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Abstract—In this paper, we present a novel method based on online target-specific metric learning and coherent dynamics
estimation for tracklet (track fragment) association by network flow optimization in long-term multi-person tracking. Our proposed
framework aims to exploit appearance and motion cues to prevent identity switches during tracking and to recover missed
detections. Furthermore, target-specific metrics (appearance cue) and motion dynamics (motion cue) are proposed to be learned
and estimated online, i.e. during the tracking process. Our approach is effective even when such cues fail to identify or follow the
target due to occlusions or object-to-object interactions. We also propose to learn the weights of these two tracking cues to handle
the difficult situations, such as severe occlusions and object-to-object interactions effectively. Our method has been validated on
several public datasets and the experimental results show that it outperforms several state-of-the-art tracking methods.

Index Terms—Multi-object tracking, tracklet association, target-specific metric learning, motion dynamics, network flow optimiza-
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INTRODUCTION

\J] TN this paper, we address the challenges in long-
> 1 term tracking of multiple persons in a complex
scene captured by a single, uncalibrated camera with
an aim of achieving consistent person identity track-
ing (i.e. no identity switches). This is a challenging
problem due to many sources of uncertainty, such
i as clutter, serious occlusions, targets interactions, and
camera motion.
LO)  Recently, significant progress has been reported in
=1 human detection [15], [20], [19], [30], [49], [51], [52],
~. and this promotes the popular tracking paradigm:
- = detect-then-track [31]], [38], [54], [62], [9], [44], [11], [é],
[12]. The main idea is that a human detector is run
on each frame to detect targets of interest, and then
detection responses are linked across multi-frames to
obtain target trajectories. In [62], [9], [44], [12], the
authors formulate the multi-target data association as
a network flow optimization problem. Zhang et al.
[62] use a push-relabel method [25] to solve the min-
cost flow problem. Berclaz et al. [9] and Pirsiavash et
al. [44] propose to use successive shortest path algo-
rithms, which can achieve roughly the same tracking
results with less computation cost. In a more recent
paper, Butt et al. [12] incorporate higher-order track
smoothness constraints, such as constant velocity, for
multi-target tracking. However, due to the limitation
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Fig. 1: A difficult scenario of high appearance similarity
among targets. (Frames from PETS dataset with pedestrian
identities labeled by our method): Despite individuals 1 and
8 dressed in similarly colored clothes and severe occlusions
and interactions between individuals 1, 8, and 9, their
identities should remain unchanged.

of the appearance cues used for tracking, the methods
mentioned above usually cannot deal with longer
term tracking to obtain a complete trajectory of a tar-
get. This is because prolonged occlusions and target-
to-target interactions will result in fragmentation of a
trajectory.

By using of the information from previous, current,
and subsequent frames, trajectory can be recovered
from the fragments and tracking errors such as missed
tracks or identity switches can be corrected. In our
earlier work [50], we advocate a discriminative target-
specific appearance-based affinity model to reinforce
the appearance cues for multi-person tracking. Unlike
the PIRMPT system proposed by [34], which requires
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Fig. 2: The proposed framework. In the cost-flow network, each node denotes a reliable tracklet, which is a tracklet with
only one identity. The flow costs of edges are defined by negative log of the affinity scores, which are obtained through the
online learning of target-specific metrics and motion dynamics with the off-line learned weights on segments of short-time

sequences known as local segments.

off-line learned local descriptors, our target-specific
metrics are online learned during tracking. In [50],
we utilized a motion constraint based on heuristics.
In this paper, we exploit motion dynamics to further
improve tracking of target’s identity. Furthermore,
we study the significance of the appearance and
motion cues on tracking performance independently.
Different from previous works [34], [56], [58], which
simply multiply the motion and appearance affinities
to obtain the linking probabilities of two tracklets, we
separately develop a learning algorithm to automati-
cally learn the weights of the two terms from labeled
training data. The learned weights can enhance the
tracking cues with strong discriminative power and
suppress the tracking cues with weak discriminative
power. As a result, the weighted tracking cues can
disambiguate the targets’ respective identities better
even in situations such as the one depicted in Figure

m

A typical way of implementing the popular “detect-
then-track” paradigm is to track multiple targets
frame by frame, which often encounters irrecoverable
errors if a target is undetected in one or more suc-
cessive frames or if two detections are erroneously
linked. To overcome this weakness, global trajectory
optimization over batches of frames have been pro-
posed in recent years, using methods such as Lin-
ear Programming [48], [33] and Dynamic Program-
ming [22], [44]. These methods are often based on
graphical network optimization in which the nodes
are represented by detection responses. Such meth-
ods often fail to handle the problems of long-term
tracking in crowded scenes well. To alleviate this,
some researchers [34], [57], [46] try to use the track
fragments (tracklets) as graph nodes aiming at linking
tracklets into long trajectories. This kind of Tracklet
Association-based Tracking (TAT) methods can in-

crease robustness and reduce the computation com-
plexity of the graph optimization. There are two
key components of a TAT approach: (1) The tracklet
affinity model that estimates the likelihood of two
tracklets belonging to the same target; (2) The global
optimization framework for tracklet association that
determines the links of the tracklets based on their
affinity scores.

In this paper, we report our algorithm applied to
tracking pedestrians in real scenes, but it can be
generalized to tracking any other objects in diverse
situations. The framework of this approach is shown
in Figure [2}

Given a video sequence, we first detect pedestrians
in each frame by an existing detector, such as the
Deformable Part Models (DPM) detector [20]. We
utilize the strategy introduced in Section to gen-
erate the initial tracklets, which are mostly reliable.
But some errors, though very little, could still exist
in initial tracklets. We introduce our target-specific
metric learning on these initial tracklets. Then we
use the online learned target-specific metrics to refine
these initial tracklets for reliable tracklets. The cost-
flow network is based on the reliable tracklets and
its optimization yields the long-term trajectories of
multiple persons. Estimating the transition costs is the
key factor in the min-cost network flow optimization.
We propose to learn tracklet affinity models, which
include weighted discriminative appearance and mo-
tion cues, in an online manner for estimating the
transition costs.

The main contributions of this paper are: (1) Online
learning of target-specific metrics with strong dis-
criminative power through a two-step target-specific
metric learning and metric refinement processes. (2)
Utilizing both appearance and motion dynamics in
the tracklet affinity models, which are updated within



each local segment for reduced computation and lo-
cally adaptive affinity models. (3) A learning algo-
rithm to learn the weights of motion and appearance
tracking cues for tracklet affinity models.

The rest of this paper is organized as follows:
Section 2 describes the cost-flow network formulation.
Section 3 presents the online learning of the tracklet
affinity models. The learning of weights is presented
in section 4. Experimental results and comparisons are
shown in section 5. Section 6 concludes the paper.

2 CosT-FLOW NETWORK FORMULATION
FOR TRAJECTORY RECOVERY BY TRACKLET
ASSOCIATION

The cost-flow network has been shown to be effective
for estimating trajectories in previous studies [62], [9],
[44]. However, in these works, the graph nodes are
defined by the detection responses. In recent works
1231, 470, [54], [34], [57], [56], Tracklet Association-
based Tracking (TAT) methods were proposed for
multi-target tracking. In these methods, the tracklets
were generated based on association of detection re-
sponses. In this paper, we generate the initial tracklets
based the successive shortest path algorithm of [44],
which will be described in sub-section The initial
tracklets are then refined by the proposed online
learned target-specific metrics for reliable tracklets.
This tracklet refinement process will be presented in
sub-section We can construct a smaller graph
based on such tracklets which are of a higher order of
abstraction than those based on detection responses.
The problems in long-term multi-person tracking can
be solved by directly linking tracklets instead of de-
tection responses.

