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Joint Color-Spatial-Directional clustering and
Region Merging (JCSD-RM) for unsupervised

RGB-D image segmentation
Md. Abul Hasnat, Olivier Alata and Alain Trémeau

Abstract—Recent advances in depth imaging sensors provide easy access to the synchronized depth with color, called RGB-D image.
In this paper, we propose an unsupervised method for indoor RGB-D image segmentation and analysis. We consider a statistical image
generation model based on the color and geometry of the scene. Our method consists of a joint color-spatial-directional clustering
method followed by a statistical planar region merging method. We evaluate our method on the NYU depth database and compare it
with existing unsupervised RGB-D segmentation methods. Results show that, it is comparable with the state of the art methods and it
needs less computation time. Moreover, it opens interesting perspectives to fuse color and geometry in an unsupervised manner.

Index Terms—Unsupervised, Clustering, RGB-D image segmentation, Directional distributions, Bregman divergence, Mixture model,
Region adjacency graph, Region merging.
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1 INTRODUCTION

IN the field of image processing, segmentation is con-
sidered as one of the oldest and most widely studied

problems that groups perceptually similar pixels based on
certain features, e.g., color, texture, etc. A variety of different
techniques already exist in literature [1], which address im-
age segmentation from different perspectives. In this paper,
we address the problem of synchronized color and depth
image segmentation and propose a solution that combines
a clustering method [2] with a statistical region merging
technique [3].

After the introduction of Microsoft Kinect camera in
2010, the availability of RGB-D images is widespread
now [4], [5]. As a consequence, traditional computer vi-
sion algorithms which had been previously developed for
color/intensity image, have been enhanced to incorporate
depth information [5]. Recent progresses on RGB-D image
segmentation [6], [7], [8], [9], [10], [11] have shown that
depth as an additional feature improves accuracy of this
task. Most of the techniques address the problem with
supervised approaches (e.g., [6]). In contrary, unsupervised
approach (e.g., [10]) remains underexplored. Moreover, it
remains an important issue - what is the best way to fuse
color and geometry in an unsupervised manner? This moti-
vates us to conduct further research and contribute towards
unsupervised indoor RGB-D image segmentation or scene
labeling.

This paper proposes a scene segmentation approach
which first identifies the possible image regions w.r.t. a sta-
tistical image generation model. Then it merges regions us-
ing the planar statistics and the RGB-D image gradients. The
proposed model is based on three different cues/features
of the RGB-D image: color, 3D location and surface nor-
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mals. It follows a generative model-based approach for
these features in which they are issued independently (naı̈ve
Bayes [12], [13] assumption) from a finite mixture of certain
probability distributions. The model considers the Gaussian
distribution [2] for color and 3D features and the directional
(Fisher or Watson) distribution [14], [15], [16] for surface
normals. We use the directional distribution because: (a) it
provides adequate statistics to explain the planar property
of regions and (b) it helps us to develop a simple and
effective region merging method. A common property of the
Gaussian and directional (Fisher or Watson) distributions is
that they belong to the Regular Exponential Family (REF)
[14], [17], [18]. We exploit this property to develop an
efficient clustering method based on the proposed image
generation model.

Finite Mixture Models are commonly used for cluster
analysis [19], [20], [21], [22]. In the context of image analysis
and segmentation these models have been employed with
the Gaussian distribution for clustering the color image pix-
els [1], [23], [24], [25], [26]. Recently, these models have been
exploited to analyze 3D images by clustering the surface
normals with a mixture of directional distributions [15],
[16], [27]. These clusters are obtained by using the Expecta-
tion Maximization (EM) algorithm that performs Maximum
Likelihood Estimate (MLE) of the model parameters [2],
[28], [29]. This paper proposes an EM method for a com-
bined mixture model of multiple probability distributions,
where each distribution belongs to the REF. Precisely, we
propose an EM method for joint clustering of independent
features.

Bregman Soft Clustering (BSC) is a centroid based para-
metric clustering method [30]. It has been effectively em-
ployed to estimate parameters of mixture models which are
based on the REF [18]. Compare to the traditional EM based
algorithm, BSC provides additional benefits: (a) simplifies
the computationally expensive M-step of traditional EM
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method; (b) applicable to mixed data types and (c) compu-
tational complexity is linear in the data points. This paper
extends the BSC algorithm to perform efficient clustering
w.r.t. the proposed image model.

Image segmentation based on region merging is one of
the oldest techniques used in computer vision [2]. Numer-
ous existing methods which merge regions in a RGB image
exploit color and edge information [3], [31], [32], [33]. For
indoor scenes, the use of color is often unreliable due to
numerous effects caused by spatially varying illumination
[6] and the presence of shadows. Therefore, for indoor
scenes, color based merging is not as effective as it is
for outdoor scenes. On the other hand, for indoor scenes
the planar surfaces are considered as important geometric
primitives. They are often employed for scene decompo-
sition [6], [8], [34] and grouping coplanar segments into
extended regions [35]. This motivates us to develop a region
merging algorithm by mainly exploiting planar property of
regions instead of color. Recent work [16] has shown that the
concentration parameter (κ) of the directional distributions
can be exploited for characterizing planar surfaces. We take
this into account and efficiently exploit the concentration (κ)
of the surface normals in order to accept or reject a merging
operation.

This paper proposes a novel unsupervised RGB-D seg-
mentation method. It begins by applying a joint clustering
method on RGB-D image features (color, position and nor-
mals), which generates a set of regions. Next, it applies a
statistical region merging method on resulting regions to
obtain the final segmentation. We evaluate the proposed
method using RGB-D images of the NYU depth database
(NYUD2) [8] and compare our results with the state of the
art unsupervised techniques. To benchmark the segmenta-
tion task, we consider commonly used evaluation metrics
such as [36], [37]: segmentation covering, probability rand
index, variation of information, boundary displacement
error and boundary based F-measure. Moreover, we also
consider the computation time of comparable methods as a
measure of evaluation.

Finally, the contributions related to the work described
in this paper can be highlighted as follows:

• A statistical RGB-D image generation model (section
3.1.1) that incorporates both color and geometric
properties of the scene.

• An efficient probabilistic joint clustering method
(section 3.2) which exploits the Bregman divergence
[17], [30], [38]. The method has the following proper-
ties: (a) performs clustering with respect to the pro-
posed image model; (b) provides an intrinsic view of
the indoor scene and (c) provides statistics w.r.t. the
planar property of the regions.

• A statistical region merging method (Section 3.3)
which satisfies certain region merging predicates.
This method can be incorporated independently with
any other existing indoor RGB-D scene segmentation
method.

• A benchmark (Section 4.1) on the NYUD2 [8] for
unsupervised scene segmentation. Results from the
proposed method show that it is comparable w.r.t.
the state of the art and better in terms of computa-

tional time.

This work exploits our earlier work on image analysis
using directional distribution [15], [16], [27]. Moreover, it
provides an extension of our recent work on RGB-D seg-
mentation [39] by including additional details and newer
contributions, such as:

• We introduce1 a general framework which exploits:
(a) two theoretical models based on directional statis-
tics in 3D (Fisher and Watson distributions) and (b)
information geometry (Bregman divergence).

• We propose a general methodology that can be used
with unambiguous direction (using Fisher distribu-
tion) or with ambiguous direction (using Watson
distribution).

• For the study of indoor scenes (NYUD2 dataset
[8]), the ambiguity2 in surface normal is removed,
which allows the use of Fisher distribution. New
experimental results are discussed through a com-
mon framework based on both Fisher and Watson
distributions.

• Several additional image models are explored, dis-
cussed and corresponding results are provided.

• An enhanced discussion based on new experiments,
additional illustrations and clarifications.

The outline of the rest of this paper is as follows: Sec-
tion 2 discusses the background of RGB-D segmentation
methods and related works. Section 3 presents the proposed
method. Section 4 provides experimental results and dis-
cussion. Finally, Section 5 draws conclusions and discusses
future perspectives.

