targets in camera pair 1-
3 makes the overall re-identification across the triplet
inconsistent. It can be noted that the error in re-
identification manifests itself through inconsistency
across the network, and hence by enforcing consis-
tency the pairwise accuracies can be improved as well.

Spatio-temporal cell tracking is another application
area where consistent data association is important.
Using confocal microscopes, multicellular biological
tissues are often imaged at multiple time points to
observe the growth of hundreds of individual cells
in the tissue. At each time point, cells within the
tissue are imaged at various confocal planes, thus
resulting in a four dimensional (3D + t) stack of
images. Each cell, therefore, may have projections on
different spatio-temporal planes. The spatio-temporal
cell tracking aims to find correspondences between
cell image slices along both ‘z’ (depth of the tissue)
and time. Because of the multi-dimensional nature
of this tracking problem, spatial and temporal cor-
respondences obtained by choosing the most similar
candidate for each cell independently do not guaran-
tee consistent results automatically. Note that, as in
the case of re-identification, a 2D cell segment in any
spatio-temporal image slice must not have more than
one match in any other spatio-temporal image and if
at least one spatio-temporal path exists in the network
that associates two cell slices, they must be projections
of the same cell onto two image planes. Example of
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Fig. 1. Example of network inconsistency in data association. (a) A person re-identification case. Among the 3
possible re-identification results, 2 are correct. The match of the target from camera 1 to camera 3 can be found
in two ways. The first one is the direct pairwise re-identification result between cameras 1 and 3 (shown as ‘Path
1’), and the second one is the indirect re-identification result in camera 3 given via the matched person in camera
2 (shown as ‘Path 2’). The two outcomes do not match and thus the overall associations of the target across 3
cameras is not consistent. (b) A similar case of network inconsistency in spatio-temporal cell tracking problem.
In this schematic, association results between 2D projections of the same 3D cell on four spatio-temporal image
planes are analyzed. The pairwise associations need to be consistent across the loop over the four image slices.
This consistency can be used to obtain correspondences when there are no direct pairwise matches or to correct
wrong ones. For example, the correspondence between the same cell in image slice 1 and slice 3 (broken arrow)
is established via an indirect path (solid arrows) through slices 2 and 4 to restore network consistency.

network-level inconsistent data association results in
the spatio-temporal cell tracking problem is presented
in Fig. 1(b).

The network inconsistency problem in data-
association is not only observed in the person re-
identification or the cell tracking tasks, but is also
visible in other correspondence problems of similar
nature, e.g. optical flow computation, feature tracking
etc. In fact, a data-association approach that ensures
network level consistency will be valuable for any
problem where sets of data points observed at mul-
tiple spatio-temporal locations need to be associated
with each other.

Contribution of the present work: Motivated by
such scenarios, we propose a novel consistent data
association scheme over a network. When the same
set of data points is observed by different sensors
(such as different camera FoVs) or observed by
the same sensor repeatedly at different spatial
and/or temporal locations (such as spatio-temporal
imaging planes in confocal microscopy stacks), the
possible associations between such projections of
the same set of observations construct a network
with the observed data points as nodes. To achieve a
consistent and optimal data association, we pose the
problem as an optimization problem that minimizes
the global cost of associating pairs of targets on the
entire network constrained by a set of consistency
criteria (as mentioned before). Since consistency
across the network is the motivation as well as the
building block of the proposed method, we term this

as the Network Consistent Data Association (NCDA)
strategy.

We start by computing the pairwise similarity
scores between sets of targets which are the input
to the proposed method. Unlike assigning a match
for which the similarity score is maximum among
a set of probable candidates, our formulation picks
the assignments for which the total similarity of all
matches is the maximum, as well as the constraint that
there is no inconsistency in the assignment among any
two sets of targets given the assignments between all
other sets of targets across the network. The result-
ing optimization problem is translated into a binary
integer program that can be solved using standard
branch and cut, branch and bound or dynamic search
algorithms based methods available in [1].

The proposed NCDA method is further generalized
to a more challenging scenario in data association
where the number of targets may vary across different
sets of instances in the network. For example, in
person re-identification problems all persons may not
appear in all the cameras or in case of cell tracking,
2D projections of new cells appear as we image
deeper into a tissue and hence the number of 2D
cell slices widely vary across imaging planes. The
objective function and and the constraints are mod-
ified to incorporate probable one-to-none mappings
without jeopardizing the network consistency. We also
provide a proof showing that the one-to-one NCDA
can be directly derived as a special case of this more
generalized formulation.
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We show the general applicability of the proposed
method by testing it in two previously mentioned
computer vision application domain, viz. person re-
identification and spatio-temporal cell tracking. We
describe how each of these challenges can be mapped
to the exact same NCDA problem, which can then be
solved to generate unambiguous and more accurate
data-association results.

2 RELATED WORK
Network level consistency, as described before, has
not been dealt with in popular data association prob-
lems such as person re-identification and multi di-
mensional tracking (spatio-temporal cell tracking) un-
til very recently in [2], though a consistent association
result in both these application areas is of utmost
importance for attaining unambiguity and better ac-
curacy. In this section, we shall briefly discuss about
some of the most relevant and latest work in each
of the two application areas. Later, we shall discuss
about some related work in other optimization or
flow based data-association problems such as multi-
ple frame point correspondence, multi target tracking
problem etc. and highlight their differences with the
proposed method. Finally, we shall point out the
differences between the current submission with our
earlier paper [2] that introduced network consistency
in person re-identification problems.

