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Efficient Activity Detection in Untrimmed Video
with Max-Subgraph Search

Chao Yeh Chen and Kristen Grauman

Abstract—We propose an efficient approach for activity detection in video that unifies activity categorization with space-time
localization. The main idea is to pose activity detection as a maximum-weight connected subgraph problem. Offline, we learn a binary
classifier for an activity category using positive video exemplars that are “trimmed” in time to the activity of interest. Then, given a novel
untrimmed video sequence, we decompose it into a 3D array of space-time nodes, which are weighted based on the extent to which
their component features support the learned activity model. To perform detection, we then directly localize instances of the activity by
solving for the maximum-weight connected subgraph in the test video’s space-time graph. We show that this detection strategy permits
an efficient branch-and-cut solution for the best-scoring—and possibly non-cubically shaped—portion of the video for a given activity
classifier. The upshot is a fast method that can search a broader space of space-time region candidates than was previously practical,
which we find often leads to more accurate detection. We demonstrate the proposed algorithm on four datasets, and we show its speed
and accuracy advantages over multiple existing search strategies.

Index Terms—Activity detection, action recognition, maximum weighted subgraph search.
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1 INTRODUCTION

The activity detection problem entails both recognizing and
localizing categories of activity in an ongoing (meaning
“untrimmed”) video sequence. In other words, a system must
not only be able to recognize a learned activity in a new clip; it
must also be able to isolate the (potentially small) portion of a
long input sequence that contains the activity. Reliable activity
detection would have major practical value for applications
such as video indexing, surveillance and security, and video-
based human computer interaction.

While the recognition portion of the problem has received
increasing attention in recent years, state-of-the-art methods
largely assume that the space-time region of interest to be
classified has already been identified. However, for most
realistic settings, a system must not only name what it sees,
but also partition out the temporal or spatio-temporal extent
within which the activity occurs. The distinction is non-trivial;
in order to properly recognize an action, the spatio-temporal
extent usually must be known simultaneously.

To meet this challenge, existing methods tend to separate
activity detection into two distinct stages: the first generates
space-time candidate regions of interest from the test video,
and the second scores each candidate according to how well it
matches a given activity model (often a classifier). Most com-
monly, candidates are generated either using person-centered
tracks [22], [27], [36], [16] or using exhaustive sliding window
search through all frames in the video [14], [8], [29]. Both face
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Fig. 1: Our approach constructs a space-time video graph, and
efficiently finds the subgraph that maximizes an activity classifier’s
score. The detection result can take on non-cubic shapes (see dotted
shapes in top frames), as demanded by the action.

potential pitfalls. On the one hand, a method reliant on tracks
is sensitive to tracking failures, and by focusing on individual
humans in the video, it overlooks surrounding objects that
may be discriminative for an activity (e.g., the car a person
is approaching). On the other hand, sliding window search
is clearly a substantial computational burden, and its frame-
level candidates may be too coarse, causing clutter features
to mislead the subsequent classifier. In both cases, the scope
of space-time regions even considered by the classifier is
artificially restricted, e.g., to person bounding boxes or a cubic
subvolume.

Our goal is to unify the classification and localization
components into a single detection procedure. We propose an
efficient approach that exploits top-down activity knowledge
to quickly identify the portion of video that maximizes a
classifier’s score. In short, it works as follows. Given a novel
video, we construct a 3D graph in which nodes describe
local video subregions, and their connectivity is determined
by proximity in space and time. Each node is associated

ar
X

iv
:1

60
7.

02
81

5v
1 

 [
cs

.C
V

] 
 1

1 
Ju

l 2
01

6



2

with a learned weight indicating the degree to which its
appearance and motion support the action class of interest.
Using this graph structure, we show the detection problem is
equivalent to solving a maximum-weight connected subgraph
problem, meaning to identify the subset of connected nodes
whose total weight is maximal. For our setting, this in turn is
reducible to a prize-collecting Steiner tree problem, for which
practical branch-and-cut optimization strategies are available.
This means we can efficiently identify both the spatial and
temporal region(s) within the sequence that best fit a learned
activity model. See Figure 1.

The proposed approach has several important properties.
First, for the specific case where our space-time nodes are
individual video frames, the detection solution is equivalent to
that of exhaustive sliding window search, yet costs orders of
magnitude less search time due to the branch-and-cut solver.
Second, we show how to create more general forms of the
graph that permit “non-cubic” detection regions, and even
allow hops across irrelevant frames in time that otherwise
might mislead the classifier (e.g., due to a temporary occluding
object). This effectively widens the scope of candidate video
regions considered beyond that allowed by any prior methods;
the upshot is improved accuracy. Third, we explore a two-
stage search extension that increases the speed of the proposed
subgraph search for long videos, and show its generality for
detecting multiple activity instances in a single input sequence.
Finally, the method accommodates a fairly wide family of
features and classifiers, making it flexible as a general activity
detection tool. To illustrate this flexibility, we devise a novel
high-level descriptor amenable to subgraph search that reflects
human poses and objects as well as their relative temporal
ordering.

We validate the algorithm on four challenging datasets. The
results demonstrate its clear speed and accuracy advantages
over both standard sliding window search as well as a state-
of-the-art branch-and-bound solution [38].

2 RELATED WORK

We focus our literature review on methods handling action
detection in video. There is also a large body of work in
activity recognition (from either a sequence or a static frame)
where one must categorize a clip/frame that is already trimmed
to the action of interest. Representations developed in that
work are complementary and could enhance results attainable
with our detection scheme.

One class of methods tackles detection by explicitly tracking
people, their body parts, and nearby objects (e.g., [22], [27],
[16]). Tracking “movers” is particularly relevant for surveil-
lance data where one can assume a static camera. However,
as shown in Figure 2(c), relying on tracks can be limiting;
it makes the detector sensitive to tracking errors, which are
expected in video with large variations in backgrounds or
rapidly changing viewpoints (e.g., movies or YouTube video).
Furthermore, while good for activities that are truly person-
based—like handwaving or jumping jacks—a representation
restricted to person-tracks will suffer when defining elements
of the action are external to people in the scene (e.g., the

computer screen a person is looking at, or the chair he may
sit in).

Conscious of the difficulty of relying on tracks, another class
of methods has emerged that instead treats activity classes
as learned space-time appearance and motion patterns. The
bag of space-time interest point features model is a good
example [19], [30]. In this case, at detection time the classifier
is applied to features falling within candidate subvolumes
within the sequence. Typically the search is done with a
sliding window over the entire sequence [14], [8], [29], or
in combination with person tracks [16].

Given the enormous expense of such an exhaustive search
for sliding window method, some recent work explores
branch-and-bound solutions to efficiently identify the sub-
volume that maximizes an additive classifier’s output [38],
[37], [4]. This approach offers fast detection and can localize
activities in both space and time, whereas sliding windows
localize only in the temporal dimension. However, as shown
in Figure 2(b), in contrast to our approach, existing branch-
and-bound methods are restricted to searching over cubic
subvolumes in the video; that limits detections to cases where
the subject of the activity does not change its spatial position
much over time. Our results demonstrate the value of the more
general detection shapes allowed by our method.

An alternative way to avoid exhaustive search is through
voting algorithms. Recent work explores ways to combine
person-centric tracks or pre-classified sequences with a Hough
voting stage to refine the localization [36], [21], [1], or to use
voting to generate candidate frames for merging [35]. Like any
voting method, such approaches risk being sensitive to noisy
background descriptors that also cast votes, and in particular
will have ambiguity for actions with periodicity. Furthermore,
in contrast to our algorithm, they cannot guarantee to return
the maximum scoring space-time region for a classifier.