2 BACKGROUND OF RGB-D SEGMENTATION

Color image segmentation of natural and outdoor scene is
a well-studied problem due to its numerous applications
in computer vision. Different methods have been already
proposed in the state of the art based on different perspec-
tives. Chapter 5 of [1] provides a detail overview of these
methods.

Many of the established image analysis methods have
been either extended or directly employed to the depth
image data in order to deal with depth features, see Chapter
6 of [40] for a detail review. In the simplest cases, the depth
image is considered as a grayscale image or converted to
a cloud of 3D points. However, such simple approaches
have limitations [40]. For example, clustering using only 3D
points often fails to locate the intersections among planar
surfaces with different orientations such as wall, floor, ceil-
ing, etc. This is due to the fact that the 3D points associated
to the intersections are grouped into a single cluster. For this
reason, better features such as surface normals are suggested
to use [34], [41]. However, from a recent study [16], we
observe that: (a) the use of surface normals solely is not

1. In order to cluster surface normal, we proposed two methods:
one based on the Fisher distribution in [15] and another based on
the Watson distribution in [16]. In this paper, we exploit both of them
within a common framework.

2. In our previous work [39], we used the toolbox of [8] which
produced ambiguity [34] in the direction of the normals. In this paper,
we decided to use the toolbox of [9] which removes such ambiguity.
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sufficient to extract full semantics of the scene, e.g., multiple
objects with nearly similar orientations may grouped into
the same cluster irrespective of their 3D location and (b) it is
necessary to incorporate additional features, such as color,
texture, etc. to provide better interpretation of indoor en-
vironments. Such observations raise the necessity to jointly
exploit depth, color and other features for the task of RGB-D
image analysis.

A number of recent research activities, such as [10], [6],
[9] and [8], proposed different methodologies for indoor
scene understanding and analysis with promising results.
Most of these researches incorporate depth as complemen-
tary information with color images. They can be catego-
rized mainly from two aspects: (a) feature-wise: different
types, levels and dimensions of features and (b) method-
wise: numerous distinctions, such as supervised, unsuper-
vised, clustering based, graph based, split-merge based, etc.
Different methods emphasize on different aspects of the
problem, which in general opens a number of interesting
and challenging issues to focus on.

A common approach to tackle the RGB-D scene analysis
problem is to extract different features, design kernels and
classify pixels with learned classifiers. For example, [9]
proposed contextual models in a supervised setting. Their
model combines kernel descriptors with a segmentation tree
or with superpixels Markov Random Field (MRF). To this
aim, they extended the well-known gPb-UCM algorithm
[36] to incorporate the global probability of boundaries
(gPb) of depth image with gPb of RGB image. The RGB-D
scene analysis method proposed by [8] first gives an over-
segmentation of the scene by applying watershed on the
gPb of the RGB image. Next, it aligns the over-segmentation
with the 3D planes. Finally, using a trained classifier it
applies a hierarchical segmentation in order to merge re-
gions. Another interesting feature of [8] is that it provides an
annotated RGB-D dataset (NYUD2) to perform scene anal-
ysis. Recently, [6] extended the gPb-UCM [36] method to a
supervised setting. First, they combine geometric contour
cues: convex and concave normal gradients with monocular
cues: brightness, color, texture. Then, they detect pixels as
contours via learned classifiers for 8 different orientations.
Finally, they generate a hierarchy of segmentations from
all oriented detectors. All of the above-mentioned methods
use supervised approach in order to combine/fuse different
features or information extracted from them. Let us now
focus on methods developed for the unsupervised domain.

[10] discussed about the fusion of color with geometry
based on an unsupervised setting and provide a solution
using the normalized cut spectral clustering method. Their
approach consists of identifying an optimal multiplier to
balance between color and depth. For this reason, they
generate several segmentations with different values of the
multiplier. Each segmentation is obtained by applying spec-
tral clustering on the fused subsampled features. Finally,
they select the best segmentation based on their proposed
RGB-D segmentation quality evaluation score. In practice,
this method requires more computation time than others as
it generates a number of different segmentations for a single
image. [35] proposed a method which first extracts edges
from RGB image, applies Delaunay Triangulation on edges
to construct triangular graph and then applies Normalized

Cut algorithm to the graph. In a second step, they extract
planar surfaces from the segments using RANSAC [1] and
finally merge the coplanar segments using a greedy merging
procedure. The unsupervised method that we propose in
this paper is different than the above proposals as: (a) it
considers surface normals as features; (b) it employs mixture
model based joint clustering rather than Normalized Cut
and (c) it merges regions based on statistics rather than a
greedy approach.

Beside these approaches, the well-known graph based
segmentation [42] is extended for joint color and depth
image segmentation. For example, [43] extended it by in-
cluding disparity with color for the purpose of segmenting
stereopsis images. [44] extended it by incorporating surface
normals to segment colored 3D laser point clouds. For the
purpose of comparison, we develop an extension of the
graph based method that considers both 3D and normals
along with color.

Despite all of these researches, it remains an interesting
issue about how to build an appropriate statistical model
to describe RGB-D images of indoor scenes and how to
exploit such model to segment the captured images. Scene-
SIRFS [45] is a recently proposed model whose aim is to
recover intrinsic scene properties from single RGB-D image.
It considers a mixture of shapes and illuminations where the
mixture components are embedded in a soft segmentation
of 17 eigenvectors. These eigenvectors are obtained from
the normalized Laplacian corresponding to the input RGB
image. Although the concept of using mixture is similar to
the method proposed in this paper, the underlying objective,
model and methodologies are different. We consider a mix-
ture of shape (via 3D and normals) and color that consists of
a feature vector of length 9. In the next Section, we present
our proposed scene analysis method.

3 METHODOLOGY

In this section, we present the proposed RGB-D segmenta-
tion method. First, we discuss the statistical image genera-
tion model and present the segmentation method w.r.t. the
model. Then we briefly present the joint clustering method
followed by the region merging method.

3.1 Model and method

3.1.1 Image Generation Model
We propose a statistical image model that fuses color and
shape (3D and surface normals) features according to the
naı̈ve Bayes assumption [12], [13], i.e., the features are in-
dependent of each other. Furthermore, it is based on a
generative model-based approach [2], where the features
are issued from a finite mixture of different probability
distributions. Figure 1 provides an illustration of the pro-
posed image generation model. We can observe that, the
color and 3D features belong to the standard Euclidean
space, i.e., in R3 and the surface normal3 belongs to the unit

3. Surface normal is a 3D unit vector that describes the planar
property of a pixel. This planar property is the perpendicular direction
to the plane which is fitted on each pixel using chosen neighboring
pixels. In the unit sphere of Figure 1, each blue point indicates the
direction of a pixel’s normal w.r.t. the origin of the sphere.
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sphere, i.e., in S2. Based on this observation, we consider
the multivariate Gaussian [29] distribution for the color and
3D features and the directional4 (Fisher or Watson) [14], [15],
[16] distribution for surface normals. Mathematically, such
a model with k components has the following form:

g (xi|Θk) =
k∑
j=1

πj,k fg(x
C
i |µCj,k,ΣCj,k) fg(x

P
i |µPj,k,ΣPj,k)

fdir
(
xNi |µNj,k, κNj,k

)
(1)

Here xi = {xCi ,xPi ,xNi } is the 9 dimensional feature vector
of the ith pixel with i = 1, ...,M . Superscripts denote: C
- color, P - 3D position and N - normal. Θk = {πj,k, µCj,k,
ΣCj,k, µ

P
j,k,Σ

P
j,k, µ

N
j,k, κ

N
j,k}j=1...k denotes the set of model

parameters where πj,k is the prior probability, µj,k =
{µCj,k, µPj,k, µNj,k} is the mean, Σj,k = {ΣCj,k,ΣPj,k} is the
variance-covariance symmetric positive-definite matrix and
κNj,k is the concentration of the jth component. fg(.) and
fdir(.) are the density functions of the multivariate Gaussian
distribution (Section 3.2.2) and the directional (Fisher or
Watson) distribution (Section 3.2.3 and 3.2.4) respectively.

