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Histogram of Oriented Principal Components
for Cross-View Action Recognition

Hossein Rahmani, Arif Mahmood, Du Huynh, Member, IEEE, and Ajmal Mian, Member, IEEE

Abstract—Existing techniques for 3D action recognition are sensitive to viewpoint variations because they extract features from
depth images which are viewpoint dependent. In contrast, we directly process pointclouds for cross-view action recognition from
unknown and unseen views. We propose the Histogram of Oriented Principal Components (HOPC) descriptor that is robust to
noise, viewpoint, scale and action speed variations. At a 3D point, HOPC is computed by projecting the three scaled eigenvectors
of the pointcloud within its local spatio-temporal support volume onto the vertices of a regular dodecahedron. HOPC is also used
for the detection of Spatio-Temporal Keypoints (STK) in 3D pointcloud sequences so that view-invariant STK descriptors (or Local
HOPC descriptors) at these key locations only are used for action recognition. We also propose a global descriptor computed
from the normalized spatio-temporal distribution of STKs in 4-D, which we refer to as STK-D. We have evaluated the performance
of our proposed descriptors against nine existing techniques on two cross-view and three single-view human action recognition
datasets. The Experimental results show that our techniques provide significant improvement over state-of-the-art methods.

Index Terms—Spatio-temporal keypoint, pointcloud, view invariance.
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1 INTRODUCTION

Human action recognition has numerous applications in
smart surveillance, human-computer interaction, sports and
elderly care [1], [2]. Kinect like depth cameras have become
popular for this task because depth sequences are somewhat
immune to variations in illumination, clothing color and
texture. However, the presence of occlusions, sensor noise,
variations in action execution speed and most importantly
sensor viewpoint still make action recognition challenging.

Designing an efficient representation for 3D video se-
quences is an important task for many computer vision
problems. Most existing techniques (e.g. [3]–[7]) treat depth
sequences similar to conventional videos and use color-
based action recognition representations. However, simple
extensions of color based action recognition techniques
to depth sequences are not optimal [8], [9]. Instead of
processing depth sequences, richer geometric features can
be extracted from 3D pointcloud videos.

Action recognition research [4]–[14] has mainly focused
on actions captured from a fixed viewpoint. However, a
practical human action recognition system should be able
to recognize actions from different views. Some view-
invariant approaches [15]–[28] have also been proposed
for cross-view action recognition where recognition is
performed from an unknown and/or unseen view. These
approaches generally rely on geometric constraints [15]–
[19], view-invariant features [20]–[26], and human body
joint tracking [27], [28]. More recent approaches transfer
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Fig. 1: 3D pointcloud sequences of a subject performing the
holding head action. Notice how the depth values (color) change
significantly with viewpoint.

features across views [29]–[36]. However, these methods
do not perform as good as fixed view action recognition.
The majority of cross-view action recognition research has
focused on color videos or skeleton data. Cross-view action
recognition from 3D videos remains an under explored
area. We believe that cross-view action recognition from
3D pointcloud videos holds more promise because view-
invariant features can be extracted from such videos.

We approach the cross-view action recognition problem
from a novel perspective by directly processing the 3D
pointcloud sequences (Fig. 1). We extend our previous
research [37] where we proposed a new descriptor, the His-
togram of Oriented Principal Components (HOPC), to cap-
ture the local geometric characteristics around each point in
a 3D pointcloud sequence. Based on HOPC, we propose a
Spatio-Temporal Keypoint (STK) detection method so that
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view-invariant Local HOPC descriptors are extracted from
the most discriminative points within a sequence of 3D
pointclouds. We also propose another descriptor, STK-D,
which is computed from the spatio-temporal distribution
of the STKs. Since Local HOPC and STK-D capture
complementary information, their combination significantly
improves the cross-view action recognition accuracy over
existing state-of-the-art.

To achieve view invariance for HOPC, all points within
an adaptable spatio-temporal support volume of each STK
are aligned along the eigenvectors of its spatial support
volume. In other words, the spatio-temporal support volume
is aligned in a local object centered coordinate basis.
Thus, HOPC descriptor extracted from this aligned support
volume is view-invariant (Fig. 2). Note that this strategy
does not necessarity work for other descriptors as shown
in Fig. 2. As humans often perform the same action at dif-
ferent speeds, for speed invariance, we propose automatic
temporal scale selection that minimizes the eigenratios over
a varying temporal window size independently at each STK.

Our four main contributions are summarized as follows:
Firstly, we propose the HOPC descriptor which encodes
shape and motion in a robust way. Secondly, we propose
a view-invariant Spatio-Temporal Keypoint (STK) detector
that is integrated with HOPC in the sense that it detects
points that are suitable for HOPC. Thirdly, we propose
a global action descriptor based on the spatio-temporal
distribution of STKs. Finally, we propose a method for
viewpoint and speed invariant action recognition. Moreover,
we introduce a new UWA3D Multiview Activity II dataset
in addition to [37] which contains 30 actions performed
by 10 subjects from four different views. This dataset is
larger in number of action classes than existing 3D action
datasets.

The proposed descriptors have been evaluated on two
multi-view and three single-view human action recogni-
tion datasets. The former includes the Northwestern-UCLA
Multiview Action3D [29] and the UWA3D Multiview Ac-
tivity II datasets whereas the latter includes MSR Action3D
[38], MSR Daily Activity3D [39], and MSR Gesture3D
[40] datasets. Our extensive experimental results show
that the proposed descriptors achieved significantly better
accuracy compared to the nine existing state-of-the-art
techniques [3], [9], [10], [27]–[29], [36], [59], [60].

2 RELATED WORK

Based on the data type, action recognition methods can
be divided into three categories including color-based,
skeleton-based and depth-based methods. In color videos, a
significant portion of the existing work has been proposed
for single-view action recognition, where the training and
test videos are captured from the same view. In order to
recognize actions across different views, one approach is
to collect data from all possible views and train a separate
classifier for each view. However, this approach does not
scale well due to the requirement of a large number of
labeled samples for each view and it becomes infeasible as

Fig. 2: After orientation normalization, the HOPC descriptors
are similar for the two views. However, the HON and HOG
descriptors are still different.

the number of action categories increases. To overcome this
problem, some techniques infer 3D scene structure and use
geometric transformations to achieve view invariance [15]–
[19]. These methods critically rely on accurate detection of
the body joints and contours, which are still open problems
in real-world settings. Other methods focus on spatio-
temporal features which are inherently view-invariant [20]–
[26]. However, these methods have limitations as some of
them require access to mocap data while others compromise
discriminative power to achieve view invariance [41].

More recently, knowledge transfer based methods [29]–
[36] have become popular. These methods find a view
independent latent space in which features extracted from
different views are directly comparable. Such methods are
either not applicable or perform poorly when the recog-
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nition is performed on videos from unknown and, more
importantly, from unseen views. To overcome this problem,
Wang et al. [29] proposed cross-view action representation
by exploiting the compositional structure in spatio-temporal
patterns and geometrical relations among views. Although
their method can be applied to action recognition from
unknown and unseen views, it requires 3D skeleton data
for training which is not always available. Our proposed
approach also falls in this category except that it uses 3D
pointcloud sequences and does not require skeleton data.
To the best of our knowledge, we are the first to propose
cross-view action recognition using 3D pointcloud videos.