Person Re-Identification: In the last few years there
has been increasing attention in the field of per-
son re-identification across camera networks. The
proposed approaches addressing the pairwise re-
identification problem across non-overlapping cam-
eras can be roughly divided into 3 categories, (i)
discriminative signature based methods [3], [4], [5],
[6], (ii) metric learning based methods [7], [8], [9], and
(iii) transformation learning based methods [10], [11].
Person specific discriminative signatures are com-
puted using multiple local features (color, shape and
texture) [4], [5], [6], [12] or salient features learned
in an unsupervised framework [13]. Metric learning
based methods try to improve the re-identification
performance by learning optimal non-Euclidean met-
ric defined on pairs of true and wrong matches [14],
[15] or by maintaining redundancy in colorspace us-
ing a local Fisher discriminant analysis based met-
ric [16]. Works exploring transformation of features
between cameras tried to learn a brightness transfer
function (BTF) between appearance features [11], a
subspace of the computed BTFs [10], linear color
variations model [17], or a Cumulative BTF [18] be-
tween cameras. Some of these works [17], [10] learned
space-time probabilities of moving targets between
cameras which may be unreliable if camera FoVs are
significantly non-overlapping. As the above methods
do not take consistency into account, applying them
to a camera network does not give consistent re-
identification. Since the proposed method is built

upon the pairwise similarity scores, any of the above
methods can be the building block to generate the
camera pairwise similarity between the targets.

Spatio-temporal Cell Tracking: There has been
some work on automated tracking and segmenta-
tion of cells in time-lapse images, for both plants
and animals. Some of the well-known approaches
for segmenting and tracking cells are active contours
based methods [19], [20], [21], [22], [23], Softassign
method [24], [25], tracking based on association be-
tween detections[26], [27], [28], multiple hypotheses
based tracking[29], joint detection and tracking[30],
[31]. In [32], [33], a spatio-temporal tracking algorithm
for Arabidopsis SAM was proposed, where relative
positional information of neighboring cells were used
to generate unique features for each cell. In [34],
the spatio-temporal cell tracking problem is posed as
an inference problem on a conditional random field
where the relative positional information of a cell with
respect to its neighbors are utilized to generate robust
associations between cells in two spatially/temporally
consecutive image slices. However, most of these
methods have focused on slice to slice/pairwise cell
tracking. The method in [32] utilizes indirect paths
between any two slices to improve the pairwise track-
ing accuracy. However, this method does not ensure
spatio-temporally consistent association results. Also,
the tracking in the (3D+t) stack is done in a sequen-
tial manner and a globally optimal solution is not
achieved. The proposed NCDA method yields glob-
ally optimal and consistent correspondences between
2D cell slices when built on top of any method that
can generate similarity scores between cells, such as
[34].

Other relevant work: There have been a few corre-
spondence methods proposed in recent years in other
aspects of computer vision, e.g., point correspondence
in multiple frames and multi target tracking that
are relevant to the proposed method. In one of the
early works [35], finding point correspondences in
monocular image sequences is formulated as finding
a graph cover and solved using a greedy method. A
suboptimal greedy solution strategy was used in [36]
to track multiple targets by finding a maximum cover
path of a graph of detections where multiple features
like color, position, direction and size determined the
edge weights. In [37], the authors linked detections
in a tracking scenario across frames by solving a
constrained flow optimization. The resulting convex
formulation of finding k-shortest node-disjoint paths
guaranteed the global optima. However, this method
does not actively use appearance features into the
data association process which might lead to ID
switches among different pairs of cameras resulting
in inconsistency. An extension of the work using
sparse appearance preserving tracklets was proposed
in [38]. With known flow direction, a flow formulation
of a data-association problem will yield consistent
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results. But in data-association problems with no tem-
poral or spatial layout information (e.g. person re-
identification), the flow directions are not natural and
thus the performance may widely vary with different
choices of temporal or spatial flow.

In a very recent paper [2], we have introduced
the network consistency in solving the person re-
identification problem. In [2], the presentation of
the method and the constraints used in the integer
program are specific to that particular problem (re-
identification). However, in this paper, we provide
a generalized problem formulation for solving any
network level data association problem, as evidenced
by the generalized expression for the ‘loop constraint’
(see Eqn. 5). We further show how the generalized
constraints can be simplified for problems in specific
application areas. Besides the person re-identification
problem, we also show applications of this data as-
sociation method in the spatio-temporal (3D+t) cell
tracking problem and how the generalized constraints
can be translated into their cell tracking problem
specific form.

3 THE NETWORK CONSISTENT DATA AS-
SOCIATION PROBLEM

In this section we describe the proposed approach
in details. The Network Consistent Data Association
(NCDA) method starts with the pairwise similarity
scores between the targets. First we describe the no-
tation and define the terminologies associated to this
problem that would be used throughout the rest of
the paper before delving deeper into the problem
formulation.

3.1 Notations and Terminologies

1. Node: A node is a datapoint/target that needs to
be associated with other datapoints via NCDA. For
person re-identification problems, a node represents a
target in the FoV of a camera, whereas, in cell tracking
problem a node is a 2D segmented cell (at any given
spatio-temporal location).

2. Group: A ‘group’ is a collection of nodes. A node
can never be associated with any other node from the
same group it belongs to. For example, in a typical
person re-identification problem, the set of all targets
appearing in the FoV of the same camera is a group
and for spatio-temporal tracking, the collection of 2D
cell segmentations in one image slice can be assumed
a group. Thus, a node is a member of a group. Let
the ith node in the group g be denoted as Pg

i .
3. Similarity score matrix: This is a matrix data

structure containing feature similarity scores between
nodes belonging to two different groups. Therefore,
for each pair of groups in a network there is one such
matrix. Let C(p,q) denote the similarity score matrix
between groups p and q. Then (i, j)th element in C(p,q)

denotes the similarity score between the nodes Pp
i and

Pq
j .
4. Assignment matrix: We need to know whether

the nodes Pp
i and Pq

j are associated or not, ∀i, j =
{1, · · ·n} and ∀p, q = {1, · · ·m}. The associations be-
tween targets across groups can be represented using
‘Assignment matrices’, one for each pair of groups.
Each element xp,qi,j of the assignment matrix X(p,q)

between the group pair (p, q) is defined as follows,

xp,qi,j =

{
1 if Pp

i and Pq
j are the same targets

0 otherwise
(1)

If the number of nodes is the same in all groups, then
X(p,q) is a permutation matrix, i.e., only one element
per row and per column is 1, all the others are 0.
Mathematically, ∀xp,qi,j ∈ {0, 1}

n∑
j=1

xp,qi,j = 1 ∀i = 1 to n

n∑
i=1

xp,qi,j = 1 ∀j = 1 to n

(2)

5. Edge: An ‘edge’ between two nodes Pp
i , and Pq

j

from two different groups of nodes is constructed
between the ith node in group p and the jth node
in group q. It should be noted that there will be no
edge between the nodes of the same group. There are
two attributes connected to each edge. They are the
similarity score cp,qi,j and the association value xp,qi,j .