Fig. 1: Illustration of the proposed image generation model.
The first row shows the color and depth image. The second
row shows the features of the model in their respective
spaces.

3.1.2 Segmentation method
Figure 2 illustrates the workflow of the proposed RGB-
D segmentation method that consists of two sub-tasks: (1)
clustering heterogeneous (color, 3D and Normal) data and
(2) merging regions. The first task performs a joint color-
spatial-directional clustering and generates a set of regions.
The second task performs a refinement on this set with the
aim to merge regions which are susceptible to be over-
segmented. In the next two sub-sections we present our
methods to accomplish these tasks.

3.2 Joint Color-Spatial-Directional (JCSD) clustering
In order to cluster heterogeneous data, we develop a Joint
Color-Spatial-Directional (JCSD) clustering method. The

4. We use the term directional for the Fisher and the Watson dis-
tribution. Both of them are parameterized with a mean direction µ
and concentration value κ. They belong to the regular exponential
family, which allows us to provide a common formulation despite their
different normalization function, see Section 3.2.3 and 3.2.4.

clustering method estimates the parameters of the mixture
model (Eq. (1)) as well as clusters the image data/features.
As an outcome, we obtain the groups of image pixels which
form the regions in the image. However, notice that in an
unsupervised setting the true number of segments are un-
known. Therefore, we cluster features with the assumption
of a known maximum number of clusters (k = kmax).
Section 4.2 provides additional details on this issue. Such
assumption often causes an over-segmentation of the image.
In order to overcome this issue, it is necessary to merge the
over-segmented regions (see Section 3.3).

The proposed joint clustering method follows the Breg-
man Soft Clustering (BSC) method [30] and extends it to
combine multiple probability distributions which belong
to the REF. The extension is based on the independence
assumption to combine different distributions for different
types of features. This allows computing the divergence
among two distributions based on the following combined
form:

fcomb(xi|Θj,k) = fg(x
C
i |µCj,k,ΣCj,k) fg(x

P
i |µPj,k,ΣPj,k)

fdir
(
xNi |µNj,k, κNj,k

)
(2)

where Θj,k = {πj,k, µCj,k,ΣCj,k, µPj,k,ΣPj,k, µNj,k, κNj,k} denotes
the jth component of parameter Θk. This allows to develop
a joint Bregman soft clustering method for the model in Eq.
(1).

3.2.1 Regular Exponential Family (REF) of Distributions
and Bregman Divergence

A multivariate probability density function f(x|η) belongs
to the Regular Exponential Family (REF) [17] if it has the
following (see Eq. (3.7) of [30], Eq. (60) of [18]) form5:

f (x|η) = exp (−DG (t(x), η)) exp (k(x)) (3)

and

DG (η1, η2) = G(η1)−G(η2)− 〈η1 − η2,∇G(η2)〉 (4)

with G(.) is the Legendre dual of F (.). F (.) is a strictly
convex log normalizing function associated with a proba-
bility distribution. ∇G is the gradient of G. t(x) denotes
the sufficient statistics and k(x) is the carrier measure. The
expectation of the sufficient statistics t(x) w.r.t. the density
function (Eq. (3)) is called the expectation parameter (η).DG

is the Bregman Divergence (BD) [17], [30], [38] computed
from expectation parameters, see Appendix A. BD can be
used as a measure of dissimilarity between two distribu-
tions of the same exponential family which are defined by
two expectation parameters η1 and η2. We will define in
the following Section the particular forms obtained with
the Gaussian distribution and the directional (Fisher and
Watson) distribution.

5. In order to keep our formulations concise, we use the expectation
parameters η to define the REF distributions. However, the other form
(see Appendix A) and related derivations are available in [25] (for
the Gaussian distribution) and [15], [16] (for the Fisher and Watson
distributions).
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Fig. 2: Work flow of the proposed segmentation method. (a) Block diagram and (b) Illustration with an example.

3.2.2 Multivariate Gaussian Distribution
For a d dimensional random vector x = [x1, ..., xd]

T ∈ Rd,
the multivariate Gaussian distribution is defined as:
fg(x|µ,Σ) =

1

(2π)d/2 det(Σ)1/2
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(5)

Here, µ ∈ Rd denotes the mean and Σ denotes the variance-
covariance symmetric positive-definite matrix. To write the
multivariate Gaussian distribution in the form of Eq. (3),
the elements are defined as [18]: sufficient statistics t(x) =
(x,−xxT ); carrier measure k(x) = 0; expectation parameter
η = (φ,Φ) =

(
µ,−(Σ + µµT )

)
and

Gg(η) = −1

2
log(1 +φTΦ−1φ)− 1

2
log(det(Φ))− d

2
log(2πe)

(6)

3.2.3 Fisher Distribution
For a 3-dimensional random unit vector x = [x1, x2, x3]

T ∈
S2 ⊂ R3 (i.e., ‖x‖2 = 1), the Fisher distribution is defined
as [14], [15]:

fdir(x|µ, κ) =
κ

sinh(κ)
exp(κµTx) (7)

Here, µ denotes the mean (with ‖µ‖2 = 1) and κ denotes
the concentration parameter (with κ ≥ 0). The Fisher distri-
bution is a special case of the von Mises-Fisher (vMF) [14]
distribution for three dimensional observations. To write the
Fisher distribution in the form of Eq. (3), the elements are
defined as [15], [27]: sufficient statistics t(x) = x; carrier
measure k(x) = 0; expectation parameter η = ‖η‖2 µ and

Gdir(η) = κ ‖η‖2 − log
(

κ

sinh(κ)

)
(8)

With the above formulation, for a set of observations X =
{xi}i=1,...,M we estimate η = E[t(X)] and κwith a Newton-
Raphson root finder method as [15], [27]:

κl+1 = κl −
a− b− ‖η‖2
1− a2 + b2

(9)

where, a = tanh(κ)−1 and b = (κ)−1.

3.2.4 Multivariate Watson Distribution
For a d dimensional unit vector x = [x1, ..., xd]

T ∈ Sd−1 ⊂
Rd (i.e. ‖x‖2 = 1), the multivariate (axially symmetric, i.e.,
fdir(x|µ, κ) = fdir(−x|µ, κ)) Watson distribution (mWD) is
defined as [14]:

fdir(x|µ, κ) = M (1/2, d/2, κ)
−1 exp

(
κ(µTx)2

)
(10)

Here, µ is the mean direction (with ‖µ‖2 = 1), κ ∈
R the concentration and M (1/2, d/2, κ) the Kummer’s
function [14]. To write the mWD in the form of Eq.
(3), the elements are defined as [16]: sufficient statistics

t(x) =
[
x2

1, ..., x
2
d,
√

2x1x2, ...,
√

2xd−1xd
]T

; carrier mea-
sure k(x) = 0; expectation parameter η:

η = ‖η‖2 ν (11)

where ν =
[
µ2

1, ..., µ
2
d,
√

2µ1µ2, ...,
√

2µd−1µd
]T

and

Gdir(η) = κ ‖η‖2 − logM (1/2, d/2, κ) (12)

With the above formulation, for a set of observations X =
{xi}i=1,...,M we estimate η = E[t(X)] and κwith a Newton-
Raphson root finder method as [16]:

κl+1 = κl −
q(1/2, d/2;κl)− ‖η‖2

q′(1/2, d/2;κl)
(13)
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where q(1/2, d/2; .) is the Kummer-ratio, q
′
(1/2, d/2; .) is

the derivative of q(1/2, d/2; .).