In skeleton-based action recognition methods, multi-
camera motion capture (MoCap) systems [42] have been
used for human action recognition. However, such spe-
cialized equipment is marker-based and expensive. On the
other hand, some other methods [13], [14], [27], [28],
[39], [59] use the human joint positions extracted by
the OpenNI tracking framework [43]. For example, Yang
and Tian [14] used pairwise 3D joint position differences
in each frame and temporal differences across frames to
represent an action. Since 3D joints cannot capture all the
discriminative information, the action recognition accuracy
is compromised. Wang et al. [39] extended this approach
by computing the histogram of occupancy patterns of a
fixed region around each joint in each frame. In order
to make this method more robust to viewpoint variations,
they proposed a global orientation normalization using the
skeleton data [28]. In this method, a plane is fitted to the
joints and a rotation matrix is computed to rotate this plane
to the XY -plane. However, this method is only applicable
if the subject is in an upright pose. Moreover, when the
subject is in a non-frontal view, the joint positions may have
large errors, making the normalization process unreliable.
In contrast, our proposed orientation normalization method
does not need the joint positions and can efficiently work in
non-frontal as well as non upright positions. In addition to
that, as our method performs local orientation normalization
at each STK, it is more robust than the single global
normalization proposed by [28].

Many of the existing depth-based action recognition
methods use global features such as silhouettes and space-
time volume information. For example, Li et al. [38]
sampled boundary pixels from 2D silhouettes as a bag of
features. Yang et al. [7] added temporal derivatives of 2D
projections to get Depth Motion Maps (DMM). Vieira et
al. [44] computed silhouettes in 3D by using the space-
time occupancy patterns. Oreifej and Liu [9] extended
histogram of oriented 3D normals [45] to 4D by adding
the time derivative. Recently, Yang and Tian [10] extended
HON4D by concatenating the 4D normals in the local
neighbourhood of each pixel as its descriptor. Our proposed
HOPC descriptor is more informative than HON4D [37]
because it captures the spread of data in three principal
directions. Holistic methods may fail in scenarios where
the subject significantly changes her/his spatial position [9],
[10]. Some other methods use local features where a set
of interest points are extracted from the depth sequence

and a local feature descriptor is computed for each interest
point. For example, Cheng et al. [3] used the Cuboid
interest point detector [46] and proposed a Comparative
Coding Descriptor (CCD). Due to the presence of noise
in depth sequences, simply extending color-based interest
point detectors, such as Cuboid [47], 3D Hessian [48] and
3D Harris [46], degrades the efficiency and effectiveness
of these detectors as most interest points are detected at
irrelevant locations [8], [9].

Motion trajectory based action recognition methods [20],
[49]–[51] are also not reliable in depth sequences [9].
Therefore, recent depth based action recognition methods
resorted to alternative ways to extract more reliable interest
points. Wang et al. [40] proposed Haar features to be
extracted from each random subvolume. Xia and Aggarwal
[8] proposed a filtering method to extract spatio-temporal
interest points. Their approach fails when the action exe-
cution speed is faster than the flip of the signal caused by
sensor noise. Moreover, both techniques are not robust to
viewpoint variations.

3 HOPC: HISTOGRAM OF ORIENTED PRIN-
CIPAL COMPONENTS

HOPC is extracted at each point within a sequence of 3D
pointclouds Q “ seqpQ1, ¨ ¨ ¨ , Qt, ¨ ¨ ¨ , Qnf q, where nf
denotes the number of 3D pointclouds in the sequence
and Qt is the 3D pointcloud at time t. Consider a point
p “ pxt, yt, ztq

J in Qt. We define two different support
volumes for p: a spatial support volume and a spatio-
temporal support volume. The spatial support volume of
p, denoted by ΩSppq, contains the 3D points in Qt that
are in a sphere of radius r centered at p (Fig. 3(b)). To
define the spatio-temporal support volume of p, denoted
by ΩSTppq, we merge the sequence of pointclouds in the
small time interval rt´τ, t`τ s. The 3D points which are in
a sphere of radius r centered at p are considered as ΩSTppq
(Fig. 3(c)).

The covariance matrix Cα of the points q P Ωαppq, α P
tST, Su is given by:

Cα “
1

np

ÿ

qPΩαppq

pq´ µqpq´ µq
J
, (1)

where
µ “

1

np

ÿ

qPΩαppq

q,

and np “ |Ωαppq| denotes the number of points in the
support volume of p. Performing eigen decomposition on
the covariance matrix Cα gives us:

V αEαV αJ “ Cα, (2)

where Eα is a diagonal matrix containing the eigenvalues
λα1 ě λα2 ě λα3 ě 0 of Cα and V α “ rvα1 vα2 vα3 s contains
the three corresponding orthonormal eigenvectors.

The HOPC descriptor is built by projecting each eigen-
vector onto m directions obtained from the vertices of a
regular polyhedron. In particular, we consider a regular
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Fig. 3: Spatio Temporal Keypoint (STK) detection. (a) A 3D
pointcloud sequence corresponding to the holding head action,
(b) the spatial support volume of a particular point p, (c) the
spatio-temporal support volume of p, (d) the HOPC descriptors,
(e) STK detection.

dodecahedron which is composed of m “ 20 vertices,
each of which corresponds to a histogram bin. Let tuiumi“1

be the vertices of a regular dodecahedron and let U “

ru1,u2, ¨ ¨ ¨ ,ums P R
3̂ m. For a regular dodecahedron

centered at the origin, these vertices are given as:

‚ 8 vertices from p˘1,˘1,˘1q
‚ 4 vertices from p0,˘ϕ´1,˘ϕq
‚ 4 vertices from p˘ϕ´1,˘ϕ, 0q
‚ 4 vertices from p˘ϕ, 0,˘ϕ´1q

where ϕ “ p1`
?

5q{2 is the golden ratio.
Each eigenvector is a direction in the 3D space represent-

ing the distribution of point positions in the support volume.