6. Path: A ‘path’ between two nodes (Pp
i ,P

q
j ) is a

set of edges that connect the nodes Pp
i and Pq

j without
traveling through a node twice. Moreover, each node
on a path belongs to a different group. A path between
Pp
i and Pq

j can be represented as the set of edges
e(Pp

i ,P
q
j ) = {(Pp

i ,Pr
a), (Pr

a ,Ps
b ), · · · (Pt

c,P
q
j )}, where

{Pr
a ,Ps

b , · · · Pt
c} are the set of intermediate nodes on

the path between Pp
i and Pq

j . The set of association
values on all the edges between the nodes is denoted
as L, i.e. xp,qi,j ∈ L, ∀i, j = [1, · · · , n], ∀p, q = [1, · · · ,m]
and p < q. Finally, the set of all paths between any
two nodes Pp

i and Pq
j is represented as E(Pp

i ,P
q
j ) and

the zth path is e(z)(Pp
i ,P

q
j ) ∈ E(Pp

i ,P
q
j ).

3.2 The NCDA Objective Function

For the pair of groups (p, q), the sum of the simi-

larity scores of association is given by
n∑

i,j=1

cp,qi,j x
p,q
i,j .

Summing over all possible pairs of groups, the global
similarity score can be written as

C =

m∑
p,q=1
p<q

n∑
i,j=1

cp,qi,j x
p,q
i,j (3)
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3.3 Identification of Constraints

Let us first discuss the problem of one-to-one data
association where the number of datapoints per group
is constant and each datapoint from one group would
have exactly one match in another group. This type
of data association problem is often relevant to the
person re-identification datasets, where the same set
of persons appears across the FoVs of all the cameras
in the network. Later, we shall present a more gener-
alized version of NCDA where number of datapoints
belonging to different groups may vary and therefore
a datapoint may or may not have a match in another
group.

The set of constraints are as follows.
1. Pairwise association constraint: For the one-to-

one association scenario, a datapoint from the group p
can have only one match from another group q. This is
mathematically expressed by the set of equations (2).
This is true for all possible pairs of data groups and
can be expressed as,

n∑
j=1

xp,qi,j = 1 ∀i = 1 to n ∀p, q = 1 to m, p < q

n∑
i=1

xp,qi,j = 1 ∀j = 1 to n ∀p, q = 1 to m, p < q

(4)

2. Loop constraint: This constraint comes from the
consistency requirement. If two nodes are indirectly
associated via nodes in other groups, then these two
nodes must also be directly associated. Therefore,
given two nodes Pp

i and Pq
j , it can be noted that for

consistency, a logical ‘AND’ relationship between the
association value xp,qi,j and the set of association values
{xp,ri,a , x

r,s
a,b, · · ·x

t,q
c,j} of any possible path between the

nodes has to be maintained. The association value
between the two nodes Pp

i and Pq
j has to be 1 if

the association values corresponding to all the edges
of any possible path between these two nodes are 1.
Keeping the binary nature of the association variables
and the pairwise association constraint in mind the
relationship can be compactly expressed as,

xp,qi,j ≥

 ∑
(Pr

k ,P
s
l )∈e(z)(Pp

i ,P
q
j )

xr,sk,l

− |e(z)(Pp
i ,P

q
j )|+ 1

(5)
∀ paths e(z)(Pp

i ,P
q
j ) ∈ E(Pp

i ,P
q
j ), where |e(z)(Pp

i ,P
q
j )|

denotes the cardinality of the path |e(z)(Pp
i ,P

q
j )|, i.e.

the number of edges in the path. The relationship
holds true for all i and all j. For the case of a triplet
of cameras the constraint in eqn. (5) simplifies to,

xp,qi,j ≥ x
p,r
i,k + xr,qk,j − 2 + 1 = xp,ri,k + xr,qk,j − 1 (6)

An example from person re-identification involving
3 cameras and 2 persons is illustrated with the help of
Fig. 2. Say, the raw similarity score between pairs of
targets across cameras suggests associations between

𝑥1,1
1,2 = 1 

𝓟𝟐
𝟑 

𝓟𝟏
𝟑 

𝓟𝟐
𝟏 

𝓟𝟏
𝟏 

𝓟𝟏
𝟐 

𝓟𝟐
𝟐 

𝑥2,1
1,3 = 1 

𝑥1,1
2,3 = 1 

𝑥1,1
1,3 = 0 

Fig. 2. An illustrative example showing the importance
of the loop constraint in a data-association problem. It
presents a simple person re-identification scenario in a
camera network involving 2 persons (data points) in 3
cameras (groups).

(P1
1 ,P2

1 ), (P2
1 ,P3

1 ) and (P1
2 ,P3

1 ) independently. How-
ever, when these associations are combined together
over the entire network, it leads to an infeasible
scenario - P1

1 and P2
1 are the same person. This infeasi-

bility is also correctly captured through the constraint
in eqn. (6), i.e., x1,3

1,1 = 0 but x1,2
1,1 + x2,3

1,1 − 1 = 1, thus
violating the constraint.