3.2.5 Bregman Divergence for the combined model
Our image model (in Eq. (1)) combines different exponential
family of distributions (associated to color, 3D and normals)
based on independent (naı̈ve Bayes [12], [13]) assumption.
Therefore, Bregman Divergence (BD) [17], [30], [38] of the
combined model can be defined as a linear combination of
the BD of each individual distributions:

Dcomb
G (ηi, ηj) = DC

G,g(η
C
i , η

C
j )+DP

G,g(η
P
i , η

P
j )+DN

G,dir(η
N
i , η

N
j )

(14)
where, DG,g(., .) denotes BD using the multivariate Gaus-
sian distribution [25] and DG,dir(., .) denotes BD using
the directional (Fisher or Watson) distribution [15]. Then,
it is possible to define, with expectation parameter η ={
ηC , ηP , ηN

}
:

Gcomb(η) = Gg(η
C) +Gg(η

P ) +Gdir(η
N ) (15)

3.2.6 Bregman Soft Clustering for the combined model
Bregman Soft Clustering (BSC) exploits Bregman Diver-
gence (BD) in the Expectation Maximization (EM) [28]
framework to compute the Maximum Likelihood Estimate
(MLE) of the mixture model parameters and provides a soft
clustering of the observations [30].

In order to cluster data with the combined model (Eq.
(1)), it is necessary to estimate the model parameters and
obtain Θ̂k for g(X|Θk) such that:

Θ̂k = arg max
Θk

g (X|Θk) with g(X|Θk) =
M∏
i=1

g(xi|Θk)

(16)
Here, X = {xi}i=1,...,M is the set of observations. Let
γi = j denotes the class label of an observation xi with
j = {1, . . . , k}.

BSC consists of an Expectation step (E-step) and a Max-
imization step (M-step). In the E-step of the algorithm, the
posterior probability is computed as [18]:

p (γi = j|xi) =

πj,k exp
(
Gcomb(ηj,k) +

〈
t(xi)− ηj,k,∇Gcomb(ηj,k)

〉)∑k
l=1 πl,k exp (Gcomb(ηl,k) + 〈t(xi)− ηl,k,∇Gcomb(ηl,k)〉)

(17)
Here, ηj,k and ηl,k denote the expectation parameters for
any cluster j and l given that the total number of compo-
nents is k. The M-step updates the mixing proportion and
expectation parameter for each class as:

πj,k =
1

M

M∑
i=1

p (γi = j|xi) and ηj,k =

∑M
i=1 p (γi = j|xi)xi∑M
i=1 p (γi = j|xi)

(18)
Initialization (using the EM method) is a challenging

issue and has significant impact on clustering [46]. Our
initialization procedure consists of setting initial values for
prior class probability (πj,k) and the expectation parameters
(ηj,k) with 1 ≤ j ≤ k. We obtain these initial values for the
Gaussian and directional (Fisher or Watson) distributions
using a combined k-means type clustering. After initializa-
tion, we iteratively apply the E-step and M-step until the

convergence criteria are met. These criteria are based on
maximum number of iterations (e.g., 200) and a threshold
difference (e.g., 0.001) between the negative log likelihood
values (see Eq. (19) and Eq. (1)) of two consecutive steps.

nLLH(Θ̂k) = −
M∑
i=1

log
(
g
(
xi|Θ̂k

))
(19)

The above procedures lead to a soft clustering, which gen-
erates associated probabilities and parameters for each com-
ponent of the proposed model defined by Eq. (1). Finally, for
each sample we get the cluster label (γ̂i) using the updated
combined BD (Eq. 14) as:

γ̂i = arg min
j=1,...,k

Dcomb
G (t(xi), η̂j,k) (20)

Applying Eq. (20) performs hard clustering on the data. Let
us call this entire clustering method the BSC-COMB algo-
rithm (Algorithm 1). This method can be seen as a general
algorithm for combining different types of REF probability
distributions with an independent assumption. However, to
be more specific, in the experimental section we will denote
it as the joint color-spatial-directional (JCSD) algorithm.

Algorithm 1: BSC-COMB (also called JCSD) algorithm
for Joint Color-Spatial-Directional clustering.

Input: X =
{
xi | xi = {xCi ,xPi ,xNi } ∧ 1 6 i 6M

}
Output: Clustering of X with k components.
Initialize πj,k and ηj,k for 1 ≤ j ≤ k using combined
k-means;
while not converged do
{Perform the E-step of EM};
foreach i and j do

Compute p(γi = j|xi) using Eq. (17)
end
{Perform the M-step of EM};
for j = 1 to k do

Update πj,k and ηj,k using Eq. (18)
end

end
Define final values of parameters as π̂j,k and η̂j,k
Assign each observation to a cluster using Eq. (20)

Applying Algorithm 1 on RGB-D image features (color,
position and normals) performs a joint color-spatial-
directional clustering. This clustering method is based on
the assumption of a known maximum number of compo-
nents k = kmax. Image regions obtained by such clustering
often lead to over-segmentation, see Figure 2(b) for example.
Therefore, it is necessary to merge the over-segmented re-
gions. In the following section, we propose a region merging
method to overcome such over-segmentation problem.

3.3 Region Merging

In this step, we merge the over-segmented regions which are
generated from previous step, i.e., after applying the JCSD
clustering on the RGB-D image features. To this aim, first we
build a Region Adjacency Graph (RAG) [31] (see Figure 2).
This graph is defined such as each region is a node and each
node has edges with its adjacent nodes. In order to weight
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Fig. 3: Illustration of a 3d view of the Region Adjacency
Graph (RAG) constructed from JCSD clustered regions ob-
tained from the image shown in Figure 2(b). The circle as-
sociated to each node represents the concentration of image
normals at the region. Each edge represents the weight wd
associated to two adjacent regions. In this picture several
circles resemble ellipses because of 3D to 2D projection.
The 2D view of this graph overlaid on the original image
is illustrated in Figure 2(b).

the edge connectivity among nodes, we consider a measure
of statistical distance among two regions. Moreover, we
weight the boundary strength among regions by a measure
of their eligibility to merge. Similar to the standard region
merging methods [3], [31], [32], we develop an approach
which depends on region merging predicate and merging
order. As an outcome of region merging we obtain the final
segmentation.

3.3.1 Region Adjacency Graph (RAG)

In our proposed region merging method, RAG provides
an inherent view of the merging strategy. From the JCSD
clustered labels, we build the RAG by applying first a 3x3
median filter (in order to remove isolated and noisy labels)
and then locating the regions from the enclosed boundaries.
Figure 3 illustrates an example of the RAG constructed from
clustered regions obtained from the image shown in Figure
2(b). Let R = {ri}i=1,...,Z be the set of regions, G = (V,E)
be the undirected graph that represents the RAG, where
vi ∈ V is the set of nodes corresponding to the regions
ri ∈ R and E is the set of edges among adjacent nodes.

Each node vi is characterized by the source parameters
(mean direction µ and concentration κ) of the directional
(Fisher or Watson) distribution (Section 3.2.3) associated
to region ri. In Figure 3 the radius of the circles (nodes)
represents the κ value and the orientation of the circles
represents the mean direction µ. Besides, in order to merge
nodes efficiently, we compute the probability (π) and the
expectation parameter (η) for each node. For a region ri, πi
is computed as the ratio of the number of region pixels w.r.t.
total number of image pixels and ηNi is computed as the
mean of the normals of the region.

Each edge eij consists of two weights: wd, based on
statistical dissimilarity and wb, based on boundary strength
between adjacent nodes vi and vj . The dissimilarity based
weight wd is computed using the Bregman divergence (Eq.
(32)) among two adjacent nodes vi and vj as:

wd(vi, vj) = min
(
DN
G,dir(η

N
i , η

N
j ), DN

G,dir(η
N
j , η

N
i )
)

(21)

where, DN
G,dir(η

N
i , η

N
j ) is the Bregman divergence (Eq. (32))

among the directional (Fisher or Watson) distributions asso-
ciated with regions ri and rj . The boundary based weight
wb between two nodes vi and vj is computed from the
average normalized gradient values along the boundary of
their corresponding regions ri and rj as:

wb(vi, vj) =
1

|ri
⋂
rj |

∑
b∈ri

⋂
rj

IrgbdG (b) (22)

where, ri
⋂
rj is the set of boundary pixels among two re-

gions, |.| denotes the cardinality and IrgbdG is the normalized
magnitude of image gradient6 (MoG) [1] computed from the
RGB-D image. IrgbdG is obtained by first computing MoG for
each color channels (IrG, IgG, IbG) and depth (IdG) individually,
and then taking the maximum of those MoGs at each pixel.