Rather than pose a detection task, the multi-class recognition
approach of [11] uses dynamic programming to select the
temporal boundaries per action. Like our technique it jointly
considers recognition and segmentation. However, unlike our
method, it localizes only in the temporal dimension, assumes
a multi-class objective where all parts of the sequence will
belong to some pre-trained category (thus requiring one to
learn a “background” activity class), and cannot detect multi-
ple activities occurring at the same time.

The branch-and-cut algorithm we use to optimize the sub-
graph has also been explored for object segmentation in
static images [32]. In contrast, our approach addresses activity
detection, and we explore novel graph structures relevant for
video data.

This article extends our earlier conference paper [5]. The
main new additions are (1) an extension to the method to
permit efficient spatially localized search even over long
sequences, (2) an extension to the method to detect multiple
instances of an activity in a single sequence, (3) new results
on a fourth dataset specifically designed for the detection task
(THUMOS 2014 [13]), (4) new qualitative results, and (5) new
figures to better present our ideas and approach.
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Fig. 2: Overview and limitations of standard approaches to activity detection. (a) A sliding window search is most commonly employed,
but it is computationally expensive to search all possible windows. Furthermore, searching only in the temporal dimension can mislead a
classifier when there is substantial clutter or irrelevant features in the scene, i.e., the objects relevant to the activity occupy a small portion
of the frame. (b) Efficient subvolume search techniques can greatly improve efficiency and generalize sliding windows to restricted spatial
areas, yet existing methods are limited to cubic subvolumes. This creates problems with the subject of the activity moves within the frame.
(c) A general alternative to sliding window search is to detect activities based on tracked people (or other objects). This lets the system
follow the region of interest as it moves over time and works well for “person-centric” activities like waving or jumping. However, the
tracking-based approach risks losing important contextual information about an activity (e.g., as depicted here, the activity “get into car”
demands a representation of surrounding objects, not just the tracked person).

Detected space-time volume 
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Weights 
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Fig. 3: Pipeline of our max-subgraph search approach to activity detection. To detect an action in a video, we first divide the test video into
a 3D array of spatio-temporal volumes. These are the graph nodes, weighted by their respective features’ classifier scores (Sec. 3.1). The
edges in the graph connect nodes that are adjacent in space-time (Sec. 3.3), with optional additional connectivity between more distant nodes
in order to tolerate occlusions or noisy features (i.e., as defined for the T-Jump variant). Then we search for the maximum weighted subgraph
using an efficient branch-and-cut solution (Sec. 3.4). Finally, the resulting subgraph yields the subset of connected space-time nodes where
the action most likely appears. This is our detection result, as shown backprojected into the original video in the rightmost image above.

3 APPROACH

Our approach first trains a detector using a binary classifier and
training examples where the action’s temporal extent is known.
Then, given test sequences for which we have no knowledge
of the start and end of the activity, it returns the subsequence
(and optionally, the spatial regions of interest) that maximizes
the classifier score. This works by creating a space-time graph
over the entire test sequence, where each node is a space-time
cube, and the cubes are linked according to their proximity
in space and time. Each node is weighted by a positive
or negative value indicating its features’ contribution to the
classifier’s score. Thus, the subsequence for which the detector
would yield the maximal score is equivalent to the maximum
weight connected subgraph. This subgraph can be efficiently
computed using an existing branch-and-cut algorithm, thereby
finding the optimal solution without exhaustive search through
all possible sets of connected nodes.

We first define the classifiers accommodated by our method
(Sec. 3.1), and the features we use (Sec. 3.2). Then we describe
how the graphs are constructed (Sec. 3.3); we introduce
variants of the node structure and linking strategy that allow
us to capture different granularities at detection time. Next, we
briefly explain the maximum subgraph problem and branch-
and-cut search (Sec. 3.4). Finally, we devise two extensions
of our basic framework that can deal with spatio-temporal

detection even in long videos (Sec. 3.5) and detection of
multiple instances in a single sequence (Sec. 3.6).

3.1 Detector Training and Objective
We are given labeled training instances of the activity of
interest, and train a binary classifier f : S → R to distinguish
positive instances from all other action categories. This clas-
sifier can score any subvolume S of a novel video according
to how well it agrees with the learned activity. To perform
activity detection, the goal is to determine the subvolume in a
new sequence Q that maximizes the score

S∗ = argmax
S∈Q

f(S). (1)

If we were to restrict the subvolume in the spatial dimensions
to encompass the entire frame, then S∗ would correspond to
the output of an exhaustive sliding window detector. More
generally, the optimal subvolume S∗ is the set of contiguous
voxels of arbitrary shape in Q that returns the highest classifier
score.

Our approach requires the classifier to satisfy two properties.
First, it must be able to score an arbitrarily shaped set of
voxels. Second, it must be defined such that features computed
within local space-time regions of the video can be combined
additively to obtain the classifier response for a larger region.
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The latter is necessary so that we can decompose the classifier
response across the nodes of the space-time graph, and thereby
associate a single weight with each node. Suitable additive
classifiers include linear support vector machines (SVM),
boosted classifiers, or Naive Bayes classifiers computed with
localized space-time features, as well as certain non-linear
SVMs [31].

Our results use a linear SVM with histograms (bags) of
quantized space-time descriptors. The bag-of-features (BoF)
representation has been explored in a number of recent activity
recognition methods (e.g., [19], [15], [23]), and, despite its
simplicity, offers very competitive results. We consider BoF’s
computed over two forms of local descriptors. The first con-
sists of low-level histograms of oriented gradients and flow
computed at space-time interest points; the second consists of
a novel high-level descriptor that encodes the relative layout
of detected humans, objects, and poses. Both descriptors are
detailed below in Sec. 3.2.

In either case, we compute a vocabulary of K visual words
by quantizing a corpus of features from the training images. A
video subvolume with N local features is initially described by
the set S = {(xi,vi)}Ni=1, where each xi = (xi, yi, ti) refers
to the 3D feature position in space and time, and vi is the
associated local descriptor. Then the subvolume is converted
to a K-dimensional BoF histogram h(S) by mapping each vi

to its respective visual word ci, and tallying the word counts
over all N features.

We use the training instances to learn a linear SVM, which
means the resulting scoring function has the form:

f(S) = β +
∑
i

αi〈h(S), h(Si)〉, (2)

where i indexes the training examples, and α, β denote the
learned weights and bias. This can be rewritten as a sum over
the contributions of each feature. Let hj(S) denote the j-th
bin count for histogram h(S). The j-th word is associated with
a weight

wj =
∑
i

αih
j(Si), (3)

for j = 1, . . . ,K. Thus the classifier response for a subvolume
S is:

f(S) = β +

K∑
j=1

wjhj(S) (4)

= β +

N∑
i=1

wci , (5)

where again ci is the index of the visual word that feature vi

maps to, ci ∈ [1,K]. By writing the score of a subvolume
as the sum of its N features’ “word weights”, we now have
a way to associate each local descriptor occurrence with a
single weight—its contribution to the total classifier score.1

This same property of linear SVMs is used in [17] to enable
efficient subwindow search for object detection, whereas we
exploit it to score non-cubic subvolumes in video for action
detection.

1. The bias term β can be ignored for the purpose of maximizing f(S).

We stress that our method is not limited to linear SVMs;
alternative additive classifiers with the properties described
above are also permitted. Our experiments in Sec. 4 focus on
linear SVMs due to their efficacy. We have also successfully
implemented the framework using others, e.g., Naive Bayes,
with the same input features. The results are sound, however
across the board we find that classifier is less effective than
the SVM for our task.

