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DASC: Robust Dense Descriptor for Multi-modal
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Abstract—Establishing dense correspondences between multiple images is a fundamental task in many applications. However, finding
a reliable correspondence in multi-modal or multi-spectral images still remains unsolved due to their challenging photometric and
geometric variations. In this paper, we propose a novel dense descriptor, called dense adaptive self-correlation (DASC), to estimate
multi-modal and multi-spectral dense correspondences. Based on an observation that self-similarity existing within images is robust to
imaging modality variations, we define the descriptor with a series of an adaptive self-correlation similarity measure between patches
sampled by a randomized receptive field pooling, in which a sampling pattern is obtained using a discriminative learning. The
computational redundancy of dense descriptors is dramatically reduced by applying fast edge-aware filtering. Furthermore, in order to
address geometric variations including scale and rotation, we propose a geometry-invariant DASC (GI-DASC) descriptor that
effectively leverages the DASC through a superpixel-based representation. For a quantitative evaluation of the GI-DASC, we build a
novel multi-modal benchmark as varying photometric and geometric conditions. Experimental results demonstrate the outstanding
performance of the DASC and GI-DASC in many cases of multi-modal and multi-spectral dense correspondences.

Index Terms—Dense correspondence, descriptor, multi-spectral, multi-modal, edge-aware filtering

1 INTRODUCTION

ECENTLY, many computer vision and computational
Rphotography problems have been reformulated to over-
come their inherent limitations by leveraging multi-modal
and multi-spectral images. Typical examples of other imag-
ing modalities include near-infrared (NIR) image [1]], [2]
and dark flash image [3]. More broadly, flash and no-flash
images [4], blurred images [5], [6], and images taken under
different radiometric conditions [7] can also be considered
as multi-modal [8].

Establishing dense visual correspondences for multi-
modal and multi-spectral images is a key enabler for re-
alizing such tasks. In general, the performance of corre-
spondence algorithms relies primarily on two components:
appearance descriptor and optimization scheme. Traditional
dense correspondence methods for estimating depth [9] or
optical flow [10], fields, in which input images are
acquired in a similar imaging condition, have been dra-
matically advanced in recent studies. To define a matching
fidelity term, they typically assume that multiple images
share a similar visual pattern, e.g., color, gradient, and
structural similarity. However, when it comes to multi-
spectral and multi-modal images, such properties do not
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(b) Image2 () DAISY (d) DASC
Fig. 1. Some challenging multi-modal and multi-spectral images such as
(from top to bottom) RGB-NIR, flash-noflash images, two images with
different exposures, and blur-sharp images. The images in the third and
fourth column are the results obtained by warping images in the second
column to images in the first column with dense correspondence maps
estimated by using DAISY and our DASC descriptor, respectively.
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hold as shown in Fig. [T} and thus conventional descriptors
or similarity measures often fail to capture reliable matching
evidence. This leads to a poor matching quality as shown
in Fig. 2} Furthermore, substantial geometric variations,
which often appear in images captured under wide-baseline
conditions, make the matching task even more challenging.
Although employing a powerful optimization technique
could help estimate a reliable solution with a spatial context
[13], [14], [15], an optimizer itself cannot address an inherent
limitation without suitable matching descriptors [16].

Our method starts from an observation that a local



internal layout of self-similarities is less sensitive to pho-
tometric distortions, even when an intensity distribution of
an anatomical structure is not maintained across different
imaging modalities [17]. That is, the local self-similarity
(LSS) descriptor would be beneficial to overcoming inher-
ent limitations of existing descriptors in establishing corre-
spondences between multi-modal or multi-spectral images.
Several approaches based on the LSS have been presented
for multi-modal and multi-spectral image registration [18],
[19], but they do not scale well to estimating dense corre-
spondences for multi-modal and multi-spectral images, and
their matching performance is still poor.

In this paper, we propose a novel local descriptor, called
dense adaptive self-correlation (DASC), designed for es-
tablishing dense multi-modal and multi-spectral correspon-
dences. It is defined with a series of patch-wise similarities
within a local support window. The similarity is computed
with an adaptive self-correlation measure, which encodes
an intrinsic structure while providing the robustness against
modality variations. To further improve the matching qual-
ity and runtime efficiency, we propose a randomized re-
ceptive field pooling strategy using sampling patterns that
select two patches within the local support window. A
linear discriminative learning is employed for obtaining an
optimal sampling pattern. The computational redundancy
that arises when computing densely sampled descriptors
over an entire image is dramatically reduced by applying
fast edge-aware filtering [20].

Furthermore, in order to address geometric variation
problems such as the scale and rotation, we propose the
geometry-invariant DASC (GI-DASC) descriptor that lever-
ages the efficiency and effectiveness of the DASC through
a superpixel-based representation. Specifically, we infer an
initial geometric field with corresponding scale and rota-
tion of reliable sparse key-points obtained using weighted
maximally self-dissimilarity (WMSD), and then propagate
the initial geometric field on a superpixel graph. After
transforming sampling patterns according to geometric
fields on each superpixel, the DASC is efficiently com-
puted with the transformed sampling patterns on each
superpixel extended subimage. Compared to conventional
geometry-invariant methods for dense correspondence [21],
[22], which have been focusing on employing powerful
optimization schemes, the GI-DASC provides geometric and
photometric robustness on the descriptor itself.

Experimental results show that the DASC outperforms
conventional area-based and feature-based approaches on
various benchmarks including modality variations; (1) Mid-
dlebury stereo benchmark containing illumination and ex-
posure variations [23], (2) multi-modal and multi-spectral
dataset including RGB-NIR images [1f], [8], different expo-
sure [7], [8], flash-noflash images [7], and blurry images [5],
[6], and (3) MPI optical flow benchmark containing specular
reflections, motion blur, and defocus blur [10]. We also show
that the GI-DASC outperforms existing geometry-invariant
methods on a novel multi-modal benchmark.

1.1 Contribution

The contributions of this paper can be summarized as
follows. First, to the best of our knowledge, our approach
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Fig. 2. Examples of matching cost comparison. Multi-spectral RGB and
NIR images have locally non-linear deformation as depicted in A, B, and
C. Matching costs computed with different descriptors along A, B, and
C’s scan-lines are plotted in (c)-(e). Unlike conventional descriptors, the
proposed DASC descriptor yields a reliable global minimum.
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is the first attempt to design an efficient, dense descrip-
tor for matching multi-modal and multi-spectral images,
even under varying geometric conditions. Second, unlike a
center-biased dense max pooling, we propose a randomized
receptive field pooling with sampling patterns optimized
via a discriminative learning, making the descriptor more
robust to matching outliers incurred by different imaging
modalities. Third, we propose an efficient computational
scheme that significantly improves the runtime efficiency of
the proposed dense descriptor. Fourth, a geometry-invariant
dense descriptor is also proposed, which provides a geomet-
ric robustness as a descriptor itself.

This manuscript extends its preliminary version [24]. It
newly adds (1) a scale and rotation invariant extension of the
DASC, called GI-DASC; (2) a new multi-modal benchmark
with a ground truth annotation, captured under varying
photometric and geometric conditions; and (3) an intensive
comparative study with existing geometry invariant meth-
ods using various datasets. The source code of our work
(including DASC and GI-DASC) and the new multi-modal
benchmark are available at our project webpage [25].

