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Person Re-identification by saliency Learning
Rui Zhao, Student Member, IEEE, Wanli Oyang, Member, IEEE, and
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Abstract—Human eyes can recognize person identities based on small salient regions, i.e. human saliency is distinctive and reliable
in pedestrian matching across disjoint camera views. However, such valuable information is often hidden when computing similarities
of pedestrian images with existing approaches. Inspired by our user study result of human perception on human saliency, we propose
a novel perspective for person re-identification based on learning human saliency and matching saliency distribution. The proposed
saliency learning and matching framework consists of four steps: (1) To handle misalignment caused by drastic viewpoint change
and pose variations, we apply adjacency constrained patch matching to build dense correspondence between image pairs. (2) We
propose two alternative methods, i.e. K-Nearest Neighbors and One-class SVM, to estimate a saliency score for each image patch,
through which distinctive features stand out without using identity labels in the training procedure. (3) saliency matching is proposed
based on patch matching. Matching patches with inconsistent saliency brings penalty, and images of the same identity are recognized
by minimizing the saliency matching cost. (4) Furthermore, saliency matching is tightly integrated with patch matching in a unified
structural RankSVM learning framework. The effectiveness of our approach is validated on the VIPeR dataset and the CUHK01 dataset.
Our approach outperforms the state-of-the-art person re-identification methods on both datasets.

Index Terms—Person re-identification, human saliency, patch matching, video surveillance.
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1 INTRODUCTION

Person re-identification [5], [15], [51] is to match pedestri-
ans observed from non-overlapping camera views based
on image appearance. It has important applications
in video surveillance such as human retrieval, human
tracking, and activity analysis. It saves a lot of human
efforts on exhaustively searching for a person from large
amounts of images and videos. Nevertheless, person
re-identification is a very challenging task. A person
observed in different camera views undergoes significant
variations on viewpoints, poses, and illumination, which
make intra-personal variations even larger than inter-
personal variations. Image blurring, background clutters
and occlusions also cause additional difficulties.

Variations of viewpoints and poses commonly exist
in person re-identification, and cause misalignment be-
tween images. In Figure 1, the lower right region of (p1a)
is a red bag, while a leg appears in this region in (p1b);
the central region of (p3a) is an arm, while it becomes a
backpack in (p3b). Most existing methods [12], [34], [45],
[48], [58] match pedestrian images by first computing
the difference of feature vectors and then the similarities
based on such difference vectors, which is problematic
due to the spatial misalignment. In our work, patch
matching is employed to handle misalignment, and it
is integrated with saliency matching to improve the
discriminative power and robustness to spatial variation.

Salient regions in pedestrian images provide valuable
information in identification. However, if they are small
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in size, saliency information is often overwhelmed by
other features when computing similarities of images.
In this paper, saliency means regions with attributes that
1) make a person distinctive from their candidates, and
2) are reliable in finding the same person across camera
views. In many cases, humans can easily recognize
matched pedestrian pairs because they have distinct
features. For example, in Figure 1, person p1 takes a
red bag, p2 dresses bright white skirt, p3 takes a blue
bag, and p4 carries a red folder in arm. These features
are discriminative in distinguishing one person from
others. Intuitively, if a body part is salient in one camera
view, it usually remains salient in another camera view.
Therefore, saliency also has view invariance.

Salient regions are not limited to body parts (such as
clothes and trousers), but also include accessories (such
as baggages, folders and umbrellas as shown in Figure
1), which are often considered as outliers and removed
in existing approaches. Our computation of saliency is
based on the comparison with images from a large scale
reference dataset rather than a small group of persons.
Therefore, it is quite stable in most circumstances.

We observe that images of the same person captured
from different camera views have some invariance prop-
erty on their spatial distributions of saliency, like pair
(a1, a2) in Figure 2. Since the person in image (a1) shows
saliency in her dress while others (a3)-(a6) are salient
in blouses, they can be well distinguished simply from
the spatial distributions of saliency. Therefore, not only
the visual features from salient regions are discrimina-
tive, the spatial distributions of human saliency also
provide useful information in person re-identification.
Such information can be encoded into patch matching.
If two patches from two images of the same person are
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(p1a) (p2a) (p3a) (p4a)(p2b) (p3b) (p4b)(p1b)

Fig. 1. Salient region could be a body part or a carrying
accessory. Some salient regions of pedestrians are highlighted
with yellow dashed boundaries.

query correct match incorrect match

(a1) (a2) (a3) (a4) (a5) (a6)

(b1) (b2) (b3) (b4) (b5) (b6)

gallery in camera Bprobe in camera A

Fig. 2. Illustration of saliency matching with examples. saliency
map of each pedestrian image is shown. Best viewed in color.

matched, they are expected to have similar saliency val-
ues; otherwise such matching brings penalty on saliency
matching. In the second row in Figure 2, the query image
(b1) shows a similar saliency distribution as those of
gallery images. In this case, visual similarity needs to be
considered. This motivates us to relate saliency matching
penalty to the visual similarity of two matched patches.

2 OUR APPROACH

Although saliency plays an important role in person
re-identification, it has not been well explored in lit-
erature. In this paper, a novel framework of human
saliency learning and matching is proposed for person
re-identification. Our major contributions can be sum-
marized from the following aspects.

1) We propose a way of estimating saliency based
on human perception through user study. It is
estimated from the number of trials that a human
subject recognizes a query image from a candidate
pool only based on a local region. It shows that
most pedestrian images can be matched by humans
from local salient regions without looking at whole
images. The saliency estimated from user study is
compared with the result of our saliency computa-
tion model. Compared with general image saliency
detection methods [6], [14], our proposed saliency
computation has much stronger correlation with
human perception in person re-identification.

2) A computation model is proposed to estimate the
probabilistic saliency map. Different from general
image saliency detection methods, it is specially
designed for person re-identification, and has the
following properties. 1) It is robust to changes
of viewpoints, poses and articulation. 2) Distinct
patches are considered as salient only when they
are matched and distinct in both camera views.
3) Human saliency itself is a useful descriptor for
pedestrian matching. For example, a person only
with salient upper body and a person only with
salient lower body must be different identities.

3) We formulate person re-identification as a saliency
matching problem. Dense correspondences be-
tween patches are established by patch matching
based on visual similarity, and matching patches
with inconsistent saliency brings cost. Images of
the same person are recognized by minimizing the
saliency matching cost, which depends on both
locations and visual similarity of matched patches.