Furthermore, while the additive requirement does lead to
an orderless bag-of-features representation, it is still possible
to encode temporal ordering into the approach depending
on how the local descriptors are extracted. For example, in
Sec. 3.2.2 we provide one way to record the space-time layout
of neighboring objects into high-level visual words.

3.2 Localized Space-Time Features
We consider two forms of localized descriptors for the vi

vectors above: a conventional low-level gradient-based feature,
and a novel high-level feature.

3.2.1 Low-level Descriptors
For low-level features, we employ an array of widely used
local video descriptors from the literature. In general, they
capture the texture and motion within localized space-time
volumes, either at interest points or dense positions within the
video. In particular, we use histograms of oriented gradients
(HoG) and histograms of optical flow (HoF) computed in local
space-time cubes [19], [15]. The local cubes are centered at
either 3D Harris interest points [18] or densely sampled. These
descriptors capture the appearance and motion in the video,
and their locality lends robustness to occlusions. We also incor-
porate dense trajectory [33] and motion boundary histogram
(MBH) [24] features in a bag-of-features representation. We
refer the reader to the original papers about the descriptors for
more details.

As is typical in visual recognition, we can expect better
accuracy as a function of the greater the variety and com-
plementarity of the features we use, but with some tradeoff
in computational cost. Specifically, the main influence the
features will have on our method’s complexity is their density
in the video; while their density will not at all affect the
node structure (cf. Sec. 3.3), it will dictate how many visual
word mappings must be computed. In Sec. 4 we provide more
discussion about how we select among these descriptors for
different datasets; in short, our selection is largely based on
empirical findings from previous work about which are best
suited.

3.2.2 High-level Descriptors
We introduce a novel descriptor for an alternative high-level
representation. While low-level gradient features are effective
for activities defined by gestures and movement (e.g., running
vs. diving), many interesting actions are likely better defined
in terms of the semantic interactions between people and
objects [10], [6], [26]. For example, “answering phone” should
be compactly describable in terms of a person, a reach, a grasp
of the receiver, etc.
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Fig. 4: Schematic of the data comprising our high-level descriptors.
After detecting people and other objects in the video frames, we
form semi-local neighborhoods around each detected object that
summarize the space-time layout of other nearby detections. To map
those neighborhoods into discrete and discriminative visual words,
we apply a random forest trained for the action labels (Sec. 3.2.2).
Here, the left images depict the detected objects surrounding the
person detected in bounding box C in the center frame. The right text
box displays the information exposed to the random forest feature
quantizer, in terms of the neighboring detections and their relative
spatial and temporal distance from that person box C.

To this end, we compose a descriptor that encodes the
objects and poses occurring in a space-time neighborhood.
First, we run a bank of object detectors [9] and a bank of
mid-level “poselet” detectors [3] on all frames. To capture
human pose, we categorize each detected person into one of
P = 15 “person types”. These types are discovered from
person detection windows in the training data: for each person
window we create a histogram of the poselet activations that
overlap it, and then quantize the space of all such histograms
with k-means to provide P discrete types. Each reflects a
coarse pose—for example, a seated person may cause upper
body poselets to fire, whereas a hugging person would trigger
poselets from the back.

Given the sparse set of bounding box object detections in a
test sequence, we form one neighborhood descriptor per box.
This descriptor reflects (1) the type of detector (e.g., person
type #3, car) that fired at that position, (2) the distribution of
object/person types that also fired within a 50-frame temporal
window of it, and (3) their relative space-time distances. See
Figure 4.

To quantize this complex space into discriminative high-
level “words”, we devise a random forest technique. When
training the random forest, we choose spatial distance thresh-
olds, temporal distance thresholds, and object types to pa-
rameterize semantic questions that split the raw descriptor
inputs so as to reduce action label entropy. Each training and
testing descriptor is then assigned a visual word according
to the indices of the leaf nodes it reaches when traversing
each tree in the forest. Essentially, this reduces each rich
neighborhood of space-time object relationships to a single
quantized descriptor, i.e., a single index ci in Eqn. 5.

In contrast to the low-level features, this descriptor encodes
space-time ordering, demonstrating that our max-subgraph
scheme is not limited to pure bag-of-words representations.
Furthermore, it leads to faster node weight computations, since
the number of detected objects is typically much fewer than
the number of space-time interest points.

x 

y 
t 

(a) Temporal only (T)
x 

y 
t 

(b) Spatio-temporal (ST)

Fig. 5: The two node structures we consider. (a) A temporal only
graph simply breaks the video into slabs of frames. Max subgraph
search on this graph is equivalent to sliding window in terms
of results, but is faster. (b) Spatio-temporal graphs further break
the frames into spatial cubes, allowing both spatial and temporal
localization of the activity in irregular subvolume shapes, at the cost
of a denser input graph.

3.3 Definition of the Space-Time Graph
So far we have defined the training procedure and features we
use. Now we describe how we construct a space-time graph
G = (V,E) for a novel test video, where V is a set of vertices
(nodes) and E is a set of edges. Recall that a test video
is “untrimmed”, meaning that we have no prior knowledge
about where an action(s) starts or ends in either the spatial
or temporal dimensions. Our detector will exploit the graph
to efficiently identify the most likely occurrences of a given
activity. We present two variants each for the node and link
structures, as follows.

3.3.1 Node Structure
Each node in the graph is a set of contiguous voxels within
the video. In principle, the smallest possible node would be a
pixel, and the largest possible node would be the full test se-
quence. What, then, should be the scope of an individual node?
The factors to consider are (1) the granularity of detection that
is desired (i.e., whether the detector should predict only when
the action starts and ends, or whether it should also estimate
the spatial localization), and (2) the allowable computational
cost. Note that nodes larger than individual voxels or frames
are favorable not only for computational efficiency, but also to
aggregate neighborhood statistics to give better support when
the classifier considers that region for inclusion.

With this in mind, we consider two possible node structures.
The first breaks the video into frame-level slabs, such that
each node is a sequence of F consecutive frames. The second
breaks the video into a grid of H ×W ×F space-time cubes.
In all our results, we set F = 5 or 10, and let H and W
be 1

3 of the frame dimensions.2 See Figure 5. At detection
time, the two forms yield a temporal subgraph (T-Subgraph)
and spatio-temporal subgraph (ST-Subgraph), respectively.
Note that a T-Subgraph will be equivalent to a sliding window
search result with a frame step size of F . In contrast, a ST-
Subgraph will allow irregular, non-cubic detection results. See
the first and last images in Figure 8.

2. Rather than space-time cubes, one could consider using space-time seg-
ments from a bottom-up grouping algorithm. This would have some potential
advantages, including finer-grained localization. However, our preliminary
attempts indicated that the regular grid nodes are preferable to segments in
practice, for both accuracy and speed. That is because (1) the irregularly
shaped segment nodes lead to dense adjacency structures, hurting run-time,
and (2) the difficulty in producing quality supervoxels makes it easy to
over/under-segment.
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(b) Neighbors + “Jump”

Fig. 6: The two linking strategies we consider. (a) The neighbors only
graph links temporally adjacent (shown here) and optionally spatially
adjacent (not shown) nodes. (b) The temporal “jump” linking strategy
also incorporates edges between non-adjacent nodes, so that the
output detection can realize a good connected detection result in spite
of intermittent noisy/occlusion features on certain nodes. Here, the
numbers shown on nodes indicate weights; white nodes indicate those
that would be selected under either linking strategy (see text).

After building a graph with either node structure for a test
video, we compute the weight for each node v:

ω(v) =
∑
xj∈v

wcj , (6)

where xj is the 3D coordinate of the j-th local descriptor
falling within node v ∈ V , and cj is its quantized feature
index. We assign the features from Sec. 3.2 to their respective
graph nodes as follows. For the case of low-level features,
xj is the space-time interest point position. For the case of
high-level features, xj is the center of the originating object
detection window. In either case, a feature is claimed by the
space-time node containing its central position.