3.3.2 Merging Strategy
Our region merging strategy is defined by an iterative proce-
dure which is based on a merging predicate among adjacent
nodes in a predefined order. The merging predicate consists
of: (a) evaluating the candidacy of each node; (b) evaluating
the eligibility of merging adjacent nodes and (c) verifying the
consistency of the merged nodes. Figure 4 illustrates three
examples to understand the merging predicate. Figure 5
provides an example of the region merging strategy for a
particular region/node. Once two nodes are merged, the
information regarding the merged node and its edges are
updated instantly. This procedure continues until no valid
candidates are left to merge.

candidacy of a node/region defines whether it is a valid
candidate to be merged with the adjacent nodes. For each
node, first we check its candidacy. This helps us to filter
out the nodes which are not valid candidates to be merged
and hence reduces the computational time. For each node,
our candidacy criterion checks the planar property of the
corresponding region. In indoor scenes either regions are
planar (e.g. the floor, the walls, etc.) or are non planar
(e.g. coffee pot, lamps, etc.). Whatever the method used, we
noticed that most of over-segmentation errors are related
to planar regions rather than non-planar regions (due to
shadows, non-uniformity of lightness, etc.). Therefore we
propose to use the planarity assumption as first criterion
for region merging. As a consequence we propose to focus
on adjacent planar regions and to avoid any region which
is non planar. Indeed it makes more sense to merge two
adjacent planar regions (if they have same depth and same
color) than one non-planar region with its neighboring
regions whatever the depth, color and planarity of these

6. To compute image gradient ∆I =
(

∂I(x,y)
∂x

,
∂I(x,y)

∂y

)
, with

∂I(x,y)
∂x

≈ I(x+1,y)−I(x−1,y)
2

and ∂I(x,y)
∂y

≈ I(x,y+1)−I(x,y−1)
2

, we
used the ’sobel’ operator in MATLAB implementation.
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laters. This planarity property can be easily investigated by
analyzing the concentration parameter (κ) associated with
each node vi. We define the candidacy of a node vi as follows:

candidacy(vi) =

{
true, if κi > κp,

false, otherwise.
(23)

Here κi is the concentration parameter computed for the
region ri. κp is the threshold that defines the planar property
of a region. From our study on planar statistics, see Ap-
pendix B, we observed that the concentration of the normals
(κ) associated with a region can be exploited to discriminate
among planar and non-planar surfaces. The Eq. (23) was
introduced to exploit this property. See Section 4.1 for details
about this threshold value, which is set as κp = 5. In Figure
4(a), the region/node of interest (labeled as C) has κC = 3,
which signifies that it is not a valid candidate for merging
with the neighboring regions/nodes. Conversely, κC = 58
in Figure 4(b) and κC = 11 in Figure 4(c) means that those
regions/nodes are valid candidates.

Fig. 4: Illustration of the region merging predicate with
different examples. The left column shows the RoI under
process (surrounded by a black boundary) in the original
image. The middle column shows the RoI under process
(labeled as C) and the neighboring regions (labeled with
numbers). The last column shows the magnitude of image
gradient computed from the RGB-D image.

We define the eligibility to merge two regions (ri and rj)
or nodes (vi and vj) from the dissimilarity based weight wd
(using Eq. (21)) and the boundary based weight wb (using
Eq. (22)) as:

eligibility(vi, vj) =


true, (a) wb(vi, vj) < thb; and

(b) wd(vi, vj) < thd;

false, otherwise.
(24)

where, thb and thd are the thresholds associated with the
boundary based weight wb (Eq. 22) and the distance based
weight wd (Eq. 21) respectively. See Section 4.1 for the
details of these threshold values, which are set as thd = 3
and thb = 0.2. From our experiments on regions merging,
we observed that most pairs of regions which have been
selected to be merged have very low wd. This motivates

us to set a heuristic in order to verify the eligibility of
merging two nodes vi and vj based on wd. The use of the
boundary/edge based weight wb is motivated from existing
techniques such as the OWT-UCM [36].

In order to understand the impact of wb from an exam-
ple, let us consider the regions in Figure 4(b), labeled as C,
1 and 2. All of them are valid candidates, because κC = 58,
κ1 = 81 and κ2 = 53. Boundary values are as follows:
wb(vC , v1) = 0.8, wb(vC , v2) = 0.7 and wb(v1, v2) = 0.03,
which signifies that the region C (region of interest) should
not be merged with the neighboring regions 1 and 2. On
the other hand, the regions 1 and 2 can be merged. Indeed,
that makes more sense, from visual observation, to merge
regions 1 and 2 (wall surfaces), rather than the region C
(picture) with any of these two regions. As a consequence,
the over-segmented walls, i.e., region 1 and 2, should be
merged into a unique region.

Now, in order to understand the impact of wd from an
example, let us consider the two regions v1 and v2 of Figure
4(a), labeled as 1 and 2. They are valid candidates, because
κ1 = 65 and κ2 = 67. Boundary value wb(v1, v2) = 0.15
means that they are eligible to merge. However, the dis-
similarity value wd(v1, v2) = 7 is more than the threshold
defined, which means that it does not make sense to merge
regions 1 and 2 as the difference of their associated surface
orientation is high. This is coherent with visual observation
as the back wall (1) and the ceiling (2) should not be merged.

We employ the plane inlier ratio in order to verify the
consistency [32] of a merged region. It is computed by first
fitting a plane to the 3D points belonging to the merged
region and then by computing the ratio of inliers and
outliers based on a threshold distance [7]. We employed
the widely used RANSAC [1] algorithm for the purpose of
plane fitting. Therefore, we define consistency among two
regions ri and rj as follows:

consistency(vi, vj) =

{
true, if pl-i-r(vi, vj) > thr,

false, otherwise.
(25)

where, thr is the threshold associated to the plane inlier ratio
pl-i-r. We set this threshold thr = 0.9 following the existing
methods, such as [7]. We compute pl-i-r by dividing the total
number of inliers (3D points fitted within a plane based on a
minimum/threshold distance) with the total number of 3D
points used to fit the plane.

In order to understand the impact of thr from an ex-
ample, let us consider the two regions vC and v2 in Figure
4(c), labeled as C and 2. They are valid candidates, because
κC = 11 and κ2 = 15. Boundary value wb(vC , v2) = 0.13
and dissimilarity value wd(vC , v2) = 0.8 means that they
are eligible to merge. However, pl-i-r(vC , v2) = 0.84 is less
than the threshold, means that there is an inconsistency be-
tween regions C and 2 in terms of planar property when we
try to merge them. This is coherent with visual observation
as these two regions belong to two different planes localized
at a different distance/depth.

Finally, we define the region merging predicate [32] Pij
based on: (a) candidacy (using Eq. (23)); (b) eligibility of
merging (using Eq. (24)) and (c) consistency of merged node
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(using Eq. (25)) as:

Pij =


true, if (a) candidacy(vj) = true; and

(b) eligibility(vi, vj) = true; and
(c) consistency(vi, vj) = true

false, otherwise.

(26)

Figure 5 illustrates the result of the region merging process
after an iterative merging of all RoIs processed. It shows
that, based on the predicate in Eq. 26, several regions are
merged, meanwhile others remain alone as they cannot be
merged with other regions (e.g., region number 4). The
dissimilarity based weight wd in condition-(b) is related to
the statistical properties computed from the regions. In the
absence of a boundary among two adjacent regions, one
may ignore this condition-(b) and expect similar results,
because the condition-(c) could also be used to detect the
ineligible regions. However, this will significantly increase
the computational time because the eligibility test (Eq. 24) is
significantly faster than applying the RANSAC method.

Fig. 5: Illustration of the region merging strategy for a single
region/node. (a) shows the RoI under process (surrounded
by a black boundary) in the original image. (b) shows the
RoI (labeled as C) and the neighboring regions (labeled with
numbers). (c) provides the values (N/A means not neces-
sary to compute) computed for the neighboring regions that
could be merged with the RoI. (d) shows the merged regions
after merging operation is completed for all RoIs.