An objective function, which takes a similar form
as detection association in [62]], is defined for tracklet
association. Let X = {F;} be the collection of all the
tracklets. A single trajectory hypothesis is defined as
an ordered list of N tracklets: Ty, = {F},, Fiys .- Fi,
where Fj,, € X, and i = 1,...,[;1 <[ < N. A tracklet
association hypothesis 7 is defined as a set of single
trajectory hypotheses: 7 = {1} }.

The objective of tracklet association is to maximize
the posteriori probability of 7 given X:

T* = arg max P(T|X)
= arg max P(X|TP(T)

= argm%xHP(Fi\T)P(T) (1)

assuming that the likelihood probabilities of F; are
conditionally independent.

We take the assumption that the motion of each
tracklet is independent and one tracklet can only
belong to one trajectory. Then the above equation can

be further decomposed into:

T* —argmaXHPF\T H P(Ty) (2)
TeT
s.t. TkﬂTl:gb,Vk;Al (3)

where ¢ is the empty set.
The second term in Equ. (2) is defined as follows:

P(Ty) = P({Fy,, Fieys s Fii, })
Fk1 (HP n+1|F >Pt(Fkl) (4)

P(F;|T) is the likelihood function of tracklet F;. It
is assumed that the false alarm rate is very low from
the reliable tracklets, so P(F;|7) ~ 1. Then Equ.
can be further simplified as follows:

T = argmaxHP F;|T) H P(Ty)
TeeT
= argmax H P(Ty) 5)
TweT

P(Ty) is modeled as a Markov chain, which in-
cludes a starting probability P,(Fy,), a termina-
tion probability P;(F),), and transition probability
P(F,41|F,) between temporarily adjacent tracklets.
Finding the optimal association hypothesis 7* is
equivalent to minimizing the cost of flow from source
s to sink ¢ in a network flow graph. A network graph
can be constructed as follows:

Given an observation set X: for every tracklet
F; € X, we create a node v;, an edge from source
s to a node,(s,v;), with cost c(s,v;) = ¢ and flow
f(s,v;) = f?, and an edge from a node to sink ¢,
(v, t) with cost c(v;,t) = ¢! and flow f(v;,t) = f}.
For every transition P(F}|F;) # 0, create an edge
(vi,vj) , i # j, with cost ¢(v;,v;) = ¢;; and flow
f(vi,vj) = fi;. We take the logarithm of the objective
function to simplify the expression while preserving
the maximum a posteriori probability (MAP) solution.
Then, Equ. (5) can be re-written as follows:

T:argm7i_n Zcffis—FZCijfij +Zcsz (6)
7 1) T
s.t. fijv is, fzt S {O, 1},

and f7 + Zfﬂ =fl+ Zﬁ] (7)
J J

subject to Equ. (6), where
Cf = _logPS(Fl)a

—logPt(Fi),

Equ. (7) ensures that the tracklet association hy-
pothesis 7 is non-overlapping. The above formulation
can be mapped into a cost-flow network with a source
s and a sink t. Estimating the transition costs c¢;; is
very critical in solving this min-cost network flow
problem. Previous network flow approaches [62], [9],
[44], [12] only utilize motion cues across consecutive



frames and simple appearance features such as color
histograms to calculate c;;. Nevertheless, these cues
are not very reliable when prolonged occlusions and
interactions between targets occur. In this paper, we
propose to learn the segment-wise tracklet affinity
models, consisting of weighted tracking cues, online
for estimating c;;.

3 ONLINE LEARNING OF TRACKLET AFFIN-
ITY MODELS

In this section, we introduce the online learning of
tracklet affinity models, consisting of online target-
specific metric learning and online motion dynamics
estimation. The affinity scores of adjacent tracklets,
which are used as the transition probabilities between
two corresponding nodes in the cost-flow network,
can be obtained through tracklet affinity measure-
ments. We perform local transition probabilities es-
timation within a local segment of S frames (S = 50
in our implementation).

In order to obtain effective appearance cues for
reliable transition probability estimation, we propose
a novel target-specific appearance-based model. The
appearance-based model learning problem is formu-
lated as a metric learning problem, which can en-
hance the features with strong discriminative power
and suppress the features with weak discriminative
power. Here, we learn target-specific metrics so that
target-specific properties can be efficiently explored
for more discriminative models. In contrast to the
previous work of [34] in which local descriptors are
learned offline, our learning is online throughout
and our target-specific metrics are adaptive to local
segments. Moreover, to create a more discriminative
tracklet affinity model, we also explore the motion
dynamics cue and embed it into the proposed tracklet
affinity model. The motion dynamics are online esti-
mated without any assumed priors. As a result, the
learned tracklet affinity models can better represent
the appearance and motion cues adaptively and pro-
vide reliable transition probability estimation.

3.1 Initial Tracklet Generation

Before introducing the proposed tracklet affinity mod-
els, we first present the initial tracklet generation
process. Similar to the cost-flow network formulation
described in previous section, the problem of initial
tracklet generation is also formulated as a network
flow optimization problem. Different from the cost-
flow network formulation presented in Section 2} the
graph nodes are defined by the detection responses
and their costs, referred as local observation costs
here, (the negative logarithm of the corresponding
detection scores) are added in the formulation. The

mathematical formulation of the minimization prob-
lem can be expressed as follows:

F = arg min Zéfff + Zéijfij + Z@fz + Zéfﬁ
i ij i i
8
s.t. f’ijvf’ia Aisaff € {071}7
and ff+ijz'=fi=ff+Zfij )
J J

where ¢, ¢, ¢ij, ¢; denote the starting, termination,
transition and local observation costs, respectively. f?,
ff, fij, fz denote the corresponding flows.

To obtain the initial tracklets (relatively short track
fragments), the transition cost ¢;; is set to 0 for
each candidate detection pair first. Only the detec-
tion responses over consecutive frames are consid-
ered to be linkable. The transitions of the cost-flow
network across non-consecutive frames are not per-
mitted. Moreover, a constraint is imposed on initial
tracklet generation. That is, a track fragment should
start from a detection response and terminate at a
detection response with detection scores higher than a
pre-defined threshold, thus only consecutive detection
responses with detection scores above the threshold
are used to form the initial tracklets. This constraint
ensures that the generated initial tracklets are rel-
atively short and mostly reliable track fragments.
The dynamic programming algorithm in [44], which
approximates the successive shortest path solution,
is employed to optimize the cost-flow network. This
initial tracklet generation strategy can be viewed as a
simplified version of the method in [44]. The average
speed of this process is above 500 fps.

3.2 Online Target-Specific Metric Learning

We aim to online learn discriminative target-specific
metrics while keeping the computational complexity
low. For each tracklet F;, we learn a distance metric
function.