2 RELATED WORK
2.1 Feature Descriptors

As a pioneering work, the scale invariant feature transform
(SIFT) was first introduced by Lowe [26] to estimate robust
sparse feature correspondence under geometric and photo-
metric variations. Based on the intensity comparison, fast bi-
nary descriptors, such as binary robust independent elemen-
tary features (BRIEF) [27] and fast retina keypoint (FREAK)
[28], have been proposed. Unlike these sparse descriptors,
Tola et al. developed a dense descriptor, called DAISY [12],
which re-designs conventional sparse descriptors, i.e., SIFT,
to efficiently compute densely sampled descriptors over an
entire image. Although these conventional gradient-based
and intensity comparison-based descriptors show satisfac-
tory performance for small photometric deformation, they
cannot properly describe multi-modal and multi-spectral
images that often exhibit severe non-linear deformation.

To estimate correspondences in multi-modal and multi-
spectral images, some variants of the SIFT have been de-



veloped [29]], but these gradient-based descriptors have an
inherent limitation similar to the SIFT, especially when an
image gradient varies across different modality images.
Schechtman and Irani introduced the LSS descriptor [17]
for the purpose of template matching, and achieved impres-
sive results in object detection and retrieval. Torabi et al.
employed the LSS as a multi-spectral similarity metric to
register human region of interests (ROIs) [19]]. The LSS also
has been applied to the registration of multi-spectral remote
sensing images [30]. For multi-modal medical image reg-
istration, Heinrich et al. proposed a modality independent
neighborhood descriptor (MIND) [18] inspired by the LSS.
However, none of these approaches scale very well to dense
matching tasks for multi-modal and multi-spectral images
due to a low discriminative power and a huge complexity.

Recently, several approaches started to employ deep con-
volutional neural networks (CNNs) [31] for estimating cor-
respondences. For designing explicit, discriminative feature
descriptors, intermediate activations from CNN architecture
are extracted [32], [33], [34], [35], and they have been shown
to be effective for patch-level tasks. However, even though
CNN-based descriptors encode a discriminative structure
with a deep architecture, they have inherent limitations in
multi-modal images, since they use shared convolutional
kernels across images which lead to inconsistent responses
similar to conventional descriptor [35], [36]. Furthermore,
they are unable to provide dense descriptors in the image
due to a prohibitively high computational complexity.

2.2 Area-based Similarity Measures

As surveyed in [37], the mutual information (MI), leverag-
ing the entropy of the joint probability distribution function
(PDF), has been popularly applied to a registration of multi-
modal medical images. However, the MI is sensitive to local
radiometric variation since it formulates the intensity vari-
ation in a global manner using the joint entropy computed
over an entire image. In [38], this issue can be alleviated
to some extent by leveraging a locally adaptive weight
obtained from SIFT matching, called MI+SIFT in this paper,
but its performance is still limited against the multi-modal
variation [39]. Although cross-correlation based methods
such as an adaptive normalized cross-correlation (ANCC)
[40] show satisfactory results for locally linear variations,
they show a limitation under severe modality variations.
Irani et al. employed the cross-correlation on the Laplacian
energy map for measuring multi-sensor image similarity
[41], but it also shows a limitation for general image match-
ing tasks. A robust selective normalized cross-correlation
(RSNCC) [8] was proposed for the dense alignment between
multi-modal images, but its performance is still unsatis-
factory due to an inherent limitation of intensity based
similarity measure.

2.3 Geometry-Invariant Dense Correspondences

Based on the SIFT flow (SF) [13] optimization, many meth-
ods have been proposed to alleviate geometric variation
problems, including deformable spatial pyramid (DSP) [14],
scale-less SIFT flow (SLS) [42], scale-space SIFT flow (SSF)
[43], and generalized DSP (GDSP) [22]. However, they have
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Fig. 3. Demonstration of the LSS [17] and the DASC descriptor. Within
the support window, solid and dotted line box depict source and tar-
get patch, respectively. Unlike a center-biased dense max pooling on
each bin; (1) in the LSS descriptor, the DASC descriptor incorporates a
randomized receptive field pooling using sampling pattern (s; ;,t;;) €
A?asc on I';, optimized by a discriminative learning.

a critical limitation as huge computational complexity de-
rived from dramatically large search space in geometry-
invariant dense correspondence. A generalized PatchMatch
(GPM) [44] was proposed for efficient matching leveraging
a randomized search scheme. The DAISY Filter Flow (DFF)
[21], which exploits DAISY descriptor [12] with PatchMatch
Filter (PMF) [45], was proposed to provide geometric in-
variance. However, their weak spatial smoothness often
induces mismatched results. The scale invariant descriptor
(SID) [46] was proposed to encode geometric robustness on
the descriptor itself, but it is not tailored to multi-modal
matching. Segmentation-aware approach [47] was proposed
to provide geometric robustness for descriptors, e.g., SIFT
[26] or SID [46], but it may have a negative effect on the
discriminative power of the descriptor.

3 BACKGROUND

Let us define an image as f; : Z — R for pixel i, where
T C N? is a discrete image domain. Given the image f;, a
dense descriptor D; : Z — R¥ is defined on a local support
window R; centered at pixel i with a feature dimension
L. Conventionally, descriptors were computed based on
the assumption that there is a common underlying visual
pattern which is shared by two images. However, as shown
in Fig. 2} multi-spectral images such as a pair of RGB-NIR
have a nonlinear photometric deformation even within a
small window, e.g., gradient reverse and intensity order
variation. More seriously, there are outliers including struc-
ture divergence caused by shadow or highlight. In these
cases, conventional descriptors using an image gradient
(SIFT [26]) or an intensity comparison (BRIEF [27]) cannot
capture coherent matching evidences, resulting erroneous
local minima in estimating dense correspondences.

Unlike these conventional descriptors, the LSS descriptor
D! measures a correlation between two patches F; and F;
centered at two pixels ¢ and j within a local support window
Ri [17]. As shown in Fig. a), it discretizes the correlation
surface on a log-polar grid, generates a set of bins, and
then stores a maximum correlation value within each bin.
Formally, Db = Uldﬁ forl =1,..., L1 isa L' x 1 feature
vector, and d'% can be computed as follows:
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where bin,; (1) = {j|lj € Ri,pr—1 < i —j] < pr,00—1 <
Z(i — j) < 0,} with alog radius p, forr € {1,--- , N, } and
a quantized angle 6, for a € {1,---, Ny} with py = 0 and
6y = 0. In that case, L' = N, » X Np. The correlation sur-
face C(i,j) is typically computed using a simple similarity
metric such as the sum of squared difference (SSD) with a
normalization factor o:

C(i,j) = exp (=SSD (Fi, Fj) [os) - @

This LSS descriptor has been shown to be robust in
cross-domain object detection [17], but it provides unsat-
isfactory results in densely matching multi-modal images
as shown in Fig. [2| It is because the max pooling strategy
performed in each bin;(l) loses matching details, leading
to a poor discriminative power. Furthermore, the center-
biased correlation measure cannot handle severe outliers
effectively, which frequently exist in multi-modal and multi-
spectral images. In terms of a computational complexity,
there exists no efficient computational scheme designed for
dense matching descriptor.