The region update consists of providing an updated rep-
resentation of the merged region/node. It is applied imme-
diately after two nodes are identified for merging. We ac-
complish this by computing the corresponding information
(π, µ, κ and η) of the merged node from the expectation
parameters of the individual nodes. For a pair of nodes vi,
vj , first we compute the probability (πm) and expectation
parameter (ηm) of the merged node as [15], [16]:

πm = πi + πj and ηm =
πi ηi + πj ηj

πm
(27)

Next, we compute the mean (µm) and the concentration
(κm) of the merged node from ηm, see Section 3.2.3.

The region merging order [32] sorts the adjacent regions
that should be sequentially evaluated and merged. How-
ever, it changes dynamically after each merging occurs. We

define the merging order using dissimilarity based weights
wd among the adjacent nodes. The adjacent node vj which
has minimum wd(vi, vj) is considered to be evaluated first,
e.g., Fig. 5(c) shows that the region 3 should be evaluated
first. We use wd as the merging order constraint due to
its ability to provide a measure of dissimilarity among
regions. Such a measure is based on the mean direction
(µ) and the concentration (κ) of the surface normals of
the regions. Therefore, with this constraint, the neighboring
region, which is most similar w.r.t. µ and κ will be selected
as the first candidate to evaluate using Eq. (26).

Algorithm 2 provides the pseudo code for the proposed
region merging method. It begins with a set of regions
obtained by applying Algorithm 1 on an RGB-D image. As
an outcome, it provides the final segmentation result. In the
next Section, we evaluate the results obtained from the RGB-
D segmentation method detailed in this paper.

Algorithm 2: Region Merging algorithm.

Input: R = {ri}i=1,...,Z , G =
(V,E), κp, thb, thd and thr

Output: Final segmentation after region merging.
Compute candidacy(vi) for {vi}i=1,...,Z using Eq. (23);
Set i = 1 ;
foreach i do

if candidacy(vi) is true then
while no adjacent node of vi is left to check do

Sort the edges eij (defined with wd(vi, vj)
in Eq. 21) in an ascending order;
Evaluate each vj with the merging predicate
Pij (Eq. (26)) ;
if Pij is true then

Merge two nodes vi and vj and update
the RAG;
Start over again from sorting the
adjacents eij of the node vi.

else
Check the next node

end
end

end
end

4 RESULTS AND DISCUSSION

4.1 Experiments and Results

In this Section, we evaluate the proposed method on the
benchmark image database NYUD2 [8] which consists of
1449 indoor images with RGB, depth and ground-truth
information. However, we use the ground truth labels used
in [6], because they are corrected for the confused regions,
which are labeled as white in the original database. We con-
vert (using MATLAB function) the RGB color information
into L∗a∗b∗ (CIELAB space) color because of its perceptual
accuracy [24], [47]. For the depth images, we compute the
3D coordinates and surface normals using the toolbox of [9].

Our clustering method requires to set initial labels of the
pixels and the number of clusters k. We initialize it using
a combined k-means method with k = 20. In this k-means
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method, the total distance between the cluster center and
each observation is computed by adding the Euclidean (for
normalized color and 3D positions) and Cosine (for surface
normal) distances. For the region merging we empirically
set the thresholds as: κp = 5 to state that a region is planar,
thb = 0.2 to state that there is a boundary among two
regions, thd = 3 to state that there is a dissimilarity between
two regions and thr = 0.9 to determine the goodness of a
plane fitting.

We evaluate performance using standard benchmarks
[36] which are applied to compare the test and ground truth
segmentation: (1) variation of information (VoI), it measures
the distance between two segmentations in terms of their av-
erage conditional entropy; (2) boundary displacement error
(BDE) [37], it measures the average displacement between
the boundaries of two segmentations; (3) probability rand
index (PRI), it measures likelihood of a pair of pixels that
has same label; (4) Ground truth region covering (GTRC),
it measures the region overlap between ground truth and
test and (5) Boundary based F-measure (BFM), a boundary
measure based on precision-recall framework [36]. With
these criteria a segmentation is better if VoI and BDE are
smaller whereas PRI, GTRC and BFM are larger.

In our experiments, we obtain two sets of segmentation
results by using the Fisher and Watson distribution with
JCSD-RM. In general, the Fisher distribution is the funda-
mental choice for fitting the normals (subject to unambigu-
ity). In our previous work [39], we considered the Watson
distribution due to the ambiguity in the normals. In this
work, yet we consider the Watson distribution to study
its performance for unambiguous directions. Interestingly,
we observe that the results from both Fisher and Watson
distributions are almost equivalent w.r.t. the different mea-
sures and computation time. Therefore, in order to avoid
redundancy, in this section we do not explicitly present
the results of JCSD-RM based on the Watson distribution.
Besides, we compare the results with those obtained from
[39] and observe that the unambiguous normals used in
this new paper certainly improves the performance of the
overall segmentation task.

We begin the experiments by studying the sensitivity of
the proposed method w.r.t. the parameters (k, κp, thb, thd,
thr), which are presented in Table 1. The parameter k is re-
lated to the clustering method (Section 3.2) while κp, thb, thd
and thr are related to the region merging method (Section
3.3). From Table 1, using the standard deviation of the nor-
malized values of each evaluation metric, we can sort scores
in a descending order as: PRI(0.0057) < V oI(0.0191) <
GTRC(0.0198) < BDE(0.021). This means that the BDE
measure provides the most discriminating view w.r.t. the
parameters and according to it our choice of the threshold
values are justified (see Table 1 where the BDE scores
show that the chosen thresholds uniquely provide best
results). Moreover, such choice can also be justified using the
other measures. Additional comments about these heuristics
based parameters are:

• Number of clusters k is inversely related to the num-
ber of pixels in a cluster. In segmentation, a smaller k
causes a loss of details in the scene, i.e., an under-
segmentation, while higher k splits the scene into

more regions, i.e., an over-segmentation. Moreover,
the computation time of JCSD-RM is proportional to
k.

• We set κp based on the study we did on NYUD2
(see Appendix B for details) which reveals that pla-
nar surfaces can be characterized with concentration
κ >= 5. While, a lower κ value enables to merge
non-planar surfaces, a higher value may decrease the
probability to merge true planar surfaces.

• Following the OWT-UCM [36] method, we empiri-
cally set the value of thb.

• We also set thd empirically. In theory two regions
which have their normals oriented in the same direc-
tion should have a negligible Bregman divergence
value. However, the inaccurate computation of the
shape features and the presence of noise in the ac-
quired depth information often causes the Bregman
divergence to be high. From our experience with the
images of NYUD2, thd should be within the range
between 2 to 4.

• The parameter thr = 0.9 is set by following [7]. Our
results in Table 1 show further justification for this
value.

Next, we compare the proposed method JCSD-RM
(joint color-spatial-directional clustering and region merg-
ing) with several unsupervised RGB-D segmentation meth-
ods such as: RGB-D extension of OWT-UCM [9] (UCM-
RGBD), modified Graph Based segmentation [42] with
color-depth-normal (GBS-CDN), Geometry and Color Fu-
sion method [10] (GCF) and the Scene Parsing Method [7]
(SP). For the UCM-RGBD method we obtain best score
with threshold value 0.1. The best results from GBS-CDN
method are obtained by using σ = 0.4. To obtain the optimal
multiplier (λ) in GCF [10] we exploit the range 0.5 to 2.5. For
the SP method, we scaled the depth values (1/0.1 to 1/10 in
meters) to use author’s source code [7].

Table 2 presents (best appears as bold) the comparison
w.r.t. the average score of the benchmarks. Results show
that JCSD-RM performs best according to PRI, VoI, GTRC
and BDE. Moreover, it is comparable according to BFM.
The reason is that, BFM favors methods like UCM-RGBD
which is specialized in contours detection. On the other
hand, JCSD clustering method provides an approximation
(see e.g., Figure 4) of the object boundary which is often
coarse. This can be improved by developing a spatially con-
strained clustering method, such as [26]. A better boundary
approximation will subsequently improve the performance
of the RM method. Therefore, we can say that JCSD-RM
could be further improved by incorporating the boundary
information more efficiently.