The learning involves feature representation, online
training sample collection and online training. To
create a strong appearance-based model, we start from
a rich set of basic features, which includes color, shape
and texture, to describe a pedestrian’s appearance.

Given a training dataset Z = {2}z, where z! €
RMa is a feature vector representing the appearance
of the image area under the bounding box where
there is a strong detection response in tracklet F; at
frame ¢, N, is the total number of training samples
and N, is the total number of feature dimensions.
The training dataset Z is obtained from reliable track-
lets through online training sample collection, which
will be introduced in latter part of this subsection.
We define a positive difference vector z! computed
between a positive sample pair (a pair of detection



responses belonging to the same person) and a neg-
ative difference vector 2} computed from a negative
sample pair (a pair of detection responses belonging
to different persons). Here, it is assumed that the
first M frames of each initial tracklet are reliable and
the detection responses are from the same person.
Training samples are therefore collected from these
frames. The value of M is empirically determined. It
is found that a value M between 6 and 10 frames
works well for all sequences. Based on the constraint
introduced in previous subsection, most of the gen-
erated initial tracklets are relatively short and mostly
reliable. However, some unreliable tracklets may still
exist due to occlusions of the targets. This kind of
target interactions often occur in the middle of initial
tracklets. Based on this observation, we assume that
the first M frames of each initial tracklet are mostly
reliable.
The difference vectors =¥ and z are defined as:
xf = d(zi, 2;) = |z — 2

n
?

i
where d is an absolute difference function, z; and z;
are the feature vectors of two samples from the same
tracklet F;, zé is the feature vector of a sample from
a different tracklet F.

Given the difference vectors ! and 7, a distance
function D; for tracklet F; can be learned based on
relative distance comparison so that D;(z) < D;(z?").
This distance function D, is parameterized as a Ma-
halanobis distance function:

Dj(z) = ¥ M;,

xp = d(z, 25) = |z — 2], (10)

M; =0 (11)

where M, is a positive semidefinite matrix.
We adopt the logistic function as in [63] to learn D;
to force D;(z¥) to be small, and D;(z}) to be big:

min (D) = log (1 + exp (Di(a!) — Difa?)) )
(12)

Furthermore, the term M; in the distance function
D, can be decomposed by eigendecomposition:

where A; is the orthonormal eigenvector matrix of
M; and the diagonal of A; are the corresponding
eigenvalues.

Therefore, learning a distance function D; is equiv-
alent to learning the matrix W; as follows:
ij = O,Vi 7’5 j,wi,wj S I/Vz

i

inr(W;), s.t.
minr(Wi), s.t. w

r(Wi) = log(1 + exp{[|W; 27| — W] 27|*})  (14)

Online training sample collection is another impor-
tant issue in online learning. The ¢ strongest (¢ = 4
in this work) detection responses in each tracklet are
used as training samples. For z¥, we collect positive
sample pairs from the same tracklet. However, for
x}', we collect negative sample pairs from different

persons. To determine the relevance of sample pairs,

two constraints are employed: spatio-temporal and
exit constraints. The first constraint is based on the
fact that one person cannot appear at two or more
different locations at the same time. The second con-
straint is based on the observation that the person
who has already exited the view cannot be the person
who is still within the view. We online collect negative
samples, which satisfy the above two constraints,
from F; and Fj respectively to form negative sample
pairs.

Learning W; using the optimization criterion (14)
is a nonconvex optimization problem. In this work,
we utilize the optimization algorithm in [63] to learn
W, for each tracklet F;. Finally, we obtain the target-
specific transform matrices for all the tracklets:

W={W}, i=1,.,N (15)

3.3 Tracklet Refinement

To solve the objective function in Equ. (6), we need
to identify reliable tracklets for the nodes in the
network graph. The strategy of initial tracklet genera-
tion, which is described in previous sub-section, uses
spatio-temporal information such as distance between
corresponding observations in adjacent frames to link
the detections into tracklets. Without effective use of
appearance cues, the initial tracklets may be not con-
sistent in appearance and hence unreliable when there
are many interactions or occlusions between targets. A
typical error is that there are some detection responses
belonging to different persons in one tracklet. Hence,
tracklet refinement is needed to separate tracklets into
multiple short but reliable ones.

The online learned target-specific metrics are em-
ployed to refine the initial tracklets. To construct the
probe set, the detection with the strongest detection
response, g;, is selected from the first M frames of an
initial tracklet, F;, which are assumed to be reliable.
It is defined as G = {g;}, i = 1, ..., Ny, where Nj is the
number of tracklets in a local segment. Each tracklet
F; has only one selected g; in G.

We learn the target-specific transform matrix W; for
each initial tracklet after collecting training samples as
described in previous sub-section. The identity test is
carried out within a local segment frame by frame
to obtain the relative distance between the detection
response at frame ¢ of F; and the corresponding g; in
the probe set:

xf = d(zf —gi) = \Zzt - gil;
di = Wi z|)?

i=1,.., N,

(16)

where z! is an instance from tracklet F; at frame ¢,
g; is the corresponding detection response of F; in G,
and d! is the relative distance between z! and g;.

To be a reliable tracklet, the relative distance be-
tween the current detection response z} and the probe
g; should be small; otherwise, it is an unreliable
tracklet. A distance threshold w is used to identify



reliable tracklets. In a tracklet F;, if K (K = 5 in
our implementation) consecutive detection responses
having relative distance values (from g¢;) above w,
we split F; into two parts from the first consecutive
detection response. In virtue of the strategy of initial
tracklet generation introduced in Section the gen-
erated initial tracklets are mostly reliable, but some
errors, though very little, could still exist in the initial
tracklets. This tracklet refinement process is usually
repeated no more than twice to obtain reasonably
reliable tracklets.

After obtaining the reliable tracklets, the target-
specific metrics learned from the initial tracklets are
updated. Different from the training sample collec-
tion of initial tracklets that the samples are collected
from the first M frames of the tracklets, the training
samples of the reliable tracklets are collected from the
full-length tracklets. The strategy of online training
sample collection is the same as the one introduced
in Section As shown in Figure 2] a two-step
target-specific metric learning/update is used in the
proposed framework. The first step is used for tracklet
refinement, which is usually repeated no more than
two times. The second step is used for the appearance-
based tracklet affinity estimation, which executes only
once.

3.4 Online Tracklet Dynamics Estimation

To disambiguate targets with similar appearance, we
propose to exploit motion dynamics together with
appearance cues as described above to keep track of
target’s identity. The main idea of tracklet dynamics
estimation is to model the evolution of target motions
as a sequence of piecewise linear regressors whose
orders can be estimated from available data.

The dynamics of a tracklet can be constructed as
an ordered sequence of dynamic measurements {y,},
s < g < e, where s and e are the starting and ending
frames, respectively. Similar to [13], [17], we collect
the position information of all the detection responses
within one tracklet in a vector y and assume that its
value at current time q is related to its past values y,_;
by an m!" order autoregressive model of the form:

Yg = @1Yg—1 + @2Yg—2 + ... + GmYq—m

m
:Zaiyqfiv mSNfanS+m

i=1

(17)

where a = [a; ag ... am]T is the regressor vector, Ny
is the total number of frames of the tracklet, m is
the number of frames of the dynamic measurement
1yq and s is the starting frame of the tracklet.