4 THE DASC DESCRIPTOR
4.1 Randomized Receptive Field Pooling

Instead of using a center-biased max pooling of the LSS
descriptor in Fig. B(a), our DASC descriptor incorporates a
randomized receptive field pooling with sampling patterns
in such a way that a pair of two patches are randomly
selected within a local support window. It is motivated by
three observations; 1) In multi-spectral and multi-modal im-
ages, there frequently exist non-informative regions which
are locally degraded, e.g., shadows or outliers. 2) Center-
biased pooling is very sensitive to a degradation of a center
patch, and cannot deal with a homogeneous or salient center
pixel which does not contain self-similarities [17]]. 3) From
the relationship between Census transform [48] and BRIEF
[27] descriptor, it is shown that the randomness enables a
descriptor to encode structural information more robustly.
Our approach encodes a similarity between patch-wise
receptive fields sampled from log-polar circular point set
I'; as shown in Fig. b). It is defined as I'; = {j|j €
Ri, |t — j| = pr, Z(i — j) = 0, } where the number of points
is defined as N. = N, X Ny + 1, and has a higher density of
points near a center pixel, similar to DAISY descriptor [12].
Given N, points in IT';, there exist Np. = {N, x (N, —1)}/2
candidate sampling patterns, leading to a dramatically high-
dimension descriptor. However, many of the sampling pat-
tern pairs might not be useful in describing a local support
window. Therefore, we employ a randomized approach to
extract L9%¢ sampling patterns from N,. pattern candi-
dates. Our descriptor D{as¢ = UlddaSC forl =1,..., L2 ig
encoded with a set of patch 51m11ar1ty between two patches
based on sampling patterns that are selected from I';:

dfjsc =C(sigstin), Sigtiy €15, ©)]

where s;; and ¢;,; are 1th selected sampling patterns at
pixel i. Note that the sampling patterns are fixed for all
pixels in an image. Namely, all pixels share the same set
of offset vectors ¢; ; — s;; forl =1, ..., Ldasc enabling a fast
computation of dense descriptors, which will be detailed
in Sec. Although the DASC descriptor uses only sparse
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Fig. 4. Visualization of patch-wise receptive fields of the DASC descrip-
tor learned from the training set P built with the Middlebury benchmark
[23], multi-modal benchmark [8], and the MPI SINTEL benchmark [10].
Similar to [49], we stacked all patch-wise receptive fields learned from
each training image, and normalized them with the maximal value.

patch-wise pairs in a local support window, many of patches
are overlapped when computing patch similarities between
the sparse pairs, allowing the descriptor to consider the
majority of pixels in the support window and reflect original
image attributes effectively.

4.1.1 Sampling pattern learning

Finding an optimal sampling pattern is a critical issue in
the DASC descriptor. With the assumption that there is no
single hand-craft feature that always provides the robust-
ness to all circumstances [49], we employ a discriminative
learning to obtain optimal sampling patterns within a lo-
cal support window. Given candidate sampling patterns
A ={(si1,ti)|l =1, ..., Npc}, our goal is to select the best
sampling patterns which derive an important spatial layout.

Our approach exploits support vector machines (SVMs)
with a linear kernel [50]. For learning, we build a dataset

={(R},R?,yn)|h =1, ..., Ny}, where (R', R?) are sup-
port window pairs in multi-modal or multi-spectral images,
and Ny, is the number of training samples. ¥ is a binary label
that becomes 1 if two patches are matched, or 0 otherwise.
The training data set P was built with images captured
under varying illumination conditions and/or with imaging
devices [8], [10], [23]. In experiments, Ny, = 10, 000.

First, the feature r;, = |J; 71, that describes two support
window pairs R}, and R? is defined

Thi = exp ( (ddasc 1 ddasc 2) /20%) ’ (4)

where o, is a Gaussian parameter, and ddasc is the DASC de-
scriptor. The decision function O to cla531fy training dataset
P into matching and non-matching can be represented as

Q(ry) =v'ry +b, ©)

where the weight v = |J,; v; indicates an amount of contri-
bution of each candidate sampling pattern, and b is a bias.
Learning v can be formulated as minimizing

bvm( ) = HVH2 + Csvmz lhmge Yh - Q(rh)) (6)

where the hinge loss function lpinge () = max(0, 1 — ) and
Csvm represents a regularization parameter. We use LIBSVM
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Fig. 5. Visualization of support window pairs on multi-spectral RGB
and NIR images denoted as ‘A’ in Fig. [2] having gradient orientation
variations, and descriptors for these window pairs. Conventional de-
scriptors such as DAISY [12], BRIEF [27], and LSS vary across
modality variations. Unlike those methods, our DASC descriptor remains
unchanged to modality variations.

(g) DASC descriptor

to minimize this objective function. The |v;| encodes the
importance of corresponding sampling pattern towards the
final decision . Therefore, we rank top L9%¢ sampling
patterns based on |v;| value, and use them in our descriptor,
which is denoted as Adasc,

Fig. 4] visualizes learned patch-wise receptive fields of
the DASC. It looks similar to the Gaussian weighting, which
has been proven to be effective in terms of a structural en-
coding of descriptor in many literatures [49], [52]. According
to training set, it learns optimal receptive fields.

4.2 Adaptive Self-Correlation Measure

With estimated sampling patterns (s;,t;;), the DASC de-
scriptor measures a patch similarity using an adaptive self-
correlation (ASC) measure in order to robustly encode a
local internal layout of self-similarities. For the sake of sim-
plicity, we omit (¢, 1) in the correlation metric from here on,
as it is repeatedly computed for all (i,!). For (s,t) € Adasc,
the adaptive self-correlation ¥ (s, t) between two patches F;
and F; centered at pixels s and ¢ is computed as follows:

Z Ws,s' Wt t/ (fs' - gs)(ft’ - gt)

s,t) = LY ,
\/; {wesr(fur = Ga)}° @ {wer(fo — G’

@)
where s’ € F; and t’ € F, and weighted averages on F, and
Fi are defined as Gs = >, ws s for and Gy = D>, wy v for.

The weight w, s represents how similar two pixels s and
s’ are, and is normalized, i.e., Yo ws,s» = L. It can be defined
with any kind of edge-aware weights [20], [53], [54]. This
weighted sum better handles outliers and local variations in
patches compared to other patch-wise similarity metrics. It
is worth noting that the adaptive self-correlation used here
is conceptually similar to the ANCC [40], but our descriptor
employs the correlation metric for measuring self-similarity
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Fig. 6. Efficient computation framework of the DASC descriptor. In
order to reduce a computational load in computing the adaptive self-
correlation, it re-arranges the sampling pattern and employs fast EAF
scheme. The DASC descriptor is then computed with re-indexing.

within a single image which is used for matching two or
more images later, while the ANCC is used to directly
measure inter-similarity between different images.

Finally, our patch-wise similarity between F, and F; is
computed with a truncated exponential function, which has
been widely used in the robust estimator [55]:

C(s,t) = max(exp(—(1 — |¥U(s,t)|)/0c), Te), (8)

where o, is a bandwidth of Gaussian kernel and T, is a trun-
cation parameter. Here, a absolute value of ¥(s,t) is used
to mitigate the effect of intensity reverses. The correlation
C(si,1,ti,;) for i is normalized with an unit norm for all /.

Fig. |5 represents examples of visualizing the results of
various descriptors. The conventional descriptors show the
sensitivity to modality variations, however the DASC shows
the robustness against multi-modal variations.