Ground Truth Region Covering (GTRC) has been chosen as
one of most prominent measure of evaluation for segmen-
tation methods [6], [36]. In Table 1 and 2, we observed that
it provides discriminative score to evaluate and differentiate
among the different state-of-the-art methods. Fig. 6 provides
further analysis on NYUD2 [8] using histograms of GTRC
scores. We observe that, while the JCSD-RM and UCM-
RGBD covers quite similar regions in the histogram, others
are significantly different especially in the higher GTRC
region. Particularly, the JCSD-RM has lower percentage of
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VoI BDE PRI GTRC BFM
UCM-RGBD 2.35 9.11 0.90 0.57 0.63
GBS-CDN 2.32 13.23 0.81 0.49 0.53
GCF 3.09 14.23 0.84 0.35 0.42
SP 3.15 10.74 0.85 0.44 0.50
JCSD 2.68 10.00 0.87 0.46 0.46
JCSD-RM 2.2 8.97 0.91 0.6 0.61

TABLE 2: Comparison with the state of the art. Methods:
UCM-RGBD [9], GBS-CDN [42], GCF [10], SP [7], JCSD
and JCSD-RM (proposed). Boldface indicates the best re-
sults.

images with low GTRC score region and higher percentage
for the high GTRC score region.

Fig. 6: Histogram of GTRC [36] scores of different methods.

In order to conduct the experiments we used a 64 bit
machine with Intel Xenon CPU and 16 GB RAM. The JCSD-
RM method is implemented in MATLAB, which on average
takes 38 seconds, where 31 seconds for the clustering and 7
seconds for region merging. In contrast, UCM-RGBD (MAT-
LAB and C++) takes 110 seconds. Therefore, JCSD-RM is≈3
times faster7 than UCM-RGBD. Moreover, we believe that
implementing JCSD-RM in C++ will significantly reduce the
computation time.

To further analyze the computation time of JCSD-RM, we
run it for different image scales. Table 3 presents relevant
information from which we see that the reduction rate of
JCSD computation time (in sec) w.r.t. different scales is ap-
proximately equivalent to the reduction rate of the number
of pixels.

4.2 Discussion
Several segmentation results are illustrated in Fig 7. These
examples confirm that the segmentation from JCSD-RM (our
proposed) and UCM-RGBD are competitive. However, they
let us note several differences: (a) JCSD-RM is better in

7. To perform a fair comparison, we conducted this experiment with
half scaled image. This is due to the fact that the computational resource
did not support to run UCM-RGBD for the full scale image.

Scale 1 1/2 1/4 1/8
Num. pixels 239k 60k 15k 4k
JCSD (req. time in sec) 132 31 8 1.5
RM (req. time in sec) 42 7 1.4 0.33

TABLE 3: Computation time of JCSD-RM w.r.t. different
image scales.

providing the details of indoor scene structures whereas
UCM-RGBD loses them sometimes (see ex. rows 3 to 5);
(b) UCM-RGBD provides better estimation of the object
boundaries whereas JCSD-RM gives a rough boundary and
(c) UCM-RGBD shows more sensitivity on color whereas
JCSD-RM is more sensitive on directions. The GBS-CDN
method provides visually pleasing results, however it often
tends to loose details (see ex. rows 1 to 4) of the scene
structure (e.g., merges wall with ceiling). Results from the
SP method seems to be severely sensitive to the varying
illumination and rough changes in surfaces (see ex. row 3).
The GCF method performs over-segmentation (see ex. rows
1, 3, and rows 5-7) or under-segmentation (see ex. rows 2
and 4), which is a drawback of such algorithm as it is often
unable to estimate the correct number of clusters in real
data. Moreover, the GCF method often fails to discriminate
major surface orientations (see ex. rows 1, 2 and 4) as it does
not consider the direction of surfaces (normals).

Now, in Fig. 8 let us focus and analyze some segmenta-
tion examples which have lower (less than 0.4) GTRC score.
Average GTRC score of JCSD-RM is 0.6 (see Table 1 and 2).
Results show several cases for low scores:

• JCSD-RM method tends to provide more details
(over-segment) while the ground truth keeps mini-
mum details, see ex. columns 1 to 3, and 5 in Fig.
8.

• JCSD-RM method does not provide enough details
(under-segment) while the ground truth does, see ex.
columns 4 and 6 in Fig. 8. This is a very difficult
case, as looking at the images we can see that the
under-segmented regions have similar color, depth
and normal which in a general case is difficult to
segment without additional knowledge.

• Example column 7 shows a characteristic example of
JCSD-RM, which is to be biased on surface normals.
This causes the furniture (sofa) to be segmented
into several parts. Perhaps this can be improved by
incorporating color based merging heuristics in our
region merging method.

Now, let us focus particularly on the JCSD method,
which is based on a statistical image generation model
defined from the naı̈ve Bayes assumption [12], [13]. Com-
puter vision or data analysis experts may question about
the assumption of independence between the color, depth
and normal. While we partially agree with the experts, in a
first step we made this assumption because of two reasons:
(a) propose a simplified method to understand the under-
lying grouping mechanisms of different image features in a
combined fashion and (b) to empirically verify (in a second
step) the relevance of this assumption in an unsupervised
context.
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VoI BDE PRI GTRC
JCSD 2.68 10.00 0.87 0.46

All GMM 3.01 11.04 0.87 0.43
PCA GMM 3.94 12.01 0.85 0.34
Ind GMM 3.22 11.04 0.86 0.41
JCSD+RM 2.21 8.97 0.91 0.60

All GMM + RM 2.41 9.28 0.90 0.58
PCA GMM+RM 2.85 10.25 0.88 0.50
Ind GMM+RM 2.62 10.15 0.89 0.53

TABLE 4: Comparison among different image models and
the clustering results with/without the region merging
method. Boldface indicates the best results among similar
methods (with and without RM).

Table 4 provides results w.r.t. several alternative models.
First, we consider a unified model, called All GMM, that fits
a Gaussian Mixture Model (GMM) for all features together,
i.e., no independence among features. Results show that,
while JCSD is same with All GMM only for PRI measure, it
is better w.r.t. the VoI, BDE and GTRC measures. In terms of
average computing time, JCSD takes 31 sec and All GMM
takes 45 sec, i.e., JCSD is 1.45 times faster. Moreover, in
numerous images, All GMM fails due to the ill-conditioned
covariance matrix. Based on this observation, we consider
a different model, called PCA GMM, which reduces the
features using PCA method by considering 95% variances
of the data. On average the reduced feature dimension
was 7. Results show that, while the performance decreases
remarkably, there was no potential gain on computational
time. From these results, we can see that our simplified
image model is better w.r.t. the standard measures and
computation time.

Another JCSD clustering related issue is the assump-
tion of a known maximum number of clusters kmax. In
the context of mixture model based clustering, numerous
methods exist to automatically select the number of clusters.
For example, [21] used the Bayesian Information Criteria
(BIC), [22] employed the Minimum Message Length (MML),
[20] proposed the Integrated Completed Likelihood (ICL)
and [24] applied Φβ criterion. Besides these criteria, in our
previous work [15], we proposed a modification of the slope
heuristic based method. For this work, we developed and
experimented (not presented in this paper) all of the above-
mentioned methods and observed a large number of over-
segmented and under-segmented images. We realized that,
while it is difficult to improve an under-segmentation, it
is easier to improve an over-segmentation, e.g., by using a
region merging method. Therefore, we decided to avoid the
idea of automatic number of clusters selection and use the
notion of a predefined kmax.