The order of the autoregressive model m measures
the complexity of the underlying tracklet dynamics.
The goal of tracklet dynamics estimation is, given
dynamic measurements {y,}, to estimate the mini-
mum m such that the model retains. Specifically,
a well known result from the realization theory [27],

[42] is that, under mild conditions, given an ordered
sequence of measurements {y,} generated by Equ.
(I7), the order m of the autoregressive model equals
to the rank of the corresponding Hankel matrix, i.e.,
m = rank(Hp,) where Hp, is the Hankel matrix with
n > m columns:

Ys, Ys+1 Ys+n—1
. Ys+1  Ys+2 Ys+n
Hp, = . . . (18)
Yt—n+1 Yt—n CIEa Yt

where n is defined based on the length of the tracklet:

n:li—”i/:ﬂ—Fl;
li=t—s+1

(19)

where [; is the length of tracklet F;.

The motion dynamics similarity P, (F;, F;) between
two tracklets F; and F);, which takes a similar form
as in [17], is defined as follows:

—o0, if temporal conflict exists;
Pm(Fij) = rank(HF,i)Jrrank(HFj) 1
rank(Hpij ) -
(20)
where F;; = [F; a;/ Fj] is the joint tracklet with

the gap «;7 between F; and F} interpolated. The
joint Hankel matrix Hp,; is formed by combining the
dynamic measurements of F;, F; and the interpolated
data.

Here, we take the assumption that the targets do not
significantly change their dynamics between tracklets.
The intuition of the above motion dynamics similarity
is that if two tracklets are from the same trajectory
then they can be approximated by one relatively low
order regressor. Otherwise, if two tracklets are from
different trajectories, the joined trajectory needs a
higher order regressor than the regressors of each
single tracklet. Hence, if rank(Hp,) = r(F;) and
rank(Hp;) = r(Fj;), then rank(Hp,,) = r(Fiy;) <
(r(F;) + r(F;)). Consequently, if F; and F; are of
the same trajectory, then r(F;) = r(F};) = r(F;;) and
P,.(F;, Fj) =1, but if not, P,,,(F;, F}) = 0.

Tracklet dynamics are online estimated, without
any prior knowledge, based on the reliable tracklets.
The IHTLS (Iterative Hankel Total Least Squares)
method in [16] is employed to estimate the rank of
the Hankel matrices for tracklet dynamics estimation.
The computational complexity of rank estimation is
O((l; — m)m?), where [; is the length of a tracklet F;
and m < [; is the rank of the matrix.

3.5 Tracklet Affinity Measurement

In this subsection, we present the measurement of the
affinity between F; and Fj, or equivalently, the tran-
sition probability, P;;, in the network graph between
node i and node j. The tracklet affinity score, S,
which is equivalent to P;;, is defined as follows:

Sij = P (Fy, Fy) Po(F;, Fj)Cij (21)



where P,,(F;, F;) is the motion-based affinity model,
which is defined by Equ. Q0), P.(F;, F;) is the
appearance-based affinity model and C;; is a limiting
function.

To obtain the appearance-based affinity model
P,(F;, Fy), we first compute the relative distances dj;
between each detection response in F; and the probe
gj, and dé; between each detection response in F; and
the probe g;,

xfj = |2! — g5l xi; = \z;, —gil; 4,5=1,..,Ng

diy = Wl |1, dj, = W]l (22)
where 2! denotes the feature vector of a detection
response in tracklet F; at frame ¢, zf denotes the
feature vector of a detection response in tracklet F)
at frame ¢/, and ¢;,9; € G.

Subsequently, we calculate the mean values of
the relative distances and use them to define the
appearance-based affinity model P, (F;, F}):

di; = (Z dﬁj)/m7 dj; = (Z d;;)/n

Po(F;, Fy) = (dijdji) 'y

(23)

(24)

where ~ is a normalization term and m, n are the
number of frames of F; and F} respectively.

We do not have to apply Equ. to every pair,
since there are a lot of obviously non-related tracklet
pairs which do not belong to the same trajectory.
Because a limiting function C;; is included in Equ.
(1), we actually apply it to every tracklet pair. This
limiting function C;; is proposed based on spatio-
temporal, and exit constraints:

Ci; = Cy(F;, F;)Co(F,, F) (25)
The spatio-temporal constraint is defined as fol-

lows:
1, if ENF;=¢

Ci(F;, Fy) = { 0, otherwise @)

where N is an intersection operator that is used to find
the overlap between two tacklets and ¢ is the empty
set.

The exit constraint is defined based on the observa-
tion that the person who has already exited the scene
cannot be the person who is still within the scene:

: s e t5
C.(F;, Fj) = { 1, if > 15 & p ¢ B

; (27)
0, otherwise

where t; is the starting frame of tracklet £, t¢ is the

e

ending frame of tracklet F}, pz" is the position of the
detection response of tracklet F at time ¢; and E' is
the exit area which is near image borders. For static
cameras, we adopt the incremental learning algorithm
for exit map as in [56] to obtain E.

Cy(F;, Fy) and C.(F;, F;) associate F; and Fj if they
have no overlap and F; does not exit the screen when
F; appears.

The transition costs of the adjacent nodes in the
cost-flow network is obtained by taking negative log-
arithm of the affinity scores between corresponding
tracklets:

cij = —log S;; (28)

Finally, we can estimate the optimal tracklet as-
sociation hypothesis 7* in Equ. (6) based on c¢;;.
Although the transition costs ¢;; are estimated within
local segments, the final tracking trajectories are ob-
tained through network flow optimization on the
whole sequence. After tracklet association, there may
exist some gaps between adjacent tracklets in each
trajectory due to missed detections and occlusions.
The possible gaps in the tracking trajectories are in-
terpolated linearly.

However, in the proposed tracklet affinity model
as depicted in Equ. (I), the motion-based affin-
ity model, P, (F;, F;), and appearance-based affinity
model, P,(F;, F}), are treated equally without any
voting weights. This may result in inaccurate affinity
scores if one of the tracking cues is dominant and the
other one is confusing, having an effect as a noise
factor. Therefore, we investigate the influences of the
two tracking cues on tracking performance in next
section.

4 LEARNING OF AFFINITY WEIGHTS

In difficult situations, where severe occlusions and
interactions occur, the motion-based affinity model
and appearance-based affinity model may not be con-
sistent. Hence, we need to weight them properly for
stable performance.

We propose to add a weighting parameter A, which
controls the weight of the motion-based affinity score,
in Equ. 21).

Sij = [Pm(Fi, Fj)MPu(Fi, Fj)Cij, 0<A<1  (29)
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where ) is learned from labeled data. If the value of A
is larger, the motion-based affinity score, P,,(F;, F;),
contributes more to S;;.

4.1 Assessment of Difficult Situations for Motion
Dynamics

To investigate the difficult situations where the motion
affinities are not reliable, we only utilize the motion-
based affinity model to estimate ¢;; for Equ. (6) in
the experiments. After analyzing the inconsistencies
between the tracking results and the labeled ground
truth data, we obtain these typical situations where
the motion affinities are not reliable. Based on the
analysis, we design a rule to automatically assess
these difficult situations.