4.3 Efficient Computation for Dense Descriptor

For densely constructing our descriptor on an entire image,
we should compute C(s;,t;,;) for all patch pairs belonging
to (si1,ti1) € A2 for each pixel i. Thus, a straightfor-
ward computation can be extremely time-consuming. In
this section, we present an efficient method for computing
the DASC descriptor. To compute all weighted sums in (7)
for (s;,t:,) efficiently, we employ a constant-time edge-
aware filter (EAF), e.g., the guided filter (GF) . However,
the symmetric weight w; ssw; ¢ varies for each [, and thus
computing the numerator in (7) is still very time-consuming.

To alleviate these limitations, we simplify (7) by consid-
ering only the weight w, s from the source patch F, so
that a fast computation of (7) using fast edge-aware filter is
feasible. It should be noted that such an asymmetric weight
approximation also has been used in cost aggregation for
stereo matching [56]. We also found that in our descriptor,
a performance gap between using the asymmetric weight
ws,s and the symmetric weight ws ow; is negligible,
which will be shown in Sec. For efficient descrip-
tion, we also re-arrange the sampling pattern (s;;,t;;) to

referenced-biased pairs (i,7) = (4,7 + t;; — si,1). (7) is then
approximated as follows:

i > wii(fi = Gi)(fir = Giy)

(i, j) = = . )

\/; wiir (fir = gi)z\/i%; wi it (i = Gij)*



Algorithm 1: Dense Adaptive Self-Correlation (DASC)

Input : image f;, candidate sampling patterns A;, training patch
pairs dataset P.

Output : the DASC descriptor volume Dgas¢,

/* Offline Procedure *

1: Compute rj, using (4) for possible candidate sampling patterns
A; on training support window pairs P.

2 : Learn a weight v by optimizing @

3 : Select the maximal L92%¢ sampling patterns (84,1, t4,1) in terms
of ||, denoted as Agasc.

/* Online Procedure */
: Compute G; = 3,/ w; ;+ f;s for all pixel i.
: Compute G;2 = >, w; i f2.
for I =1:L%°do
Re-arrange (s; ;,t;,) € A?a“ as (i,7) = (4,0 +t;,; — s;i1)-
Compute Giij = >/ v wyir fir [0
Compute G; ; = Zi’,j’ w; it fir-
Compute G; ;2 =32,/ & wi,i/f]%-
Estimate ¥(4,4’) and C(i, ) using @) and ,

SN

= O WO

patterns such that d?j‘sc =C(s4,1,ti,1)-
end for

where G; = ., w; i fr. Furthermore, G; ; = Z%j, wi it fir
which means weighted average of f;; € F; with a guidance
image fir € F;. It is worth noting that the robustness of
U(s,t) can be still applied to ¥(3, j) since their difference is
just weight factors.

We then decompose numerator and denominator in (9)
after some arithmetic derivations such that

Giij — Gi-Gij
VG =G \[Gi - G2y

where G2 = Y, wiif7, Giij >y wii fi fir, and
Gij2 = 2ujo Wi,i’sz’- While the G; and G;2 can be com-
puted on image domain once, G; ;;, G; ;, and G, ;> should
be computed on each offset. However, the weight w; ;s is
fixed for all offsets, thus it can be shared in all offsets.
All these components can be efficiently computed using
a constant-time edge-aware filter (EAF) [20]. Finally, the
dense descriptor D&¢ is computed with re-indexing as
d?"?sc = C(si,1,ti,;) though the robust function in @i Fig.
[6] describes our efficient method for computing the DASC
descriptor. Algorithm 1 summarizes the efficient computa-
tion of the DASC descriptor.

4.3.1 Comparison of symmetric and asymmetric version of
adaptive self-correlation measure

This section analyzes the performance of the DASC descrip-
tor when using the symmetric weight ws ow; 1 of U(s,t) in
and with the asymmetric weight w; ; of ¥ (¢, j) in égb The
symmetric weight case in the DASC can also be computed
similar to Sec. After re-arranging the sampling pattern
as (i,5) = (i,i+ tiy — 5i,1), the (7) can be then decomposed
as similar in

V(i j) =

(10)

Gijij — Gija — Gij5 +Gi - G

N

— 2 ¢2 —
where Giji; = >y wivw; i fi 77, G = Y i jr wiorwj o fir,
and G;j j = >, ;s wi,iwj i fj. The denominator can be eas-
ily computed on overall image once. However, compared to
the asymmetric measure in (9), w; #wj ;o in Gij 5, Giji, and

(11)
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Fig. 7. Efficient computation framework of the geometry-invariant DASC
(GI-DASC) descriptor. To leverage the efficient computation scheme
of the DASC, we employ a superpixel-based description with inferred
geometric fields on each superpixel using the WMSD detection.

Gij,; varies for each [. Furthermore, it should be computed
with a range distance using 6-D vector (or 2-D vector),
when an input is a color image (or an intensity image). It
significantly increases a computational burden needed for
employing constant-time EAFs [20], [57]. A performance
gap between using the symmetric measure W(s,t) and
the asymmetric measure ¥ (i, j) in the DASC descriptor is
negligible, which will be shown in Sec.

4.4 Computational Complexity Analysis

The computational complexity of the DASC descriptor on
the brute-force implementation becomes O(INL), where I,
N, and L represent an image size, a patch size, and a de-
scriptor dimension, respectively. With our efficient compu-
tation model, our approach removes the complexity depen-
dency on the patch size N, i.e., O(IL) due to fast constant-
time EAF. Furthermore, since there exist repeqted offsets,
the complexity is further reduced as O(IL) for L < L.

5 GEOMETRY-INVARIANT DASC DESCRIPTOR

Similar to the DAISY [12], the DASC descriptor is not ap-
propriate to deal with geometric variations. In this section,
we propose the geometry-invariant DASC descriptor, called
GI-DASC, that addresses severe geometric variations as well
as image modality variations. A key idea is to geometrically
transform sampling patterns used to measure the patch sim-
ilarity according to scale and rotation fields when comput-
ing the DASC descriptor. To estimate the scale and rotation
fields, we first infer initial geometric fields only for sparse
points. These initial fields are then fitted and propagated
through a superpixel graph. Finally, the GI-DASC descriptor
is efficiently computed with geometrically transformed sam-
pling patterns in a manner similar to computing the DASC
descriptor, except the fact that the descriptor computation is
done for each superpixel independently.

Adopting the superpixel-based geometry field inference
has the following three reasons. First, the reliable geometry
field can be estimated reliably only at distinctive pixels.
Second, the geometric fields tend to vary smoothly, except
object boundaries. Third, the transformed sampling patterns
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Fig. 8. Demonstration of sampling patterns (s; ;,t:;) € A;”de for the
WMSD detector and the index set for the o most smallest value I19. It
enables us to extract reliable feature points ¢« € Z’ with corresponding
geometric fields (scale p; and rotation ;).

should be fixed for each superpixel so that the computa-
tional scheme based on the fast EAF [20] can be used for
efficiently obtaining the GI-DASC for each superpixel. Fig.
[7]represents the overview of the GI-DASC.

5.1 |Initial Sparse Geometric Field Inference

Conventional feature detectors, e.g., SIFT [26], are very
sensitive to multi-modal and multi-spectral deformation. In
order to extract sparse features with distinctive geometric
information available, we employ maximal self-dissimilarity
(MSD) thanks to its robustness for modality deformation
[58]. We propose weighted MSD (WMSD) that improves the
performance of the MSD in terms of both complexity and
robustness by employing an weighted similarity measure
and an efficient computation scheme similar to the DASC.