4) saliency matching and patch matching are tightly
integrated into a unified structural RankSVM
framework. Structural RankSVM has good training
efficiency given a large number of rank constraints
in person re-identification. Our approach trans-
forms the original high-dimensional visual feature
space to a 80 times lower dimensional saliency
feature space to further improve training efficiency
and also avoid overfitting.

3 RELATED WORKS

Existing works on person re-identification mainly focus
on two aspects: 1) features and representations, and 2)
distance metric. A review can be found in [15].

3.1 Features and Representations
A lot of research efforts [4], [10], [11], [13], [41]–[43],
[52], [54], [57], [59] have been devoted to exploiting
discriminative features in person re-identification. Wang
et al. [52] proposed shape and appearance context to
model the spatial distributions of appearance relative
to body parts in order to extract discriminative features
robust to misalignment. Farenzena et al. [13] proposed
the Symmetry-Driven Accumulation of Local Features
(SDALF) by exploiting the symmetry property in pedes-
trian images to handle view variation. Bak et al. [4],
Xu et al. [54] and Cheng et al. [10], [11] applied human
part models and pictorial structures to cope with pose
variations by establishing the spatial correspondence.
Ma et al. [41]–[43] developed the BiCov descriptor based
on the Gabor filters and the covariance descriptor to
handle illumination change and background variation.
Zheng et al. [57], [59] used the contextual visual cues
from surrounding people to enrich human signatures.
Information on salient regions exploited in our work
can be integrated with many of these feature designs by
putting more weights on features from salient regions.
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Features vary in their usefulness in person matching,
and some works have been done on feature selection and
importance learning. Gray et al. [17] used AdaBoost to se-
lect features. Schwartz [49] assigned weights to features
with Partial Least Squares (PLS). Liu et al. [37] developed
an unsupervised approach to learn bottom-up feature
importance, and adaptively weight features. Instead of
globally weighting features across all the pedestrian
images, our approach adaptively weights features based
on individual person pairs to be matched, since different
persons have different salient regions.

Visual features suffer from a range of variations across
camera views. Feature transforms are learned to im-
prove the invariance to cross-view transforms. Prosser
et al. [47] learned the Cumulative Brightness Transfer
Function to handle color transforms. Avraham et al. [2],
[3] learned both implicit and explicit transforms of visual
features. Li and Wang [33] learned a mixture of cross-
view transforms and projected features into a common
space for alignment. Rather than learning feature trans-
forms for specific camera view settings, our approach
flexibly handle the cross-view variations by performing
a constrained patch matching technique, which can be
generalize to any disjoint camera-view transition.

Some works explored higher level features [28]–[30],
[39], [50], [56] to assist person re-identification. Vaquero
et al. [50] first introduced mid-level facial attributes
in human recognition. Layne et al. [28], [29] proposed
15 human attributes for person re-identification. Song
et al. [39] used human attributes to match persons with
Bayesian decision. saliency distribution can also be con-
sidered as one kind of high-level features.

3.2 Rank and Metric Learning

Given a query image, an image of the same person
is expected to have a high rank on the candidate list
after matching. Prosser et al. [48] formulated person re-
identification as a ranking problem, and learned global
feature weights with RankSVM. Wu et al. [53] intro-
duced rank-loss optimization to improve accuracy in re-
identification. Loy et al. [40] exploited unlabeled gallery
data to propagate labels to query instances with a man-
ifold ranking model. Liu et al. [38] presented a man-in-
loop method to allow users to quickly refine ranking
result. In this paper, we employ structural RankSVM
[24], which considers ranking difference.

Many research works [12], [19], [20], [26], [34], [35],
[37], [45], [46], [58] focused on optimizing distance met-
rics for matching persons. Zheng et al. [58] learned the
metric by maximizing the likelihood of true matches to
have a smaller distance than that of a wrongly matched
pair. Dikmen et al. [12] proposed to learn a Mahalanobis
distance that is optimal for k-nearest neighbor classifica-
tion by using a maximum margin formulation. Mignon
and Jurie [45] learned a joint projection for dimension re-
duction, satisfying distance constraints added by image
pairs. Li et al. [35] proposed to learn a decision function

for matching, which jointly models a distance metric and
a locally adaptive thresholding rule. Pedagadi et al. [46]
employed Local Fisher Discriminant Analysis to learn
a distance metric. Above learned metrics are based on
subtraction of misaligned feature vectors, which causes
significant information loss and errors. Our approach
handles feature misalignment through patch matching.

3.3 Human saliency vs. General Image saliency
General image saliency has been well studied [14], [21],
[22], [25], [32]. In the context of person re-identification,
human saliency is different than general image saliency
in the way of drawing visual attentions. With the aim
to improve the performance of re-identification, human
saliency is a considered as visual patterns of distinguish-
ing a person from others, while general saliency draws
visual attention within a single image to capture salient
foreground objects from background.

4 METHOD OVERVIEW

The diagram of the proposed saliency learning and
matching framework is shown in Figure 3. Section 5
conducts a user study to estimate human saliency based
on human perception in the person re-identification task.
We investigate the discriminative power of different
body regions in identifying a target person from a gallery
set. The saliency of each local region of a query image
is quantitatively estimated by measuring the averaged
number of trails that human labelers find the target
person only based on that region of the query image.
An illustration is shown in Figure 3 (a). The red and
green bounding boxes indicate incorrect and correct
targets chosen by the labeler from the gallery. The red
skirt has higher saliency and causes fewer failure trails
compared with the arm. Our result shows that subjects
can recognize a query person only based on a small
salient part without looking at the whole image. Salient
regions vary on different persons.

An unsupervised approach for saliency learning is
proposed in Section 6 and illustrated in Figure 3 (b).
With constrained patch matching, each patch finds its
matched neighbors from a reference set of training im-
ages. K-Nearest Neighbor and One-Class SVM models
are employed to learn human saliency. Our experimental
results show both qualitative and quantitative evalu-
ation of the correlation between the learned saliency
and human perception. With obtained human saliency,
matching image pairs can be performed in unsupervised
and supervised ways as described in Section 6. For the
unsupervised manner, saliency is used to bi-directionally
weight patch matching similarity and penalize incon-
sistence of saliency distribution across camera views,
as shown by the blue lines in Figure 3 (c). For the
supervised manner, person matching is formulated as a
saliency matching problem, which considers four types
of saliency matching cases, as shown in the table in
Figure 3 (c). Matching cost is a linear function of patch
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Query Gallery / Reference set

...

