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Learn on Source, Refine on Target:
A Model Transfer Learning Framework with

Random Forests
Noam Segev, Maayan Harel, Shie Mannor, Koby Crammer and Ran El-Yaniv

Abstract—We propose novel model transfer-learning methods that refine a decision forest model M learned within a “source” domain
using a training set sampled from a “target” domain, assumed to be a variation of the source. We present two random forest transfer
algorithms. The first algorithm searches greedily for locally optimal modifications of each tree structure by trying to locally expand or
reduce the tree around individual nodes. The second algorithm does not modify structure, but only the parameter (thresholds)
associated with decision nodes. We also propose to combine both methods by considering an ensemble that contains the union of the
two forests. The proposed methods exhibit impressive experimental results over a range of problems.

Index Terms—Transfer learning, model transfer, random forest, decision tree
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1 INTRODUCTION

CONSIDER a software company selling a trained pre-
dictive model M to a community of consumers. The

generic classifier M was constructed using a very large
and expensive dataset D. While the generic classifier is
very accurate over the “source” D, each of the individual
consumers needs to apply M in a specific “target” context
D′ with its own idiosyncrasies and noise parameters. The
manufacturer can neither share its dataset D with its con-
sumers nor afford to retrain an individual model for each
of them (based on both D and D′). What would be a good
approach to adapt the model M to each individual context
using a relatively small training set?

In this paper we focus on the setting of model transfer
(MT) whereby the adaptation of a given source model to
a target domain relies on a relatively small training set
from the target. In contrast to general transfer learning
frameworks (such as instance transfer, see Sec. 4.3), in model
transfer no training examples are available from the source
domain during adaption for whatever reason, e.g., stor-
age capacity or data privacy. This limitation makes model
transfer a restrictive and more challenging type of transfer
learning.

There are numerous practical scenarios where model
transfer is essential, whereas the source/target data sharing
required by standard transfer learning methods is imper-
missible. For example, Microsoft’s Kinect performs human
pose recognition using random forests [1], which can be
improved with user-specific training data to accommodate
environmental changes (e.g., lighting and furniture) or me-
chanical ones. One of our experimental settings addresses
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a conceptually similar case. In general, when the model
manufacturer cannot send the data to the model consumer
or the consumer cannot send the data to the manufacturer,
be it due, for example, to memory limitations (at the con-
sumer’s box) or computational/communication constraints
(at/to the manufacturer’s site), model transfer is interesting
as a potentially viable solution. It is certainly conceivable
that model transfer for machine learning will be extremely
widespread in the near future.

Our own motivation to consider model transfer arose
in a collaborative project with a leading cyber fraud detec-
tion company dealing with online bank transactions. The
company created a powerful fraud detection model based
on data collected from a number of banks (the “source”
domain). However, new clients (banks) operate in different
contexts (the “target” domains), where the type of fraud
committed might differ from the generic frauds, due to
variations in transaction protocols, geo-demographics and
other factors. Due to regulations and secrecy requirements,
the company is forbidden to share its dataset with its clients,
and many of the clients were forbidden to share their own
datasets with the company.

While MT isn’t new, no single set of assumptions exist
that define the model transfer setting, and thus existing
model transfer techniques vary in their approaches. How-
ever, model transfer techniques typically resort to regular-
izing the learning of the target domain using the model
learned for the source domain. This can be achieved, e.g.,
by using a biased regularizer [2], [3], [4], [5], or aggregating
multiple source-target predictors [6], [7], [8]. A potential
drawback of this regularization paradigm is its limited
capacity to accommodate local changes between the source
and target distributions, as these techniques typically focus
on optimizing a global regularization.

In contrast, the techniques we developed emphasize
simple model transformations based on local (and greedy)
changes. We propose novel model transfer techniques that
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rely on decision trees (DTs). As non-linear models, DTs
can excel in learning non-linear decision rules, and their
hierarchical structure enables detection and accommoda-
tion of non-linear transformations from source to target.
Our methods are motivated by two frequently occurring
transformations between the source and target domains:
(1) translations (shifts) of the distributions of individual
features, and (2) transformations in which a set of features
needs to be refined or made coarser to fit the target problem.
Each of the two DT techniques we propose is designed to
capture one of these types.

In general, when dealing with DT learning, one has to
carefully guard against overfitting. The two common tech-
niques to regularize DTs are pruning and voting ensembles
[9], [10]. Pruning is a technique to reduce the size of an
existing decision tree by replacing internal nodes in the
tree with leaf nodes. By reducing the tree size, one reduces
the complexity of the classifier and hopefully removes sec-
tions of the tree that were based on a few noisy samples.
However, we utilize voting ensembles, whereby multiple
trees are generated and a forest is built by applying our DT
induction algorithms.

Each of these forests alone can be used for transfer
learning, but we observed that the two methods tend to
excel in different problems. While a judicious use of these
algorithms based on prior knowledge of the problem at
hand may suffice, we propose to create a diverse ensemble
consisting of the union of the models generated by both
methods. The resulting algorithm is capable of modeling
complex, real world, source-to-target transformations, while
performing better than, or almost as well as, its underlying
constituents in most cases. This union algorithm is rela-
tively easy to implement, requires modest hyper-parameter
tuning, can effectively exploit intensive computational re-
sources to handle large-scale problems, and improves state-
of-the-art performance on a range of problems.

After introducing our learning setup in Sec. 2, we present
the two new algorithms in Sec. 3 and provide insights into
the algorithms’ strengths and weaknesses using synthetic
examples. In Sec. 4, we present extensive experiments over
a number of datasets. The results demonstrate the effective-
ness of our method, which often outperforms several state-
of-the-art transfer learning methods. Related work is dis-
cussed in Sec. 6, followed by discussion about the advantage
of our methods can be found in Sec. 5.

2 PRELIMINARY DEFINITIONS

A domain D = (X ,Y, P ) consists of an r-dimensional fea-
ture space X , a label space Y , and a probability distribution
P (x, y), where x ∈ X is the feature vector, and y ∈ Y . In
supervised model transfer learning, we are given two domains:
a source domain, DS = (XS ,YS , PS), and a target domain,
DT = (XT ,YT , PT ). Given a loss function ` : Y × Y → R+,
a source prediction function f : XS → YS and (typically
limited) target training set ST drawn i.i.d. from DT , our
objective is to learn a function f ∈ FT : XT → YT with low
risk R(f) = EPT (x,y){`(f(x), y)} on the target domain.