Intuitively, nodes with high positive weights indicate that
the activity covers that space-time region, while nodes with
negative weights indicate the absence of the activity.

3.3.2 Linking Strategies
The connectivity between nodes also affects both the shape
of candidate subvolumes and the cost of subgraph search.
We explore two strategies. In the first, we link only those
neighboring nodes that are temporally (and spatially, for the ST
node structure) adjacent (see Figure 6 (a)). In the second, we
additionally link nodes that are within the first two temporal
neighbors (see Figure 6 (b)); we call this variant T-Jump-
Subgraph. Since at test time we will seek a maximum scoring
connected subgraph, the former requires detection subvolumes
to be strictly contiguous in time (and thus equates to the
options available to a sliding window), while the latter allows
subvolumes that “jump” over an adjacent neighbor in time.

By allowing jumps, we can ignore misleading features that
may interrupt an otherwise good instance of an action. For
example, Figure 6 depicts some temporal nodes and their
associated weights ω(vi)’s, under either connectivity scheme.
The max subgraph without jumps in (a) is the first two nodes
only; in contrast, for the same node weights, the max subgraph
with jumps in (b) extends to include the fourth node, yielding
a higher weight subgraph (4+2+5 vs. 4+2). This can be useful
when the skipped node(s) contain noisy features, such as an
object temporarily blocking the person performing the activity.
Like the space-time nodes presented above, the use of temporal

jumps further expands the space of candidate subvolumes our
method can search, at some additional computational cost.

3.4 Searching for the Maximum Weight Subgraph
Having defined the graph constructed on an untrimmed test
sequence, we are ready to describe the detection procedure
to maximize f(S) in Eqn. 1. Our detection objective is an
instance of the maximum-weight connected subgraph prob-
lem (MWCS): Given a connected undirected, vertex-weighted
graph G = (V,E) with weights ω : V → R, find a connected
subgraph T = (VT ⊆ V,ET ⊆ E) of G, that maximizes
the score W (T ) =

∑
v∈VT

ω(v). The best-scoring subgraph
is the subvolume in the video most likely to encompass the
activity of interest. That is the output of our approach. In
Sec. 3.6 we explain how we iteratively apply the subgraph
search procedure to retrieve multiple detections in the same
video.

With both positive and negative weights, the problem is
NP-complete [12]; an exhaustive search would enumerate
and score all possible subsets of connected nodes. However,
MWCS can be transformed into an instance of the prize-
collecting Steiner tree problem (PCST) [7] which has the same
graph structure as original MWCS and vertex profits p > 0 and
edge costs c > 0. This MWCS is solvable by transforming the
graph into a directed graph and formulating an integer linear
programming (ILP) problem with binary variables for every
vertex and edge. Then by relaxing the integrality requirement,
the problem can be solved with linear programming using
a branch-and-cut algorithm (see [20]). This method gives
optimal solutions and is very efficient in practice for the space-
time graphs in our setting.

3.5 Two Stage Spatio-temporal Detection
Next we describe an extension to the framework that further
improves efficiency of spatio-temporal detections, at some
loss in search completeness. Basically this extension offers
a way to further scale-up our detection strategy for long
input videos. It is relevant in the spatio-temporal detection
variant of our method (cf. Fig. 5(b)), not the temporal-only
variant (cf. Fig. 5(a)). The fine-grained space-time detection
offered by the ST-Subgraph comes from its greater number of
nodes and denser connectivity. In particular, in terms of the
number of edges as a function of the number of frames, for
temporal-only graph, one more temporal node will add one
more edge, as for spatio-temporal graph, one more temporal
node will add number of edges quadratically to the spatial
nodes. Thus, to detect the activity efficiently without reducing
the granularity of search scope, we consider how a modest
sacrifice on detection accuracy (i.e., giving up the exhaustive
search equivalency promised so far) can yield a significantly
larger detection speed-up.

To this end, we propose a hierarchical bottom-up two stage
strategy for the space-time search setting. The basic idea is to
first perform space-time detections in each temporal slab, and
then propagate those detection results up to a second level of
processing that performs temporal detection across the slabs.
See Figure 7.
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Given a test video, we divide the video into spatio-temporal
nodes (as depicted in Fig. 7, left) and compute their weights
as described in Sec. 3.3. Next, we search for the best detection
volume in two stage: (1) a spatial detection stage and (2) a
temporal detection stage. For the spatial detection stage, we
connect nodes in the same temporal slice into a 2D connected
weighted graph (see Fig. 7, top right). This yields a series of
graphs, each of which has nodes representing the features in
different spatial positions in the respective temporal slab. We
then apply the subgraph search procedure from Sec. 3.4 to find
the maximum weighted connected subgraph in each slab. Next,
the detection score for each 2D subgraph is used to represent
the weight of each temporal slab, and these slabs are connected
into a 1D temporal graph (see Fig. 7, bottom right). Finally,
we find the maximum weighted subgraph along the temporal
dimension to obtain the detection output. The spatio-temporal
detection result is determined by set of spatial-temporal nodes
in the 2D max-subgraph that are also selected in 1D max-
subgraph.

This hierarchical process reduces the computational cost by
dividing the original 3D graph structure into a 2D+1D graph
structure. Note, however, that the detection result from two-
stage subgraph search may differ from that returned by the
original ST-Subgraph. Whereas the ST-Subgraph is guaranteed
to return the same result an exhaustive search over connected
subgraphs, in this modified two-stage procedure, the temporal
connection between nodes is always reduced to one edge (vs.
nine edges for the original ST-Subgraph). However, the two-
stage search process still provides broader searching scope
than the simpler T-Subgraph structure.

In practice, when the length of testing video clip is over
1,000 frames, the two-stage subgraph would be preferred over
ST-subgraph for efficient spatial temporal localization. Also,
the two-stage subgraph is an approximation of ST-subgraph, if
the feature is too noisy, the two-stage subgraph may provide
lower accuracy since it ignores many edges when computing
the maximum weighted subgraph.

3.6 Detecting Multiple Activity Instances

Thus far, we have described detection in terms of localizing
the single space-time region most likely to contain the activity
of interest, In particular, the max-subgraph search returns
the subvolume for which the trained classifier would score
most highly out of all possible subvolumes. To address the
scenario where the novel test sequence may contain multiple
instances of the activity, and/or to provide multiple confidence-
rated hypotheses for the detection output, we extend the max-
subgraph search technique as follows.

To detect multiple instances, the main idea is to iteratively
run the max-subgraph procedure on adjusted versions of the
original input graph, each time adjusting the graph to reflect
the most recent detection. The most straightforward approach
to modifying the graph would be to take all the nodes selected
for the most recent detection and re-weight each one to
−∞. Doing so is equivalent to removing those nodes, and
it would force the next search iteration to choose other nodes
for its next hypothesis. This approach has shortcomings in

Weighted Space-time nodes 
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Stage 2: temporal detection 

Stage 1: spatial detection 
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Fig. 7: Our two stage subgraph search approximates the ST-Subgraph
search, allowing efficient spatio-temporal detection even with long
test sequences. First we extract the standard space-time cuboid nodes
(left). Then, we generate a series of simpler graphs in time (stage 1,
top right), and solve for the maximum connected subgraph in each
one. This yields a detection region and score for each simpler graph.
Finally, we create a graph based on temporal nodes only, which are
weighted by the output scores of the previous stage (stage 2, bottom
right). The nodes selected in both stages serve as the final output.
Best viewed in color.

practice, however. While the max-subgraph output from the
first detection is optimal in terms of the classifier and features
chosen, it need not be perfect in terms of localizing the actual
activity. So, flattening nodes to have weight −∞ leads to
fragmented secondary detections.