For a generic scenario involving a large number
of groups of nodes where similarity scores between
every pair of groups may not be available the loop
constraint equations (i.e. eqn. (5)) have to hold for
every possible triplet, quartet, quintet (and so on) of
groups. On the other hand, if the similarity scores
between all nodes for every possible pair of groups
are available, the loop constraints on quartets and
higher order loops are not necessary. If loop con-
straint is satisfied for every triplet of groups then it
automatically ensures consistency for every possible
combination of groups taking 3 or more of them. So,
in such a case, the loop constraint for the network can
be written as,

xp,qi,j ≥ x
p,r
i,k + xr,qk,j − 1

∀ i, j, k = [1, · · ·n], ∀ p, q, r = [1, · · ·m], and p ≤ r ≤ q
(7)

Unlike the person re-identification case, formation
of triplets is not possible for the cell tracking problem
because of the structure of the data (see Sec. 6.2).
However, it can be shown that the entire spatio-
temporal cell tracking network can be exhaustively
partitioned into quartets of cell slices. The loop con-
straints for this problem are, therefore,
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xp,qi,j ≥ x
p,r
i,k + xr,sk,l + xs,ql,j − 2

∀ i, j, k, l = [1, · · ·n], ∀ p, q, r, s = [1, · · ·m],

and p ≤ r ≤ s ≤ q
(8)

3.4 Overall Optimization Problem For One-to-One
Associations
By combining the objective function in eqn. (3) with
the constraints in eqn. (4) and eqn. (7), we pose the
overall optimization problem for the case of one-to-
one mapping between groups as,

argmax
xp,q
i,j

i,j=[1,··· ,n]
p,q=[1,··· ,m]

 m∑
p,q=1
p<q

n∑
i,j=1

cp,qi,j x
p,q
i,j



subject to
n∑

j=1

xp,qi,j = 1 ∀i = [1, · · · , n]

∀p, q = [1, · · · ,m], p < q
n∑

i=1

xp,qi,j = 1 ∀j = [1, · · · , n] ∀p, q = [1, · · · ,m], p < q

xp,qi,j ≥

 ∑
(Pr

k ,P
s
l )∈e(z)(Pp

i ,P
q
j )

xr,sk,l

− |e(z)(Pp
i ,P

q
j )|+ 1

∀ i, j = [1, · · ·n], ∀ p, q = [1, · · ·m], and p ≤ q
∀ paths e(z)(Pp

i ,P
q
j ) ∈ E(Pp

i ,P
q
j )

xp,qi,j ∈ {0, 1} ∀i, j = [1, · · · , n], ∀p, q = 1 to m, p < q
(9)

The above optimization problem for optimal and
consistent re-identification is a binary integer pro-
gram. The exact and simplified form of the integer
program is discussed in the supplementary material.

4 NCDA FOR VARIABLE NUMBER OF DAT-
APOINTS IN EACH GROUP

As explained in the previous sub-section, the NCDA
problem can be solved by solving the binary IP for-
mulated in eqn. (9). However, the assumption of one-
to-one association between targets across groups may
not be valid in many practical scenarios, especially
when there are unequal numbers of datapoints in
different groups. For re-identification in a camera
network, there may be situations when every person
does not go through the FoV of every camera. For the
spatio-temporal cell tracking problems, there could
be variable number of segmented cell slices on the
images at different spatio-temporal locations. In such
cases, a datapoint may not have association with any
datapoint from another group and hence the values
of assignment variables in every row or column of
the assignment matrix can all be 0. However, a one-
to-many association is still infeasible as before. For

re-identification example, a person from any camera
p can have at most one match from another camera q.
As a result, the pairwise association constraints now
change from equalities to inequalities as follows,

nq∑
j=1

xp,qi,j ≤ 1 ∀i = [1, · · · , np] ∀p, q = [1, · · · ,m], p < q

np∑
i=1

xp,qi,j ≤ 1 ∀j = [1, · · · , nq] ∀p, q = 1 to m, p < q

(10)
where, np snd np are the number of nodes (datapoints)
in groups p and q respectively.

However, with this generalization, it is easy to see
that the objective function (ref. eqn. (9)) is no longer
valid. Even though the provision of ‘no match’ is now
available, the optimal solution will try to get as many
associations as possible across the network. This is
due to the fact that the current objective function
assigns reward to both true positive (correctly asso-
ciating a datapoint across groups) and false positive
associations. Thus the optimal solution may contain
many false positive associations. This situation can
be avoided by incorporating a modification in the
objective function as follows,

m∑
p,q=1
p<q

np,nq∑
i,j=1

(cp,qi,j − k)xp,qi,j (11)

where k is any value in the range of the similarity
scores. This modification leverages upon the idea
that, typically, similarity scores for most of the true
positive matches in the data would be much larger
than majority of the false positive matches. In the
new cost function, instead of rewarding all positive
associations we give reward to most of the true pos-
itives, but impose penalties on the false positives. As
the rewards for all true positive (TP) matches are
discounted by the same amount k and as there is
penalty for false positive (FP) associations, the new
cost function gives us optimal results for both ‘match’
and ‘no-match’ cases. The choice of the parameter
k depends on the similarity scores generated by the
chosen method, and thus can vary from one pair-
wise similarity score generating methods to another.
Ideally, the distributions of similarity scores of the
TPs and FPs are non-overlapping and k can be any
real number from the region separating these two
distributions. However, for practical scenarios where
TP and FP scores overlap, an optimal k can be learned
from training data. A simple method to choose k
could be running NCDA for different values of k over
the training data and choosing the one giving the
maximum accuracy on the cross validation data. So,
for this more generalized case, the NCDA problem
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can be formulated as follows,

argmax
xp,q
i,j

i=[1,··· ,np]
j=[1,··· ,nq ]
p,q=[1,··· ,m]

 m∑
p,q=1
p<q

np,nq∑
i,j=1

(cp,qi,j − k)xp,qi,j



subject to
nq∑
j=1

xp,qi,j ≤ 1 ∀i = [1, · · · , np]

∀p, q = [1, · · · ,m], p < q
np∑
i=1

xp,qi,j ≤ 1 ∀j = [1, · · · , nq] ∀p, q = [1, · · · ,m], p < q

xp,qi,j ≥

 ∑
(Pr

k ,P
s
l )∈e(z)(Pp

i ,P
q
j )

xr,sk,l

− |e(z)(Pp
i ,P

q
j )|+ 1

∀ i = [1, · · · , np], j = [1, · · · , nq],

∀ p, q = [1, · · ·m], and p ≤ q
∀ paths e(z)(Pp

i ,P
q
j ) ∈ E(Pp

i ,P
q
j )

xp,qi,j ∈ {0, 1} ∀i = [1, · · · , np], j = [1, · · · , nq],

∀p, q = [1, · · · ,m], p < q
(12)

5 EQUIVALENCE BETWEEN ONE-TO-ONE
NCDA (EQN. (9)) AND THE GENERALIZED
NCDA (EQN. (12))
If the similarity score matrix and the assignment
matrix are vectorized, one can rewrite the problems
in eqn. (9) and eqn. (12) in standard binary integer
program form. The one-to-one NCDA problem in
eqn. (9) can be rewritten as

argmax

¯
X ¯

CT

¯
X

subject to A
¯
X =

¯
1, B

¯
X ≤ d

¯
1

¯
X is composed of binary variables.