(b1) Constrained Patch Matching

Patch 
sampling 

Matched neighbors from a Reference Set

(c1) Bi-directional matching with saliency

Four types of saliency 
matching: salient patch=1 

none-salient patch=0

1-1

1-0

0-1

0-0

(c2) Supervised saliency matching(b2) KNN or One-class SVM Salience Learning

Query Each part has 
its saliency value

(a) Human Perception (b) Unsupervised Saliency Learning (c) Supervised Saliency Matching

Saliency 
map

Fig. 3. Diagram of our novel framework of human saliency learning and matching for person re-identification.

Fig. 4. Salient and non-salient body parts in person re-
identification.

matching similarities, which is learned with Structural
RankSVM. The learned saliency matching function is
used to measure similarities between images.

5 SALIENCY FROM HUMAN PERCEPTION

We define human saliency in the context of person re-
identification and estimate it by user study. The design
of user study considers the following aspects.
• Salient body parts are those possessing unique ap-

pearance compared with a reference set.
• Human body, including carrying accessories, can

be decomposed into parts with different saliency
values.

• If a body part helps subjects to quickly identify a
person from other candidates across camera views,
it is considered as salient.

• The salient values of different parts are estimated
independently to simplify analysis. Higher order
saliency from combinations of body parts could be
studied in the future work.

As an example in Figure 4, the yellow bag is a carrying
accessory, which can be easily identified across camera

Fig. 5. Flow chart of human saliency annotation. The first
row illustrates the procedure that an image is segmented into
semantic body parts. The second row shows the interface of
annotating human saliency.

views, while the black coat appears on many persons,
and is hard to be used as a cue to recognize identity.
Thus, the yellow bag has a higher saliency value.

5.1 Human Annotation Scheme
Given an image, we apply superpixel segmentation [1],
and then manually merge superpixels that are coherent
in appearance. As an example shown in the first row of
Figure 5, superpixels on the yellow bag are merged into a
part. Superpixels with different semantic meanings are
not merged. For example, even if the hair and jacket
share similar appearance, they are annotated as two
parts. Only foreground superpixels are annotated.

A segmented body part is randomly selected and pre-
sented to a labeler for annotation. Each part is annotated
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Fig. 6. Examples of saliency annotation. Each body part is
annotated with a saliency value. saliency map is overlaid on the
gray-level image (right). The original color image is on the left.

for multiple times by different labelers. Their annotations
are combined into a saliency value. In Figure 5, a body
part from a query image is revealed (on the left) at its
original spatial location in the image while other parts
are masked, and a list of 32 images randomly sampled
from the gallery set are also shown (on the right) to the
labeler. The true target (observed in a different camera
view from the query image) is among the sampled
images, but the order is randomly shuffled. The labeler is
asked to select the most likely image from the list based
on visual perception. The labeler is allowed to select for
multiple times until the correct match is found. In the
second row of Figure 5, the red bounding boxes indicate
wrong selection and the green one indicates the correct
match found in the end. A part is considered as salient
if labelers try fewer times to found the target.

Denote the i-th revealed part by pi, and the number
of trails of the j-th user on this part by njpi . Then the
saliency value of the revealed part is estimated as

score(pi) = exp(−
m2
pi

σ2
avg

) exp(−
s2pi
σ2
std

). (1)

mpi and spi are the average and standard deviation of
njpi over all the labelers. σavg and σstd are bandwidth
parameters.

Annotation is conducted on 524 body parts of 100
images from camera view A of the VIPeR dataset [16].
Some examples of the annotated saliency maps are
shown in Figure 6. In order to investigate whether salient
regions exist in pedestrian images, Figure 7 (a) shows
the histogram on the numbers of trails used to find the
targets only based on the most salient parts on query
images. It shows that more than half of the pedestrians
can be recognized, if the labelers only observe the most
salient part of a query image. As comparison, Figure 7
(b) plots the histogram on the numbers of trails for all the
parts. It shows that most other body parts are not salient
enough. The correlation between the annotated saliency
and that obtained with the proposed computation model
will be validated in experiments in Section 8.
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Fig. 7. Statistics on saliency annotation. (a) Histogram on the
numbers of trails used to find the targets only based on the most
salient parts on query images. (b) Histogram on the numbers of
trails for all the parts.

6 HUMAN SALIENCY LEARNING

We propose to automatically learn human saliency in an
unsupervised manner. Dense correspondence between
images is first built with patch matching, and two al-
ternative approaches (K-nearest neighbor and One-Class
SVM) are proposed to estimate human saliency without
using identity labels or human annotated saliency.

6.1 Feature Extraction

Each image is densely divided into a grid of overlapping
local patches, and each patch is represented by a feature
vector concatenating color histograms and SIFT features
computed around its local region.
Dense Color Histogram. A color histogram in LAB color
space is extracted from each patch. LAB color histograms
are computed on multiple downsampled scales and L2
normalized.
Dense SIFT. We divide each patch into 4 × 4 cells,
quantize the orientations of local gradients into 8 bins,
and obtain a 4 × 4 × 8 = 128 dimentional SIFT feature
vector, which is also L2 normalized.

In our experiment, scales of pedestrian images range
from 128 × 48 to 160 × 60. Patches of size 10× 10 pixels
are sampled on a dense grid with a step size 4. 32-bin
color histograms are computed in each LAB channels,
and in each channel, 3 levels of downsampling are used
with scaling factors 0.5, 0.75 and 1. SIFT features are also
extracted in 3 color channels and thus produces a 128×3
feature vector for each patch. In a summary, each patch
is finally represented with a discriminative descriptor
vector of length 32 × 3 × 3 + 128 × 3 = 672. We denote
the combined Color-SIFT feature vector as DenseFeats.

6.2 Dense Correspondence

To deal with misalignment, we build dense correspon-
dence between images by adjacency constrained search.
DenseFeats features of a pedestrian image is represented
as XA,u = {xA,um,n | m = 1 . . . ,M, n = 1 . . . , N}, where
(A, u) denotes the u-th image in camera A, (m,n) denotes
the patch centered at the m-th row and the n-th column
of this image, and xA,um,n is the dense Color-SIFT feature
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Fig. 8. Illustration of adjacency constrained search. Green
region represents the adjacency constrained search set of patch
in yellow box. Patch in red box is the target match.

vector of the patch. A natural baseline is to compute
image similarity with concatenated patch features,

simDenseFeats(X
A,u, XB,v) =

∑∑
i=1,...,M
j=1,...,N

s(xA,ui,j ,x
B,v
i,j ), (2)

where

s(xA,ui,j ,x
B,v
i,j ) = exp(−

d(xA,ui,j ,x
B,v
i,j )2

2σ2
), (3)

is the similarity between two patch features, d(·) is the
Euclidean distance, and σ is a bandwidth parameter.