There are two constraints in this rule. The first one
is that two tracklets should have a certain amount



of overlap in the starting or ending frames, which
indicates the occlusion of two targets:
S(zi )N S(zp, ) = n+min(S(z ), S(z ) or

S(= )N S(2) = nxmin(S(=), (=) (30)

where 2!" and z!" are the detection responses of F;
at the ending frame ¢° and the starting frame ¢*,
respectively. z{ and z! are the detection responses
of Fj, at the ending frame ¢° and the starting frame
t*, respectively. S(-) is the operator to capture the area
of the detections in pixels. 7 is a sensitivity threshold
(n = 0.3 in our implementation).
The second constraint is that tracklets F; and F)
must have a gap for it to be linkable. That is,
ti—ti>1, i#j (31)

where t; is the starting frame of tracklet Fj, 7 is the
ending frame of tracklet F;, and ¢; > ;.

If the tracklet pair {F;, F;,} match the above two
conditions, then we add the weighting parameter A
to the motion-based affinity models related to F; and
Fy, as [P, (F;, F))]* and [P, (Fy, F})|*. F;, F; are the
linked candidate tracklets of F; and Fj, respectively.
As we can see in Figure 3] the tracklet pairs with
identities 269, 289 and 305, 306 match these two
constraints. In such situation, due to interactions of
the two targets, the two corresponding trajectories
become ambiguous. Hence, we add the weighting
parameter A for these 4 tracklets in terms of the
motion-based affinity models.

Frame 720  Frame 721 Frame 722 Frame 723 Frame 724

- e Do 1 e
=1 © BN _-.u—i,..z-_-

— B IS —
Frame725 Frame726 Frame727 Frame 728

Tracklet trajectory

Fig. 3: An example of the difficult situations.

4.2 Learning of the Weighting Parameter

The weighting parameter A in Equ. defines the
weight of the motion-based affinity model for tracklet
association. Based on the number of frames of the
gaps between tracklets, we divide X into 2 levels:

)\:{ A, 1<u< B
Ao, u> By
where v is the number of frames in the gap between

corresponding tracklets (B; = 20 in our implementa-
tion).

(32)

Algorithm 1 Weighting parameter learning for track-
let association

Input:
Reliable tracklets;
Labeled ground truth data;
Output:
The learned weighting parameters: {A1, A2};
1: Initialize the weighting parameters: A\ = A =0, = Ay =
0 and the step value AX = 0.1;
2: Online estimate transition costs for all graph node (tracklet)
pairs based on:
cij = —log(Pm (Fy, Fj)Pa(Fy, Fj)Cij);
3: for i=1to 2 do
4: while \!; <1 do
5 for all graph node (tracklet) pair {F;, Fi} matches the
rule of the assessment of difficult situations do

6: if u > 1 and u < B; then
7: A=Ay
8: else if © > Bj then
9: A= /\2 ;
10: end if
11: for all tracklet pairs related to F;, F, do
12: cij = — log([Pm (Fi, F})|* Pa(Fy, F})Cij);
il = — 1og([Prm (Fi, F1)]* Pa(Fio, F1)Cra);
13: end for
14: end for
15: Obtain tracking results through network flow optimiza-
tion;
16: if Current tracking results better converge to ground truth
data then
17: )\7; = )\li}
18: end if
19: M= Al 4+ AN
20:  end while
21: end for

22: return {\1, A2}

The intuition is that if the gaps are longer, it is
more difficult to accurately estimate the joint tracklet
dynamics. Therefore, we define 2 difficulty levels
as in Equ. (32), making the weighting parameter A
adaptive to the difficult situations. The number of
difficulty levels and the upper bound value of level
1 (B;) are empirically determined. Furthermore, we
employ tracking performance evaluation and network
flow optimization jointly to optimize the weighting
parameters for tracklet association.

The learning algorithm is summarized in Algorithm
Given the reliable tracklets and the labeled ground
truth data of a video sequence, we aim to learn
the weighting parameters in a supervised manner so
that the tracking performance can be optimized. The
two proposed weighting parameters are optimized
independently in a greedy fashion. The weighting
parameters are initialized as A; = 0,Ay = 0. After
some iterations with a fixed step value, the weighting
parameters {\1, A2} are obtained.

The weighting parameters A; and A, are learned
from the ground truth data of PETS 2009 [21] in this
paper. Our tracking algorithm is then run with the
learned weighting parameters (A\; = 0.5, A2 = 0.2) on
all the datasets for evaluation. Based on the analysis
of the experimental results with different B;, we find
that the tracking performance is slightly affected by
the changes of B;. An upper bound value Bl of (20-
30) frame gap works well for all sequences.



5 EXPERIMENTS
5.1 Datasets

To evaluate the performance of the proposed ap-
proach, we experiment on five challenging, publicly
available pedestrian datasets.

TUD. The TUD Crossing sequence [3] and TUD-
Stadtmitte sequence [4] are real-world videos filmed
in busy pedestrian streets. The cameras are positioned
at a quite low angle, resulting in more complex oc-
clusion patterns and rather inaccurate ground plane
locations. Furthermore, for TUD-Stadtmitte, the size
of the pedestrians on the image plane vary drastically.

PETS 2009. This benchmark dataset [21] presents
an outdoor scene with large number of pedestrians
captured from multiple cameras at 7 fps. The pedestri-
ans vary significantly in appearance due to shadows
and lighting changes. Moreover, there are frequent
occlusions, caused by pedestrian occluding each other,
or static occlusions such as the traffic sign. In the
experiments, we use the sequences S2L1 and S2L2 in
the first view, which are widely used in literature.

Town Centre. The Town Centre dataset [8] is cap-
tured by a single elevated camera in a busy street.
There are 16 pedestrians visible at any time on aver-
age, leading to frequent dynamic occlusions and in-
teractions. Furthermore, due to the severe occlusions
caused by static obstacles, many pedestrians are not
detected by the state-of-the-art detectors.

ETH. The ETH BAHNHOF and SUNNY DAY se-
quences [18] show busy street scenes from a pair of
cameras on a moving stroller. The stroller is moving
forward at most of the time, however there are still
some panning motions, which leads to the unreli-
able motion affinities between tracklets. Moreover,
frequent full or partial occlusions occur due to the low
view angles of cameras. The size of the pedestrians
also varies significantly on the image plane.

MOTChallenge. The MOTChallenge 2D Bench-
mark is an up-to-date multiple object tracking bench-
mark. It consists of a total of 22 sequences, in which
half of them are used for training and half of them are
used for testing. The test sequences cover many dif-
ferent situations, such as different viewpoints, static
or moving camera, different weather conditions. This
makes MOTChallenge benchmark very challenging.

5.2 Experimental Settings

The online collected training samples from video
frames are normalized to 128 x 64 pixels for target-
specific metric learning. For the color feature, RGB,
YCbCr and HSV color histograms are extracted with
16 bins for each channel respectively and concate-
nated into a 144-element vector. To capture shape
information, we adopt the Histogram of Gradients
(HOG) feature [15] by setting the cell size to be 8
to form a 3968-element vector. Two types of texture
features are extracted by Schmid and Gabor filters. In

total, 13 Schmid channel features and 8 Gabor channel
features are obtained to form a 336-element vector
by using a 16-bin histogram vector to represent each
channel. Each person image is thus represented by a
feature vector in a 4448-dimensional feature space.