Different transfer learning models have different restric-
tions on the relationship between the source and the target
domains. Our work focuses on inductive transfer learning,

Algorithm 1: Structure Expansion Reduction (SER)
Input: Node v, labeled samples Sv
Output: Node v
% Expand leaves:
if d(v) = 0 then
v ← Build Tree (Sv)
return v

end if
% Recurse over child nodes:
for vi ∈ {v1, . . . , vn} do

Structure Expansion Reduction (vi, Svi)
end for
% Reduce current node:
if leafError(v, (Sv)) < subtreeError(v, (Sv)) then

for i ∈ d(v) do
deleteNode(vi)

end for
d(v)← 0; y(v)← arg max

y
|{(·, y) ∈ Sv}|

end if
return v

a setting in which one assumes that both source and tar-
get tasks share the same features and label spaces, i.e.,
XS ,XT ⊆ X and Y = YS = YT . Clearly, the marginal distri-
bution of the features may differ between the domains. This
setting is quite common, both in research literature and in
real world applications of transfer learning, but is only one
of a few existing approaches [11]. The presented framework
is suitable for both binary and multi-class classification tasks
where ` is the zero-one loss function.

2.1 Random Forests Models:
Our algorithms are based on standard Random Forests (RFs)
[12]. We use the following notations for a tree in the forest:
Each tree node v has an out-degree d(v) and its children
are denoted v1, . . . , vd(v). A leaf node v is associated with a
single decision value in Y , denoted y(v). An internal (non-
leaf) node v is associated with a single feature φ(v), and
for a numeric feature it is also associated with a numeric
threshold τ(v). Classification of a sample is done based on
the leaf that sample reaches, i.e., the leaf at the end of the
path in the tree the sample will follow, and for each node u
along this path we say that x “arrives” at u.

3 ALGORITHMS

We now describe our two algorithms, SER and STRUT, for
refitting trees to the target domain.

3.1 Structure Expansion/Reduction
The structure expansion/reduction (SER) algorithm pairs

two local transformations of a decision tree structure: ex-
pansion and reduction. In the expansion transformation, we
specialize rules induced over the source data to the target
data. In reduction we perform the opposite operation, i.e.,
generalize rules induced over the source data.

Initially, a random forest is induced using the source
data SS . The SER algorithm begins by calculating for each
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(a) single box prior to
splitting

(b) boxes after splitting

(c) decision trees matching each domain

Fig. 1. Simple box example and resulting decision trees

node v the set STv of all labeled points in the target data ST

that reaches v. Then, each leaf v is expanded to a full tree
with respect to the sample set STv . Finally, for each internal
node v, the algorithm — working bottom-up on the tree —
attempts to perform a structure reduction as follows. Two
types of errors are defined for node v with respect to STv .
The first, the subtree error, is the empirical error of the subtree
whose root is v. The second, the leaf error, is defined to be
the empirical error on v if it were to be pruned into a leaf.
If the leaf error is smaller than the subtree error, the subtree
is pruned into a leaf node. The decision value at each leaf
of the modified DT is obtained using the target (empirical)
distribution.

A pseudo-code of this algorithm is presented in Algo-
rithm 1. Note that the recursive calls are equivalent to depth-
first traversal, with expansion performed whenever a leaf is
reached, followed by a reduction step upon the completion
of all recursive calls to an internal node’s children.

3.1.1 Visual Illustration of the SER Algorithm

The SER algorithm applies two local transformations on a
given decision tree. To gain some intuition about its opera-
tion, we exemplify these transformations. In Figures (1a,1b)
we depict two simple domains (classification problems). The
DTs learned for each domain are illustrated in Figure (1c). A
standard DT induced over (1a) resulting in the LHS tree in
Figure (1c) can be easily transferred to domain (1b) using the
expansion operation (applied by SER), resulting in the RHS
tree of Figure (1c) . Similarly, the tree induced for (1b) can
be transferred to (1a) using the reverse, reduction operation.

It is obvious that a single classifier can describe two
identical domains. Therefore, as one domains drifts, the
changes can be captured via small modifications to the tree
structure. The given example demonstrates this simple and
intuitive observation, showing the high similarity between
tree models. As the concepts drift further apart, iterative
SER transformations can capture the new domain while
maintaining a high degree of correlation between the un-
changed similar sections of the domains.

3.1.2 Logical Regularization in SER
The SER algorithm is especially designed to first consider
expansions and then reductions. In this section we explain
the rationale for this design and argue that it serves as a
kind of regularization that keeps the resulting target model
closer to the source model than it would if reduction were
to precede expansion.

It is well known that a decision tree is equivalent to a
disjunctive normal form (DNF) formula where a single rule
τ , which constitutes a root-to-leaf path, is equivalent to a
conjunction of literals [13]. Let u = u0, . . . , um be a root-to-
leaf path in a tree prior to running the SER algorithm, with
rule τS corresponding to this path. Let u′ = u′0, . . . , u

′
n be a

root-to-leaf path in a tree after running the SER algorithm,
with rule τT corresponding to this path. If the path u′ was
generated from the path u by a SER expansion step, then
ui = u′i for 0 ≤ i ≤ m, and we say that rule τT expands rule
τS . Similarly, if the path u′ was generated from the path u
by a SER reduction step, then ui = u′i for 0 ≤ i ≤ n, and we
say that rule τT reduces rule τS .

Following these definitions, we make two observations
on the relations between τT and τS .

Lemma 3.1. If rule τT expands rule τS , then τT satisfies τS (i.e.,
if x ∈ X satisfies τT then it also satisfies τS).

Proof. Let u = u0, . . . , un be the path corresponding to τT
and u′ = u′0, . . . , u

′
m the path corresponding to τS . Rule τT

is comprised of n literals and rule τS consists of m literals;
each literal corresponds to a single node along a path. As τT
is a conjunction of literals, x ∈ X satisfies τT if and only if
x satisfies all of the n terms in τT . As ui = u′i for 0 ≤ i ≤ m,
the m terms of rule τS are among the n terms in rule τT .
Thus, if x satisfies all of the n terms of τT , it also satisfies
the m terms which appear in both rules, and as x satisfies
all of the m terms in τS , x satisfies τS .

Lemma 3.2. If rule τT reduces rule τS , then τS satisfies τT .

Proof. Similar to Proof 3.1.2, where the n terms in rule τT
are among the m terms in rule τS .

Following Lemma 3.1 and Lemma 3.2, the operation
order of expansion followed by reduction has an interesting
property:

Corollary 3.3. For any rule τT in the transformed tree, there
exists a rule τS in the original tree, such that either τT satisfies
τS or τS satisfies τT .