Therefore, we instead downweight those nodes already
involved in a detection, but we do not remove them from
the graph entirely. Specifically, each node is re-weighted
to 0, as determined empirically on validation data. In this
way, the modified graph coming into the next iteration of
the max-subgraph computation will favor finding new high-
scoring detections, but may still partially re-use portions of
the previous detection(s).

The effect of this process is roughly analogous to standard
non-maximum suppression (NMS) as applied in object/action
detection with sliding windows. With sliding windows, any
window with a positive classifier score could be reported as a
detection output. However, many windows with positive scores
overlap highly with others, and are actually covering the same
object/action instance. To reduce redundant detections, NMS
is used to select a single representative output window among
a group that highly overlaps. A key parameter that determines
the behavior of NMS is the threshold for overlap between
detections: candidate windows overlapping with the selected
window by more than the selected threshold are not added to
the detection output. When the threshold is high, one generates
more detection outputs at the risk of redundancy. The re-
weighting value applied to nodes in our graphs is analogous
to that threshold. A NMS threshold of 0 in traditional sliding
windows would correspond to a re-weighting value of −∞ in
our setup; a higher NMS threshold corresponds to a higher re-
weighting value, allowing some overlap in output detections.

4 EXPERIMENTAL RESULTS

We next present experimental results applying our method for
activity detection on several public benchmark datasets. We
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Fig. 8: Sketch of the candidate subvolume types considered by
different methods, ordered approximately from least to most flexible.
T-Sliding or T-Subgraph: The status quo sliding window search (and
the proposed T-Subgraph without jumps) finds the full-frame sub-
volume believed to contain the activity (leftmost image). ST-Cube-
Sliding: A variant that performs sliding window on different spatial
portions of the frame, with the restriction of cuboid subvolumes. ST-
Cube-Subvolume: A branch-and-bound search strategy from existing
work [38] that considers all possible cube-shaped subvolumes—
not just the grid-based subset considered by ST-Cube-Sliding. T-
Jump-Subgraph: The proposed method using temporal nodes (slabs
of frames) only, with additional allowance of temporal “gap(s)” in
the output detections. ST-Subgraph The most general form of the
proposed method, where we use both spatial and temporal nodes,
allowing irregular, non-cubic detection results.

evaluate our approach compared to both sliding window and
sliding cuboid baselines as well as an existing state-of-the-art
subvolume detection method that exploits branch-and-bound
search. Throughout we are interested in both the speed and
accuracy attainable. Ideally, we would like to achieve very
accurate detection but at a small fraction of the run-time cost
incurred by traditional sliding window methods. Furthermore,
in some scenarios we hope to improve the accuracy over
sliding windows, since our method will permit searching a
more complete set of windows than is tractable with a naive
search implementation.

In what follows, we first describe the datasets, baselines, and
metrics used in our experiments, and we provide implementa-
tion details for our approach not already covered above. Then,
the next four subsections present results organized around each
of the four datasets. This is the most natural organization, since
the dataset properties and their respective available ground
truth dictate which variants of our approach are relevant for
testing (e.g., temporal detection only, fully spatio-temporal,
two-stage for spatio-temporal with long sequences, etc.).

4.0.1 Activity Detection Datasets
We validate on four datasets, all of which are publicly avail-
able:
• UCF Sports [28]3: UCF Sports consists of 10 actions

from various sports typically found on TV, such as
diving, golf swing, running, and skate boarding. The data
originates from stock footage websites like BBC Motion
or GettyImages. The provided clips are trimmed to the
action of interest, so we expand them into longer test
sequences by concatenating clips to form “UCF-Concat”
(details below). The ground truth contains the action label
and the bounding box annotation of the human.

• Hollywood Human Actions [19]4: The training set con-
tains 219 clips originating from 12 Hollywood movies,

3. http://crcv.ucf.edu/data/UCF_Sports_Action.php
4. http://www.di.ens.fr/ laptev/actions/

Dataset Features Num
test
videos

Ave
length
(#frames)

Ave
length of
action

UCF-Concat Dense+HoG3D 12 589 13%
Hollywood STIP+HoG/HoF 211 474 62%
uncropped or high-level
MSR Action STIP+HoG/HoF 16 756 10%
THUMOS STIP+HoG/HoF,

Trajectory, MBH
111 1717 29%

TABLE 1: Properties of the four datasets. See text for more details.

and the test set contains 211 clips from a disjoint set of 20
Hollywood movies. The activities are things like answer
phone, get out of car, shake hands, etc. We test with the
noisy “uncropped” versions of the test sequences which
are only roughly aligned with the action and contain about
40% extraneous frames. In all data there is a variety of
camera motion and dynamic scenes. The ground truth
consists of the action label for the clip, as well as the
correct temporal boundaries of the activity in the case of
the uncropped sequences.

• MSR Actions [38]5: The MSR dataset consists of 16
test clips with three activity classes—hand clapping, hand
waving, and boxing—performed in front of cluttered and
moving backgrounds. They are performed by 10 subjects,
both indoor and outdoor. The ground truth consists of
a spatio-temporal bounding box for each action. To our
knowledge, this is the only available activity dataset with
both spatial and temporal annotations (others are limited
to temporal boundaries only). For this dataset, we train
the activity classifiers using the disjoint KTH dataset [30],
following [38].

• THUMOS 2014 [13]6: THUMOS consists of videos
collected from YouTube containing 101 different action
classes. The emphasis on the THUMOS challenge is to
cope with temporally untrimmed videos. Accordingly,
the test sequences contain the target actions naturally
embedded in other content, and the ground truth includes
the temporal boundaries of the true action. Following the
localization setting of the winners for the ECCV 2014
workshop’s detection task [25], we divide the 1010 vali-
dation videos into two equal parts for testing and training.
The test data contains 20 activity classes: baseball pitch,
basketball dunk, billiards, clean and jerk, cliff diving,
cricket bowling, cricket shot, diving, frisbee catch, golf
swing, hammer throw, high jump, javelin throw, long
jump, pole vault, shot put, soccer penalty, tennis swing,
throw discus, volleyball spiking.

See Table 1 for a summary of the dataset properties. In
particular, we include each dataset’s typical clip lengths and
the portion of the sequence occupied by the action to be
detected. On average, the action of interest occupies only 28%
of the total test sequence, making detection (as opposed to
classification) necessary.

5. http://research.microsoft.com/en-us/um/people/
zliu/actionrecorsrc/

6. http://crcv.ucf.edu/THUMOS14/
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4.0.2 Baselines
We compare our approach to three baselines:
• T-Sliding: a standard temporal sliding window. This is the

status quo method in the literature, e.g., [14], [8], [29].
Its results are equivalent to our T-Subgraph variant (using
temporal linking structure), but computed with exhaustive
search.

• ST-Cube-Sliding: a variant of sliding window that
searches all cuboid subvolumes having any rectangular
combination of the spatial-nodes used by our method. Its
search scope is similar to our ST-Subgraph, except that
it lacks all possible spatial links, meaning the detected
subvolume cannot shift spatial location over time. While
most existing methods simply apply a sliding temporal
window, with no spatial localization, we include this
baseline as the natural straightforward extension of slid-
ing window search if one wants to obtain localization.