Therefore, its orientation has a 180˝ ambiguity. To resolve
this orientation ambiguity, we consider the distribution of
point vector directions and their magnitudes within the
support volume of p. That is, for each point q P Ωαppq,
we compute o “ q´p and we determine the sign of each
eigenvector vαj as follows:

vαj “ vαj .sign

¨

˝

ÿ

qPΩαppq

signpoJvαj qpo
Jvvj q

2

˛

‚, (3)

where the ‘sign’ function returns the sign of an input
number. Note that the squared projection operation ensures
that small projected values, which are often due to noise,
are suppressed. If the signs of eigenvectors vα1 ,v

α
2 , and vα3

disagree, i.e. vα1 ˆ vα2 ‰ vα3 , we switch the sign of the
eigenvector whose |

ř

qPΩαppq signpoJvαj qpo
Jvαj q

2| value
is the smallest. We then project each eigenvector vαj onto
U to give us:

bαj “ UJvαj P R
m, for 1 ď j ď 3. (4)

If vαj perfectly aligns with ui P U , it should vote into
only the ith bin. However, as the ui’s are not orthogonal
to each other, bαj will have non-zero projection values in
other bins as well. To overcome this effect, we quantize the
projection values of bαj by imposing a threshold value ψ
computed as follows:

ψ “ uJk ul “ ϕ` ϕ´1, for uk,ul P U, (5)

where uk and ul are any two neighbouring vectors in U .
The quantized vector is then given by

b̂αj pzq “

"

0 if bαj pzq ď ψ
bαj pzq ´ ψ otherwise,

where 1 ď z ď m denotes a bin number. For the
jth eigenvector, we define hαj to be b̂αj scaled by their
corresponding eigenvalue λαj :

hαj “
λαj ¨ b̂

α
j

||b̂αj ||2
P Rm, for 1 ď j ď 3. (6)

We concatenate the histograms of oriented principal com-
ponents of the three eigenvectors in decreasing order of
magnitudes of their associated eigenvalues to form a de-
scriptor for point p:

hαp “
”

hα1
J hα2

J hα3
J
ı

P R3m. (7)

The spatial HOPC descriptor hS
p encodes the shape of the

support volume around p. On the other hand, the spatio-
temporal HOPC descriptor hST

p encodes information from
both shape and motion. Since the smallest principal compo-
nent of the local surface is the total least squares estimate
of the surface normal [52], the surface normals encoded
in our descriptor are more robust to noise than gradient-
based surface normals used in [9], [45]. Moreover, HOPC
additionally encodes the first two eigenvectors which are
more dominant compared to the third one. The computation
of the spatial and spatio-temporal HOPC descriptors is
shown in Fig. 3(d).
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4 SPATIO-TEMPORAL KEYPOINT (STK)
DETECTION

The aim of the STK detection is to find points in 3D
pointcloud action sequences that satisfy three constraints:
‚ Repeatability: STKs should be identified with high

repeatability in different samples of the same action
in the presence of noise and viewpoint changes.

‚ Uniqueness: A unique coordinate basis should be
obtained from the neighbourhood of the STKs for the
purpose of view-invariant description.

‚ Significant spatio-temporal variation: STKs should
be detected where the neighbourhood has significant
space-time variations.

To achieve these aims, we propose an STK detection
technique which has high repeatability, uniqueness and
detects points where space-time variation is significant.
Consider a point p “ pxt, yt, ztqJ within a sequence of
3D pointclouds. We perform eigen decomposition on the
spatial and the spatio-temporal covariance matrices CS and
CST as described in Section 3. For the first two constraints,
we define the following ratios:

δS
12 “

λS
1

λS
2

, δS
23 “

λS
2

λS
3

, δST
12 “

λST
1

λST
2

, δST
23 “

λST
2

λST
3

. (8)

For 3D symmetrical surfaces, the ratio between the first
two eigenvalues or last two eigenvalues are very close to 1.
The principal components at such locations are, therefore,
ambiguous. Thus, for a point to be qualified as a potential
keypoint, the condition

tδS12, δ
S
23, δ

ST
12 , δ

ST
23u ą θSTK “ 1` εSTK, (9)

must be satisfied, where εSTK is a small margin to cater
for noise. This process eliminates ambiguous points and
produces a subset of candidate keypoints which can be
described uniquely in a local coordinate basis.

Recall that hS
p in (7) represents the spatial HOPC and

hST
p the spatio-temporal HOPC at point p. For the third

constraint, a quality factor ηp is computed for all candidate
keypoints:

ηp “
1

2

3m
ÿ

i“1

phS
ppiq ´ hST

p piqq
2

phS
ppiq ` hST

p piqq
. (10)

When hS
p “ hST

p , the quality factor is at the minimum
value of ηp “ 0 which basically means that the candidate
point p has a stationary spatio-temporal support volume. On
the other hand, significant variations in space-time change
the direction and magnitude of spatio-temporal eigenvectors
with respect to the spatial eigenvectors. Thus, ηp is large
when a significant motion occurs in the spatio-temporal
support volume.

STKs that are in the vicinity of each other are similar
as they describe more or less the same local support
volume. We perform a non-maximum suppression to keep a
minimum distance between STKs. We define radius r1 (with
r1 ă r) and time interval rt´τ 1, t`τ 1s (with τ 1 ď τ ) where t
is the frame number being considered. The candidate STKs

are firstly sorted according to their quality values. Starting
from the highest quality STK, all candidate STKs falling
within r1 and τ 1 from it are discarded. The same process
is repeated on the remaining candidate STKs until only
a desired number, nk, of STKs are left. Figure. 3 shows
the steps of our STK detection algorithm. Figure. 4 shows
the extracted STKs from four different views for a 3D
pointcloud sequence corresponding to the two hand waving
action.

5 VIEW-INVARIANT STK DESCRIPTION
(LOCAL HOPC)
The HOPC descriptor discussed in Section 3 is not view-
invariant yet. We compute Local HOPC only at the STKs
since it is possible to normalize the orientation of the local
region only at these points i.e. a unique local coordinate
basis can only be defined at these points. We perform ori-
entation normalization at each STK using the eigenvectors
of its spatial covariance matrix CS (see Section 3). We
consider the eigenvectors V S “ rvS

1 vS
2 vS

3s of CS as a
local object centered coordinate basis. Note that the matrix
V S is orthonormal and can be used as a valid 3D rotation
matrix, since:

vS
i .v

S
j “

"

1 if i “ j
0 if i ‰ j.

(11)

We apply the 3D rotation R “ V SJ to all the mean-
centered points tqiu

np
i“1 within the spatio-temporal support

volume of p, ΩSTppq, and bring them to a canonical
coordinate system:

q1i “ Rqi, for i “ 1, ¨ ¨ ¨ , np, (12)

where q1i denotes the rotated point in the local object
centered coordinate basis. Note that the first, second,
and third principal components are now aligned with the
X,Y , and Z axes of the Cartesian coordinates. Since the
same STKs in two different views have the same canonical
representation, we can do cross-view keypoint matching
(Fig. 2). It is important to note that our STK detection
algorithm has already pruned ambiguous points to make
the local object centered coordinate basis unique, i.e. no
two eigenvectors have the same eigenvalues. Therefore, the
eigenvector with the maximum eigenvalue will always map
to the X axis, the second largest to the Y axis and the
smallest to the Z axis.

After the orientation normalization given in (12), for
each point q1 P ΩST ppq, we inspect the eigenratios δST

12

and δST
23 (Eq. (9)) computed using neighbouring points of

q1 to determine how the HOPC descriptor at q1 should
contribute to the STK descriptor computation of p. When
δST
12 and δST

23 are both larger than θl “ 1 ` εl, where εl is
a small margin, all the eigenvectors are uniquely defined
and, therefore, can all contribute to the STK descriptor.
When δST

12 ď θl and δST
23 ą θl, the first two eigenvectors

are ambiguous and so only the third eigenvector should
contribute to the STK descriptor. A similar argument
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Fig. 4: STKs (shown in red) projected onto XY Z dimensions of
all points of a 3D pointcloud sequence corresponding to the two
hand waving action. Four different views are shown. Note that
the distribution of STKs encodes the action globally as they are
detected only where movement is performed.

applies to the case where δST
12 ą θl and δST

23 ď θl. When
both δST

12 ď θl and δST
23 ď θl, then q1 has no contribution

to the descriptor computation. In summary, the following
three criteria need to be considered for the construction of
hSTq1 :

1) If δST
12 ą θl & δST

23 ą θl, hST
q1 “ rhST

1
J

hST
2
J

hST
3
J
sJ;

2) If δST
12 ď θl & δST

23 ą θl, hST
q1 “ r0J 0J hST

3
J
sJ;

3) If δST
12 ą θl & δST

23 ď θl, hST
q1 “ rhST

1
J

0J 0JsJ.