The property presented in Corollary 3.3 is desirable in
our context where we intend to perform local refinements
and/or generalizations. In contrast, this property is violated
when applying first reduction and then expansion, in which
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Algorithm 2: Structure Transfer (STRUT)
Input: Node v, labeled samples S
Output: Node v
% Prune unreachable subtree:
if (|S| = 0) then

for ( i ∈ d(v) ) do
deleteNode(vi)

end for
d(v)← 0
return v

end if
% Update leaf distribution:
if (d(v) = 0) then
y(v)← arg max

y
|{(·, y) ∈ S}|

return v
end if
% Refit thresholds for numeric features:
if (φ(v) is numeric) then
τ1 ← Threshold Selection(S, φ(v), QL(v), QR(v))
DG1 = DG (S, φ(v), τ1, QL(v), QR(v))
τ2 ← Threshold Selection(S, φ(v), QR(v), QL(v))
DG2 = DG (S, φ(v), τ2, QR(v), QL(v))
if (DG1 ≥ DG2) then
τ(v)← τ1

else
τ(v)← τ2
swap(v1, v2)

end if
end if
% Run STRUT on sons:
for ( i ∈ d(v) ) do

STRUT (vi, Svi)
end for
return v

case the resulting model can drift further away from the
source model.

3.2 Structure Transfer
The structure transfer (STRUT) algorithm is motivated

by the observation that decision trees for similar problems
should exhibit structural similarity. Consider, for example,
the similar problems of detecting online fraud in two big
banks in two different geo-demographic environments (say
one is in the USA and the other is in India). Both problems
can be modeled such that they share many of the features
and their dependencies (e.g., the feature ‘typical customer
transaction size’ should appear in both models). However,
the scale of such features and their associated decision
thresholds are likely to differ between problems.

The STRUT algorithm adapts a DT trained on the source
samples to the target samples by discarding all numeric
threshold values in the tree and working top-down, select-
ing a new threshold τ(v) for a node v with a numeric feature
using STv , the subset of target examples that reach v. If the
algorithm encounters a node v for which STv is empty, v is
considered unreachable in the target domain and is pruned.
The final decision value at each leaf is computed on the
target training data.

A pseudo-code of the STRUT algorithm is presented
in Algorithm 2. Threshold selection, as computed by the
ThresholdSelection procedure, is posed as an optimization
problem described bellow.

Any feature φ and threshold τ split any set of (labeled)
examples, S, into two subsets, denoted SL,τ and SR,τ . The
label distributions over these subsets are denoted QL and
QR, respectively. With respect to each decision node (with
a corresponding feature φ), STRUT’s goal is to optimize a
decision threshold with respect to the target training data.
As an unconstrained optimization is not advisable in cases
where the target training set is small, we require that the
newly optimized threshold for decision node v result in la-
bel distributions Q′L and Q′R that are similar to QL and QR,
the original distributions obtained when training v. To this
end, we define the divergence gain (DG) measure, presented
in Equation (1), that quantifies the similarity of the resulting
distributions obtained for v, with respect to training set
STv , to the original distributions, QL and QR. DG relies
on the (symmetric) Jensen-Shannon divergence given in
Equation (2), where DKL(·) is the familiar Kullback-Leibler
divergence and M is the mean distribution, M = 1

2 (P +Q)
[14]. The choice of the Jensen-Shannon divergence is justi-
fied by its frequent use as an effective statistic for the two-
sample problem.

DG
(
STv , φ(v), τ(v), QL, QR

)
=

1−|SL,τ |
|STv |

JSD(Q′L, QL)− |SR,τ |
|STv |

JSD(Q′R, QR).
(1)

2JSD (P,Q) = DKL (P ||M) +DKL (Q||M) . (2)

To perform threshold selection for feature φ, STRUT uses
DG to quantify distributional similarity and the information
gain (IG) criterion to measure a threshold’s informative
value [15]. For feature φ, STRUT looks for a threshold
yielding high similarity between the induced distributions
and the original distributions calculated during the tree
induction stage. This similarity is restricted to “informative”
thresholds where, for any sufficiently small ε > 0, the IG of
threshold x is larger than the IG of any other x′ in the ε-
neighborhood of x, i.e., thresholds that are local maximums
of IG. Thus, STRUT’s threshold selection can be formulated
as an optimization problem (3).

Maximize
x

DG
(
STv , φ, x,QL, QR

)
s.t. x ∈ R

∀x′ ∈ (x− ε, x+ ε) :
IG
(
STv , φ, x

)
≥ IG

(
STv , φ, x

′) .
(3)

Problem (3) is not convex and we solve it using a
line search on a limited number of possible thresholds.
We note that the space/time complexities incurred by this
optimization are very similar to the space/time complexities
incurred when maximizing the IG value during standard
tree induction. Note also that in order to calculate the DG
value we require node v to retain the distributions QL and
QR that were computed during construction.

It turns out that in some transfer learning problems fea-
tures not only change threshold values but, as the concept
drifts, they may also change their meaning. For example,
in a fraud detection problem the “average transaction size”
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(a) IG value for thresholds

(b) decision tree for source domain

Fig. 2. Simple concept shift example

feature occasionally changes meaning as attackers change
strategies to fool the detector. The STRUT algorithm easily
accommodates such changes between the source and the
target by solving the optimization problem a second time
but with the original distributions, QL and QR, reversed. If
this switch improves the DG value, STRUT swaps the nodes’
subtrees in conjunction with optimizing the threshold.

3.2.1 On the Use of IG and DG
As discussed above, the STRUT algorithm relies on both the
DG and IG measures to optimize the adapted thresholds.
Here we explain the motivation for using this combination
of measures. The IG is effective in quantifying the “infor-
mativeness” of a threshold. However, IG is oblivious to
dependencies enforced by the given structure. In contrast,
DG is a global regularization measure that does not account
for local gains. The following examples show that each of
these measures on its own fails to select an appropriate
threshold.

Consider first the application of IG. Define two simple
domains where the feature space, X , is the range [0, 1],
and our label space is Y = {±1}. The source and target
distributions, Ps and Pt, are taken to be

Ps (x) =

{
1 0.4 < x < 0.7
−1 otherwise;

Pt (x) =

{
1 0.3 < x < 0.6
−1 otherwise.

The induced tree for the source domain is given in
Figure 2b along with a plot of the IG values for different
thresholds in Figure 2a. Using a restricted variant of the
STRUT algorithm on this problem, applied only with the IG
measure, will result in a decision stump with a large error
rate of ∼ 30%. The reason is that the root threshold is set
by the algorithm to 0.6 and the left tree, which is a leaf, will

Fig. 3. Induced decision tree with distributions

just update the returned decision, while the right child will
be pruned, because the samples that arrive at this node will
all belong to a single label.