(13)

where A
¯
X =

¯
1 is the pairwise association constraint

(same as eqn. (4)) and B
¯
X ≤

¯
1 is the rewritten loop

constraint (same as eqn. (7)). The construction of the
vectors

¯
C,

¯
X and the matrices A, B is detailed in

the supplementary materials. The value of d is 1 in
case of person re-identification problems where the
loop constraints are expressed on triplets of groups.
However, for the cell tracking problem, d = 2 as here
the IP is written using quartet based loop constraints
(see eqn. (8) and supplementary for more details).

The generalized form of NCDA (eqn. (12)) can,
similarly be rewritten as,

argmax

¯
X

(
¯
CT − k

¯
1T )

¯
X

subject to A
¯
X ≤

¯
1, B

¯
X ≤ d

¯
1

¯
X is composed of binary variables.

(14)

Now let us prove that the problem expressed by
eqn. (14) is equivalent to the problem expressed by
eqn. (13) under the condition that the number of
datapoints/targets is constant and there exists a one-
to-one mapping between targets across groups. Let

¯
X∗ be the optimal solution to the problem expressed
by eqn. (14). To prove the equivalence, we have to
show that

¯
X∗ also maximizes the problem expressed

by eqn. (13).
Since

¯
X∗ maximizes the objective function under

the constraints as expressed by eqn. (14), we can write,

(
¯
CT − k

¯
1T )

¯
X∗ ≥ (

¯
CT − k

¯
1T )

¯
X

for {
¯
X : A

¯
X ≤

¯
1,B

¯
X ≤ d

¯
1}

(15)

where both
¯
X∗ and

¯
X are composed of binary vari-

ables.
Since {

¯
X : A

¯
X =

¯
1,B

¯
X ≤ d

¯
1} ⊂ {

¯
X : A

¯
X ≤

¯
1,B

¯
X ≤ d

¯
1}, the relation (15) holds true for the

feasible set of eqn. (13), i.e.,

(
¯
CT − k

¯
1T )

¯
X∗ ≥ (

¯
CT − k

¯
1T )

¯
X

for {
¯
X : A

¯
X =

¯
1,B

¯
X ≤ d

¯
1}

=⇒
¯
CT

¯
X∗ − k

¯
1T

¯
X∗ ≥

¯
CT

¯
X− k

¯
1T

¯
X

for {
¯
X : A

¯
X =

¯
1,B

¯
X ≤ d

¯
1}

with both
¯
X∗ and

¯
X composed of binary variables.

(16)
Now for all

¯
X and

¯
X∗ that satisfy A

¯
X =

¯
1 (i.e., for

the case when the same set of n targets appear in all
m groups),

¯
1T

¯
X∗ =

¯
1T

¯
X

= Num. of group pairs × Num. of targets

This is because, each row and column of the assign-
ment matrix for pair of groups contains exactly one 1,
resulting in the sum of all elements of the assignment
matrices being n.

Using the above relation in eqn. (16) we get,

¯
CT

¯
X∗ ≥

¯
CT

¯
X

for {
¯
X : A

¯
X =

¯
1,B

¯
X ≤ d

¯
1}

with both
¯
X∗ and

¯
X composed of binary variables.

(17)
Therefore,

¯
X∗ also maximizes the problem (13), thus

proving the equivalence.

6 EXPERIMENTS AND RESULTS

In this section, we evaluate the NCDA method on
two different computer vision application areas, viz.
1. person re-identification and 2. spatio-temporal cell
tracking. Analysis of the results in each application
area is provided in the respective individual subsec-
tions.
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Fig. 3. CMC curves for the WARD dataset. Results and comparisons in (a), (b) and (c) are shown for the camera
pairs 1-2, 1-3, and 2-3 respectively.

6.1 Person Re-identification

Datasets and Performance Measures: To validate our
approach, we performed experiments on two bench-
mark datasets - WARD [6] and one new dataset RAiD
introduced in [2]. Though state-of-the-art methods
for person re-identification e.g., [39], [4], [40] evalu-
ate their performances using other datasets too (e.g.,
ETHZ, CAVIAR4REID, CUHK) these do not fit our
purposes since these are either two camera datasets
or several sequences of different two camera datasets.
WARD is a 3 camera dataset with 70 people while
RAiD has been collected across 4 cameras with 43
persons walking through them. Results are shown
in terms of recognition rate as Cumulative Matching
Characteristic (CMC) curves and normalized Area
Under Curve (nAUC) values (provided in the sup-
plementary), as is the common practice in the liter-
ature. The CMC curve is a plot of the recognition
percentage versus the ranking score and represents
the expectation of finding the correct match inside top
t matches. nAUC gives an overall score of how well a
re-identification method performs irrespective of the
dataset size. In the case where every person is not
present in all cameras, we show the accuracy as total
number of true positives (true matches) and true neg-
atives (true non matches) divided by the total number
of unique people present. All the results used for
comparison were either taken from the correspond-
ing works or by running codes which are publicly
available or obtained from the authors on datasets for
which reported results could not be obtained. We did
not re-implement other methods as it is very difficult
to exactly emulate all the implementation details.

Pairwise Similarity Score Generation: The camera
pairwise similarity score generation starts with ex-
tracting appearance features in the form of HSV color
histogram from the images of the targets. Before com-
puting these features, the foreground is segmented

out to extract the silhouette. Three salient regions
(head, torso and legs) are extracted from the silhouette
as proposed in [4]. The head region SH is discarded,
since it often consists of a few and less informative
pixels. We additionally divide both body and torso
into two horizontal sub-regions based on the intuition
that people can wear shorts or long pants, and short
or long sleeves tops.