Similar to I'; used in the DASC, the log-polar circular
point set I'™5¢ js defined for feature detector. The sampling
pattern A4 is then defined in such a way that the source
patch is always located at center pixel and the target patches
are located at other neighboring points as shown in Fig.
a). In order to consider the scale deformation, we build
the Gaussian image pyramid ub = fixopfork=1,..., Ny,
where g, is the k-th Gaussian kernel with a sigma pj, and NV,
is the number of pyramids. After re-arranging the sampling
pattern as (¢,7) = (4,4 + t;; — s;1), The self-dissimilarity
measure O (i, 1) for [ = 1,..., L¥™md (= Nymsd 5 Ngmsd) g
computed using weighted sum of squared difference (SSD)
with a guidance image u’ such that

@k(i, )= le Wi (uf, — u;?,)
1,7 ’
= UL + UL — 22U

4,45

2
(12)

w}tlere uk =3, wzi/ (kuf,)2, Z/{sz = Y Wi (“§/)2, and
Uiy = 2 jrwiivuguf. Similar to the DASC, can be
computed efficiently using constant time EAF [20], [57].

We extract the index set II? for the o most smallest
value \Ilzvlde’k for all [, i.e., o nearest neighbors for center
patch in’ Fig. Bib). It should be noted that parameter o
trades distinctiveness and computational efficiency [58]. We
then compute feature response map Q¥ by estimating the
summation of ®*(i,1) for [ € TI¢ such that

QF = ZZEH? O (i,1). (13)

Algorithm 2: Weighted Maximal Self-Dissimilarity (WMSD)

Input : image f;, feature detection sampling patterns A<t
Output : feature points ¢ € 7’ with scale p;, rotation 6;.

for k=1: N, do

1: Compute uf = f; * op with the Gaussian kernel g.
2: Compute U;" =Y, w; i (uk)? for all pixel 4.

for | =1: Lymsq do
3: Compute Z/{f,j2 = Zi,,j/ wi7i/(u§,)2 forj =i+t;; — s
4: Compute Z/{Z-]fij =3 wi’i/uf,u;?',.

. ; k(i 1) — 1k k k

5: Estimate ®%(¢,1) = U} +Mi,j2 — 22U

end for
6: Extract the index set II? among ®* (4, 1) for all .
7: Build response map as QF = >, 0 ®%(4,1).

end for '

8 : Detect feature points i € Z’ from Q = {QF} with scale factor p;.
9 : Compute the orientation 6; for ¢ from lp;s (¢, 0).

For feature response maps ; = {QF}, the local max-
ima are obtained by the non maximal suppression, which
compares Q¥ to its 8 neighbors on the current scale and 18
neighbors on the (k + 1)!" and (k — 1)* scales. Similar to
SIFT [26], a feature point i € Z" is detected only if {Q2F} has
an extreme value compared to all of these neighbors, and its
scale p; is defined with py, where Z' C 7 is a sparse discrete
image domain.

A canonical orientation is further associated to i € Z'
by constructing a histogram with angles £ (¢;; — s;;) for
| € TI? weighted by ®*(i,1) as

Inist (i,0) = Zleng F(i,1) - 6(L (tig — sig) — 0),  (14)

where 0 is the Kronecker delta function. Then, we simply
choose the direction corresponding to the highest bin in the
histogram, i.e., 0; = argmaxylyis; (7, 8). The WMSD detector
is summarized in Algorithm 2.

5.2 Superpixel Graph-Based Propagation

In order to infer dense geometric fields from sparse geo-
metric fields (p; and 0; for i € Z’), we decompose the
image f as superpixel S = {S,,|U,, Sm = ZandVm #
n, Sp (N Sn # 9, m € 1,..., N, }, where N, is the number
of superpixels. The geometric field G¥;” and G;? are fitted
on each superpixel S,, as the average of sparse geometric
fields p; and 6; for i € {Z'( Sy }. Note that this fitting
operation is performed only when {Z'(\S,,} exists, ie.,
the superpixel includes sparse feature points (at least, 1).
Finally, the G** = J,,G%? € RVm and G*? =, G0 are
constructed for all superpixels.

Similar to [59], our approach then formulates an infer-
ence of dense geometric fields G” and G? as a constrained
optimization problem where surface-fitted sparse geometric
fields G** and G*¥ are interpreted as soft constraints. For
the sake of simplicity, we omit p and 6 since they can be
computed using the same method. The energy function of
our superpixel-based propagation is defined as follows:

SR (Gm —GL) i D WP (G — Gn)?p, (15)

m nENm,

where (1 is a regularization parameter. Here, the first term
encodes the dissimilarity between final geometric fields G,

and initial sparse geometric fields G},. pP is an index
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Fig. 9. Examples of a superpixel graph-based propagation. With each
superpixel graph in (c), (d) for input images in (a), (b), sparse geometric
fields (scale G**, rotation G*?) in (e)-(h) are propagated into dense
geometric fields (scale G*, rotation G?) in (i)-(l).

function, which is 1 for valid (constraint) superpixel, and
0 otherwise. The second term imposes the constraint that
two adjacent superpixels m and n € N,, may have similar
geometric fields according to surperpixel feature affinity
w;P , which will be described in the following section.

mn/’

5.2.1 Superpixel feature affinity

Our approach employs a superpixel feature composed of an
appearance and a spatial feature. First, appearance feature
vy, is defined as the average and standard deviation for
intensities of pixels within superpixels. In experiments, we
used RGB, Lab, and YCbCr space for a color image, thus
v¢, € R, For an NIR image, appearance feature is defined
on 1-channel intensity domain such that v, € R% Note
that directly constructing an affinity matrix with intensity
values may lead to inaccurate results due to intensity
variations. However, the effect on such variations can be
greatly reduced, since the appearance feature is defined as
an aggregated form within a superpixel and the affinity
value is measured within the same image domain. Second,
spatial feature vf, € R? is defined as a spatial centroid
coordinate within superpixels. Based on these superpixel
features, a superpixel feature affinity w;P between two
adjacent superpixel m and n € N, is computed as

112 2
Win = exp(=vg, = vpll"/Ae = v — 017/ Ap),

(16)

where . and ), denote coefficients for controlling the
spatial coherence of neighboring superpixels.

5.2.2 Solver

The minimum of the energy function can be obtained
with the following linear system
(P+pU - uW)G =PG”, (17)
where P, = diag[psp s DN L U = diaglui®, ...
where uzl =37\ w and W =
This linear system with a Laplacian matrix can be easily
solved with conventional linear solvers [60]. Fig. |§| shows
examples of our superpixel graph-based propagation.

uy,)

mn/ [ mn}mn 1,...,Np+

Algorithm 3: Geometric-Invariant DASC (GI-DASC)

Input : image f;, feature detection sampling patterns AJet, Ldasc
sampling patterns (s; ;,t;,;) € Adasc, A
Output : the GI-DASC descriptor volume ngl_dasc.

1 : Extract feature points ¢ € Z’ with scale p; and rotation 6; using
Algorithm 2.

2 : Decompose the image f; into superpixels S.

3 : Compute a surface fitting for geometric field G;P and Gj,;g on
superpixels Sp,.

4 : Compute a Laplacian matrix P + pU — W with confidences
prh and weights wyby, .