Adjacency Searching. simDenseFeats does not consider
misalignment. We propose adjacency constrained search-
ing to allow flexible matching among patches in image
pairs. When the patches are matched with those from
another image, patches in the same row have the same
search set, denoted as

S(xA,um,n, X
B,v) = {xB,vi,j | i = m, j = 1, . . . , N}. (4)

S(xA,um,n, X
B,v) restricts the search set in XB,v within

the m-th row. However, bounding boxes produced by
a human detector are not always well aligned, and also
uncontrolled human pose variations exist. We relax the
horizontal constraint to have a larger search range:

Ŝ(xA,um,n, X
B,v) = {xB,vi,j | i ∈ N (m), j = 1, . . . , N}, (5)

where N (m) = {max(0,m−l), . . . ,m, . . . ,min(m+l,M)}.
l defines the size of the relaxed adjacent vertical space.
Less relaxed search space cannot well tolerate the spatial
variation while more relaxed search space increases the
chance of matching different body parts. l = 2 is chosen
in our setting.

We perform the nearest neighbor search for each xA,pm,n

in its search set Ŝ(xA,pm,n, X
B,q). For each patch xA,pm,n, a

nearest neighbor is sought from its search set in every
image within a reference set. The adjacency constrained
search process is illustrated in Figure 8, and some vi-
sually similar patches returned by the discriminative
adjacency constrained search are shown in Figure 9.

6.3 Unsupervised saliency Learning
6.3.1 K-Nearest Neighbor (KNN) saliency
Byers et al. [7] found the KNN distances can be used for
clutter removal. Since human saliency detection shares a
similar goal as abnormality detection, KNN should also

(a) (b)

Fig. 9. Examples of adjacency search. (a) A test image from
the VIPeR dataset. Local patches are densely sampled, and
five exemplar patches on different body parts are shown in red
boxes. (b) One nearest neighbor from each reference image is
returned by adjacency search for each patch on the left, and
then N nearest neighbors from N reference images are sorted.
The top ten nearest neighbor patches are shown. Note that the
ten nearest neighbors are from ten different images.

be viable in finding human saliency. By searching for the
K-nearest neighbors of a test patch in the set of matched
patches obtained with dense correspondence, KNN is
adapted to the re-identification problem. saliency score
of the test patch is computed with the KNN distance.

We denote the number of images in the reference set
by Nr. After building dense correspondences between
a test image and reference images, a nearest neighbor
(NN) set of size Nr is obtained for every patch xA,um,n,

XNN (xA,um,n) = {x | argmin
xB,v
i,j

d(xA,um,n, xB,vi,j ),

xB,vi,j ∈ Ŝ(xA,um,n, X
B,v), v = 1, 2, ..., Nr} (6)

The KNN distances between xA,um,n and its nearest neigh-
bors in XNN (xA,um,n) are used as the saliency score:

scoreknn(xA,um,n) = dk(XNN (xA,um,n)), (7)

where dk denotes the distance of the k-th nearest neigh-
bor. Salient patches only find a limited number (k =
αkNr) of visually similar neighbors, as shown in Figure
10, and then scoreknn(xA,pm,n) is expected to be large.
0 < αk < 1 is a proportion parameter reflecting our ex-
pectation on the statistical distribution of salient patches.
Choosing k. The goal of saliency detection for person
re-identification is to identify parts with unique appear-
ance. We set αk = 0.5 with an empirical assumption
that a patch is considered to have unique appearance
such that more than half of the people in the reference
set do not share similar patches with it. Nr reference
images are randomly sampled from training set in our
experiments. Enlarging the reference dataset will not
deteriorate saliency detection, because saliency is de-
fined in the statistical sense. It is robust as long as the
distribution of the reference dataset well reflects the test
scenario.

6.3.2 One-Class SVM saliency
One-class SVM [18] has been widely used for outlier
detection. The basic idea is to use a hypersphere to
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Fig. 10. Illustration of salient patch distribution. Salient
patches are distributed far way from other pathes.

describe data in the feature space and put most of
the data into the hypersphere. It is formulated as an
objective function:

min
R∈R,ξ∈Rl,c∈F

R2 +
1

vl

∑
i

ξi, (8)

s.t.‖Φ(xi)− c‖2 ≤ R2 + ξi, ∀i ∈ {1, ...l} : ξi ≥ 0,

where Φ(xi) is the multi-dimensional feature vector of i-
th training sample, l is the number of training samples,
R and c are the radius and center of the hypersphere,
and v ∈ [0, 1] is a trade-off parameter. The goal is to
keep the hypersphere as small as possible and include
most of the training data. It can be solved in a dual form
by QP optimization [9]. The decision function is:

f(x) = R2 − ‖Φ(x)− c‖2, (9)

‖Φ(x)− c‖2 = k(x,x)− 2
∑
i

αik(xi,x) +
∑
i,j

αiαjk(xi,xj),

where αi and αj are the parameters for each constraint
in the dual problem. We use the radius basis function
(RBF) K(x,y) = exp{−‖x − y‖2/2σ2} as kernel to
deal with high-dimensional, non-linear, and multi-mode
distributions. As shown in [9], the decision function of
kernel One-class SVM can well capture the density and
modality of the feature distribution. As an alternative
to the KNN saliency alogrithm (Section 6.3.1) without
requiring the choice of K, saliency score is defined in
terms of kernel One-class SVM decision function:

scoreocsvm(xA,um,n) = d(xA,um,n,x
∗), (10)

x∗ = argmax
x∈XNN (xA,u

m,n)

f(x).

Our experiments show very similar results in person
re-identification with both saliency detection methods.
scoreocsvm performs slightly better than scoreknn in some
circumstances. The probability of xA,um,n being a salient
patch is

P (lA,u
m,n = 1 | xA,u

m,n) = 1− exp(−scoreopt(xA,u
m,n)2/σ2

0), (11)

where opt ∈ {knn, ocsvm}. The human saliency learning
is summarized in Algorithm 1.

Algorithm 1 Human saliency learning.