• ST-Cube-Subvolume: the state-of-the-art branch-and-
bound method of [38]. It considers all possible cube-
shaped subvolumes, and returns the one maximizing
the sum of feature weights inside. Its scope is more
flexible than ST-Cube-Sliding. Its objective is identical to
ours, except that it is restricted to searching cube-shaped
volumes that cannot shift spatial location over time. We
use the authors’ code.7

We stress that our approach is a new strategy for detection;
results in the literature focus largely on classification, and
so are not directly comparable. The sliding window and
subvolume baselines are state-of-the-art methods for detection,
so our comparisons with identical features and classifiers will
give clear insight into our method’s performance.

We consider four variants of our approach: T-Subgraph, T-
Jump-Subgraph, ST-Subgraph, and two-stage ST-Subgraph, as
defined in Sec. 3. Recall that T-Subgraph provides equivalent
accuracy to T-Sliding, but is faster.8 The other two variants, T-
Jump-Subgraph and ST-Subgraph, provide more flexibility for
detection compared to any of the above methods. In particular,
the T-Jump-Subgraph variant allows temporal discontinuities
not permitted by any of the above methods, and the ST-
Subgraph variant allows spatial changes where the detected
content can move spatially within the frame over time. The
two-stage ST-Subgraph (cf. Sec. 3.5) is like the latter, only
computed in an approximate form so as to scale well to longer
test sequences.

Figure 8 depicts the scope of the regions searched by each
method, both ours and the baselines.

4.0.3 Evaluation Metrics
We adopt standard metrics for detection evaluation. Follow-
ing [36], [16], [38], we use the mean overlap accuracy.

7. We found its behavior sensitive to its penalty value parameter, which is
a negative prior on zero-valued pixels [38]. The default setting was weak for
our data, so for fairest comparisons, we tuned for best results on UCF.

8. For the special case of temporal search, one can obtain equivalent
solutions using 1-D branch-and-bound search to detect the max subvector
along the temporal axis [2]. In practice we find this method’s run-time to
be similar or slightly faster than T-Subgraph. Note, however, that it is not
applicable for any other search scope handled by our approach.

Verbs T-Sliding ST-Cube-
Subvol [38]

Our-T-
Subgraph

Our-T-Jump-
Subgraph

Diving 0.8106 0.7561 0.8106 0.9091
Lifting 0.7899 0.8058 0.7899 0.8096
Riding 0.5349 0.5075 0.5349 0.3888
Running 0.4602 0.3269 0.4602 0.4705
Skateboard 0.1407 0.1057 0.1407 0.1803
Swing-Bench 0.5520 0.6259 0.5520 0.4582
Swing-Side 0.6728 0.3478 0.6728 0.7212
Walking 0.4085 0.3462 0.4085 0.4657

TABLE 2: Mean overlap accuracy for the UCF Sports data.

Detection
time (ms)

T-Sliding ST-Cube-
Subvol [38]

Our-T-
Subgraph

Our-T-Jump-
Subgraph

Mean 1.25×105 7.87×104 1.02×102 6.51× 102

Stdev 7.52×103 3.17×104 5.35×101 3.17× 102

TABLE 3: Search time for the UCF Sports data.

Whether performing temporal or full spatio-temporal detec-
tion, this metric computes the intersection of the predicted
detection region with the ground truth, divided by the union.
We use detection time (on our 3.47GHz Intel Xeon CPUs) to
evaluate computational cost.

4.0.4 Implementation Details
For all datasets, we train a binary SVM to build a de-
tector for each action. We use the descriptors described in
Sec. 3.2, following the guidance of prior work [34], [33] to
select which particular sampling strategies and local space-
time descriptors to employ per dataset. In particular, rec-
ommendations from [34] lead us to employ HoG/HoF for
Hollywood and HoG3D for UCF with dense sampling. For
the THUMOS dataset we use the features provided with
the dataset, which augments the HoG/HoF set with dense
trajectories and MBH. In particular, on THUMOS we train
one-versus-all binary SVMs with four types of features: tra-
jectory [33], HOG, HOF, and MBH [24], where the features
are quantized to a bag of words representation via k-means
with a dictionary size = 4000. We use the authors’ code for
HoG3D/HoG/HoF/trajectory/MBH [19], [15], [33], [24], with
default parameter settings. We test the high-level descriptors
on Hollywood, since that dataset has substantial person-object
interactions, whereas actions in the others are more person-
centric (e.g., diving, clapping, skateboarding). We construct
our temporal graphs with a node size of 10 frames per slab.

The next four sections describe the results on each dataset
in turn.

4.1 Temporal Detection on UCF Sports
Since the UCF clips are already cropped to the action of
interest, we modify it to make it suitable for detection. We
form 12 test sequences by concatenating 8 different clips
each from different verbs. All test videos are totally distinct,
and are available on our project website. We train the SVM
on a disjoint set of cropped instances. We perform temporal
detection only, since the activities occupy the entire frame.

Table 2 shows the accuracy results, and Table 3 shows the
search times. For almost all verbs, our subgraph approaches
outperform the baselines. Further, our T-Jump variant gives top
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Verbs T-Sliding ST-Cube-
Subvol [38]

Our-T-
Subgraph

Our-T-Jump-
Subgraph

AnswerPhone 0.3968 0.2905 0.3968 0.3994
GetOutCar 0.2276 0.2267 0.2276 0.2921
HandShake 0.3071 0.3390 0.3071 0.3663
HugPerson 0.3869 0.4486 0.3869 0.4150
Kiss 0.3822 0.4230 0.3831 0.4412
SitDown 0.3612 0.2861 0.3612 0.3550
SitUp 0.2592 0.2053 0.2592 0.3255
StandUp 0.3475 0.3013 0.3475 0.3775

TABLE 4: Mean overlap accuracy on uncropped Hollywood data.

Detection
Time (ms)

T-Sliding ST-Cube-
Subvol [38]

Our-T-
Subgraph

Our-T-Jump-
Subgraph

Mean 3.71×103 1.70×105 6.63× 10 5.69× 102

Stdev 1.03×104 5.79×105 7.51× 10 1.77× 103

TABLE 5: Search time on uncropped Hollywood data.

accuracy in most cases, showing the advantage of ignoring
noisy features (in this data, often found near the onset or
ending of the verb). Figure 9 shows an example where T-Jump
performs robust detection in spite of occlusions, whereas the
baseline sliding window or basic T-Sliding fails.

On this dataset, the ST-Cube-Subvolume baseline is often
weaker than sliding window. Upon inspection, we found it of-
ten fires on a small volume with highly weighted features when
the activity changes in spatial location over time. However, it
is best on “Swing-Bench”, likely because the backgrounds are
fairly static, minimizing misleading features. As we see in
Table 3, both our subgraph methods are orders of magnitude
faster than the baselines. Note that the ST-Cube-Subvolume’s
higher cost is reasonable since here it is searching a wider
space.

4.2 Temporal Detection on Hollywood

We next test the Hollywood data, which also permits a study
of temporal detection. As noted above, we test with the
untrimmed data provided by the dataset creators. Existing
work uses this data for classification, and so trains and tests
with the cropped versions. To perform temporal detection,
we instead train with the cropped clips, and test with the
uncropped clips.

Table 4 shows the accuracy results, and Table 5 shows the
search times. Our T-Jump-Subgraph achieves the best accuracy
for 6 of the 8 verbs, with even more pronounced gains than on
UCF. This again shows the value of skipping brief negatively
weighted portions; e.g., “AnswerPhone” can transpire across
several shot boundaries, which tends to mislead the baselines.

As Table 5 reveals, our method is again significantly faster
than the baselines. Our T-Jump-Subgraph is slower than our
T-Subgraph search, given the higher graph complexity (which
also makes it more accurate). Hence, which variant to apply
depends on how an application would like to make this cost-
accuracy trade off.