5 : Compute dense geometric fields G, and G9,.
for m=1: N,, do )

6: Transform the sampling pattern Adasc into Agi—dase

7 Compute the GI-DASC descriptor dflfdasc = C(s4,,t:,) for

i € S and (Syn1,tm,1) € Agi—dase using Algorithm 1.
end for

NG

G

(a) Superpixel extended subimage ~ (b) Sampling pattern A9

Fig. 10. Sampling pattern transformation in the GI-DASC descriptor. The
sampllng patterns (s; ;,t;,;) € Adasc is transformed as (sm,1,tm,1) €

AZ~935¢ with G2, and G‘9 on superp|xel Sm,, Which is applied equally
forall i € Sp,. It provides the geometric robustness on each superpixel.

5.3 Efficient Dense Descriptor on Superpixels

The sampling patterns are transformed with corresponding
geometric fields G” and GY as shown in Fig. Specif-
ically, for the m-th superpixel S,,, the sampling pattern
(Smtstmy) € A=d25¢ is transformed from (s;,#;) € Adase
with a scale factor G#, and a rotation factor GY ,

Sm,l = SmRmslv (18)

where the scale matrix S,, = diag[Gp ] and the rotation
matrix R, is defined with rotation GY,. In a similar way,
tm,1 is also estimated from ¢;. Finally, A,g,lI dasc j5 estimated.
Furthermore, the patch size N is enlarged as NG7,.

The m-th superpixel extended subimage C,,, in Fig. a)
is filtered by a Gaussian filtering with the sigma {(G#,)
0.25}71/2 similar to scale-space theory used in the SIFT
[26]. Then, our GI-DASC descriptor D&~ 9% — Uldgl dasc
for | = 1,..., L#i~dasc (= [dasey is encoded with a set of
patch similarity between two patches from a transformed
sampling pattern A8~425¢ on each superpixel S, such that

A8 = Clsiatig),  (sigstin) € B (19)

for i € S,,. Finally, the dense GI-DASC descriptor is effi-
ciently computed for all the superpixels S,,, € S. Algorithm
3 summarizes how to compute the GI-DASC descriptor.

6 EXPERIMENTAL RESULTS AND DISCUSSIONS
6.1 Experimental Environments

In experiments, the DASC descriptor was implemented
with the following same parameter settings for all datasets:
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Fig. 11. Average bad-pixel error rate on Middlebury benchmark [23]
of DASC+LRP descriptor with WTA optimization as varying support
window size M, descriptor dimension L, patch size N, and log-polar
circular point N. (= N, x Np). In each experiment, all other parameters
are fixed as initial values in Sec.[6.1]

1X6 2X12 3X18 4X24 5X30 6X36 7X42 8X48
log—polar circular point Nc

{o¢, ey N, M, L925¢} = {0.5,0.03,5 x 5, 31 x 31, 128} where
M is the support window size, and {N,, Ny} = {4,36}
for candidate sampling patterns. We set the smooth-
ness parameter ¢ = 0.03% in the GF [20]. For the GI-
DASC, the following parameters were used for all datasets:
{Nymsd ) Ngmsd Ny, 0, Ae, A} = {3,12,4,10,0.1,30}. The
number of superpixels is set to about 500. We implemented
the DASC and GI-DASC descriptor in C++ on Intel Core
i7-3770 CPU at 3.40 GHz.

The DASC descriptor was evaluated with other state-of-
the-art descriptors, e.g., SIFT [26], DAISY [12], BRIEF [27],
and LSS [17], and other area-based approaches, e.g., ANCC
[40], MI+SIFTF_-I [38], and RSNCC [8]. We also compared the
DASC using a randomized pooling (DASC+RP) with the
DASC using a learned randomized pooling (DASC+LRP).
Furthermore, the state-of-the-art geometry robust methods
such as SID [46], SegSID [46], SegSF [47], GPM [44], DSP
[14], and SSF [43] were also compared to the GI-DASC
descriptor. For learning the DASC, we built training sets
P from benchmark databases used in each experiment, and
these training sets were excluded from experiments.

6.2 Parameter and Component Analysis
6.2.1 Parameter sensitivity analysis

Fig. [11] intensively analyzed the performance of the DASC
descriptor as varying associated parameters, including sup-
port window size M, descriptor dimension LI35¢, patch size
N, and the number of log-point circular point N.. To evalu-
ate the quantitative performance, we measured an average
bad-pixel error rate on Middlebury benchmark [23]. The
larger the support window size M, the matching quality is
improved but the accuracy gain is saturated around 31 x 31.

1. For a fair evaluation, we compared only the similarity measure in
[38]] without further techniques.
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Fig. 12. Average bad-pixel error rate for original LSS [17], LSS without
max-pooling, LSS with ASC, LSS using randomized-pooling with fixed
center pixel, and the DASC descriptor on Middlebury benchmark [23].
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Fig. 13. Average bad-pixel error rate for the DASC descriptor as varying
EAF including Box, Gaussian, Bilateral [61], FastBilateral [53], Domain
Transform [54], FastGF [62], and GF |20] on Middlebury benchmark [23].

(b) Exposure variation

Using a larger descriptor dimension L% yields a better
performance since the descriptor encodes more information.
Considering the trade-off between efficiency and robust-
ness, L98%¢ = 128 is set in experiments. When the patch
size N increases, the matching quality is degraded since a
series of similarity values measured with large patches may
lose locally discriminative details. The number of log-polar
circular point N, does not affect the performance much,
since optimal patterns can be sampled even from small ..

6.2.2 Component-wise performance gain analysis

The DASC is originally motivated by the LSS concept from
[17]. The DASC consists of three key ingredients: adap-
tive self-correlation (ASC), randomized pooling (RP), and
learning sampling pattern. In this context, we analyzed an
accuracy gain of the DASC over the LSS on the Middlebury
benchmark as shown in Fig. Note that all experiments
were done using LSS without max pooling, ‘LSS(wo/max)’.
The original LSS method [17] uses the SSD for measuring
the patch similarity. We replaced the patch similarity of
the LSS method with the ASC, named ‘LSS(ASC)’, and
then measured its matching accuracy. As expected, the ASC
improves the performance compared to the SSD used in the
original LSS. We also evaluated the LSS using a randomized
pooling with fixed center pixel, ‘LSS(ASC+RPF)’, and the
LSS using a learned randomized pooling with fixed center
pixel, ‘LSS(ASC+LRPF)". Unlike center-biased poolings, the
DASC chooses sampling patterns randomly (‘DASC+RP’),
improving the performance. Using learned sampling pat-
terns (‘DASC+LRP’) also leads to a performance gain.