5.3 Evaluation Metrics

Since it is difficult to use one single score to evalu-
ate multi-target tracking performance, we utilize the
evaluation metrics defined in [38], [12], as well as the
standard CLEAR MOT metrics [10]:

o MOTA(T): Multi-object tracking accuracy.

o MOTP(T): Multi-object tracking precision.

o Recall(1): correctly matched detections / total de-
tections in ground truth.

o DPrecision(?): correctly matched detections / total
detections in the tracking result.

o FAF(]): number of false alarms per frame.

o GT: number of trajectories in ground truth.

o MT(1): number of mostly tracked trajectories.

o PT: number of partially tracked trajectories.

o ML(]): number of mostly lost trajectories.

o Frag(l): number of fragmentations.

e IDS({): number of id switches.

o IDS/correctly matched detections (J).

For evaluation measures with (), higher scores
denote better performance; for evaluation measures
with (), lower scores denote better performance. A
tracking bounding box in the result having more
than 50% overlap with the corresponding groundtruth
bounding box is considered as true positive. The
evaluation codes are downloaded from [39].

5.4

To investigate the influence of the repetitions of track-
let refinement process, we run our tracking algorithm
and experimented with different number of repeti-
tions while keeping all the other conditions fixed. As
shown in Figure (4] for each dataset, the changes in
performance (measured by MOTA score) is plotted
against the repetitions of tracklet refinement process.
0 repetitions in Figure [d] means that no tracklet re-
finement is utilized for our tracking algorithm. Note
that the tracking performance has been improved
by exploiting the tracklet refinement for all datasets.
Moreover, it is found that the optimal tracking per-
formance is achieved by no more than 2 repetitions
of tracklet refinement process for the four exemplar
datasets. From the statistics as shown in Figure [} we
can conclude that the proposed tracking algorithm
with only one time tracklet refinement process can
achieve near-optimal tracking performance.

Influence of Tracklet Refinement

5.5 AQuantitative Evaluation

The quantitative evaluations are presented in three
sub-sections: abbreviations of the proposed methods
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Fig. 4: Influence of tracklet refinement process on tracking performance. Each plot presents the performance (measured
by MOTA score) on a particular dataset w.r.t. the number of repetitions of tracklet refinement process.

in the experiments, comparison with network flow
based methods, and comparison with other state-of-
the-art methods on benchmark datasets. The track-
ing results of other methods are extracted from the
published papers and the MOTChallenge benchmark
website [1] for the ease of reference.

5.5.1 Abbreviations of Different Methods

o CML: The proposed method with only an online
learned common class metric for all tracklets.

e TSML: The proposed method with online target-
specific metric learning.

e TD: The proposed method with only tracklet
dynamics.

o TSML+TD: The proposed method with online
target-specific metric learning and tracklet dy-
namics.

o TSML+TD+WP: The proposed method with full
tracklet affinity model including target-specific
metric learning (TSML), tracklet dynamics (TD)
and weighting parameters (WP).

CML and TSML are from our previous work [50].

5.5.2 Comparison with Network Flow based Methods

We first evaluate our method on the popular TUD
Crossing sequence [3] and ETH BAHNHOF sequence
[18]. For a fair comparison, we use the same sequences
and pre-trained pedestrian detector as used in [12].
The quantitative metric that we use is ID switches /
total number of correct observations used in the trajecto-
ries (IDS / correctly matched detections), which is the
same as in [12]]. Table [1| gives the quantitative results
computed on the TUD Crossing sequence, and the
first 350 frames of the ETH BAHNHOF sequence. Due
to the forward and panning motions of the cameras,
the motion affinities between tracklets are unreliable
for the BAHNHOF sequence. Therefore, we do not
add the online tracklet dynamics estimation for the
experiments in this subsection. We report the results
of five methods: DP algorithm of [44] is our baseline
work without adding the online learning of tracklet
affinity models. The results are also compared to
those of other network flow based methods: MCNF
[62] and LRMCNF [12]. The proposed method with
online target-specific metric learning is denoted as
TSML. Furthermore, we also report the results of the
proposed method with only a common class metric
for all tracklets, which is denoted as CML.

Algorithm TUD Crossing ETH ETH (GT)
DP [44] 32/768 37/1387 25/1648
MCNF [62] 9/433 11/1057 5/922
LRMCNEF [12] 14/819 23/1514 14/1783
CML 10/845 5/1728 3/1786
TSML 7/862 1/1790 0/1820

TABLE 1: Comparison of tracking results with network flow
based methods on TUD Crossing and ETH BAHNHOF
(first 350 frames) sequences. The entries in the table are
(IDS)/(correctly matched detections). Columns 1 and 2 use
the pre-trained human detector of [19]. Column 3 shows
the results when ground truth bounding boxes are used to
generate the initial tracklets. The ground truth bounding
boxes are from [2].

Note that our method gives better results when
compared with the three network flow methods [44],
[62], [12]. Moreover, the noticeable improvement in
ID switches indicates that our method can better deal
with long-term tracking, where the traditional motion
models are less reliable.

5.5.3 Comparison with State-of-the-art Methods

To show the effectiveness of our method, we further
compare our method with other state-of-the-art meth-
ods on more publicly available datasets. We use the
pre-trained human detector of [19] to generate the de-
tections. For the MOTChallenge benchmark [36], we
utilize DPM detections [19] and the public detections
from this benchmark for the evaluation. In the result
tables, the numbers ranked in the first place of the
respective evaluation measures are marked in bold.

PETS2009-S2L1. For a fair comparison, we utilize
the same ground truth as in [40] for the experi-
ments, in which all the occurring pedestrians have
been annotated. The quantitative results are shown in
Table 2| As expected, taking tracklet dynamics into
account increases the overall tracking performance.
Our full tracklet affinity model (TSML+TD+WP) fur-
ther raises the MOTA by 0.6% and reduces the ID
switches by ~ 43%. This indicates that our method
with full tracklet affinity model combines motion
and appearance cues properly, resulting in further
improvement on tracking performance. On the whole,
our method with full tracklet affinity model achieves
the best performance compared with 16 state-of-the-
art methods in terms of MOTP, Precision, FAF, ML and
IDS. For other evaluation measures, our approach also
achieves comparative performance.
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Method MOTA | MOTP | Recall | Precision | FAF | GT MT PT ML Frag | IDS
Energy Minimization [5] 81.4% 76.1% - - 19 82.6% 174% | 0.0% 21 15
DC Tracking [6] 95.9% 78.7% - - 19 100.0% 0.0% 0.0% 8 10
KSP [9] 80.3% 72.0% - - 19 73.9% 174% | 8.7% 22 13
MTMM [26] 83.3% 71.1% - - 19 89.5% | 10.5% | 0.0% 45 19
UHMTGDA [28] 97.8% 75.3% - - 19 100.0% 0.0% 0.0% 8 8
HJMRMT [29] 98.0% 82.8% - - 19 100.0% 0.0% 0.0% 11 10
(MP)2T 32] 90.7% 76.0% - - 19 - - - - -
DTLE Tracking [41] 90.3% 74.3% - - 19 78.3% | 21.7% | 0.0% 15 22
CEMMT [40] 90.6% 80.2% - - 19 91.3% 4.4% 4.3% 6 11
GMCP-Tracker [61]] 90.3% 69.0% - - 19 89.5% | 10.5% | 0.0% 54 10
OMTD [11] 79.7% | 56.3% : - - - - - - -
OMAT [53] 92.8% 74.3% - - 19 100.0% 0.0% 0.0% 11 8
PMPTCS [59] 76.0% 53.8% - - - - - - - -
OGOMT [45] 98.1% 80.5% - - - 19 100.0% 0.0% 0.0% 16 9
CSL-VOX [14] 89.78% - 98.28% 91.07% - 19 - - - - 6
CSL-DPT [14] 88.13% - 97.64% 90.45% - 19 - - - - 8
CML 92.1% 86.4% 95.1% 97.6% 014 | 19 94.7% 53% | 0.0% 26 28
TSML 93.4% 86.4% 96.0% 97.7% 0.13 19 94.7% 5.3% 0.0% 21 18
TD 93.7% 86.3% 96.6% 97.4% 0.15 19 94.7% 5.3% 0.0% 17 13
TSML+TD 94.7% 86.4% 97.2% 97.6% 014 | 19 94.7% 53% | 0.0% 12 7
TSML+TD+WP 95.3% 86.4% 97.4% 98.0% 0.11 19 94.7% 5.3% 0.0% 11 4