Input: image XA,u and a reference image set R =
{XB,v, v = 1, . . . , Nr}

Output: saliency probability map P (lA,um,n = 1 | xA,um,n)
1: for each patch xA,um,n ∈ X do
2: compute XNN (xA,um,n) with Eq. (6)
3: compute scoreopt(xA,um,n), opt ∈ {knn, ocsvm} with

Eq. (7) or Eq. (10)
4: compute P (lA,um,n = 1 | xA,um,n) with Eq. (11)
5: end for

7 SALIENCY MATCHING

One of our main contributions is to match human images
based on saliency probability map. It is based on our
observation that person in different camera views shows
consistence in saliency probability maps, as shown in
Figure 2. Since matching is applied to arbitrary image
pairs, we omit the image index in notation for concise
clarity, i.e. change XA,u to XA, XB,v to XB , xA,um,n

to xApi and xB,vi,j to xBp′i
. pi is the patch index in image

XA and p′i is the corresponding matched patch index
in image XB produced by dense correspondence. We
denote the dense correspondence between XA and XB

as P = {(pi, p′i)}i=1,...,MN .

7.1 Bi-directional Weighted Matching

We first denote the method of only using patch match-
ing without saliency information as PatMatch, and the
image similarity is expressed as

simPatMatch(XA, XB) =
∑

(pi,p′i)∈P

s(xApi ,x
B
p′i

). (12)

s(xApi ,x
B
p′i

) is the visual similarity between patches.
Searching for the best matched image in the gallery is
formulated as finding the maximal similarity score.

v∗ = argmax
v

sim(XA,u, XB,v) (13)

A bi-directional weighted matching is designed to incor-
porate saliency information. We denote this method as
saliency guided dense correspondence (SDC), as illus-
trated in Figure 3(c1), and the similarity between two
images is computed as

simSDCopt =
∑

(pi,p
′
i)∈P

scoreopt(xA
pi) · s(x

A
pi ,x

B
p′i

) · scoreopt(xB
p′i

)

αsdc + |scoreopt(xA
pi)− scoreopt(xB

p′i
)|

,

(14)

where αsdc is a parameter representing a base penalty.
Intuitively, large saliency scores in both matched patches
are expected to enhance the similarity score of matched
patches. In another aspect, images of the same person
would be more likely to have similar saliency distribu-
tions than those of different persons, so the difference in
saliency score can be used as a penalty to the similarity
score. We set αsdc = 1 in experiments.
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7.2 Unified saliency Matching

To incorporate saliency into matching, we introduce
LA = {lApi | l

A
pi ∈ {0, 1}} and LB = {lBp′i | l

B
p′i
∈ {0, 1}}

as saliency labels for all the patches in image XA and
XB respectively. If all the saliency labels are known, we
can perform person matching by computing the saliency
matching score as follows:

fz(X
A, XB , LA, LB ;P,Z) = (15)∑
(pi,p′i)∈P

{
zpi,1l

A
pi l

B
p′i

+ zpi,2l
A
pi(1− l

B
p′i

)

+ zpi,3(1− lApi)l
B
p′i

+ zpi,4(1− lApi)(1− l
B
p′i

)
}
,

where Z = {zpi,k}i=1,...,MN, k=1,2,3,4 are the matching
scores for four different saliency matching results at one
local patch. zpi,k is not a constant for all the patches.
Instead, it depends on the spatial location pi. For exam-
ple, the score of matching patches on the background
should be different than those on legs. zpi,k also depends
on the visual similarity between patches xApi and patch
xBp′i

. Instead of directly using the Euclidean distance
d(xApi ,x

B
p′i

), we convert it to similarity to reduce the side
effect in summation of very large distances in incorrect
matching, caused by misalignment, occlusion, or back-
ground clutters.

Therefore, we define the matching score zpi,k as a
linear function of the similarity as follows,

zpi,k = αpi,k · s(xApi ,x
B
p′i

) + βpi,k. (16)

αpi,k and βpi,k are weighting parameters. Thus Eq. (15)
considers both saliency matching and visual similarity.

Since the saliency labels lApi and lBp′i
in Eq. (15) are hid-

den variables, they can be marginalized by computing
the expectation of the saliency matching score as

f∗(XA, XB ;P,Z)

=
∑
LA,LB

fz(X
A, XB , LA, LB ;P,Z)p(LA, LB |XA, XB)

=
∑

(pi,p′i)∈P

4∑
k=1

[
αpi,k · s(xApi ,x

B
p′i

) + βpi,k

]
cpi,k(xApi ,x

B
p′i

),

(17)

where cpi,k(xApi ,x
B
p′i

) is the probabilistic saliency match-
ing cost depending on saliency probabilities P (lApi =
1 | xApi) and P (lBp′i

= 1 | xBp′i) given in Eq. (11),

cpi,k(xApi ,x
B
p′i

) (18)

=


p(lApi = 1 | xApi) · p(l

B
p′i

= 1 | xBp′i), k = 1,
p(lApi = 1 | xApi) · p(l

B
p′i

= 0 | xBp′i), k = 2,
p(lApi = 0 | xApi) · p(l

B
p′i

= 1 | xBp′i), k = 3,
p(lApi = 0 | xApi) · p(l

B
p′i

= 0 | xBp′i), k = 4.

To better formulate this learning problem, we extract out

all the weighting parameters in Eq. (17) as w, and have

f∗(XA, XB ;P,Z) = wTΦ(XA, XB ;P ) (19)

=
∑

(pi,p′i)∈P

wT
piφ(xApi ,x

B
p′i

),

where

Φ(XA, XB ;P ) = [φ(xAp1 ,x
B
p′1

)T, . . . , φ(xApMN
,xBp′MN

)T]T,

w = [wp1 , . . . ,wpMN
]T,

wpi = [{αpi,k}k=1,2,3,4, {βpi,k}k=1,2,3,4]. (20)

Φ(XA, XB ;P ) is the feature map describing the match-
ing between XA and XB . For each patch pi, the matching
feature φ(xApi ,x

B
p′i

) is an eight dimensional vector:

φ(xApi ,x
B
p′i

) = (21)

s(xApi ,x
B
p′i

) · p(lApi = 1 | xApi) · p(l
B
p′i

= 1 | xBp′i)
s(xApi ,x

B
p′i

) · p(lApi = 1 | xApi) · p(l
B
p′i

= 0 | xBp′i)
s(xApi ,x

B
p′i

) · p(lApi = 0 | xApi) · p(l
B
p′i

= 1 | xBp′i)
s(xApi ,x

B
p′i

) · p(lApi = 0 | xApi) · p(l
B
p′i

= 0 | xBp′i)
p(lApi = 1 | xApi) · p(l

B
p′i

= 1 | xBp′i)
p(lApi = 1 | xApi) · p(l

B
p′i

= 0 | xBp′i)
p(lApi = 0 | xApi) · p(l

B
p′i

= 1 | xBp′i)
p(lApi = 0 | xApi) · p(l

B
p′i

= 0 | xBp′i)


.