Now, let us focus on a different concern related to the use
of directional (Fisher or Watson) distribution for the surface
normals. An expert could easily argue that the Gaussian dis-
tribution can be used in the place of directional distribution.
Although, in our previous work [15] on clustering normals,
we have shown that directional distribution is more appro-
priate than Gaussian distribution, here we provide further
verification within the context of joint clustering with inde-
pendent assumption. We consider JCSD type model, called
Ind GMM, which replaces the directional distribution with

the Gaussian distribution. Results show that, JCSD is better
w.r.t. all evaluation measures, which further demonstrates
the efficiency and relevance of our proposed image model.
Interestingly, we observe that Ind GMM provides slightly
lower performance than All GMM, which reveals that the
independence assumption is context dependent and does
not necessarily provide better results if the unsupervised
classifier (here GMM) remains same and may provide better
results if we understand the heterogeneous (i.e., combina-
tion of different types of features) data and build a model to
handle them appropriately.

Comparing JCSD with JCSD-RM (Table 2 and 4), we can
decompose the contributions of clustering and region merging
in JCSD-RM. We see that region merging improves clustering
output from 0.46 to 0.6 (30.43%) in GTRC. We believe that
JCSD-RM can be improved and extended further in the
following ways:

• Including a pre-processing stage, which is necessary
because the shape features are often computed inac-
curately due to noise and quantization [45]. More-
over, we observed significant noise in NYUD2 color
images which were captured especially in low light
condition. A method like Scene-SIRFS (shape, illu-
mination and reflectance from shading) [45], which
recover the intrinsic scene properties, can be used for
pre-processing purpose.

• Enhancing the clustering method by adding contour
information [36] efficiently. Additionally, we may
consider spatially constrained model such as [26]
which incorporates boundary information by adding
spatially varying constraints in the clustering task.

• Enhancing the region merging method with color in-
formation. To this aim, we can exploit the estimated
reflectance information (using [45]), such that the
varying illumination is discounted.

5 CONCLUSION

We proposed an unsupervised indoor RGB-D scene segmen-
tation method. Our method is based on a statistical image
generation model, which provides a theoretical basis for
fusing different cues (e.g., color and depth) of an image.
In order to cluster w.r.t. the image model, we developed
an efficient joint color-spatial-directional clustering method
based on Bregman divergence. Additionally, we proposed
a region merging method that exploits the planar statistics
of the image regions. We evaluated the proposed method
with a database of benchmark RGB-D images and using
widely accepted evaluation metrics. Results show that our
method is competitive w.r.t. the state of the art and opens
interesting perspectives for fusing color and geometry. We
foresee several possible extensions of our method: more
complex image model and clustering with additional fea-
tures, region merging with additional hypothesis based on
color. Moreover, we believe that the methodology proposed
in this paper is equally applicable and extendable for other
complex tasks, such as joint image-speech data analysis.
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APPENDIX A
BREGMAN DIVERGENCE (BD) - AN ALTERNATIVE
FORMULATION AND RELATIONSHIP

A multivariate probability density function f(x|θ) belongs
to the regular exponential family if it has the following form
[17], [30]:

f (x|θ) = exp (〈t(x), θ)〉 − F (θ) + k(x)) (28)

Here, t(x) is the sufficient statistics, θ is the natural parame-
ters, F (θ) is the log normalizing function, k(x) is the carrier
measure and < ., . > is the inner product.

The expectation of the sufficient statistics t(x) is called
the expectation parameter, η = E[t(x)]. There exists a one-
to-one correspondence between expectation (η) and natural
(θ) parameters, which exhibits dual relationships among the
parameters and functions as [30]:

η = ∇F (θ) and θ = (∇F )−1(η) (29)

and
G(η) =

〈
(∇F )−1(η), η

〉
− F

(
(∇F )−1(η)

)
(30)

Here, ∇F is the gradient of F . G(.) is the Legendre dual of
the log normalizing function F (.). See details in Section 3.2
of [30].

For a strictly convex function F (.), Bregman Divergence,
DF (θ1, θ2) can be formally defined as [30]:

DF (θ1, θ2) = F (θ1)− F (θ2)− 〈θ1 − θ2,∇F (θ2)〉 (31)

DF (θ1, θ2) measures the distance using the tangent function
at θ2 to approximate F . This can be seen as the distance
between the first order Taylor approximation to F at θ2 and
the function evaluated at θ1 [17]. The one-to-one correspon-
dence in Eq. (29) provides the dual form of BD (of Eq. (31))
as:

DG (η1, η2) = G(η1)−G(η2)− 〈η1 − η2,∇G(η2)〉 (32)

Due to the bijection between BD and the Exponential
families, Eq. (31) and (32) can be used to measure the
dissimilarity between distributions of the same family. The
bijection is expressed as: f(x|θ) = exp(−DG(t(x), η))JG(x)
where JG is a uniquely determined function. We used this
formulation in Eq. (3) of this paper. For more details, see
Theorem 3 of [30].

Bregman divergences (BD) generalize the squared Eu-
cilidean distance, Mahalanobis distance, Kullback-Leibler
divergence, Itakura-Saito divergence etc. See Table 1 of [30]
and [38] for a list and corresponding DF (., .). Besides, BD
has the following interesting properties [38]:

• Non-negativity: The strict convexity of F implies
that, for any θ1 and θ2, DF (θ1, θ2) ≥ 0 and
DF (θ1, θ2) = 0 if and only if θ1 = θ2.

• Convexity: Function DF (θ1, θ2) is convex in its first
argument θ1 but not necessarily in the second argu-
ment θ2.

• Linearity: BD is a linear operator, i.e., for any two
strictly convex functions F1 and F2 and λ ≥ 0:

DF1+λF2(θ1, θ2) = DF1(θ1, θ2) + λ DF2(θ1, θ2)

APPENDIX B
STUDY OF PLANAR STATISTICS

For this study we applied clustering (with Fisher Mixture
Model [15]) on surface normals of each image of the NYU
Depth database V2 (NYUD2) [8]. Fig. 9 illustrates the his-
tograms of κ (concentration of surface normals) values for
planar and non-planar surfaces. These histograms have been
obtained from an analysis of four category of segmented
surfaces: (1) planar; (2) non-planar ; (3) planar + non-
planar and (d) unknown (category not sure). We use the
NYUD2 dataset as it provides labeled 3D images of indoor
scenes. A total of 5410 RoIs were analyzed, among them
2559 represented planar surface meanwhile 793 represented
non-planar surfaces. Then we computed the histogram of
κ values for all these RoIs. We observed that 99.88% of
planar surfaces has κ > 5 and 99.5% of non-planar surfaces
has κ < 5. This heuristically shows that the assumption
about planar statistics used in Eq. (23), based on κ values, is
appropriate for region merging.

Fig. 9: Histogram of κ values for planar and non-planar
surfaces.
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{k, 5, 0.2, 3, 0.9} {20, κp, 0.2, 3, 0.9} {20, 5, thb, 3, 0.9} {20, 5, 0.2, thd, 0.9} {20, 5, 0.2, 3, thr}
15 20 25 2 5 8 0.1 0.2 0.3 2 3 4 0.85 0.9 0.95

VoI 2.17 2.20 2.28 2.21 2.20 2.27 2.34 2.20 2.21 2.22 2.20 2.20 2.20 2.20 2.21
BDE 9.4 8.97 8.99 9.65 8.97 9.08 9.25 8.97 9.38 9.11 8.97 9.04 9.03 8.97 9.03
PRI 0.90 0.91 0.90 0.90 0.91 0.90 0.90 0.91 0.90 0.91 0.91 0.91 0.91 0.91 0.91

GTRC 0.60 0.60 0.59 0.58 0.60 0.58 0.56 0.60 0.59 0.59 0.60 0.60 0.60 0.60 0.60

TABLE 1: Sensitivity of JCSD-RM with respect to the parameters {k, κp, thb, thd, thr}.

Fig. 7: Segmentation examples (from top to bottom) on NYU RGB-D database (NYUD2). (a) Input Color image (b) Input
Depth image (c) Ground truth (d) JCSD-RM (our proposed) (e) UCM-RGBD [9] (f) GBS-CDN [42] (g) SP [7] and (h) GCF [10].

Fig. 8: Segmentation examples with lower GTRC scores (less than 0.4). (a) Input Color Image (b) Ground Truth Segmentation
(c) Segmentation with the JCSD-RM method and (d) GTRC score.
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