Next we show a simple concept shift problem where DG
over-regularizes unless it is mitigated by local considera-
tions. We keep the same feature space as in the previous
example (the range [0, 1]) as well as the same label space
(Y = {±1}). However, now the source and target distribu-
tions, Ps and Pt, are

Ps (x) =


1 0 ≤ x < 0.5
−1 0.5 ≤ x < 0.75

1 otherwise;

Pt (x) =


1 0 ≤ x < 0.6
−1 0.6 ≤ x < 0.85

1 otherwise.

The induced tree for the source domain, as well as the
induced distributions in each node v, are given in Figure 3.
Using a variant of the STRUT algorithm now restricted to
apply only the DG measure will result in a tree whose error
rate is ∼ 10%. The reason is that the root threshold is set
by the algorithm to 0.5. The left tree is a leaf, which will
result in updating the returned decision of the leaf (i.e., no
change actually occurs). However, for the right child, which
is a stump, we are faced with a problem consisting of three
distinct regions:

1 0.5 ≤ x < 0.6
−1 0.6 ≤ x < 0.85

1 otherwise
.

If STRUT were to use the DG measure on its own, it would
choose the threshold with the maximum DG value, which
is 0.85, and as the node’s children, which are all leaves,
it would simply update the returned decision (i.e., still no
change occurs). In this case, it is easy to see that the new
tree misclassifies the range 0.5 ≤ x < 0.6.

It is not hard to see that in both the above negative
examples (for using IG or DG on their own), the transformed
trees can achieve 100% accuracy if both the IG and DG
measures are used in conjunction, as prescribed by the
(unrestricted) STRUT algorithm.

3.3 A MIX Approach
Our proposed solution is to generate two forests using both
SER and STRUT and then define MIX as a voting ensemble
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TABLE 1
Test results of transfer forests on synthetic challenges

DS DT STRUT SER MIX

moving source

mixed boxes

(a) Two simple source-target transformations

STRUT SER MIX
moving source 6.1 12.8 6.4
mixed boxes 7.7 6.6 5.5

(b) Test error rates - boldface marks lowest
error

whose underlying model is the union of all the trees in these
forests. Thus, MIX is a simple majority vote applied over all
decision trees transferred by either SER or STRUT. As can be
seen below, the resulting MIX ensemble often outperforms
both of its constituents. An intuitive explanation for its
excellent performance appears in Section 5.

3.4 Numerical Examples and Intuition

To gain intuition about the relative strengths and weak-
nesses of the SER and STRUT algorithms, as well as the MIX
solution, we consider a number of small synthetic transfer
challenges, each representing a controlled transformation
between the source and target domains. We present two
of these challenges. Eight additional synthetic examples are
available in Appendix A.

Each synthetic example consists of 1, 000 independent
trials. The “moving source” transformation demonstrates
a source concept that is shifted in the target domain, but
retains its geometry between domains. By design, we expect
STRUT to excel in this case. In the “mixed boxes” transfor-
mation, the source concept is composed of a 50-50 mixture
of slightly shifted boxes and the target concept consists of
one of these boxes. This problem models a case where the
target concept is a kind of refinement of the source concept.
One can expect SER to excel in this problem.

In Table 2a we depict the concepts learned by STRUT,
SER and MIX for the two transformations. The correspond-
ing test errors are presented in Table 2b. Indeed, in these
simple cases the algorithms perform as expected. The per-
formance of MIX in these examples is clearly not the average
performance of SER and STRUT; in the ‘moving source’
example MIX is a close runner up to the best algorithm,
and in ‘mixed boxes’ it is better than both STRUT and SER.

From the additional synthetic examples available in
Appendix A, we can see that SER obviously outperforms
STRUT in cases where feature correspondence is not main-
tained between source and target, such as OCR and domains
of pixel based images. However, STRUT can easily outper-
form SER when feature correspondence is maintained, such
as in the case of the inversion problem.

Another observation from the examples in Appendix A
is that MIX can outperform its constituents or at worst be
a close second. Furthermore, when MIX is only the second
best algorithm, its error rates are not simply the average
of both base algorithms but are much closer to the best
algorithm. While MIX is a simple ensemble of different
algorithms, it is capable of providing the desired beneficial

results. Further discussion on this behavior and its causes
are found in Section 5.

4 EMPIRICAL EVALUATION

We evaluated the SER, STRUT and MIX transfer learning
algorithms over a number of challenges, first comparing
our results with non-transfer learning techniques and trivial
tree-based transfer learning baselines and finally competing
against other model transfer algorithms.

We used the SrcOnly baseline as our first benchmark.
Because it represents a trivial approach to transfer learning
that utilizes no target data, the model was trained using only
the source data. Our second benchmark was the TgtOnly
baseline, where we create the target model using target only
data. In general, any useful transfer learning method should
surpass the SrcOnly baseline. The TgtOnly benchmark is tra-
ditionally viewed as a skyline, representing the best possible
performance. However, effective transfer learning methods
can sometimes surpass the skyline due to clever exploitation
of both source and target examples, thus enjoying a larger
training sample than that allotted to TgtOnly.

In addition, we compared performance to trivial tree-
based model transfer baselines on the same experimental
setup. The relabeling classifier simply updates the leaves of
a forest trained on the source examples using the target
samples. In the bias approach, the weights in the original
forest are changed from a uniform distribution to one which
favors trees with lower error rates on the available target
training samples. Pruning stands for using the target sam-
ples to perform pruning on the original forest, just like
the reduction step in our SER algorithm or the pruning
technique of the C4.5 algorithm [16].

Finally, we compared performance to two well-known
model transfer algorithms. The first is Adaptive SVM
(ASVM) [4], which uses target examples to regularize an
SVM model with a Gaussian kernel, trained using source
examples only. While ASVM has several extensions, these
usually rely on a large set of unlabeled target training data,
without which these techniques are similar to ASVM [5],
[17]. The second algorithm is consensus regularization [7],
which attempts to decrease the classification error by min-
imizing an entropy based disagreement measure among a
set of source-only and target-only models. While the original
paper applied the algorithm with underlying logistic regres-
sion models, we used random forests, which outperformed
the logistic regression application.
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TABLE 2
Dataset information

dataset DIM(X ) DIM(Y)
∣∣SS

∣∣
mushroom 22 2 4, 608
letter 16 26 10, 822
wine 11 11 4, 898
digits 64 2 5, 620
MNIST 784 10 2, 000
USPS 784 10 10, 000
landmines 9 2 8, 535
amazon-webcam 800 10 1, 123
caltech-webcam 800 10 958
activity-user1 35 5 23, 690
activity-user2 35 5 40, 405
activity-user3 35 5 36, 111
activity-user4 35 5 25, 171
activity-user5 35 5 24, 920
activity-user6 35 5 24, 481

4.1 Datasets
The effectiveness of transfer learning techniques is of course
expected to depend on the degree of relatedness between
DS and DT . We generated the source and target sets based
on either meaningful splits of existing datasets, or on a
transformation of a subset of the dataset. These approaches
are common practice in dataset construction for validating
transfer models [18]. We used the following data sets, whose
properties are presented in Table 2.