As shown in Eq. (21), the pairwise feature map
Φ(XA, XB ;P ) combines the saliency probability map
with appearance matching similarities. For each query
image XA, the images in the gallery are ranked accord-
ing to the expectations of saliency matching scores in Eq.
(17). There are three advantages of matching with human
saliency : (1) the human saliency probability distribution
is more invariant than other features in different camera
views; (2) because the saliency probability map is built
based on dense correspondence, it inherits the property
of tolerating spatial variation; and (3) it can be weighted
by visual similarity to improve the performance of
person re-identification. We will present the details in
next section by formulating the person re-identification
problem with Φ(XA, XB ;P ) in the structural RankSVM
framework.

7.3 Ranking by Partial Order
We cast person re-identification as a ranking problem for
supervised training. The ranking problem will be solved
by finding an optimal partial order, mathematically de-
fined in Eq. (22)(23)(26). Given a dataset of pedestrian
images, DA = {XA,u, idA,u}Uu=1 from camera view A
and DB = {XB,v, idB,v}Vv=1 from camera view B, where
XA,u is the u-th image, idA,u is its identity label, and U
is the total number of images in DA. Similar notations
apply for variables of camera view B. Each image XA,u

has its relevant images (same identity) and irrelevant
images (different identities) in dataset DB . Our goal is
to learn the weight parameters w that order relevant
gallery images before irrelevant ones. For the image
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XA,u, we rank the relevant images before irrelevant ones,
but no information of the orders within relevant images
or irrelevant ones is provided. The partial order yA,u is
denoted as,

yA,u = {yA,uv,v′}, yA,uv,v′ =

{
+1 XB,v ≺ XB,v′ ,
−1 XB,v � XB,v′ ,

(22)

where XB,v ≺ XB,v′ (XB,v � XB,v′ ) represents that
XB,v is ranked before (after) XB,v′ in partial order yA,u.

The partial order feature [23], [44] is appropriate for
our goal and can encode the difference between relevant
pairs and irrelevant pairs with only partial orders. The
partial order feature for image XA,u is formulated as,

Ψpo(XA,u,yA,u; {XB,v}Vv=1, {Pu,v}Vv=1) =∑∑
XB,v∈S+

XA,u

XB,v′∈S−
XA,u

yA,u
v,v′

Φ(XA,u, XB,v;Pu,v)− Φ(XA,u, XB,v′ ;Pu,v′)

|S+
XA,u | · |S−XA,u |

,

(23)

S+
XA,u = {XB,v | idB,v = idA,u}, (24)

S−
XA,u = {XB,v | idB,v 6= idA,u}, (25)

where {Pu,v}Vv=1 are the dense correspondences between
image XA,u and every gallery image XB,v, S+

XA,u is
relevant image set of XA,u, S−

XA,u is irrelevant image
set, Φ(XA,u, XB,v;Pu,v) is the feature map defined in
Eq. (20), and the difference vector of two feature maps
Φ(XA,u, XB,v;Pu,v) − Φ(XA,u, XB,v′ ;Pu,v

′
) is added if

XB,v ≺ XB,v′ or subtracted otherwise.
A partial order may correspond to multiple rankings.

Our task is to find a good ranking satisfying the optimal
partial order yA,u∗ that maximizes the following score
function,

yA,u
∗ = argmax

yA,u∈YA,u

wTΨpo(XA,u,yA,u; {XB,v}Vv=1, {Pu,v}Vv=1),

(26)

where YA,u is the space consisting of all the pos-
sible partial orders. As discussed in [23], [55], good
ranking can be obtained by sorting gallery images by
{wTΦ(XA,u, XB,v;Pu,v)}v in a descending order. The
remaining problem is how to learn w. With an optimized
w∗, we denote the unified saliency matching similarity
as

simSalMatchopt
(XA, XB) = wT

∗Φ(XA, XB ;P ), (27)

where opt ∈ {knn, ocsvm}.

7.4 Structural RankSVM Training

We employ structural SVM to learn the weighting pa-
rameters w. Different than many previous SVM-based
approaches [8], [48] doing optimization over pairwise
differences, structural SVM optimizes over ranking dif-
ferences and can incorporate non-linear multivariate loss
functions into global optimization in SVM training.

Objective function. Our goal is to learn a linear model
and the training is based on n-slack structural SVM [24].
The objective function is as follows,

min
w,ξ

1

2
‖w‖2 + C

U∑
u=1

ξu,

(28)

s.t . wTδΨpo(X
A,u,yA,u, ŷA,u; {XB,v}Vv=1, {Pu,v}Vv=1)

≥ ∆(yA,u, ŷA,u)− ξu,
∀ŷA,u ∈ YA,u�yA,u, ξu ≥ 0, for u = 1, . . . , U,

where δΨpo is defined as

δΨpo(X
A,u,yA,u, ŷA,u; {XB,v}Vv=1, {Pu,v}Vv=1)

= Ψpo(X
A,u,yA,u; {XB,v}Vv=1, {Pu,v}Vv=1)

−Ψpo(X
A,u, ŷA,u; {XB,v}Vv=1, {Pu,v}Vv=1), (29)

w is the weight vector, C is a parameter to balance
between margin and training error, yA,u is a correct par-
tial order that ranks all correct matches before incorrect
matches, and ŷA,u is an incorrect partial order that vio-
lates some of the pairwise relations, e.g. a correct match is
ranked after an incorrect match in ŷA,u. The constraints
in Eq. (28) force the discriminant score of correct partial
order yA,u to be larger than that of incorrect one ŷA,u

by a margin, which is determined by a loss function
∆(yA,u, ŷA,u) and a slack variable ξu.

AUC loss function. Many loss functions can be ap-
plied in structural SVM. In person re-identification, we
choose the ROC Area loss, which is also known as
Area Under Curve (AUC) loss. It is computed from the
number of swapped pairs,

Nswap = {(v, v′) : XB,v � XB,v′ and
(30)

wTΦ(XA,u, XB,v;Pu,v) < wTΦ(XA,u, XB,v′ ;Pu,v
′
)},

i.e. the number of pairs of samples that are not ranked
in a correct order. In the case of partial order ranking,
the loss function is

∆(yA,u, ŷA,u) = |Nswap|/|S+
XA,u | · |S−XA,u |, (31)

=
∑
v,v′

(1− ŷA,uv,v′)/(2 · |S
+
XA,u | · |S−XA,u |).