Next, the orientation normalized spatio-temporal support
volume around the STK p is partitioned into γ “ nxˆnyˆ
nt spatio-temporal cells along the X , Y , and T dimensions.
We use cs,where s “ 1 ¨ ¨ ¨ γ, to denote the sth cell. The
cell descriptor hcs is computed by accumulating the hSTq1 ’s

hcs “
ÿ

q1Pcs

hSTq1 , (13)

and then normalizing

hcs Ð
hcs

||hcs ||2
. (14)

We define the final view-invariant descriptor, hv , of STK
p to be the concatenation of hcs obtained from all the cells:

hv “ rh
J
c1 hJc2 ¨ ¨ ¨ h

J
cγ s
J
. (15)

The above steps are repeated for all the STKs. Thus,
the STK descriptors encode view-invariant spatio-temporal
patterns that will be used for action description.

6 ACTION DESCRIPTION

6.1 Bag of STK Descriptors
We represent each sequence of 3D pointclouds by a set
of STK descriptors. Inspired by the successful bag-of-
words approach for object recognition, we build a code-
book by clustering the STK descriptors (hv) with the K-
means algorithm. Clustering is performed over all action
descriptors extracted from all training view samples. Thus,
the codebook that we learn is not single action or single
view specific. For a fair evaluation, we do not use the target
test views in codebook learning or any other training task.
We consider each cluster as a codeword that represents

a specific spatio-temporal pattern shared by the STKs
in that cluster. One codeword is assigned to each STK
descriptor based on the minimum Euclidean distance. The
histogram of codewords is used as an action descriptor. For
classification, we use an SVM classifier with the histogram
intersection kernel [53].

6.2 Mining Discriminative Codebooks

Not all codewords have the same level of discrimination.
Some codewords may encode movements that do not offer
good discrimination among different actions, e.g. the sway
of the human body. We use the F-score to find the most
discriminative features in the codebook and discard non-
discriminative features. The F-score [54] measures the
discrimination of two sets of real numbers. For more than
two sets of real numbers, we use the multiset F-score [55] to
measure their discrimination. Given the training histogram
of codewords xk, for k “ 1, ¨ ¨ ¨ ,m, and l ě 2 action
classes, if the number of the samples in the jth (1 ď j ď l)
class is nj , then the F-score of the ith histogram bin is
defined as:

Fi “

řl
j“1

´

x̄
pjq
i ´ x̄i

¯2

řl
j“1

1
nj´1

řnj
k“1

´

x̄
pjq
k,i ´ x̄

pjq
i

¯2 , (16)

where x̄i and x̄pjqi are the average of the ith histogram bin of
all samples and the jth class samples, respectively, and x̄pjqk,i
is the ith histogram bin of the kth sample in the jth class.
The larger is the F-score, the more discriminative is the
corresponding histogram bin. Therefore, we rank the code-
words by their F-scores and select the codewords whose
F-scores are higher than a threshold. In our experiments,
up to 1.5% improved accuracy was observed by selecting
the top 98% discriminative features out of the total 1500.

6.3 Encoding Spatio-Temporal STK Distribution

The bag-of-words approach efficiently encodes the local
spatio-temporal information in a 3D pointcloud sequence.
However, it ignores the spatio-temporal relationship among
the STKs. We observed that encoding the distribution
of STKs in space-time (Fig. 4) can further improve the
discrimination between different actions in addition to the
bag-of-words based descriptors. To incorporate the space-
time positional information of STKs, we propose a method
that encodes this information.

Let P “ tpi P R
4, i “ 1, ¨ ¨ ¨ , nku represent the set of

all selected STKs within a sequence of 3D pointclouds Q,
where nk is the number of STKs and pi “ px, y, z, tq

J

are the coordinates of an STK in the 4D space with x
and y being the spatial coordinates, z being depth and t
being time. To cope with the heterogeneity in the vectors,
we normalize the vectors so that all their components have
zero-mean and unit variance.

To simplify the description, let us assume that the set
P “ tpi P R

4u now have all the normalized vectors
as described above. By dropping the time axis, we have
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TABLE 1: The 600 vertices of a 120-cell regular polychoron
centered at the origin generated from all and even permutations
of these coordinates [56].

Vertices Permutation Coordinate points

24 all 0, 0,˘2,˘2

64 all ˘1,˘1,˘1,˘
?

5
64 all ˘ϕ´2,˘ϕ,˘ϕ,˘ϕ
64 all ˘ϕ´1,˘ϕ´1,˘ϕ´1,˘ϕ`2

96 even 0,˘ϕ´2,˘1,˘ϕ`2

96 even 0,˘ϕ´1,˘ϕ,˘
?

5
192 even ˘ϕ´1,˘1,˘ϕ,˘2

a set of normalized 3D STKs: P 1 “ tp1i P R
3u. Eigen

decomposition is then applied to the covariance matrix of
points in P 1 to yield two eigenratios δ̄12 “ λ1{λ2 and
δ̄23 “ λ2{λ3. To get a unique coordinate basis, we require
that δ̄12, δ̄23 ą θg “ 1` εg, where εg is a small constant. If
these constraints are not satisfied, we perform an iterative
refinement of STKs as follows. Given nk initial STKs, in
each iteration, mk (where mk ! nk) STKs with the lowest
quality factor (Eq. (10)) are removed. Eigen decomposition
is applied to the remaining points to yield two new eigenra-
tios. This process is iterated until the eigenratio constraints
are satisfied. Generally, three iterations are sufficient.

To achieve a view-invariant representation, all points in
P 1 are aligned along V , i.e., for all p1 P P 1, we set p1 Ð
V Jp1 where V is the eigenvector matrix obtained from the
eigen decomposition in the last iteration. The normalized
temporal dimension is then reattached to each point in P 1:

ppÐ rp1, ts, (17)

to form the set pP “ tppi P R4u. To encode the distribution
of STKs in the 4D space, we consider a 4D regular geomet-
ric object called polychoron [56] which is a 4D extension
of the 2D polygon. The vertices of a regular polychoron
divide the 4D space uniformly, and therefore, each vertex
can be considered as a histogram bin. In particular, from
the set of regular polychorons, we consider the 120-cell
regular polychoron with 600 vertices as given in Table 1
[56].