6.2.3 Edge-aware filtering analysis

In Fig. we analyzed the performance of the DASC
descriptor when different EAF is employed for comput-
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Fig. 18. Comparison of disparity estimation for Dolls and Books image pairs under illumination combination ‘1/3’ and exposure combination ‘0/2’,
respectively. Compared to other approaches, our DASC descriptor estimates accurate and edge-preserved disparity maps while reducing artifacts.
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Fig. 19. Comparison of dense correspondence for (from top to bottom) RGB-NIR images and flash-noflash images. The results consist of warped
color images and correspondence flow fields overlaid with reference images. Compared to other conventional approaches, our DASC+LRP
descriptor estimates reliable dense correspondence fields for challenging multi-modal and multi-spectral image pairs.
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TABLE 1 case, there exists a performance limitation. In contrast, all
Evaluation of computational time. The brute-force and efficient EAF methods show a satisfactory perforrnance, including
4 compfjtatlon of the DASC is denoted as fand 1, respectively. the bilateral filter [61], the fast bilateral filter [57], the
image size _ SIFT DAISY IS5 DASCt DASCY domain transform [54], the fast GF [62], and GF [69]. In
463 x 370 130.3s 2.5s 31s 128s 1.3s experiments, we utilized the GF ‘
800 x 600 252s 3.8s 59s 256s 2.1s

6.2.4 WMSD feature detector analysis
ing w; ;7. When using a simple, unweighted ‘Box” filtering In Fig. and Fig. we analyzed the feature detec-
(wi,iv = 1), the patch similarity (7) becomes a normalized tion performance of the WMSD detector with a repeatabil-
cross-correlation (NCC). In the Box and Gaussian filtering ity [64] and recognition rate measure in Mikolajczyk
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Fig. 20. Comparison of dense correspondence for (from top to bottom) different exposure images and blurred-sharpen images. The results consist of
warped color images and correspondence flow fields overlaid with reference images. Compared to other conventional approaches, our DASC+LRP
descriptor estimates reliable dense correspondence fields for challenging multi-modal and multi-spectral image pairs.

(a) Image pairs

dataset [70]. Compared to conventional feature detection
approaches [26], [58], [63], [64], the WMSD detector extracts
reliable and distinctive points with a high repeatability
thanks to its robustness for modality variations including
blur artifacts and illumination changes. Furthermore, com-
pared to conventional gradient-based [26]), or intensity-
based rotation estimations [66], [67], our WMSD-based rota-
tion estimation combined with the DASC descriptor shows
the best performance with a high recognition rate.

6.2.5 Symmetric and asymmetric measure analysis

As shown in Fig. |16} a performance gap between using the
asymmetric measure ¥ (4, ) in (9) and the symmetric mea-
sure U(i, j) in (7) is negligible, while using the asymmetric
measure is much faster.

6.2.6 Runtime analysis

In Table [T} we compared the computational speed of DASC
descriptor with state-of-the-art local descriptors, SIFT [26],
DAISY [12], and LSS [17]. The DASC provides state-of-the-
art computational speed. It should be noted that through
recent more efficient edge-aware filters [62], the runtime of
DASC can be further reduced.

(d) DAISY

(e) SIFT (f) LSS () DASC+RP  (h) DASC+LRP

6.3 Middlebury Stereo Benchmark

We evaluated our DASC+LRP descriptor compared to other
approaches in Middlebury stereo benchmark containing
illumination and exposure variations [23]. In experiments,
the illumination (or exposure) combination ‘1/3” indicates
that two images were captured under 1°¢ and 3"¢ illumina-
tion (exposure) conditions, respectively [23]. Fig. [17] shows
average bad matching errors in un-occluded areas of depth
maps obtained under illumination or exposure variations
with the graph-cut (GC) and winner-takes-all (WTA)
optimization. Fig. [18 shows disparity maps for severe il-
lumination variations obtained by varying cost functions
with the WTA optimization. Our DASC+LRP descriptor
achieves the best results both quantitatively and qualita-
tively. Area-based approaches, e.g.,, MI+SIFT , ANCC
[40], and RSNCC [8], are very sensitive to severe radiometric
variations, especially when local variations frequently occur.
Contrarily, descriptor-based approaches perform better than
the area-based approaches. Interestingly, the BRIEF is
better than other gradient-based descriptors (SIFT and
DAISY [12])) thanks to an ordering robustness.
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Fig. 14. Evaluation of the WMSD detection compared to conventional
feature detections, such as SIFT [26], MSER |63|, FAST [64], and MSD
|58]. The WMSD provides reliable feature detection performance, thus
providing reliable hypothesis for initial sparse geometric fields.
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Fig. 15. Evaluation of the WMSD detection compared to conventional
rotation estimations. Compared to conventional gradient-based rotation
estimation (SIFT [26] and SURF [65]) or intensity-based rotation estima-
tion (BRISK |66] and ORB [67]), our WMSD-based rotation estimation
(with the DASC descriptor) shows the best performance.

6.4 Multi-modal and Multi-spectral Benchmark

Next, we evaluated our DASC+LRP descriptor with images
under modality variations, e.g., RGB-NIR [1], [8], different
exposure [7]], [8], flash-noflash [7], and blurred artifacts [5],
[6]. As varying descriptors and similarity measures, we use
the WTA and SIFT flow optimization using the hierarchical
dual-layer belief propagation (BP) [13], whose code is pub-
licly available. Unlike the Middlebury stereo benchmark,
these datasets have no ground truth correspondence maps,
and thus we manually obtained ground truth displacement
vectors for 100 corner points for all images, and used them
for an objective evaluation similar to [8].

Area-based approaches, e.g., MI+SIFT [38], ANCC [40],
and RSNCC [8], are very sensitive to local variations.
As already described in literatures [8], gradient-based ap-
proaches, e.g., SIFT [26] and DAISY [12], have shown limited
performance in RGB-NIR pairs where the gradient reversal
and inversion frequently appear. The BRIEF [27] cannot deal
with noisy and modality varying regions since it considers
a pixel difference only. It should be noted that some efforts
have been made to estimate reliable flow maps in the motion
bluz, e.g., blur-flow [71], but they typically employ an itera-
tive matching framework, which relies heavily on an initial
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(c) Nlumination variation

Fig. 17. Average bad-pixel error rate on Middlebury benchmark with illu-
mination variations and exposure variations. The GC (first row) and WTA
(second row) were used for optimization, respectively. Our DASC+LRP
shows the best performance with the lowest error rate.

(d) Exposure variation

estimate. Additionally, they do not scale well to general pur-
pose matching scenarios. Unlike these approaches, the LSS
[17] and our descriptor consider the local self-similarities,
but the LSS still lacks a discriminative power for dense
matching. Our DASC+RP descriptor leveraging patch-wise
pooling with adaptive self-correlation provides satisfactory
results under modality variations. By employing the optimal
sampling pattern via discriminative learning (DASC+LRP),
the matching accuracy was further improved. Fig. [19| and
Fig. 20| show qualitative evaluation, clearly demonstrating
the outstanding performance of our descriptor. Table ]2
shows an objective evaluation of DASC+LRP descriptor and
other state-of-the-art methods on these datasets.

6.5 DIML Multi-modal Benchmark

Since there have been no database with both photometric
and geometric variations, we built the DIML multi-modal
benchmark [25]. All databases were taken by SONY Cyber-
Shot DSC-RX100 camera in a darkroom with the lighting
booth GretagMacbeth SpectraLight III. In terms of geomet-
ric deformations, we captured 10 geometry image sets by
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TABLE 2
Comparison of quantitative evaluation on multi-spectral and multi-modal images.