Mushroom: This is a publicly available dataset from
the UCI Repository [19]. It contains samples of edible and
poisonous mushrooms, and the value of the stalk-shape bi-
nary feature is used to partition the dataset into two. This
technique was used by Dai et al. [18], and the resulting par-
tition is such that the source mushrooms belong to different
species than the target mushrooms.

Letter: Also from the UCI Repository, the letter recogni-
tion dataset is partitioned according to the numeric feature
x2bar, by thresholding on its median for each letter. This
results in source and target distributions of different fonts.

Wine: Publicly available wine quality dataset [20], al-
ready partitioned into two; the source domain consists of
white wines and the target domain consists of red wines.

Digits1: The Digits dataset consists of images of hand-
written digits. We considered the two binary problems of
identifying ‘6’ and ‘9’, each of which is a 180O rotation of
the other.

Inversion: The task concerns hand-written digit recog-
nition from the MNIST digit database [21]. Source and
target domains are generated from the MNIST database as
follows. For the source domain we take 200 images of each
digit, sampled uniformly at random, and invert the color
of each image. The target data consists of images sampled
at random without inversion. Test data was taken from the
MNIST database. Examples of inverted digits are shown in
Table 3.

Higher Resolution: This challenge reflects a scenario
where we have a lot of source data, from a low-resolution
camera, and a small amount of target data, obtained with
a high-resolution camera. The source examples are gener-
ated by an averaging process that creates lower resolution
images, whereby the source image is partitioned into small

1. http://tx.technion.ac.il/∼omerlevy/datasets/

TABLE 3
Low resolution and inverted versions of digits from the MNIST dataset

DIGIT
1 4 7

original image

inverted image

low resolution

‘super-pixels’, each consisting of a disjoint 4 × 4 squares of
pixels. The intensity of each super-pixel element is averaged.
Test data was taken from the MNIST database. Examples of
low resolution digits are shown in Table 3.

USPS: Another example of hand-written digit recog-
nition collected under different conditions [22]. The USPS
dataset was collected from scans of random letters in a US
post office. We generate the domains using the same trans-
formation as that used in the MNIST database, i.e., images
are enlarged to 20X20 pixels and placed in a 28X28 image,
centered on the center of mass. For this transfer experiment
we treat MNIST as the source domain and utilize the MNIST
training set as source data.

Landmine2: The landmine dataset consists of informa-
tion collected from 29 real mine fields. Each field is rep-
resented by 9 features collected using sonar images. 15 of
these fields were dense in foliage, while the other 14 came
from barren areas. We attempt to use the information from
the foliage covered fields to improve mine detection in the
barren areas.

Office-Caltech3: This dataset is a collection of images of
10 categories from 4 domains. We transfer information from
larger domains with higher resolution images, Amazon.com
product pages or the Caltech10 collection, and attempt to
recognize lower resolution webcam images.

Activity Recognition: This dataset, collected by Subra-
manya et al. [23], is a recording of a customized wearable
sensor system. The system recorded measurements on 6
users doing various activities, such as walking or running,
going up or down the stairs, or simply lingering. We per-
formed the same preprocessing on the data as that per-
formed by Harel and Mannor [24] and treated each ordered
pair of users as a source-target pair, totaling 30 possible
pairs.

4.2 Experiments and Results

We set SS to be all available source data, and ST to be 5%
(unless specified otherwise) of the target samples, stratified
and randomly selected; the rest was used as test data, giving
us around 20

∣∣ST ∣∣ ∼= ∣∣SS∣∣ in almost all datasets. In all
cases the models consisted of 50 decision trees. Following
Breiman’s work on random forest learning, we consider
only a log number of features, selected at random, when
performing feature selection (see also Louppe et al. [25]).

2. http://www.ee.duke.edu/∼lcarin/LandmineData.zip
3. http://www-scf.usc.edu/∼boqinggo/domain adaptation/GFK

v1.zip
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TABLE 4
Test error rates compared to benchmarks and competing algorithms — lowest error in boldface