Given the set pP constructed above, we project each
orientation normalized ppi onto the 600 vertices of the
polychoron and select the vertex with the highest projection
value. The histogram bin corresponding to the selected
vertex is incremented by one. We repeat this process for
all STKs in pP and the final histogram is a 600 dimensional
STK Distribution (STK-D) descriptor which encodes the
global spatio-temporal distribution of STKs of the sequence
Q in a compact and discriminative form.

7 ADAPTABLE SUPPORT VOLUME

So far, for STK detection and description, we have used a
fixed spatio-temporal support volume with spatial radius r
and temporal scale τ . However, subjects may have different
scales (height and width) and may perform actions at

different speeds. Therefore, simply using a fixed spatial
radius r and temporal scale τ is not optimal. Moreover,
a larger value of r enables the proposed descriptor to
encapsulate more information about shape but makes the
descriptor vulnerable to occlusions. Similarly, a small τ
is preferable over large τ for better temporal action lo-
calization. However, a small τ may not capture sufficient
information about an action if it is performed slowly.

7.1 Spatial Scale Selection

Several automatic spatial scale selection methods have been
proposed for 3D object retrieval [57]. We adapt the method
proposed by Mian et al. [58] in object retrieval for action
recognition in 3D pointcloud sequences. Note that in the
human action recognition problem, the subject’s height is
available in most cases (which is not the case for object
retrieval). Where available, we use the subject’s height (hs)
to find an appropriate spatial scale. We select the ratios
as r “ σhs, where 0 ă σ ă 1 is a constant factor.
We have empirically selected the value of σ to maximize
the descriptiveness and robustness of our descriptor to
occlusions. In all experiments, we use a fixed value of σ
for all actions, views and datasets. In our experiments in
Section 8, we observe that this simple approach achieves
almost the same accuracy as the automatic spatial scale
selection method adapted from [58]. Once we have selected
an appropriate spatial scale r, then we proceed to select an
appropriate temporal scale τ .

7.2 Automatic Temporal Scale Selection

Most existing action recognition techniques [5], [6], [8],
[9], [44], [47] use a fixed temporal scale. We observe that
variations in action execution speed cause significant dis-
parity among the descriptors from the same action (Fig. 5).
To make our descriptor robust to action speed variations, we
propose an automatic temporal scale selection technique.

Let Q “ seqpQ1, ¨ ¨ ¨ , Qt, ¨ ¨ ¨ , Qnf q be a sequence of
3D pointclouds. For a given point p “ pxt, yt, ztqJ P Qt
and a given temporal scale τ , we can define the spatial
support volume ΩSppq and spatio-temporal support volume
ΩST
τ ppq of p. The covariance matrix of the points falling

within ΩST
τ ppq can be eigen-decomposed to yield the eigen-

values λτ1 ě λτ2 ě λτ3 ě 0. These steps are similar to
those described in Section 3, except that, in this Section, we
repeat these steps for each temporal scale τ “ 1, ¨ ¨ ¨ , τm,
where τm is a fixed upper threshold. For each τ value, we
calculate:

Appτq “
λτ2
λτ1
`
λτ3
λτ2
. (18)

The optimal temporal scale τ˚ppq for the given point p
is chosen to be the one that minimizes Ap over the range
1 ď τ ď τm, i.e.,

τ˚ppq “ argmin
τ

Appτq. (19)
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Fig. 5: The same action (hand waving) is shown at three different
speeds: (a) slow, (b) moderate, and (c) fast. The number of frames
reduces as the action speed increases. For the slow movement,
the optimal temporal scale is found to be τ˚ “ 3, for moderate
movement τ˚ “ 2, and for fast movement τ˚ “ 1.

As an example to illustrate this automatic temporal scale
selection process, Fig. 5(a)-(c) show the temporal sequences
of pointclouds for the hand waving action performed at
three different speeds. The dotted circle shows the sphere
defined by the spatial radius r in each pointcloud. The
spatial radius r in the three cases is the same because of
similar geometry. Our aim here is to select the optimal
temporal scale for the point p in the pointcloud Qt shown
in black and dotted outline. Figure 5(d) shows the union
of points in the range Qt´3 ¨ ¨ ¨Qt`3 which are within the
radius r measured from the coordinate (x, y, z) of point p.
Figure 5(e) and (f) show the union of points in the same
way for Qt´2 ¨ ¨ ¨Qt`2 and Qt´1 ¨ ¨ ¨Qt`1, respectively.
Figure 5(g)-(i) show the plots of Ap with the variation
of τ . Increasing τ beyond a certain value does not affect
the accumulated pointcloud as the value of Ap becomes
constant. In most cases, increasing τ decreases Ap until a
fixed value is reached. We compute Appτq for all values of
τ and find the global minimum τ˚. When more than one
τ˚ exist, the smallest value of τ˚ is chosen.

For each STK, the temporal scale is selected indepen-
dently and may vary from one STK to the other in the
same 3D pointcloud sequence. The proposed temporal scale
selection is detailed in Algorithm 1. The algorithm outputs
two variables τ˚ and flag P t0, 1u. If the optimal τ˚ is
equal to τm then the flag is set to 0, indicating that the
STK p should be discarded. If the computed optimal τ˚ is
smaller than τm then the flag is set to 1, indicating that the
return τ˚ value is the optimal temporal scale for p.

Algorithm 1: Automatic Temporal Scale Selection
input : Q, p, r, and τm.
output: τ˚, flag.

1 for τ “ 1 : τm do

2 Construct ΩST
τ ppq;

3 µτ Ð
1
np

ř

qPΩτ ppq
q;

Cτ Ð
1
np

ř

qPΩτ ppq
pq´ µτ qpq´ µτ q

J;

4 Vτ

»

–

λτ1 0 0
0 λτ2 0
0 0 λτ3

fi

flV Jτ “ Cτ ;

5 Appτq Ð
λτ2
λτ1
`

λτ3
λτ2

;

6 end
7 τ˚ “ argmin

τ
Appτq;

8 if τ˚ ““ τm then
9 flagÐ 0;

10 else
11 flagÐ 1;
12 end

8 EXPERIMENTS

We evaluate the proposed algorithm on five benchmark
datasets, including two multi-view (Northwestern-UCLA
Multiview Action3D [29], and UWA3D Multiview Activity
II) and three single-view (MSR Action3D [38], MSR Daily
Activity3D [39], and MSR Gesture3D [40]) datasets. Per-
formance is compared to nine existing action recognition
methods including Histogram of Oriented 4D Normals
(HON4D) [9], Super Normal Vector (SNV) [10], Lie Al-
gebra Relative Pairs (LARP) [59], Comparative Coding
Descriptor (CCD) [3], Virtual Views (VV) [60], Histogram
of 3D Joints (HOJ3D) [27], Discriminative Virtual Views
(DVV) [36], Actionlet Ensemble (AE) [28], and AND-
OR graph (AOG) [29]. The baseline results are obtained
using publicly available implementations of CCD [3], VV
[60], DVV [36], HON4D [9], SNV [10], and LARP [59]
from the respective authors’ websites. For the remaining
three methods AOG [29], HOJ3D [27], and AE [28],
we use our implementations because their codes are not
publicly available. For CCD [3], VV [60] and DVV [36],
we use DSTIP [8], which is more robust to 3D sensor
noise compared to color-based interest point detectors, to
extract and describe the spatio-temporal interest points. Our
algorithm is robust to many different parameter settings (see
Section 8.7). To help the reader reproduce our results, we
provide the parameter values that we used in Table 2. The
UWA3D Multiview Activity II dataset and code will be
made publicly available.