One might wonder whether a naive detector that simply
classifies the entire uncropped clip could do as well. To
check, we compare recognition results when we vary the
composition of the test sequence to be either (a) the uncropped
clip, (b) the output of our detector, or (c) the ground truth

Test sequence composition Accuracy
Raw uncropped clips 24.83%
Output from T-Subgraph 29.66%
Manual ground truth 29.97%

TABLE 6: Recognition accuracy on Hollywood as test input varies.

Verbs T-Subgraph (HoG/HoF) T-Subgraph (high-level)
AnswerPhone 0.3968 0.1741
GetOutCar 0.2276 0.1447
HandShake 0.3071 0.4194
HugPerson 0.3869 0.5292
Kiss 0.3822 0.4906
SitDown 0.3612 0.3753
SitUp 0.2592 0.3843
StandUp 0.3475 0.2636

TABLE 7: Mean overlap accuracy on Hollywood for low-level
features vs. the object-based high-level descriptors.

cropped clip. Table 6 shows the result. We see indeed that
detection is necessary; using our output is much better than
the raw untrimmed clips, and only slightly lower than using
the manually provided ground truth.

We also test our high-level descriptor (cf. Sec. 3.2.2) on
Hollywood, since its actions contain human-object interac-
tions. We apply six object detectors—bus, car, chair, dining
table, sofa, and phone—to every fifth frame, and use random
forests with 10 trees. Table 7 shows the results, compared
to our method using low-level features. For five of the eight
actions, the proposed high-level descriptor improves accuracy.
It is best for activities based on the interaction between two
people (e.g., kiss) or involving an obvious change in pose
(e.g., sit up), showing the strength of the proposed person
types to capture pose and temporal ordering. For other verbs
with varied objects (answer phone, get out of car), it hurts
accuracy, likely due to object detector failures in this dataset.
It remains future work outside the scope of this project to
bolster the component object detectors fed into this higher-
level neighborhood descriptor.

4.3 Temporal Detection with Multiple Instances on
THUMOS
Next we evaluate our approach on the THUMOS dataset.
THUMOS allows temporal detection (like UCF Sports and
Hollywood), plus, unlike the others, it contains test sequences
with multiple instances of the activity. This aspect lets us
test our iterative max-subgraph strategy to produce multiple
detections, as discussed in Sec. 3.6.

In these experiments, the sliding window baseline represents
the same search strategy taken by the leading approach on
this dataset [25]. As such, we follow the authors’ parameter
choices for the window search in order to provide a close
comparison. That means for the T-Sliding baseline, we use
a step size of 10 frames, and evaluate the windows with
durations of 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 150
frames [25]. We fix the NMS threshold at 0.5 (after we did not
observe better results for the baseline shifting this threshold
within the range (0,1]), and we fix the node re-weighting value
at 0 for our method (cf. Sec. 3.6). Note that with a skip size
of 10 frames, the sliding window baseline (T-Sliding) does
not exhaustively search all subsequences, whereas our method
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Fig. 9: Qualitative example showing how our T-Jump method can perform robust detection. The five colored cubes represent the weighted
node computed from the extracted features and learned classifier. For the second to fourth nodes, the classifier generates negative weights
due to the occlusion. Using T-Sliding or T-Subgraph, the detection output does not cover the first and last cubes due to the negative weights
from three cubes in the middle. In contrast, using our T-Jump method, it can skip over the intervening negative weights. This makes the
detection framework more robust to noise from occlusion. Best viewed in color.

does. For each testing video, we return up to 10 positive
detection windows.

Table 8 shows the accuracy results for T-Sliding and our
T-Subgraph method, both in terms of overlap and the mean
average precision (mAP) as defined by [13], which is a useful
metric for the case when there are multiple instances per
testing clip. Our method obtains higher accuracy than the
standard sliding window baseline. This is a direct consequence
of the efficiency of our approach in considering all possible
windows. We also get a noticeable further advantage in overlap
accuracy applying our T-Jump variant, yet it harms average
precision. Upon inspection, we find that for this challenging
data, the classifier scores per node are noisier, which leads
T-Jump to cover too many frames; T-Jump can easily find
some small-valued positive nodes to skip over highly negative
nodes, leading to some poorer detection outputs as seen in
the mAP. The high overlapping score of T-Jump confirms
this observation and illustrates why mAP is a better metric
than overlapping accuracy in multiple instance detection. We
also tried a variant of our approach that less aggressively
reduces the weights on nodes already involved in a prior
iteration’s detections: we set the weight of a “used” node to the
mean weight of all nodes, with the intent to encourage more
overlapping detections. However, this led to slightly worse
accuracy for our method (0.2043 overlap accuracy vs. 0.2186
in Table 8).

Table 9 shows the computation time for both methods. Sim-
ilar to previous results, our T-Subgraph method for detecting
multiple instances provides significantly faster running time
compared to T-Sliding. For the sliding window method, no
matter how many output detections we want, all the candidate
window are evaluated. In contrast, for our T-Subgraph, we
only return one optimal window in each subgraph search
iteration and re-weight the underlying nodes for next iteration.
Therefore, in this experiment, we need to run our T-Subgraph
10 times to find top 10 detection windows—yet, in spite of that
repetition, it is still about an order of magnitude faster than
evaluating all the candidate windows in the T-Sliding method.

Finally, we more closely analyze the behavior of the sliding
window baseline (T-Sliding) as it compares to our T-Subgraph.
The goal is to see in practice what density of windowed search
(skip sizes) is necessary for best results. In other words, if we
allow T-Sliding more candidate windows and hence longer

Metric T-Sliding Our T-Subgraph Our T-Jump-Subgraph
mAP 0.1983 0.2143 0.1546
Overlap 0.1792 0.2186 0.2636

TABLE 8: Recognition accuracy on THUMOS 2014 data.

Time (ms) T-Sliding Our T-Subgraph Our T-Jump-Subgraph
Mean 7.07× 105 5.34× 104 4.72× 104

Stdev 2.26× 106 2.37× 105 1.97× 105

TABLE 9: Search time on THUMOS 2014 data.

running time, at what point does it come close to the optimal
result from our method? Since running this experiment is
rather costly for the baseline, we limit this test to four of the 20
verbs in the THUMOS test set (chosen randomly: basketball
dunk, clean and jerk, cliff diving, and hammer throw).

Figure 10 shows the results in terms of the average accuracy
over all four actions tested. As expected, increasing the pool
of candidate windows searched by T-Sliding increases its
accuracy, but at a corresponding linear increase in run-time. At
a search time of 200 ms per frame, the baseline is searching 35
different window sizes (out of 300 window sizes for exhausted
search) and achieves accuracy of 0.26, nearing but not as good
as the result from T-Subgraph of 0.30 accuracy obtained with
just a few ms per frame.

4.4 Space-Time Detection on MSR Actions

As the fourth and final dataset, we experiment with MSR
Actions. In contrast to all of the above datasets, MSR Ac-
tions contains ground truth for the spatial localization of the
action—not just the temporal extent. Furthermore, the actors
change their position over time and a test sequence may
contain multiple simultaneous instances of different actions.
Therefore, this dataset is a good testbed to evaluate our ST-
Subgraph with the node structure in Figure 5(b), where we link
neighboring nodes both in space and time. In what follows,
we present results with both the exact maximum subgraph
from ST-Subgraph as well as its approximate counterpart, the
two-stage search process described in Sec. 3.5.

First we isolate temporal detection accuracy alone. We
run the temporal and spatio-temporal variants of our method,
and project the spatio-temporal results to temporal results.
Table 10 shows results. Even under the temporal criterion, our
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Fig. 10: Accuracy vs. computation time in temporal search. We
compare our T-Subgraph (which produces the optimal detection
output for a fixed time) to the standard T-Sliding method (which
produces its detection output based on exhaustive search of a pool
of candidate windows). Here we increase T-Sliding’s accuracy and
run-time by increasing that pool of windows.