We note that there are an exponential number of con-
straints in Eq. (28) due to the huge dimensionality of
YA,u. Joachims et al. [24] showed that the problem could
be efficiently solved by a cutting plane algorithm. In
our problem, the discriminative model is learned by the
structural RankSVM algorithm, and the weight vector w
in our model means how important it is for each term
in Eq. (21). In Eq. (21), {αpi,k}k=1,2,3,4 correspond to the
first four terms based on saliency matching with visual
similarity, and {βpi,k}k=3,4 correspond to the last four
terms only depending on saliency matching.

We visualize the learning result of w in Figure 11,
and find that the first four terms in Eq. (21) are heavily
weighted in the central part of human body which
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Fig. 11. We Normalize the learnt weight vector w to a 2-
dimensional importance map for different spatial locations.
Eight importance maps correspond to {αpi,k}k=1,2,3,4 and
{βpi,k}k=1,2,3,4 in Eq. (17).

implies the importance of saliency matching based on
visual similarity. {βpi,k}k=1,2 are not relevant to visual
similarity and they correspond to the two cases when
lApi = 1, i.e. the patches on the query images are salient.
It is observed that their weighting maps are highlighted
on the upper body, which matches to our observation
that salient patches usually appear on the upper body.
{βpi,k}k=3,4 are not relevant to visual similarity either,
but they correspond to the cases when lApi = 0, i.e. the
patches on the query images are not salient. We find
that their weights are very low on the whole maps. It
means that non-salient patches on query images have
little effect on person re-identification if the contribution
of visual similarity is not considered.

7.5 Combination with existing approaches
Our approach is complementary to existing approaches.
In order to combine existing approaches with the match-
ing score in Eq. (19), the distance between two images
can be computed as follows:

simeSalMatchopt(X
A, XB) =

∑
i

µi · simi(X
A, XB)

−µSal · simSalMatchopt
(XA, XB) (32)

where µi(> 0) is the weight for the ith similarity mea-
sure, µSal(> 0) the weight for unified saliency matching
similarity. simi corresponds to the similarity measures
using wHSV and MSCR in [13] or LADF [35]. In the
experiment, {µi} are chosen the same as in [13], [35].
µSal is fixed as 1.

8 EXPERIMENTAL RESULTS

We evaluate our approach on two public datasets, i.e.
the VIPeR dataset [16], and the CUHK01 dataset [34].
Examples of images in the two datasets are shown in
Figure 14. Qualitative results of saliency learning are
shown, and quantitative results are reported in standard
Cumulated Matching Characteristics (CMC) curves [52].

8.1 Datasets
VIPeR Dataset [16]. The VIPeR dataset 1 contains im-
ages from two cameras, which were placed at many

1. http://vision.soe.ucsc.edu/?q=node/178

different locations in an outdoor academic environment.
Therefore, the viewpoint changes between cameras are
complex. From the time it was publicly available, it
has become one of the most challenging person re-
identification datasets. It contains 632 pedestrian pairs,
each pair contains two images of the same individual
seen from different cameras. Most of the image pairs
show viewpoint change larger than 90 degree. All images
are normalized to 128× 48 for experiments.

CUHK01 Dataset [34]. The CUHK01 dataset2 was also
captured from two camera views in a campus environ-
ment. Images in this dataset are of higher resolution and
are more suitable to show the effectiveness of saliency
matching. It has 971 persons, and each person has two
images from camera A and the other two from camera
B. Camera A is from a frontal view and camera B is
from a side view. All images are normalized to 160× 60
for evaluations.

The CUHK01 dataset was recently built and contains
more images than VIPeR (3884 vs. 1264). Both are very
challenging datasets for person re-identification because
they contain significant variations on viewpoints, poses,
and illuminations, and their images are with occlusions
and background clutters.

8.2 Evaluation Protocol
Our experiments on both datasets follow the evaluation
protocol in [17], i.e. we randomly partition the dataset
into two even parts, 50% for training and 50% for testing.
Images from camera A are used as probe and those from
camera B as gallery. Each probe image is matched with
every image in gallery, and the rank of correct match
is obtained. Rank-k matching rate is the expectation
of correct match at rank k, and the cumulated values
of matching rate at all ranks is recorded as one-trial
CMC result. 10 trials of evaluation are conducted to
achieve stable statistics, and the expectation is reported.
We denote our approach by SalMatch for comparison.

8.3 Evaluation on saliency Learning
We investigate the correlation between the human
saliency estimated from human perception through user
study and that automatically estimated by computation
models. The computation models include those design
for general image saliency (such as Itti [22] and Hou [21])
and our KNN and One-Class SVM (OCSVM) models
specially desgined for human saliency. We compute the
mean saliency score of each annotated body part, and the
Pearson correlation between the automatically estimated
saliency and estimation from human perception. Results
are shown , The scatter map in Figure 12(a) shows our
learned saliency (KNN and OCSVM) has high positive
correlations with human perception over the 100 an-
notated images, while general image saliency (Itti and

2. http://www.ee.cuhk.edu.hk/∼xgwang/CUHK identification.
html

http://vision.soe.ucsc.edu/?q=node/178
http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html
http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html
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Fig. 12. Correlation between automatically estimated saliency
by different approaches (Itti [22], Hou [21], our KNN model
and our One-Class SVM (OCSVM) model) and estimation from
human perception. (a) Scatter plot of correlations over 100
images. (b) Average correlations.

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

Fig. 13. Examples of estimated saliency map (only body parts
are shown). (a) Human saliency estimated from user study.
(b) Pedestrian images. (c) and (d) are general image saliency
estimated by Itti [22] and Hou [21]. (e) and (f) are human
saliency estimated by KNN and OCSVM. Number on top of
each saliency map indicates the correlation with human saliency
estimated from user study.

Hou) exhibits slight negative correlations. Figure 12(b)
shows averaged correlations. Some compared examples
are shown in Figure 13. The approaches for general
image saliency detection can separate body parts from
background. However, the identified body parts may not
be effective on recognizing identities.

More interesting results of saliency estimation are
shown in Figure 14(a)(b) both on the VIPeR dataset
and the CUHK01 dataset. Qualitative results show our
saliency learning approach could well approximate hu-
man perception and capture important salient regions on
human body.