To evaluate individual components of the proposed
algorithm, we report results for the following four settings:

Holistic HOPC: A sequence of 3D pointclouds is divided
into γ “ 6 ˆ 5 ˆ 3 spatio-temporal cells along the X , Y ,
and T dimensions. The spatio-temporal HOPC descriptor
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TABLE 2: Parameters and their values: K: number of codewords,
nk: number of STKs , θSTK, θl, θg: eigenratio thresholds, nx ˆ

nyˆnt: spatio-temporal cells (Section 5), τm: maximum temporal
scale, mk: iterative refinement (Section 6.3).

Parameter K nk θSTK θl θg nx ny nt τm mk

Value 1500 400 1.3 1.3 1.3 2 2 3 0.2nf 0.05nk

Fig. 6: Sample pointclouds from the Northwestern-UCLA Mul-
tiview Action3D dataset [29] captured by 3 cameras.

hST
p in (7) is computed for each point p within the

sequence. The cell descriptor is computed using (13) and
then normalized using (14). The final descriptor for the
given sequence is a concatenation of all the cell descriptors.
We use SVM for classification. Similar to HON4D [9] and
SNV [10], our Holistic HOPC is suitable for single-view
action recognition [37] and can handle more inter-class
similarities of local motions compared to local methods [9].

STK-D: For each sequence of 3D pointclouds, the
histogram of spatio-temporal distribution of STKs is used
as the sequence descriptor (Section 6.3).

Local HOPC: For each sequence, STKs are detected
using the method proposed in Section 4. The proposed
orientation normalization is then applied at each STK
neighborhood to extract its view-invariant HOPC descriptor
(Section 5). The BoW approach is used to describe the
sequence.

Local HOPC+STK-D: The bag of STK descriptors and
the histogram of spatio-temporal distribution of STKs are
concatenated to form the sequence descriptor.

8.1 N-UCLA Multiview Action3D Dataset

The Northwestern-UCLA dataset [29] contains RGB, depth
and human skeleton positions captured simultaneously by
three Kinect cameras. It consists of 10 action categories:
(1) pick up with one hand, (2) pick up with two hands, (3)
drop trash, (4) walk around, (5) sit down, (6) stand up, (7)
donning, (8) doffing, (9) throw, and (10) carry. Each action
was performed by 10 subjects 1 to 6 times. Figure 6 shows
12 sample 3D pointclouds of four actions captured by the
three cameras.

TABLE 3: Comparison of action recognition accuracy (%) on
the Northwestern-UCLA Multiview Action3D dataset where the
samples from the first two cameras are used as training data, and
the samples from the third camera are used as test data.

Data type RGB Skeleton Depth

CCD [3] - - 34.4
VV [60] 43.5 - 48.8
HOJ3D [27] - 54.5 -
DVV [36] 47.8 - 52.1
AE [28] - 69.9 -
AOG [29] 73.3 - 53.6
HON4D [9] - - 39.9
SNV [10] - - 42.8
LARP [59] - 74.2 -

Holistic HOPC - - 43.4
STK-D - - 53.9
Local HOPC - - 71.9
Local HOPC+STK-D - - 80.0

To compare our method with state-of-the-art algorithms,
we use the same experimental setting as [29], using the
samples from the first two cameras as training data, and
the samples from the third camera as test data. Results are
given in Table 3. Holistic approaches such as HON4D [9],
SNV [10], and the proposed Holistic HOPC achieved low
recognition accuracy since they are not designed to handle
viewpoint changes. Similarly, since depth is a function of
viewpoint, CCD [3] achieved low accuracy by encoding the
differences between the depth values of an interest point
and its neighbourhood points.

Among the knowledge transfer based methods, VV [60]
and DVV [36] did not perform well; however, AOG [29]
obtained high accuracy on only RGB videos. On depth
videos, AOG also did not perform well. A possible reason is
that depth videos have higher noise levels and interpolating
noisy features across views can compromise discrimination
ability.

Skeleton based methods such as AE [28] and LARP [59]
achieved high accuracy. We used the scale and orientation
normalization of skeletons proposed in LARP [59] for AE
[28] as well which improved the results of AE. However,
skeleton data may not be reliable, or even available, when
the subject is not in an upright position or is occluded
[8]. More importantly, the application of these methods
is limited to human activity recognition where the human
skeleton is generally estimated by [43].

STK-D alone achieved higher accuracy compared to all
depth image based methods. This confirms the repeatabil-
ity of STKs and the robustness of STK-D to viewpoint
changes. The Local HOPC descriptor achieved higher ac-
curacy than STK-D and all depth based methods. Since
HOPC and STK-D capture complementary information,
their combination (Local HOPC+STK-D) further improved
the performance by 8.1% achieving the overall best ac-
curacy of 80%. Note that this is about 6% higher than the
nearest competitor LARP [59] which requires skeleton data
whereas our method does not.

The confusion matrix of our proposed view-invariant
Local HOPC+STK-D method is shown in Fig. 7. The action
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Fig. 7: Confusion matrix of our algorithm on the Northwestern-
UCLA Multiview Action3D dataset [29].

(7) donning and action (8) doffing have maximum confusion
with each other because the motion and appearance of these
actions are very similar. Similarly, action (1) pick up with
one hand and action (3) drop trash have high confusion
due to similarity in motion and appearance.

8.2 UWA3D Multiview Activity II Dataset
This dataset was collected in our lab using Kinect to empha-
size three points: (1) Larger number of human activities. (2)
Each subject performed all actions in a continuous manner
with no breaks or pauses. Therefore, the start and end
positions of body for the same actions are different. (3)
Each subject performed the same actions four times while
imaged from four different views: front view, left and right
side views, and top view.

This dataset consists of 30 human activities performed
by 10 subjects with different scales: (1) one hand waving,
(2) one hand Punching, (3) two hand waving, (4) two hand
punching, (5) sitting down, (6) standing up, (7) vibrating,
(8) falling down, (9) holding chest, (10) holding head,
(11) holding back, (12) walking, (13) irregular walking,
(14) lying down, (15) turning around, (16) drinking, (17)
phone answering, (18) bending, (19) jumping jack, (20)
running, (21) picking up, (22) putting down, (23) kick-
ing, (24) jumping, (25) dancing, (26) moping floor, (27)
sneezing, (28) sitting down (chair), (29) squatting, and (30)
coughing. To capture depth videos, each subject performed
30 activities 4 times in a continuous manner. Each time, the
Kinect was moved to a different angle to capture the actions
from four different views. Note that this approach generates
more challenging data than when actions are captured
simultaneously from different viewpoints. We organized
our dataset by segmenting the continuous sequences of
activities. The dataset is challenging because of varying
viewpoints, self-occlusion and high similarity among ac-
tivities. For example, the actions (16) drinking and (17)
phone answering have very similar motion, but the location
of hand in these two actions is slightly different. Also,
some actions such as (10) holding head and (11) holding

Fig. 8: Sample pointclouds from the UWA3D Multiview Activity
II dataset captured by one camera from 4 different views.

back, have self-occlusion. Moreover, in the top view, the
lower part of the body was not properly captured because
of occlusion. Figure 8 shows 16 sample pointclouds of five
actions from 4 views.