DATASET SrcOnly TgtOnly relabeling bias pruning ASVM consensus STRUT SER MIX
mushroom 15.2± 0.3 0.5± 0.1 2.1± 0.2 12.6± 0.5 14.1± 0.6 2.3± 0.2 0.6± 0.1 1.9± 0.2 0.4± 0.07 0.5± 0.08
letter 66.5± 0.4 19.3± 0.2 20.7± 0.3 63.4± 0.6 22.5± 0.4 33.8± 0.2 24.1± 0.4 21.0± 0.4 18.9± 0.2 16.7± 0.2
wine 66.6± 0.6 45.5± 0.3 44.9± 0.2 55.3± 0.2 44.6± 0.2 54.7± 0.4 44.3± 0.2 46.6± 0.3 45.8± 0.2 45.0± 0.3
digits 19.9± 0.05 3.0± 0.2 10.0± 0.0 19.9± 0.01 10.0± 0.0 10.0± 0.0 14.2± 0.9 5.4± 0.3 2.9± 0.2 3.8± 0.3
USPS 13.5± 0.0 14.9± 0.2 13.7± 0.1 13.7± 0.0 13.3± 0.1 78.2± 3.5 11.6± 0.1 15.6± 0.2 13.5± 0.1 13.3± 0.1
landmines 52.4± 0.1 41.0± 0.7 39.2± 0.5 52.1± 0.1 38.2± 0.2 43.4± 0.7 41.6± 0.7 40.4± 0.6 40.7± 0.4 40.4± 0.5
amazon-webcam 62.2± 0.1 74.6± 0.8 66.7± 0.7 65.4± 0.4 64.6± 0.7 88.0± 0.5 67.4± 0.7 71.3± 0.6 62.0± 0.6 64.6± 0.7
caltech-webcam 65.1± 0.4 74.6± 0.6 66.6± 0.4 67.6± 0.4 88.2± 0.3 68.6± 0.5 64.3± 0.4 71.3± 0.4 63.3± 0.4 64.6± 0.5
inversion(1%) 98.7± 0.2 54.2± 0.1 54.8± 5.5 96.2± 3.8 57.3± 5.8 92.4± 0.3 76.0± 0.3 41.8± 0.5 58.5± 0.3 44.1± 0.3
inversion(5%) 98.7± 0.2 28.2± 0.2 36.4± 3.7 96.9± 3.1 39.5± 4.0 92.4± 0.2 44.8± 0.3 21.2± 0.3 36.5± 0.2 22.2± 0.1
inversion(10%) 98.7± 0.2 20.5± 0.1 30.7± 3.1 97.0± 3.0 34.3± 3.5 92.4± 0.2 32.7± 0.2 15.9± 0.4 24.1± 0.3 16.4± 0.2
high-res(1%) 32.7± 0.2 54.2± 0.1 44.6± 4.5 33.7± 3.4 42.4± 4.3 90.2± 0.3 35.7± 0.5 48.2± 0.5 37.2± 0.3 38.5± 0.3
high-res(5%) 32.7± 0.2 28.2± 0.2 24.8± 2.5 32.5± 3.3 24.4± 2.5 90.2± 0.2 23.7± 0.3 28.3± 0.3 22.5± 0.2 21.8± 0.1
high-res(10%) 32.7± 0.2 20.5± 0.1 19.4± 2.0 32.3± 3.3 20.3± 2.0 90.2± 0.2 19.4± 0.2 22.9± 0.4 18.0± 0.3 17.3± 0.2
Activity(min) 11.5± 0.2 13.5± 0.2 11.4± 0.1 11.8± 0.02 11.2± 0.1 76.0± 0.2 14.4± 0.3 11.6± 0.2 11.2± 0.3 11.1± 0.2
Activity(median) 15.1± 0.3 16.2± 0.2 14.7± 0.1 15.6± 0.03 14.6± 0.1 76.9± 0.2 16.8± 0.1 14.6± 0.2 13.9± 0.1 13.8± 0.3
Activity(max) 15.4± 0.1 18.5± 0.3 14.7± 0.2 15.1± 0.04 14.4± 0.2 74.0± 0.1 18.1± 0.2 15.0± 0.1 15.0± 0.2 14.2± 0.2

The landmine detection and activity recognition tasks ex-
hibit special characteristics. Both tasks have class imbalance,
where in the landmines problem only 6% of the examples
were positive (mine found), and in the activity problem,
running and going up or down the stairs totaled less than
10% of the examples. In these experiments we ascertained
that the ratio of classes in the training data was similar to
that of the entire target dataset. Moreover, with the severe
class imbalance exhibited, error (or accuracy) is no longer
an appropriate measurement and can lead to erroneous
conclusions [26]. Therefore, in these cases we measured the
balanced error rate (BER): BER = 1

cΣci=1
ei
ni

, where ei and
ni are the number of errors and the number of samples in
class i respectively, and c is the number of classes.

We began by comparing the performance of our algo-
rithms and the two benchmarks. Results of these tests for the
SER, STRUT and MIX algorithms are presented in Table 4.
For the “inversion” and “high-res” datasets, the table in-
cludes performance at 1%, 5% and 10% source-target ratios.
For the “activity recognition” task, the table present the best
case, worst case and median cases (minimum, maximum
and median TGT error, respectively).

SER often, but not always, outperformed STRUT, while
MIX produced a classifier that was best, or close to best,
among all the methods, even when one of the underlying
forests performed poorly as happened, for example, in the
three “inversion” sets. Such results indicate that MIX is
robust to inferior performance of one of its constituents4.
We note that MIX continuously outperformed the SrcOnly
baseline and in many cases matched or outperformed the
TgtOnly baseline.

Next, we compared our algorithms to the previously de-
scribed model transfer baselines and competing algorithms.
We focus our discussion on the MIX algorithm which gen-
erally performed well. Following the results provided in
Table 4, we note that our MIX algorithm constantly outper-
formed the relabeling and bias benchmarks. Similarly, with
the exception of the wine and landmines experiments, our
MIX algorithm outperformed the simple pruning approach.

4. We ascertained that the good MIX results are not due to “unfair”
model complexity conditions, as each base method contains 50 trees,
while MIX is a union of them all (100 trees). To this end, we repeated all
experiments with STRUT and SER containing 100 trees. No significant
performance improvements were recorded due to this modification.

Finally, we ascertained the superiority of our algorithms
over the benchmarks using a t-test with p-value < 0.005
for the relabeling, bias and pruning benchmarks. Our algo-
rithms also show success compared to ASVM and consensus
regularization. These results were ascertained as statistically
significant using a t-test (p-value < 0.005).

Figure 4.2 presents the learning curves for the algorithms
on the “inversion” and “high-res” datasets. The curves show
error as a function of the ratio between source and target
sizes. As seen before, our MIX algorithm yielded similar
results to the better of the underlying algorithms, matching
the error rates of SER in the “high-res” problem and coming
close to STRUT in the case of “inversion”. In both cases the
MIX algorithm outperformed the TgtOnly benchmark.

Finally, we would like to comment on the time complex-
ity recorded while performing these experiments. We note
that each tree in the forest can be processed independently,
allowing for easy parallelism. We have observed that the
average model transformation time of the “letter” problem
in a serial execution is 3.1s for MIX, 1.6s for consensus
regularization, and 11s for ASVM, while on a 10-core ma-
chine we saw linear improvement, with MIX taking 0.31s
(To the best of our knowledge, there is no parallel version
of the consensus regularization algorithm). This advantage
of our techniques is clearly visible in Table 5, where the
average transfer runtime of our algorithms clearly superior
to ASVM transfer. In today’s world of high throughput and
massively parallel computing, a forest containing dozens or
even hundreds of trees can be trained in almost the same
time that it takes to build a single tree.

4.3 Comparing to Instance Transfer Algorithms

Unlike model transfer, in the instance transfer approach to
transfer learning, all source training examples are available
during the adaptation to the target. At the outset, this
additional information can lead to better performance. In
this sense, a comparison of a model transfer algorithm that
learns without source examples to an instance transfer algo-
rithm is unfair. Nevertheless, it is interesting and important
to understand the benefits and limitations of model trans-
fer methods, and therefore, we conducted a comparative
study of our model transfer methods to instance transfer
algorithms.



LEARN ON SOURCE, REFINE ON TARGET: A MODEL TRANSFER LEARNING FRAMEWORK WITH RANDOM FORESTS 9

(a) Error rates for the inversion problem (b) Error rates for the high-res problem

Fig. 4. Error rates on the MNIST problems. The x-axis is the ratio between available source and target training examples.