Given the extracted features, we generate the sim-
ilarity scores by learning the way features get trans-
formed between cameras in a similar approach as [11],
[10]. Instead of using feature correlation matrix or
the feature histogram values directly, we capture the
feature transformation by warping the feature space
in a nonlinear fashion inspired by the principle of
Dynamic Time Warping (DTW). The feature bin num-
ber axis is warped to reduce the mismatch between
feature values of two feature histograms from two
cameras. Considering two non-overlapping cameras,
a pair of images of the same target is a feasible pair,
while a pair of images between two different targets
is an infeasible pair. Given the feasible and infeasible
transformation functions from the training examples,
a Random Forest (RF) [41] classifier is trained on
these two sets. The camera pair wise similarity score
between targets are obtained from the probability
given by the trained classifier of a test transformation
function as belonging to either the set of feasible
or infeasible transformation functions. In addition to
the feature transformation based method, similarity
scores are also generated using the publicly available
code of a recent work - ICT [3] where pairwise re-
identification was posed as a classification problem
in the feature space formed of concatenated features
of persons viewed in two different cameras.

Experimental Setup: In our implementation we
used the following settings:
• To be consistent with the evaluations carried out

by state-of-the-art methods, images were normal-
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2 3 

Fig. 4. Two examples of correction of inconsistent
re-identification from WARD dataset. The red dashed
lines denote re-identifications performed on 3 camera
pairs independently by FT method. The green solid
lines show the re-identification results on application
of NCDA on FT. The NCDA algorithm exploits the
consistency requirement and makes the resultant re-
identification across 3 cameras correct.

ized to 128×64. The H, S and V color histograms
extracted from the body parts were quantized
using 10 bins each.

• Image pairs of the same or different person(s) in
different cameras were randomly picked to com-
pute the feasible and infeasible transformation
functions respectively.

• All the experiments are conducted using a multi-
shot strategy where 10 images per person is taken
for both training and testing

• The RF parameters such as the number of trees,
the number of features to consider when looking
for the best split, etc. were selected using 4-fold
cross validation.

• For each test we ran 5 independent trials and
report the average results.

6.1.1 WARD Dataset
The WARD dataset [6] has 4786 images of 70 different
people acquired in a real surveillance scenario in three
non-overlapping cameras. This dataset has a huge
illumination variation apart from resolution and pose
changes. The cameras here are denoted as camera 1, 2
and 3. Fig. 3(a), (b) and (c) compare the performance
for camera pairs 1 − 2, 1 − 3, and 2 − 3 respectively.
The 70 people in this dataset are equally divided into
training and test sets of 35 persons each. The proposed
approach is compared with the methods SDALF [4],
ICT [3] and WACN [6]. The legends ‘NCDA on FT’
and ‘NCDA on ICT’ imply that the NCDA algorithm
is applied on similarity scores generated by learning
the feature transformation and by ICT respectively.
For all 3 camera pairs the proposed method outper-
forms the rest with rank 1 recognition percentage as
high as 61.71% for the camera pair 2-3. The next
runner up is the method applying only feature trans-
formation which has the recognition percentage of
50.29% for rank 1.

To show how the proposed method yields consis-
tent re-identification results where pairwise method
fails, two example cases are provided in Fig. 4. At
first, re-identification is performed on 3 camera pairs
independently on the WARD data by FT method. In
the first example, though the camera pairs 1 − 2 and
2 − 3 gave correct association (red dashed lines) for
both the targets, the incorrect associations between
camera pair 1 − 3 (red dashed line) make the re-
identification across the 3 cameras inconsistent. Sim-
ilarly, in the second example, incorrect associations
between targets across camera pair 1 − 2 make the
overall re-identification results inconsistent. However,
in both the case, the NCDA exploits the consistency
requirement and makes the resultant re-identification
across 3 cameras correct, which are shown using green
arrows.

6.1.2 RAiD Dataset
This dataset [2] was collected to test the proposed
method on a larger network. The dataset was collected
using 2 indoor (camera 1 and 2) and 2 outdoor
(camera 3 and 4) cameras It has large illumination
variation that is not present in most of the publicly
available benchmark datasets. 41 subjects were asked
to walk through these 4 cameras and 6920 images of
41 persons are present in it. Sample images from this
dataset showing the variation of illumination between
the cameras are shown in the supplementary material.

The proposed approach is compared with the same
methods as for the WARD dataset. 21 persons were
used for training while the rest 20 were used in
training. Figs. 5(a) - (f) compare the performance for
camera pairs 1-2, 1-3, 1-4, 2-3, 2-4 and 3-4 respectively.
We see that the proposed method performs better
than all the rest for both the cases when there is
not much appearance variation (for camera pair 1-
2 where both cameras are indoor and for camera
pair 3-4 where both cameras are outdoor) and when
there is significant lighting variation (for the rest 4
camera pairs). Expectedly, for camera pairs 1-2 and
3-4 the performance of the proposed method is the
best. For the indoor camera pair 1-2 the proposed
method applied on similarity scores generated by
feature transformation (NCDA on FT) and on the sim-
ilarity scores by ICT (NCDA on ICT) achieve 86% and
89% rank 1 performance respectively. For the outdoor
camera pair 3-4 the same two methods achieve 79%
and 68% rank 1 performance respectively. For the rest
of the cases where there is significant illumination
variation the proposed method is superior to all the
rest.

In all the camera pairs, the top two performances
come from the NCDA method applied on two dif-
ferent camera pairwise similarity scores generating
methods. It can further be seen that for camera pairs
with large illumination variation (i.e. 1-3, 1-4, 2-3
and 2-4) the performance improvement is significantly
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Fig. 5. CMC curves for RAiD dataset. In (a), (b), (c), (d), (e), (f) comparisons are shown for the camera pairs
1-2 (both indoor), 1-3 (indoor-outdoor), 1-4 (indoor-outdoor), 2-3 (indoor-outdoor), 2-4 (indoor-outdoor) and 3-4
(both outdoor) respectively.

large. For camera pair 1-3 the rank 1 performance
shoots up to 67% and 60% on application of NCDA
algorithm to TF and ICT compared to their original
rank 1 performance of 26% and 28% respectively.
Clearly, imposing consistency improves the overall
performance with the best absolute accuracy achieved
for camera pairs consisiting of only indoor or only
outdoor cameras. On the other hand, the relative
improvement is significantly large in case of large
illumination variation between the two cameras.