TABLE 2: Comparison of tracking results between state-of-the-art methods and ours on PETS2009-S2L1.

Method MOTA | MOTP | Recall | Precision | FAF | GT MT PT ML Frag | IDS
(MP)?T [32] 75.7% | 71.6% - - - 231 - - - - -

SGB Tracker [37] 71.3% 71.8% - - - 231 | 58.6% | 34.4% | 7.0% 363 165
GMCP-Tracker [61]] | 75.6% 71.9% - - - 231 - - - - -

MCNEF [62] 69.1% 72.0% - - - 231 | 53.0% 37.7 9.3% 440 | 243
SMT [8] 64.3% 80.2% - - - 231 | 67.4% | 26.1% | 6.5% 343 | 222
MSBMT [43] 65.5% 71.8% - - - 231 | 59.1% | 33.9% | 7.0% 499 288
OMAT [53] 69.5% 68.7% - - - 231 | 64.7% | 27.4% | 7.9% 453 | 209
WAYWAG [55] 66.6% 71.7% - - - 231 | 58.1% | 354% | 6.5% 492 | 302
OGOMT [45] 70.7% 68.6% - - - 231 | 56.3% | 36.3% | 7.4% 321 157
CML 55.3% 72.6% | 69.9% 86.5% 1.79 | 231 | 52.8% | 36.4% | 10.8% | 508 | 327
TSML 57.3% 72.9% | 72.3% 87.5% 1.58 | 231 | 60.2% | 30.7% | 9.1% 326 | 269
TD 55.7% 732% | 71.5% 86.9% 1.71 | 231 | 55.8% | 34.2% | 10.0% | 362 | 264
TSML+TD 61.6% 74.3% | 74.0% 89.5% 1.38 | 231 | 61.9% | 299% | 82% 259 214
TSML+TD+WP 66.8% 744% | 75.2% 92.5% 096 | 231 | 64.9% | 282% | 6.9% 198 162

TABLE 3: Comparison of tracking results between state-of-the-art methods and ours on Town Centre dataset.

Town Centre. To show the generality of the learned
weighting parameters, we evaluate our approach with
the learned weighting parameters on Town Centre
dataset. The ground truth we used here is provided by
[8], which is the same as in the compared methods.
Due to severe occlusions caused by static obstacles
(such as benches) and more frequent dynamic interac-
tions between pedestrians, many pedestrians cannot
be detected by the state-of-the-art detectors. Hence,
the Recall (as shown in Table [3) is lower than the
other datasets. As we can see in Table |3} the full
tracklet affinity model with the weighting parameters
achieves better or nearly the same performances on all
evaluation items. Compared with the tracklet affinity
model without weighting parameters, the MOTA is
improved by about 8.4%; recall and precision are
improved by about 1.6% and 3.4% respectively; frag-
ments and ID switches are reduced by 23.6% and
24.3% respectively. The obvious improvements in per-
formance indicate that the learned weighting param-
eters are applicable to new data.

TUD-Stadtmitte. To make a fair comparison, the ex-
periments are conducted using the same ground truth
as defined in [57]. The quantitative tracking results
are shown in Table 4l Though there are occlusions
and interactions between pedestrians, the number

of pedestrians appearing in the scene is less than
other datasets. Hence, our method can generate bet-
ter optimal tracking results on TUD-Stadtmitte than
other datasets. Note that our proposed method with
target-specific metric learning (TSML) has achieved
very good performance. We also provide the track-
ing results of the proposed method with TSML+TD
and TSML+TD+WD, which show the same optimal
tracking results as shown in Table f} Compared with
[34], [57], the improvement is obvious for some met-
rics. Our method achieves the highest recall and the
mostly tracked score (MT) among all the methods. It
also achieves the lowest ID switches. Meanwhile, our
method achieves competitive performance on preci-
sion, false alarms per frame and fragments compared
with [34], [57].

ETH. To see the effectiveness of the proposed
method, we further evaluate it on the challenging
ETH dataset [18]. Due to the unreliable motion affini-
ties between tracklets of this dataset, we use the track-
let affinity model without TD and WP for the experi-
ments. For a fair comparison, we use the ground truth
provided by [57]. The quantitative tracking results are
shown in Table Bl We can see that our method can
achieve better or competitive performance on all the
commonly used evaluation measures. Compared with
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Method MOTA | MOTP | Recall | Precision | FAF | GT MT PT ML Frag | IDS
Energy Minimization [5] - - - - - 9 60.0% | 30.0% | 0.0% 4 7
DC Tracking [6] - - 74.7% 84.2% 0.870 | 10 | 50.0% | 50.0% | 0.0% 8 10
PRIMPT [34] - - 81.0% 99.5% 0.028 | 10 | 60.0% | 30.0% | 10.0% 0 1
Online CRF Tracking [57] - - 87.0% 96.7% 0.184 | 10 | 70.0% | 30.0% | 0.0% 1 0
CML 94.5% 72.7% | 95.1% 99.4% 0.030 | 10 100% 0.0% 0.0% 2 1
TSML 97.3% 71.3% | 98.0% 99.3% 0.040 | 10 | 100% 0.0% 0.0% 3 0
TSML+TD 97.3% 71.3% | 98.0% 99.3% 0.040 | 10 100% 0.0% 0.0% 3 0
TSML+TD+WP 97.3% 71.3% | 98.0% 99.3% 0.040 | 10 | 100% 0.0% 0.0% 3 0

TABLE 4: Comparison of tracking results between state-of-the-art methods and ours on TUD Stadtmitte dataset.

[34], the most related work, the recall and precision
are improved by 4.1% and 7.6% respectively; the MT is
improved by 7.2%; false alarms per frame are reduced
by 41.6%; and ID switches are reduced by 54.5%.
The significant reduction in ID switches and false
alarms indicates that our target-specific appearance-
based model is superior to the method by [34].