TABLE 5
Models transfer times in MS. STRUT and SER times are shown for a

serial execution.

DATASET consensus ASVM STRUT SER
mushroom 106.2 15.1 1.8 6.9
letter 110.5 7, 739.8 224.1 149.2
wine 9.3 262.2 77.1 61.8
digits 204.9 592.3 32.3 47.5
landmines 52.3 50.2 37.7 35.7
inversion(1%) 7.1 1, 1843.5 30.99 174.3
inversion(5%) 23.3 53, 685.4 186.1 761.2
inversion(10%) 45.2 122, 839.4 396.5 1, 327.4
high-res(1%) 7.9 11, 745.4 23.7 104.1
high-res(5%) 26.5 53, 819.7 152.4 355.7
high-res(10%) 52.8 — 323.2 940.9
Activity 173.9 — 128.3 37.5

In this section we briefly mention our comparison of the
MIX algorithm versus instance transfer algorithms. The first
is TradaBoost [18], which is applied with random decision
trees as the weak learners. Our tests show that the use of
random decision trees produces much better results linear
SVMs, as suggested by TradaBoost’s authors. The second
algorithm tested was TrBagg [27], which initially trains
classifiers on bootstrapped bags sampled with replacements
from TS ∪ TT and regularizes the ensemble by filtering
out classifiers which are overly biased towards the target
domain. TrBagg is also applied with random decision trees
and for the filtering phase we use the MVT filtering tech-
nique, as suggested by the authors. In all experiments we
applied TradaBoost and TrBagg with up to 50 iterations.
The third algorithm we compared against is the Frustratingly
Easy Domain Adaptation (FEDA) [28] meta-algorithm. FEDA
generates a new middle-ground domain to train on by
transferring the data from both source and target to the
middle-ground domain. To compare apples-to-apples we
also applied FEDA with a random forest as its underlying
algorithm. Finally, we test the Mixed-Entropy (ME) [29] algo-
rithm, a state-of-the-art forest-specific technique which com-
bines source and target training samples using a weighted
information gain measure. The results of these experiments
are presented in Table 6.

Our algorithms routinely outperform most other tech-
niques and are competitive with FEDA. Surprisingly, our
study shows that MIX is comparable and even competitive

TABLE 6
Test error rates of the MIX transfer forest and the instance transfer

algorithms — lowest error in boldface

DATASET TRADA TrBagg FEDA ME MIX
mushroom 2.1 0.4 0.5 0.4 0.5
letter 41.7 29.3 18.8 17.7 16.7
wine 57.6 48.4 43.2 46.5 45.0
digits 19.9 15.3 10.0 2.9 3.8
USPS 33.2 14.3 13.5 13.8 13.3
landmines 45.8 49.1 38.8 40.5 40.4
inversion(5%) 64.9 34.3 28.2 27.1 22.2
high-res(5%) 58.4 24.8 20.4 24.8 21.8
Activity(median) 20.3 20.2 15.9 20.2 13.8

with instance transfer algorithms, despite the unfair com-
parison. In particular, MIX often showed similar results to
FEDA and Mixed-Entropy and consistently outperformed
TradaBoost TrBagg. For example, the error rates of Trad-
aBoost, TrBagg, FEDA and Mixed-Entropy for the “letter”
dataset were 41.7, 29.3, 18.8 and 17.7, respectively. The ad-
vantage of MIX over TradaBoost and TrBagg was backed by
t-tests with all p-values < 0.01. No statistically significant
performance difference could be observed for FEDA and
MIX or ME and MIX.

5 CAN WE EXPLAIN THE ADVANTAGE OF MIX?
Our empirical results indicate that the MIX algorithm per-
forms well even when just one of its constituents gives
good results and can moreover outperform each of its
constituents. We attribute this behavior to diversity and
correlation among the ensemble members. A given tree
transformed by the SER algorithm is likely to be different
in size than the original tree, as the expansion step will add
to the tree depth and the reduction step will reduce the size
of some of the branches, while the same tree transformed
by the STRUT algorithm is likely to retain its original size
but with different thresholds. Thus, the pairwise correlation
in the MIX forest between two trees transformed from the
same original tree are expected to exhibit low correlation
and result in a more diverse forest.

Let yf(x) denote the classification margin of a soft
binary classifier f with respect to a point x whose label is
y, i.e., yf(x) > 0 iff f(·) is correct on (x, y). We consider
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Fig. 5. Cumulative distribution functions of margins for disagreeing base
classifiers

the expected error of an ensemble with weight distribution
Q over its members via two risk functions commonly used
in PAC-Bayesian literature, the Bayes risk R (BQ (f)), also
called risk of the majority vote, and the Gibbs risk R (GQ (f)),
found in Equations 4 and 5 respectively.

R (BQ (f)) = E
(x,y)∼D

I

(
E

f∼Q
y · f (x) ≤ 0

)
, (4)

R (GQ (f)) = E
(x,y)∼D

(
E

f∼Q
I (f (x) 6= y)

)
. (5)

While it is well known that R (BQ) ≤ 2R (GQ) (e.g.,
[30], [31], [32]), Germain et al. have shown that with more
pairwise “non-correlated” ensemble members (those with
a non-positive pairwise covariance of their risk between
ensemble members), it is possible to provide the tighter
bound found in Corollary 5.1 using the measure of expected
disagreement, dQ.

Corollary 5.1 (Corollary 16 [33]). Given n voters having
non-positive pairwise covariance of their risk under a uniform
distribution Q, we have
R (BQ) ≤ CQ ≤ 1

n·(1−2R(GQ))2

where CQ = 1− (1−2·R(GQ))2

1−2·dQ

and dQ = E
(x,y)∼D

(
E

f1∼Q
E

f2∼Q
I (f1 (x) 6= f2 (x))

)
.

Thus, in the likely case where two trees transformed
from the same original tree are “non-correlated”, the bound
on the Bayes risk for the MIX forest is nearly halved as n
doubles.

We now consider the ‘mixed boxes’ experiment pre-
sented Section 3.4, where SER is significantly better than
STRUT and MIX is even better than SER (Table 2b). We
calculated the empirical Gibbs risk of the forests, measuring
0.17 and 0.15 for the STRUT and SER forests respectively.
Following the last inequality in Corollary 5.1 we get bounds
of 0.14 and 0.13 on the Bayes risk of the STRUT and SER
forests, respectively, and a much tighter bound of 0.07 for
the MIX forest. These results indicate that the Bayes risk for
the MIX algorithm are expected to be lower than those of its
constituents, as are the actual test results.