We also quantitatively compare the effectiveness of the
saliency estimated from user study and our computation
models in person re-identification. We regard the 100
images (of 100 different persons) with saliency estimated
from user study as the probe set for evaluation, and
images of the corresponding identities in another cam-
era view are included as the gallery set. Bi-directional
weighted matching is adopted in testing competing
saliency estimation methods, including general image
saliency (Itti and Hou), our learned human saliency
(SDC knn and SDC ocsvm), and saliency estimated
from user study (SDC gt). CMCs are reported in Figure

(a) VIPeR dataset

(b) CUHK01 dataset

Fig. 14. Examples of saliency matching in our experiments.
It shows four types of saliency distributions: saliency in upper
body (in blue dashed box), saliency of taking bags (in green
dashed box), saliency of lower body (in orange dashed box),
and saliency of stripes on human body (in red dashed box). Best
viewed in color.
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Fig. 15. Bi-directional weighted matching (denoted by SDC)
using different saliency estimated by different approaches.

15. Results show that the our learned human saliency can
well approximate the saliency estimated from user study
in person re-identification, while general image saliency
significantly degrades the re-identification performance.

8.4 Component-wise Evaluation

The effectiveness of different components in our frame-
work is evaluated. Different settings of component
combination are described in Table 1 and their re-
sults are shown in Figure 16. DenseFeats in Eq. (2)
performs the worst since it directly matches mis-
aligned patches. PatMatch in Eq. (12) performs bet-
ter by handling misalignment. SDC knn (SDC ocsvm)
in Eq. (14) improves the performance by incorporat-
ing the estimated KNN (One-class SVM) saliency in
patch matching. SalMatch knn (SalMatch ocsvm) in
Eq. (27) formulates person re-identification as saliency
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Denotation Description of component combination in test
DenseFeats Matching with concatenated patch features
PatMatch Use patch matching to handle misalignment
SDC knn Bi-directional weighted matching (KNN saliency)

SalMatch knn Unified saliency matching (KNN saliency)
eSalMatch knn 1 Combine SalMatch knn with SDALF [13]
eSalMatch knn 2 Combine SalMatch knn with LADF [35]

SDC ocsvm Bi-directional weighted matching (OCSVM saliency)
SalMatch ocsvm Unified saliency matching (OCSVM saliency)

eSalMatch ocsvm 1 Combine SalMatch ocsvm with SDALF [13]
eSalMatch ocsvm 2 Combine SalMatch ocsvm with LADF [35]

TABLE 1
Description of all the test settings in components evaluation.

Refer to evaluation results in Figure 16.

matching, and learns matching weights in a super-
vised way. eSalMatch knn 1 (eSalMatch ocsvm 1) in
Eq. (32) ensembles SDALF feature matching scores
in SalMatch knn (SalMatch ocsvm) matching scores,
and eSalMatch knn 2 (eSalMatch ocsvm 2) ensembles
LADF similarity measures. By combining with either
method, the fusion methods outperforms each compo-
nent, showing that our approach is complementary to
other methods. One-class SVM saliency achieves slightly
better than its counterpart settings using KNN saliency.

8.5 Comparison with the state-of-the-art
Figure 17 shows significant improvement of SDC (un-
supervised) compared with existing unsupervised meth-
ods, i.e. SDALF [13], CPS [11], eBiCov [41], eLDFV [42],
and Comb [27] in the VIPeR dataset. For the CUHK01
dataset, we only include the DenseFeats and the SDALF
in comparison since code or feature representations of
the other methods are not available.

Figure 18 compares our supervised saliency matching
(SalMatch and eSalMatch) with ten alternative super-
vised methods, including seven benchmarking distance
metric learning methods, i.e. PRDC [58], LMNN-R [12],
KISSME [26], LADF [35], PCCA [45], attribute-based
PRDC (aPRDC) [37] and LF [46], a boosting approach
(ELF) [17], an ensemble of RankSVM (PRSVM) [48],
and a sparse ranking method (ISR) [36]. Our approach
outperforms all these methods. They ignore the domain
knowledge on spatial variation caused by misalignment
and poses as mentioned in Section 3. Although aPRDC
shares a similar spirit as ours in finding unique and
inherent appearance, it weights different types global
features instead of local patches. Its Rank-1 accuracy is
only half of ours. ELF has a low performance since it
selects features in the original feature space in which fea-
tures of different classes are highly correlated. RankSVM
is similar to our method in formulating person re-
identification as ranking problem. Combined approach
eSalMatch is not evaluated in CUHK01 dataset because
the weights µi in Eq. (32) are not carefully tuned for
this dataset in SDALF method, and features of this
dataset are not available in combining method LADF
[35]. Compared with classical metric learning methods
(CCA, LMNN, and ITML) based on our DenseFeats
features in CUHK01 dataset, our approach also has the

best performance, as shown in Figure 18(b). Ours has
much better performance because we adopt the discrimi-
native saliency matching strategy for pairwise matching,
and the structural SVM incorporates ranking loss in
global optimization. This is implies the importance of
exploiting human saliency matching and its effectiveness
in training structural SVM.

9 CONCLUSION AND FUTURE WORK

We propose a novel human saliency learning and match-
ing framework for person re-identification. Adjacency
constrained patch matching is applied to build dense
correspondence between image pairs to handle mis-
alignment caused by drastic viewpoint change and pose
variations. Then K-Nearest Neighbor and One-class SVM
approaches are proposed to estimate saliency score for
each image patch without using identity labels. User
study shows that the automatically estimated human
saliency has good correlation with human perception. It
is more effective than general image saliency in person
re-identification. The estimated saliency can be incor-
porated into patch matching in both the bi-directional
matching scheme and the unified saliency matching
framework, and images of the same identity can be
recognized by maximizing the saliency matching score.
Learning the weights in unified saliency matching frame-
work is formulated as solving a structural RankSVM
problem. Experimental results valid the effectiveness of
our approach and show superior performances on both
the VIPeR and CUHK01 datasets.

The proposed framework can be extended by being in-
tegrated with other person re-identification approaches.
For example, DenseFeats used in this work can be
replaced by other more advanced descriptors of char-
acterizing local patches. Patch matching in our frame-
work can be replaced by more sophisticated feature
matching techniques [31]. Since saliency information is
complementary to appearance, our saliency matching
result can be combined with the matching results of
existing approaches to boost their performance as shown
in Section 7.5.
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