WTA optimization

SF optimization [13]]

RGB- flash- diff. blur- Average RGB- flash- diff. - blur- Average
NIR noflash expo. sharp g NIR noflash expo. sharp &
25.13 27.12 28.23 24.21 27.12 17.21 13.24 14.16 20.14 16.87
23.21 20.42 25.19 26.14 23.74 18.45 14.14 11.96 19.24 15.94
27.51 25.12 18.21 2791 24.68 13.41 15.87 9.15 18.21 14.16
24.11 18.72 19.42 27.18 22.36 18.51 11.06 14.87 20.78 16.35
27.61 26.30 20.72 27.41 25.51 20.42 10.84 12.71 2291 16.72
29.14 18.29 17.13 26.43 22.75 17.54 9.21 9.54 19.72 14.05
27.82 19.18 18.21 26.14 22.84 16.14 11.88 9.11 18.51 13.91
DASC+RP 18.21 14.28 12.12 17.11 12.18 1543 7.51 7.32 12.21 9.68
DASC+LRP

Fig. 21. Examples of DIML multi-modal benchmark. It consists of images
taken under 10 different geometric conditions such as viewpoint, scale,
rotation, and scale-rotation with ground truth annotation.
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Fig. 22. Examples of DIML multi-modal benchmark. Each geometry

image sets in Fig. 21| consists of 5 different photometric variations such
as illumination, exposure, flash-noflash, blur, and noise.
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combining geometric variations of viewpoint, scale, and
rotation as shown in Fig. and each image set consists
of images taken under 5 different photometric variation
pairs including illumination, exposure, flash-noflash, blur,
and noise as shown in Fig. @ Therefore, the DIML multi-
modal benchmark consists of 100 images with the size of
1200 x 800. Furthermore, by following [13], we manually
built ground truth object annotation maps to evaluate the
performance quantitatively, and computed the label transfer
accuracy (LTA) AX™ such that

1
ALTA ? Ziez 1(62' #a;,a; > 0)

where the ground-truth annotation is a;, estimated annota-
tionis e;, and 7, = >, .7 1(a; > 0) is the number of labeled
pixels. This metric has been widely used in wide-baseline
matching tasks . Though AU does not measure a
matching performance in a pixel precision, it was shown
in that this metric is an excellent alternative enough to
evaluate the performance of descriptors in case that there
are no ground truth correspondence maps available.

For an image from the reference geometry image set (the
first image in Fig. 21), we estimated visual correspondence
maps with images from other geometry image set, and
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(g) DASC (h) GI-DASC

Fig. 23. Comparison of quantitative evaluation on DIML benchmark [25].
Each result represents the LTA for geometric (x-axis) and photometric
(y-axis) variations, respectively. The DASC outperforms conventional
descriptors such as DAISY and LSS [17]. Interestingly, its accuracy
is also higher than those of state-of-the-art geometry-invariant methods

including SegSIFT [47], SegSID [47], DSP [14], and SSF [43]. The
GI-DASC shows the best performance under varying photometric and
geometric conditions.

then computed the LTA. Furthermore, visual correspon-
dence maps were estimated for each photometric pair. Here,
matching results at occluded pixels should be excluded in
the evaluation as they have no corresponding pixels. We
hence warped an image taken from near into an image taken
at a distance, when computing the LTA. The experimental
setup for DIML multi-modal benchmark was given in detail
at our project page [25].

We compared our two descriptors, DASC and GI-DASC,
with conventional descriptors such as SIFT [26], DAISY [12],
BRIEF [27], and LSS [17], and state-of-the-arts geometry-
invariant approaches such as SID [46], SegSIFT [47], SegSID
[47], GPM [44], DSP [14], and SSF [43]. For the sake of sim-
plicity, we omit ‘LRP” in the DASC-LRP and GI-DASC-LRP.
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Fig. 24. Comparison of qualitative evaluation on DIML multi-modal benchmark. The results consist of warped color images and warped ground
truth annotations. Compared to other conventional descriptors and geometry-invariant approaches, our DASC descriptor estimates reliable dense
correspondence fields for image pairs across varying geometric and photometric conditions.
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Fig. 25. Average error rates on DIML multi-modal benchmark.

Fig. 23] shows the LTA error rates as varying photometric
and geometric deformations. Fig.|[24{shows qualitative eval-
uation results. As expected, feature descriptors such as SIFT
[26], DAISY [12], BRIEF [27], and LSS [17], though using
a powerful global optimization, i.e., hierarchical dual-layer
BP [13], exhibit limitations on severe geometric variations,
while they provide robustness to some extent for photomet-
ric variations. Our DASC descriptor in Fig. 23[k) shows a
better performance than other descriptors, but it also shows
the limitation for severe geometric variations. The GPM
had very low performance in terms of flow estimation
although it provides plausible warping results. The SID
have been proposed to provide geometric robustness, but it
is unable to address photometric variations. Segmentation-
aware description [47] could improve the matching accuracy
of SIFT and SID for geometric variations, but it also has
limitation since it also reduces a discriminative power of
descriptor itself as shown in Fig. 23(g) and (h). The DSP
provides limited performances, since it just uses the
SIFT with a fixed scale and rotation. The SSF estimates
visual correspondence by repeatedly applying the SIFT on
the scale-space while enduring a huge computational com-
plexity, but it still has limitations in terms of computational
complexity. Contrarily, the GI-DASC descriptor optimized
by hierarchical dual-layer BP provides the robustness
for both photometric and geometric deformations as shown
in Fig. 23(1). Fig. 26| shows the average error rates on DIML
multi-modal benchmark.

TABLE 3
Comparison of average EPE on the MPI SINTEL [10].
Clean Pass Final Pass
all unmatched all unmatched
Classic-NL IE][ 7.940 39.821 9.439 43.123
LDOF l\ 7.180 38.124 8.422 42.892
LDOF+BRIEF [27] 6.281 37.841 7.741 41.875
LDOF+LSS [17] 6.182 37.514 7.152 40.332
LDOF+DASC

—

() SSF

-/ /)

(d) GI-DASC
Fig. 26. Limitations for images under severe geometric variations.

(a) image 1 (b) image 2

6.6 MPI Optical Flow Benchmark

Optical flow methods typically assume only a small dis-
placement between consecutive frames. Several approaches
have been proposed to estimate a large displacement flow
vector [72]. However, motion blur and illumination varia-
tion can degenerate the performance of these approaches.
In order to handle such challenging issues simultaneously,
we applied the DASC to the large displacement optical
flow (LDOF) approach [72]. It was evaluated on the MPI
SINTEL database containing large non-rigid motion as
well as specular reflections, motion blur, and defocus blur.
The dataset consists of two kind of rendering frames, named
clean and final pass, and each set contains 12 sequences
with over 500 frames in total [10]. Table [3| shows average
end-point error (EPE) results on MPI SINTEL. The DASC
achieves a higher gain, compared to other descriptors.

6.7 Limitations

Similar to [21]], [42], [43], our GI-DASC approximately deter-
mines a relative scale using successive Gaussian smoothing,
which might work in only a limited range of scale variation
as in Fig. 6] By leveraging an octave structure based on
sub-sampling [26], a wider range of scale may be covered.



7 CONCLUSION

The robust novel dense descriptor called the DASC has
been proposed for dense multi-spectral and multi-modal
correspondences. It leverages an adaptive self-correlation
measure and a randomized receptive field pooling learned
by linear discriminative learning. Moreover, by making use
of fast edge-aware filters, our DASC descriptor is capable of
computing the dense descriptor very efficiently. In order to
address geometric variations, the GI-DASC descriptor also
has been proposed by leveraging the efficiency and effec-
tiveness of the DASC through a superpixel-based represen-
tation. The DASC and GI-DASC descriptor demonstrated
its robustness in establishing dense correspondence between
challenging image pairs taken under different modality con-
ditions, e.g., RGB-NIR, different illumination and exposure,
flash-noflash, blurring artifacts. We believe our method will
serve as an essential tool for several applications using
multi-modal and multi-spectral images.
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