For cross-view action recognition, we use the samples
from two views as training data, and the samples from the
two remaining views as test data. Table 4 summarizes our
results. Since this dataset is more challenging compared to
the N-UCLA dataset, the performance of all methods drops
significantly. Our Holistic HOPC descriptor achieved higher
average recognition accuracy than the depth based methods
but lower than the methods which use normalized skeleton
data. Among the depth based methods, HON4D [9] and
SNV [10] are the nearest competitors to the Holistic HOPC.
The Local HOPC achieved higher accuracy than STK-D
and the Holistic HOPC. Combining STK-D with Local
HOPC again improved performance by 8.2% achieving
the overall best performance of 52.2%. Note that this is
about 9% higher than the nearest competitor LARP [59]
which uses skeleton data. Local HOPC+STK-D achieved
the highest accuracy in all combinations of training and test
views except one. The accuracy of skeleton based methods
is significantly lower on this dataset because the skeleton
data is not accurate for some actions such as drinking,
phone answering, sneezing or is not available for some
actions such as falling down and lying down.

Moreover, the overall accuracy of the knowledge transfer
based methods VV [60], DVV [36], and AOG [29] when
depth videos are used as input data is low because motion
and appearance of many actions are very similar and the
depth sequences have a high level of noise. Therefore, the
view dependent local features used in VV [60], DVV [36]
and the appearance and motion interpolation based method
used in AOG [29] are not enough to discriminate between
actions in the presence of noise.

Figure 9 shows the confusion matrix of our proposed
view-invariant Local HOPC+STK-D method when videos
from view V1 and view V2 are used for training and
videos from view V3 are used as test data. The actions
that causes the most confusion are (9) holding chest versus
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TABLE 4: Comparison of action recognition accuracy (%) on the UWA3D Multiview Activity II dataset. Each time two views are
used for training and the remain two views are individually used for testing.

Training views V1 & V2 V1 & V3 V1 & V4 V2 & V3 V2 & V4 V3 & V4 MeanTest view V3 V4 V2 V4 V2 V3 V1 V4 V1 V3 V1 V2

AOG [29] (RGB) 47.3 39.7 43.0 30.5 35.0 42.2 50.7 28.6 51.0 43.2 51.6 44.2 42.3
HOJ3D [27] (Skeleton) 15.3 28.2 17.3 27.0 14.6 13.4 15.0 12.9 22.1 13.5 20.3 12.7 17.7
AE [28] (Norm. Skeleton) 45.0 40.4 35.1 36.9 34.7 36.0 49.5 29.3 57.1 35.4 49.0 29.3 39.8
LARP [59] (Norm. Skeleton) 49.4 42.8 34.6 39.7 38.1 44.8 53.3 33.5 53.6 41.2 56.7 32.6 43.4
CCD [3] (Depth) 10.5 13.6 10.3 12.8 11.1 8.3 10.0 7.7 13.1 13.0 12.9 10.8 11.2
VV [60] (Depth) 20.2 22.0 19.9 22.3 19.3 20.5 20.8 19.3 21.6 21.2 23.1 19.9 20.9
DVV [36] (Depth) 23.5 25.9 23.6 26.9 22.3 20.2 22.1 24.5 24.9 23.1 28.3 23.8 24.1
AOG [29] (Depth) 29.3 31.1 25.3 29.9 22.7 21.9 25.0 20.2 30.5 27.9 30.0 26.8 26.7
HON4D [9] (Depth) 31.1 23.0 21.9 10.0 36.6 32.6 47.0 22.7 36.6 16.5 41.4 26.8 28.9
SNV [10] (Depth) 31.9 25.7 23.0 13.1 38.4 34.0 43.3 24.2 36.9 20.3 38.6 29.0 29.9

Holistic HOPC (Depth) 32.3 25.2 27.4 17.0 38.6 38.8 42.9 25.9 36.1 27.0 42.2 28.5 31.8
STK-D (Depth) 32.8 25.1 38.7 22.7 23.7 23.4 29.0 19.2 27.9 28.0 24.5 30.1 27.1
Local HOPC (Depth) 42.3 46.5 39.1 49.8 35.0 39.3 51.9 34.4 57.9 35.3 60.5 36.5 44.0
Local HOPC+STK-D (Depth) 52.7 51.8 59.0 57.5 42.8 44.2 58.1 38.4 63.2 43.8 66.3 48.0 52.2

Fig. 9: Confusion matrix of our algorithm on the UWA3D
Multiview Activity II dataset when view V1 and view V2 are used
for training and view V3 is used for test.

(11) holding back and (12) walking versus (13) irregular
walking, because the motion and appearance of these two
actions are very similar.

8.3 MSR Action3D Dataset
The MSR Action3D dataset [38] consists of 20 actions
performed 2 to 3 times by 10 subjects. This dataset is
challenging due to high inter-action similarities. Following
the protocol of [9], we use 5 subjects for training and
the remaining 5 for testing and exhaustively repeated the
experiments 252 folds. Table 5 compares our algorithms
with existing methods. The proposed Holistic HOPC out-
performed all methods and achieved 86.5% average ac-
curacy which is more than 2% higher than its nearest
competitor SNV [10] and significantly higher than the

skeleton based methods such as HOJ3D [27] and LARP
[59]. The average accuracy of our view-invariant Local
HOPC+STK-D method is 82.9% which is still higher than
HOJ3D [27], AE [28], HON4D [9], and LARP [59].

8.4 MSR Daily Activity3D Dataset
This dataset [39] contains 16 daily activities performed
twice by 10 subjects, once in standing position and once
while sitting. Most activities involve human-object inter-
actions which makes this dataset challenging. We follow
the experimental setting of [39] and use samples from
half of the subjects as training data, and the rest as test
data. As shown in Table 5, the proposed Holistic HOPC
outperformed all techniques achieving an average accuracy
of 88.8%. The view-invariant Local HOPC+STK-D outper-
formed AOG [29], HOJ3D [27] and LARP [59]; however, it
achieved lower accuracy than HON4D [9] and SNV [10],
because these methods assume that the training and test
samples are obtained from the same viewpoint.

8.5 MSR Gesture3D Dataset
The MSR Gesture3D dataset [40] contains 12 American
sign language gestures performed 2 to 3 times by 10
subjects. For comparison with previous techniques, we use
the leave-one-subject-out cross validation scheme proposed
by [40]. Table 5 compares our methods to existing ones
excluding AE [28], LARP [59], AOG [29] and HOJ3D
[27] since they require 3D joint positions which are not
present in this dataset. Our Holistic HOPC outperformed
all techniques and achieved an average accuracy of 96.2%.
The Local HOPC+STK-D achieves an accuracy of 93.6%
which is higher than HON4D [9].