6.1.3 Re-identification with Variable Number of Per-
sons

Next we evaluate the performance of the proposed
method for the generalized setting when all the peo-
ple may not be present in all cameras. For this purpose
we chose two cameras (namely camera 3 and 4)
and removed 8 (40% out of the test set containing
20 people) randomly chosen people keeping all the
persons intact in camera 1 and 2. For this experiment
the accuracy of the proposed method is shown with
similarity scores as obtained by learning the feature
transformation between the camera pairs. The accu-
racy is calculated by taking both true positive and true
negative matches into account and it is expressed as

(# true positive+# true negative)
# of unique people in the testset .

Since the existing methods do not report re-
identification results on variable number of persons
nor is the code available which we can modify easily
to incorporate such a scenario, we can not provide a
comparison of performance here. However we show
the performance of the proposed method for different
values of k. The value of k is learnt using 2 random
partitions of the training data in the same scenario
(i.e., removing 40% of the people from camera 3 and
4). The average accuracy over these two random
partitions for varying k for all the 6 cameras are
shown in Fig. 6(a). As shown, the accuracy remains
more or less constant till k = 0.25. After that, the
accuracy for camera pairs having the same people
(namely camera pairs 1-2 and 3-4) falls rapidly, but for
the rest of the cameras where the number of people
are variable remains significantly constant. This is due
to the fact that the reward for ‘no match’ increases
with the value of k and for camera pair 1-2 and 3-4
there is no ‘no match’ case. So, for these two camera
pairs, the optimization problem (in eqn. (12)) reaches
the global maxima at the cost of assigning 0 label to
some of the true associations (for which the similarity
scores are on the lower side). So any value of k in
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Fig. 6. Performance of the NCDA algorithm after
removing 40% of the people from both camera 3 and 4.
In (a) re-identification accuracy on the training data is
shown for every camera pair by varying the parameter
k after removing 40% of the training persons. (b)
shows the re-identification accuracy on the test data
for the chosen values of k = 0.1 and 0.2 when 40% of
the test people were not present.

the range (0 − 0.25) will be a reasonable choice. The
accuracy of all the 6 pairs of cameras for k = 0.1 and
0.2 is shown in Fig. 6(b), where it can be seen that the
performance is significantly high and does not vary
much with different values of k.

6.2 Spatio-temporal Cell Tracking

Dataset: For the experiments performed in the present
study, the 3D structure of the tissues are imaged us-
ing single-photon confocal laser scanning microscope
and we have specially dealt with the ‘Shoot Apical
Meristem’ (SAM) of the plants that showcase all the
challenges associated with any spatio-temporal cell
tracking problem in a tightly packed multilayer tissue.
The SAM of Arabidopsis Thaliana consists of approxi-
mately 500 cells and they are organized into multiple
cell layers that are clonally distinct from one another.
By changing the depth of the focal plane, CLSM can
provide in-focus images from various depths of the
specimen. To make the cells visible under laser, fluo-
rescent dyes are used. The set of images, thus obtained
at each time point, constitute a 3-D stack, also known
as the ‘Z-stack’. Each Z-stack is imaged at a time
interval of 3 hours and it is comprised of a series
of optical cross sections of SAMs that are separated
by 1.5 µm. Thus, in this 4D image stack, every cell
can have 2D projections on various ‘z-planes’ and
the same cell can be imaged at multiple time points.
Some sample confocal images from a typical 4D live
imaging stack are presented in Fig. 7. The problem
of cell tracking is to associate these spatio-temporal

Z 

T 

Fig. 7. A typical 4D (X-Y-Z-T) live-imaging data. A
live Arabidopsis shoot meristem tissue is imaged us-
ing a confocal laser scanning microscope at multiple
time points. The plasma membranes of the cells are
stained with fluorescent proteins and that is why the
cell walls are the only visible parts. Each of the first
three columns of images presents Z stack of image
slices, i.e the cross sections of the tissue imaged at
various depths of it. When such images are collected
over time to capture the growth of the tissue along with
that of individual cells in it, it forms a 4D image stack.
For a better visualization of the cellular structure, we
have zoomed into a cluster of cells from the 4th column
of the figure.

projections of the individual cells in the tissue along
with detection of cell division events.

Methodology: Each 2D image slice in the 4D confo-
cal image stack is segmented into individual cell slices
using an adaptive Watershed segmentation method
[42] that learns the ‘h-minima’ threshold directly from
the image data so that a uniformity in cell sizes is
maintained as a result of the segmentation. Further
the 3D image stacks are temporally registered using
a landmark-based registration scheme [43].

The similarity scores between 2D cell slices in
spatio-temporally neighboring images are obtained
using the method described in [34], which is briefly
given below. However, please note that any other
method that estimates the similarities between the
cell slices could also be used in conjunction with the
proposed NCDA method.

First, cell division events are detected between
every pair of temporally neighboring images. If a
cell has divided into two children cells in the next
temporal image slice, then ideally the shape of the
parent cell should be very similar to the combined
shape of the children taken together and each of the
children cells would have approximately half the size
of the parent cell. This prior knowledge is utilized
in detecting cells undergoing division and both the
parent and the children cells are removed from the set
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Fig. 8. Graph Structure. (a) For tracking cells between
two spatially and temporally consecutive image slices,
a graph is built on one of the images, where the
nodes of the graph are the segmented cells and two
neighboring cells share an edge between them. For
temporal tracking, the cells undergoing division are
set aside before constructing the graph. (b) From the
next image slice, the candidate matches for each cell
in A are estimated. Again, for temporal tracking, the
children cells after division are also removed from the
image and the candidate set of best ‘K’ states for each
node in A is estimated through a search in B in a spatial
window around the location of each of the nodes in A.
An additional state is added to each of the candidate
sets corresponding to the ‘no-match’ case.

if cells needed to be tracked (for temporal association
only).