Verbs T-Sliding ST-Cube-
Sliding

ST-Cube-
Subvol [38]

Our-T-
Subgraph

Our-ST-
Subgraph

Our-Two-
Stage-ST

Boxing 0.0541 0.0717 0.0794 0.0541 0.0989 0.1188
Clapping 0.0982 0.0982 0.0602 0.0982 0.1754 0.1795
Waving 0.2342 0.2204 0.2669 0.2342 0.2926 0.2416

TABLE 10: Mean temporal overlap accuracy on the MSR dataset.

ST-Subgraph and two stage ST-Subgraph are most accurate,
since they can isolate those nodes that participate in the
action. Figure 11 illustrates how our space-time node structure
succeeds when the location of activity changes over time,
whereas ST-Cube-Subvolume may be trapped in cube-shaped
maxima. Compared to ST-Subgraph, our two-stage method
yields similar accuracy for Boxing and Clapping videos and
provides lower accuracy for Waving videos. This result shows
the two-stage method is able to provide good approximation
to ST-subgraph method.

Next we examine the complete space-time localization
accuracy. Table 12 shows the results, evaluated under the
ground truth annotation for the person who performs the
action9. Results are mixed between the methods, with a slight
edge for our ST-Subgraph. Also, only the non-rectangular
shape detection from our ST-Subgraph reflects the large spatial
motions in actions. As expected, the two-stage search process
does detract from the accuracy of the optimal ST-Subgraph
result, as we see in the last two columns of Table 12.

Finally, we analyze the run-times for all methods tested in
Table 11. Here we see the substantial practical impact of our
two-stage spatio-temporal variant, which yields significantly
lower computation time. It is even faster than the sliding tem-
poral window search that produces no spatial localization, and
orders of magnitude faster than the existing branch-and-bound
subvolume method [38]. The two-stage method is slightly
slower than the T-Subgraph variant of our method, since it
requires additional computation for the spatial detection in the
first stage for each slab.

As discussed in Sec. 3.5, we can achieve efficient spatio-
temporal localization with the our proposed two stage sub-
graph search method. In previous section, our ST-Subgraph
provides more accurate space-time localization of action with

9. The original ground truth labels only the hand regions (see Figure 11),
whereas this ground truth labels the whole person performing the action.

Detection
Time (ms)

T-Sliding ST-Cube-
Sliding

ST-Cube-
Subvol [38]

Our-T-
Subgraph

Our-ST-
Subgraph

Our-Two-
Stage-ST

Mean 4.2×103 5.5×104 3.0×105 2.8×102 3.1×106 1.4×103

Stdev 3.3×103 4.2×104 1.6×105 2.3×102 4.6×106 4.1×102

TABLE 11: Search time on the MSR dataset.

Verbs ST-Cube-
Sliding

ST-Cube-
Subvol [38]

Our-ST-
Subgraph

Our-Two-
Stage-ST

Boxing 0.0478 0.0193 0.0417 0.0296
Hand Clapping 0.0373 0.0071 0.0630 0.0425
Hand Waving 0.0851 0.0581 0.1121 0.0809

TABLE 12: Mean space-time overlap accuracy on the MSR dataset.
(T-Sliding/T-Subgraph are omitted since they do not do spatial
localization.)

higher computational cost. In this section, we speed up the ST-
Subgraph with our two stage subgraph for space time detection
on MSR action dataset.

Table 12 and Table 11 also show the comparison of detec-
tion accuracy and search time for our Two-Stage-ST-Subgraph
and our original ST-Subgraph. By dividing the node structure
into temporal slices, the computation time of two stage method
is reduced by three orders compared to original ST-Subgraph.
As expected, the two stage method is slightly slower than
the T-Subgraph because it requires additional computation for
spatial detection in first stage for each temporal node. For
detection accuracy, recall that the two stage method doesn’t
guarantee to provide the optimal spatial-temporal volumes
since it ignores the temporal link between nodes in the first
stage, it is expected that the two stage method will be less
accurate than the ST-Subgraph method. As shown in Table 12,
Two-Stage-ST method achieves similar accuracy to the ST-
Subgraph for hand clapping and hand waving clips, but lower
accuracy for boxing clips. It is because the learned activity
model for boxing is less accurate than the learned models
for other two actions (it provides lower overlap accuracy for
ST-Subgraph), and our two stage method is more sensitive to
the noisy node score due to the pruned connections between
nodes.

4.5 Summary of Trade-Offs in Results
Having presented all the results, now we step back and
attempt to summarize the outcomes succinctly. There are three
dimensions of trade-offs between all methods tested: search
time, search scope, and detection accuracy.

Figure 12 summarizes all trade-offs for three datasets. Here
we show the accuracy versus the detection time for each
result, and encode the search scope of the method by the
complexity of its polygonal symbol. More complex symbols
mean wider search scope. For example, recalling Figure 8, the
least complex search scope is T-Sliding/T-Subgraph, which is
plotted as a triangle, whereas the most complex search scope
is the ST-Subgraph, which is plotted as a 14-sided star.

Importantly, we see that increased search scope generally
boosts accuracy. In addition, the flexibility of the graph
structure in our subgraph algorithm allows it to perform best
per dataset in terms of either speed (see vertical blue dotted
lines) or accuracy (see horizontal red dotted lines).

Our method can be used to produce equivalent results as
sliding window search, but without the exhaustive search.
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ST-Subgraph 

ST-Cube-Subvolume 

Det-1 Det-2 Det-3 Det-4 

t=2 t=3 t=5 t=6 

Fig. 11: Example of ST-Subgraph’s top output (top) and the top 4 detections from ST-Cube-Subvolume [38] (bottom). Red rectangles denote
ground truth. Brighter areas denote detections.
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Fig. 12: Overview of methods on the three datasets.

Dataset T-Sliding T-Sliding-Norm Ours
UCF (ave. overlap) 0.5453 0.5417 0.5504
Hollywood (ave. overlap) 0.3337 0.3565 0.3715
MSR (ave. overlap) 0.1288 0.1513 0.1890
THUMOS (ave. mAP) 0.1983 0.2026 0.2143

TABLE 13: Effect of histogram normalization and re-weighting for
the sliding window baseline, compared to the best performing variant
of our method (T-Jump-Subgraph on UCF, Hollywood, and MSR; T-
Subgraph on THUMOS).

However, due to the additive restriction our method places on
the classifier (cf. Sec. 3.1), it cannot normalize each window’s
bag-of-feature histograms. Would such normalization help the
accuracy of sliding windows? We find it actually hurt the
baseline, letting tiny subvolumes with few positively weighted
features dominate the detection outputs. We can improve the
normalization by also re-weighting the detection score by the
length of the window to encourage longer detections [25].
Table 13 shows the result. The T-Sliding accuracy increases in
three of the four datasets, yet remains inferior to our method’s
best results. Our accuracy advantage comes from our flexible
subgraph node and linking strategies.

We provide our source code and data in our project page.10

5 CONCLUSIONS

We presented a novel branch-and-cut subgraph framework for
activity detection that efficiently searches a wide space of
temporal or space-time subvolumes. Compared to traditional

10. http://vision.cs.utexas.edu/projects/maxsubgraph

sliding window search, it significantly reduces computation
time. Compared to existing branch-and-bound methods, its
flexible node structure offers more robust detection in noisy
backgrounds. Our novel high-level descriptor also shows
promise for complex activities, and makes it possible to
preserve the spatio-temporal relationships between humans
and objects in the video, while still exploiting the fast subgraph
search.
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