8.6 Effects of Adaptable Support Volume
8.6.1 Spatial Scale Selection
In this experiment, we evaluate the influence of three
different approaches for spatial scale selection at each STK.
In the first approach, we use a constant spatial scale for
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TABLE 5: Comparison of average action recognition accuracy
(%) on the MSR Action3D [38], MSR Daily Activity3D [39],
and MSR Gesture3D [40] datasets. NA: RGB or skeleton data
Not Available.

Method Action DailyActivity Gesture

AOG [29] (RGB) NA 73.1 NA
HOJ3D [27] (Skeleton) 63.6 66.8 NA
AE [28] (Norm. Skeleton) 81.6 85.8 NA
LARP [59] (Norm. Skeleton) 78.8 69.4 NA
AOG [29] (Depth) NA 53.8 NA
HON4D [9] (Depth) 82.2 80.0 92.5
SNV [10] (Depth) 84.4 86.3 94.7

Holistic HOPC (Depth) 86.5 88.8 96.2
Local HOPC+STK-D (Depth) 82.9 78.8 93.6

TABLE 6: Average recognition accuracy of the proposed method
in three different settings on the Northwestern-UCLA Multiview
Action3D [29] and the UWA3D Multiview Activity II datasets. (1)
Constant spatial scale for all subjects, (2) ratio of subject’s height
as the spatial scale, and (3) automatic spatial scale selection [58].

Dataset Spatial scale selection method
Constant Subject height Automatic

N-UCLA 77.9 80.0 79.5
UWA3DII 48.0 52.2 50.9

all subjects. In the second approach, we select a scale for
each subject relative to the subject’s height. In the third
one, we use the automatic spatial scale selection method
proposed by Mian et al. [58]. Table 6 shows the average
accuracy of the proposed method in the three settings.
Using the subject’s height to find a subject specific scale
for the STKs turns out to be the best approach. Automatic
scale selection performs closely and can be a good option if
the subject’s height cannot be measured due to occlusions.
Constant scale for all subjects performs the worst. However,
the performance of our algorithm is better than existing
techniques in all three settings.

8.6.2 Automatic Temporal Scale Selection
We evaluate the improvement gained by our method us-
ing automatic temporal scale selection by repeating our
experiments with constant temporal scale for STK detection
and Local HOPC descriptor extraction. Table 7 shows the
average recognition accuracy of our proposed method using
a constant temporal scale (τ “ 2) and automatic temporal
scale selection. The proposed automatic temporal scale
selection technique achieved higher accuracy which shows
the robustness of our method to action speed variations.

8.7 Evaluation of Parameters and Computation
Time
8.7.1 Number of STKs
To study the effect of the total number of STKs (nk), we
select STKs with the top nk “ 100, 400, 700, 1000 quality
factors as shown in Fig. 10. Note how the STK detector
effectively captures the movement of the hands in the
highest quality STKs, and noisy points begin to appear as

TABLE 7: Average recognition accuracy of the proposed method
in two different settings on the Northwestern-UCLA Multiview
Action3D [29] and the UWA3D Multiview Activity II datasets. (1)
Constant temporal scale (τ “ 2) and (2) our automatic temporal
scale selection technique.

Dataset Temporal scale selection method
Constant Automatic

N-UCLA 78.3 80.0
UWA3DII 49.2 52.2

Fig. 10: STKs (shown in red) extracted using our proposed
detector. STKs are projected on XY Z dimensions of all points
within a 3D pointcloud sequence corresponding to the action
two hand waving. The top nk “ 100, 400, 700, 1000 with the
best quality are shown in (a)-(d), respectively. Note that the
highest quality STKs are detected where significant movement
is performed. Noisy points begin to appear as late as nk “ 1000.

late as nk “ 1000. Figure 11(a) shows the influence of the
number of STKs on the average recognition accuracy. The
proposed method achieves the best recognition accuracy
when nk “ 400; however, the performance remains stable
up to nk “ 700.

8.7.2 Threshold Values
We evaluate the effect of the eigenratio thresholds θSTK for
STK detection in (9), θl for view-invariant Local HOPC
in Section 5, and θg for STK-D in Section 6.3 on the
average recognition accuracy of our proposed method.
Figures 11(b)-(d) show our results. Notice that there is a
large range (1.1 ď θSTK ď 1.5) over which the recognition
accuracy remains stable. For very small values of θSTK,

Fig. 11: Average recognition accuracy of Local HOPC+STK-D
versus (a) the number of STKs, (b) θSTK, (c) θl, and (d) θg on the
Northwestern-UCLA [29] and the UWA3D Multiview Activity II
datasets.
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a unique coordinate basis can not be obtained and for
larger values of θSTK, the number of detected STKs is not
sufficient.

A more stable trend in recognition accuracy can be
observed for varying the thresholds θl and θg. The recog-
nition accuracy starts to decrease when θl ą 1.5 because
the number of points within the spatio-temporal support
volume of STKs which have unique eigenvectors starts to
decrease. Finally, varying θg does not change the accuracy
significantly because the extracted STKs from most actions
already have a unique orientation and the proposed iterative
refinement process (Section 6.3) almost always finds an
unambiguous orientation for all values of θg.

8.7.3 Computation Time

The average computational time of the STK detection is 1.7
seconds per frame on a 3.4GHz machine with 24GB RAM
using Matlab. The calculation of Local HOPC at STKs
takes 0.2 seconds per frame. The overall computational time
of the proposed view-invariant method is about 2 seconds
per frame. However, the proposed view-dependent Holistic
HOPC is faster and take only 0.6 seconds per frame. The
average computation time of the nearest competitor AOG
[29] that uses depth images is 1.4 seconds per frame. How-
ever, our method outperforms AOG [29] on single-view and
multi-view datasets by significant margins. Moreover, the
calculation of STK and HOPC are individually parallel in
nature and can be implemented on a GPU.

9 DISCUSSION AND CONCLUSION

Performance of the current 3D action recognition tech-
niques degrades under viewpoint variations because they
treat 3D videos as depth image sequences. Depth images are
defined with respect to a particular viewpoint and are thus
highly dependent on the viewpoint. We have proposed an
algorithm for cross-view action recognition which directly
processes 3D pointcloud videos to achieve robustness to
variations in viewpoint, subject scale and action speed. We
have also proposed the HOPC descriptor that is well inte-
grated with our proposed spatio-temporal keypoint (STK)
detection algorithm. Local HOPC descriptor combined with
global STK-Distribution achieve state-of-the-art results on
two standard cross-view action recognition datasets.

Unlike HOJ3D [27], LARP [59], AE [39], and AOG [29],
our method does not require skeleton data. Skeleton or joint
estimation methods such as [43] do not work well when
the human body is only partially visible. Moreover, joint
estimation may not be reliable when the subject is not in an
upright position (e.g. patient lying on bed) [8] or touches
the background. Finally, surveillance cameras are usually
mounted at elevated angles which causes further difficulties
in joint estimation [8]. Thus, our proposed methods (and
other non-skeleton based methods) are more general in the
sense that they can be applied to a wider variety of action
recognition problems where skeletonization of the data is
either not possible or has not been achieved yet.
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