For every spatially/temporally neighboring pairs
of images, a spatial graph is built on one of the
images. Each 2D segmented cell slice is considered
a node and any two cells that share a boundary
have an undirected link between them. Please note
that these graphs do not include the cells undergoing
division and the resulting children cells. As every
image pair is registered in the dataset under study, the
set of candidate cells for matching from the second
image (other than the one on which the graph is
built) is further reduced via spatial windowing. These
candidate cells constitute the set of probable states for
each node. To account for the case that a cell may
or may not have a match in the neighboring image
slice, another ‘no match’ state is added each node’s
candidates. The graph formation and the candidate
states for each node is presented through Fig. 8.

We further define a Conditional Random Field
(CRF) on the graph constructed for each pair of
images. A distance defined on the physical features
extracted from a cell and that of each of its candidate
matches is used to constitute the node potential. The
spatial context is modeled on each of the edges based
on the relative location of the cell and its neighbors
by utilizing the tight spatial topology of the cell

clusters. Details on the computation of node and edge
potentials can be found in [34].

Loopy belief propagation based on ‘sum-product’
algorithm and message passing scheme is run on
every CRF thus formed and the marginal posteriors
for each node in pairs of images are computed. The
posterior for a node is treated as similarity scores
between the corresponding cell on one image and
each of its candidate matches from the other image
in the pair.

Establishing Network Consistency: Now, the objec-
tive is to obtain network consistent associations be-
tween the 2D cell slices in the entire spatio-temporal
image stack using the similarity scores generated via
previous method. Now, each 2D image slice (contain-
ing a cluster of tightly packed cell slices) is treated as
a ‘group’ and individual 2D cells on these slices are
the nodes, as before. Also, for any given image slice,
similarity scores are computed only to its immediate
spatio-temporal neighboring slices (i.e. slice above,
slice below, slice at same ‘z’ at previous time point
and the same at next time point). This architecture
yields a network of image slices (groups) that can
be exhaustively covered using quartets of groups.
Fig. 9(a) shows one such quartet in a large network.
Please note that, unlike the person re-identification
problem, the loop constraints for the cell tracking
problem cannot be expressed as triplets, as similarity
scores are not generated between temporally neigh-
boring image slices that lie on different ‘z-planes’.
Using the marginal posteriors as similarity scores
between a cell slice to its spatial/temporal candidates,
we further run the NCDA for generating complete
optimal 4D spatio-temporal correspondences between
2D cell slices.

Analysis of Results: The effect of NCDA towards
improvement of spatio-temporal tracking results is
shown in Fig. 9. In Fig. 9(a), a sample 2X2 block
of images of Arabidopsis SAM are shown, which
contains two spatially neighboring image slices at
each of two consecutive time points of observation.
Pairs of image slices are chosen and CRFs are formed
for each of the pairs (I11 − I12, I12 − I22, I21 − I22

and I11−I21). Now, marginal posteriors are estimated
using LBP and MAP inferences are drawn to gener-
ate pairwise correspondences. When these pairwise
associations are combined together, spatio-temporally
infeasible associations are observed for a number
of cells. For example, correct associations are found
between cell 15 in I11 and cell 20 in I12, cell 20 in
I12 and cell 25 in I22, cell 25 in I22 and cell 18 in I21.
Therefore, for spatio-temporal feasibility, cell 15 in I11

and cell 18 in I21 must also be associated. However,
according to the aforementioned MAP inference, no
associations for cell cell 15 from I11 is found in I21.
Similar infeasibilities are observed for cells 3 and
44 in I11. The network consistent data association
technique, when applied on the previously computed
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Fig. 9. Effect of the NCDA towards improvement of spatio-temporal tracking results. (a) The figure shows a
spatio-temporal 2X2 block of confocal images. Pairwise assignments between cells in spatial or temporal pairs
of images are obtained by performing MAP inference on graphs formed on every image slice. Infeasible 4D
assignments are observed when these pairwise associations are combined over the stack. Examples of such
infeasibilities are shown for three cell slices. The solid arrows represent correct associations between cell slices
and the broken arrows depict no association which is incorrect and cause the infeasibility. Our proposed data
association approach establishes consistency in association and corrects these errors. (b) Similar results are
observed in a 2X3 confocal stack. False negatives in pairwise spatial or temporal tracking results are rectified
using NCDA.

marginal posteriors for pairs of images, corrects these
infeasibilities and establishes the associations.

Fig. 9(b) shows similar results on a 2X3 confocal
image stack. As before, correct associations obtained
using MAP inference on the graphs are shown in solid
arrows. The false negatives are shown using broken
arrows, which are further corrected using the appli-
cation of NCDA (by enforcing the loop constraints
on the corresponding quartets). Note that the NCDA
method can correct a false positive irrespective of its
appearance in spatial or temporal tracking in the 4D
stack.

Although the number of network inconsistencies
may seem a small (3 in the 2X2 stack and 4 in 2X3
stack) percentage of the total number of cells, it is of
utmost importance that each such error is rectified.
A few inconsistencies per slice may add up to a
large number of errors in a typical confocal stack
consisting of thousands of 2D cell slices. Moreover, a
tracking error not only affects the corresponding cell
lineage, but may also affect the tracking accuracies
for a number of its neighbors in the tightly packed
multilayer tissue.

7 CONCLUSION

When the same set of data-points are observed by
multiple agents and/or at multiple spatio-temporal
locations, pairwise data-association may often lead to

infeasible scenarios over the network of agents and
the global space-time horizon. In this paper, we have
proposed a generalized data-association method as a
binary integer program on a graph. This proposed
method, called NCDA, not only maintains consistency
across the network of agents or amongst observations
across spatio-temporal locations, but also improves
the data-association accuracy. We have shown that the
proposed NCDA method is also capable of handling
the challenging data-association scenario where the
number of data-points varies across different sets of
instances in the network. Two applications of the
proposed NCDA are shown - 1. Multi camera person
re-identification and 2. Spatio-temporal (3D+t) cell
tracking. Analysis of the experimental results indicate
that the proposed method improves both network
level consistency and pairwise association accuracy in
these challenging problems. The future directions of
our research will be not only to apply our approach
to bigger and denser networks with large numbers of
agents, and cope with wider space-time horizons but
also to explore other data-association problems, (e.g.,
consistent data association in multi-robot systems,
feature point tracking, social network analysis etc.)
where consistency is the key to robustness.
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