MOTChallenge 2D Benchmark. To further show
more meaningful quantitative evaluation of the pro-
posed method, we evaluate it on the recent MOTChal-
lenge 2D Benchmark [36]. The number of test se-
quences in this benchmark is 11, in which 5 of them
are taken by moving cameras and 6 of them are
taken by static cameras. For the sequences taken
by static cameras, our full tracklet affinity model
(TSML+TD+WP) is used for evaluation. Due to the
moving cameras, the motion affinities estimated by
proposed tracklet dynamic model are not reliable.
Hence, for the sequences taken by moving cameras,
our proposed method with only target-specific metric
learning (TSML) is used for evaluation. To further
show the generalization capability of the learned
weighting parameters, the same parameters A\; =
0.5, A2 = 0.2 are used for all the 6 testing sequences
taken by static cameras. The evaluation results are
generated from the MOTChallenge benchmark web-
site [1]. Hence, only the optimal results of the pro-
posed method are provided. As shown in Table [6
compared with other state-of-the-art methods, our
method achieves better or competitive performance
on all the evaluation measures.

PETS2009-S2L2. To show the effective of the pro-
posed method on more crowded sequences in PETS
2009 dataset, we further evaluate our method on
PETS2009-S2L2 sequence. The evaluation result is
generated from the MOTChallenge benchmark web-
site [1]. As shown in Table [7] our method achieves
the best performance on MOTA, MOTP, MT and
ML compared with other state-of-the-art methods.
For other evaluation items, our method also achieves
competitive performance.

5.6 Computational Speed

The computation speed depends on the number of tar-
gets in a video sequence. Our method is implemented
using MATLAB on a 3.3 GHz, 4 core PC with 8 GB
memory. The speed of the proposed method with
target-specific metric learning (TSML) is about 13, 6,

10 and 9 fps for PETS 2009, Town Centre, TUD and
ETH datasets, respectively, excluding the detection
time; for PETS 2009 and Town Centre datasets, the
speed of the proposed method with our full tracklet
affinity model is 11 and 5 fps respectively. The average
speed of the proposed method on MOTChallenge 2D
Benchmark is about 7 fps. The online learning of
tracklet affinity models is the most time consuming
part of our method, which takes up about 90% of
the total computation time. The breakdown is as
follows: the learning of appearance-based tracklet
affinity model and motion dynamics estimation take
up about 80% and 10% respectively. Speed-up can be
achieved by parallel implementations of the online
learning of target-specific metrics. Furthermore, the
learning of appearance-based tracklet affinity model
and motion dynamics estimation can also be imple-
mented in parallel.

6 CONCLUSION

We have presented our method developed for track-
ing multiple objects of interest in the scene over a
longer period with the aim to maintain consistent
tracking and tagging of objects, reducing identity
switches. Our method processes the initial tracklets
(track fragments) produced by a simple trajectory
based tracking algorithm. We propose a two-step
online target-specific metric learning to improve the
similarity measure based on the appearance cues, and
together with coherent dynamics estimation for track-
lets based on the motion cues, we establish our new
affinity model. The tracking of objects is accomplished
by performing tracklet association with network flow
optimization where the nodes in the network are
tracklets. Thus, our proposed method exploiting both
appearance and motion cues is capable to prevent
identity switches during tracking and recover missed
detections. Our method is found to be effective even
when the appearance or motion cues fail to identify or
follow the target due to occlusions or object-to-object
interactions. To further improve our method, we also
propose to learn the weights of these two tracking
cues in our affinity model. Our tracking algorithm
has been validated on several public datasets and the
experimental results show that it outperforms several
state-of-the-art tracking algorithms.
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Method MOTA | MOTP | Recall | Precision | FAF GT MT PT ML Frag | IDS
PRIMPT [34] - - 76.8% 86.6% 0.891 | 125 | 58.4% | 33.6% | 8.0% 23 11
Online CRF Tracking [57] - - 79.0% 90.4% 0.637 | 125 | 68.0% | 24.8% 7.2% 19 11
DTLE Tracking [41] - - 77.3% 87.2% - 125 | 66.4% | 25.4% 8.2% 69 57
LIMC Tracking [35] - - 83.8% 79.7% - 125 | 72.0% | 23.3% | 4.7% 85 71
CML 71.6% 77.0% | 78.7% 92.0% 0.710 | 125 | 60.0% | 29.6% | 10.4% 77 19
TSML 75.8% 77.2% 80.9% 94.2% 0.520 | 125 | 65.6% | 24.0% | 10.4% 26 5

TABLE 5: Comparison of tracking results between state-of-the-art methods and ours on ETH dataset. Note that the forward
and panning motions of the cameras lead to unreliable motion affinities between tracklets of this dataset. We thus do not
employ TD and WP in the experiment.

Method MOTA | MOTP | FAF | GT MT PT ML Frag | IDS
DP_NMS [44] 14.5% 70.8% 23 | 721 6.0% | 53.2% | 40.8% | 3090 | 4537
TC_ODAL [7] | 15.1% 70.5% 22 | 721 3.2% 41% 55.8% | 1716 | 637
CEM [40] 19.3% 70.7% 25 | 721 8.5% 45% 46.5% | 1023 | 813
SMOT [16] 18.2% 71.2% 1.5 | 721 2.8% | 42.4% | 54.8% | 2132 | 1148
TBD [24] 15.9% 70.9% 26 | 721 6.4% | 45.7% | 47.9% | 1963 | 1939
LP2D [36] 19.8% 71.2% 20 | 721 6.7% | 52.1% | 41.2% | 1712 | 1649
RMOT [60] 18.6% 69.6% 22 | 721 53% | 41.4% | 53.3% | 1282 | 684
Oursl 49.1% 74.3% 0.9 | 721 | 30.4% | 43.2% | 26.4% | 1034 | 637
Ours2 34.3% 71.7% 14 | 721 | 14.0% | 46.6% | 39.4% | 959 618

TABLE 6: Comparison of tracking results between state-of-the-art methods and ours on MOTChallenge 2D Benchmark.
“Ourl” uses the DPM detections [19]. “Ours2” uses the public detections from this benchmark [1]].

Method MOTA | MOTP | FAF | GT MT PT ML Frag | IDS
DP_NMS [44] 33.8% 69.4% 22 42 71% | 834% | 9.5% 705 | 1029
TC_ODAL [7] | 30.2% 69.2% 2.5 42 24% | 78.6% | 19.0% | 499 284
CEM [40] 44.9% 70.2% 1.5 42 | 11.9% | 73.8% | 14.3% | 165 150
SMOT [16] 34.4% 70.0% 1.1 42 0.0% | 76.2% | 23.8% | 514 251
TBD [24] 35.5% 69.2% 3.1 42 71% | 78.6% | 14.3% | 480 523
LP2D [36] 40.7% 70.2% 1.9 42 9.5% | 73.8% | 16.7% | 359 319
RMOT [60] 37.2% 67.7% 2.6 42 9.5% | 76.2% | 14.3% | 320 190
Oursl 59.7% 74.4% 2.3 42 | 31.0% | 64.2% | 4.8% 200 173
Ours2 51.5% 70.6% 2.1 42 | 14.3% | 76.2% | 9.5% 198 165

TABLE 7: Comparison of tracking results between state-of-the-art methods and ours on PETS2009-52L2. “Ourl” uses the
DPM detections [19]. “Ours2” uses the public detections from [1].
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