Germain et al. have also shown the following formula-
tion to the C-bound:

CQ = 1− (1− 2eQ − dQ)
2

1− 2 · dQ

where

eQ = E
(x,y)∼D

(
E

f1∼Q
E

f2∼Q
I (f1 (x) 6= y) I (f2 (x) 6= y)

)
is a measure of expected joint error [33]. We measured
the empirical joint error and disagreement, noting that the
empirical joint error of the three algorithms was similar
while the disagreement measure of MIX was much higher
than that of SER or STRUT, which resulted in lower CQ
bound for the MIX algorithm.

We also informally argue that the attractive property of
the MIX advantage over its constituents is related to the
distribution of empirical pointwise classification margins in
cases where SER and STRUT disagree in their predictions.
In Figure 5 we plot the cumulative distribution functions
(CDFs) of empirical margins obtained by SER, STRUT and
MIX for the same ‘mixed boxes’ experiment when SER and
STRUT disagree. The advantage of MIX and SER here is
evident by their lower CDF values at the origin in Figure. 5.
Schapire et. al. addressed these circumstances and related
better generalization to better empirical margin profiles, as
given in Theorem 5.2:

Theorem 5.2 (Theorem 1 [34]). let D be a domain over
X × {−1, 1} with distribution , let S be a sample of m examples
chosen independently at random according to P . Assume that
the base-classifier space H is finite and let δ > 0. Then with
probability at least 1 − δ over the random choice of the training
set S, every weighted average function f satisfies the following
bound for all θ > 0:

p
(x,y)∼D

[yf (x) ≤ 0] ≤

p
(x,y)∼S

[yf (x) ≤ θ]+O
(

1√
m

(
logm log|H|

θ2 + log
(
1
δ

))1/2)
.

Intuitively, when an ensemble algorithm is correct, its
underlying classification margins tend to be high and corre-
lated, and when it is wrong, its underlying margins tend to
be more dispersed as the result of low pairwise correlation.
Combining STRUT and SER in MIX benefits from some
correctly performing constituents within the erroneous en-
semble. In other words, as STRUT and SER are only weakly
correlated, MIX benefits when combining them.

6 RELATED WORK

The generic title “transfer learning” encompasses quite a
few different paradigms. As noted by Levy and Markovitch
[35], such paradigms are motivated by (implicit or ex-
plicit) modeling or process assumptions. For example, some
paradigms, such as “feature transfer”, are motivated by
assumptions on the linkage between source and target
domains (e.g., features at the target obtained by certain
mappings applied on the source features). The survey by
Pan et al. [11] identifies the following settings, which are
not mutually exclusive.

Model Transfer: This setting, within which the present
work resides, assumes that a good predictor for the source
has been learned, resulting in an attempt to adapt the model
to the target problem using a training set from the target
domain. Model transfer techniques are effective when a
similar inductive bias performs well for the related tasks or
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when source examples are impossible to retain or distribute.
Present model transfer model methods rely on a biased
regularizer [3], [4], [36], [37], [38], on aggregating multiple
source-target predictors [6], [7], [8], [39], utilizing model
parameter transfer as priors [40], [41], [42], or by feature
weight estimation [43], [44].

Instance Transfer: In this setting one assumes certain
instances of the source data can be used as examples in
the target domain. Under this assumption, it is better to
take some of the source data “as is”, and the problem
reduces to identifying the relevant instances and ignoring
the irrelevant ones, using a process of elimination or weight-
ing. Boosting based instance weighing is common practice in
this category [18], [45], [46], [47], as is instance elimination
(and sub-sampling) [27], [48], but other techniques exist for
utilizing the source information in different ways [28], [29],
[49], [50].

Features Transfer: Assuming some partial relation be-
tween the source and target features exists, algorithms
working in this setting attempt to learn a feature mapping
or weighing. These techniques represent an attempt to find
the “common denominators” of the learning tasks, matching
features, or combinations of features, to identify meaning
in partial information. Standard techniques to address this
problem include norm optimization [24], [51], [52] and ma-
nipulating and combining features [35], [42], [53]

Domain Adaptation (DA) and Multi-Task Learning
(MTL): In domain adaptation the difference between the
domains is the result of different feature and labeling
spaces; however, DA is typically considered within a semi-
supervised context where an abundance of unlabeled data
is available as well [54], [55], [56], while in MTL the goal
is to produce a good hypothesis for several related learning
problems simultaneously [57]. Some notable approaches for
these settings are based on similarity to a common predictor
[28], [58], [59], [60], finding a shared representation [50], [61],
[62], [63], [64] or a shared subspace [65], [66], [67], [68], as
well as probabilistic approaches [69], [70], [71], [72].

Semi-supervised Transfer: source and target domains
are the same and source data includes only unlabeled exam-
ples [2], [5], [17], [51], [62], [73], [74], [75]. Semi-supervised
transfer is very attractive in application areas such as ma-
chine vision, video event detection and text analysis.

For a comprehensive review of these fields the reader is
referred to the works of Pan and Yang [11] and Jiang [56].

6.1 Transfer Learning using Decision Trees

Most early transfer learning methods were based on neural
networks, and while SVMs and ensemble techniques have
become prominent in this field, DT models are still under-
explored in this setting. Of the few tree-based techniques
researched, only the work by Won et al. operates in our
model transfer setting. Specifically, Won et al. proposed a
simple technique to update an existing tree trained only on
source samples using target samples [76]. Their approach
resembled a batch iterative learning technique which relies
solely on iterative expansion steps. This technique does not
consider any refitting of numeric feature thresholds.

Adaptive DTs and stream sub-sampling have been used
in data streams to handle massive, high-speed streams [77],

[78], [79] as well as concept drift [80], [81], [82], modifying
the DT as new samples arrive. However, there are no ex-
plicit source and target distributions in this setting, but a
distribution that incrementally changes over time, requiring
retaining of original samples and constant modifications to
the DTs.

Finally, in MTL, Faddoul et al. presented a variation of
AdaBoost with decision stumps fitted to multiple tasks [83].
The same authors later applied boosting with DTs while
using a modified information gain (IG) criterion [84]. An-
other approach builds an ensemble by combining multiple
random DTs, where task-driven splits are added in each tree,
in addition to ordinary feature splits [85]. In this manner, the
trees may contain branches uniquely dedicated to particular
subsets of tasks.

7 CONCLUDING REMARKS

Exploiting the modularity and flexibility of decision trees,
we designed two model transfer learning algorithms that
utilize a model trained over the source domain and effec-
tively adapted it to the target domain using local adjust-
ments of the tree parameters and/or its architecture. Our ex-
periments with synthetic data indicate that the effectiveness
of the algorithms varies with the transformation type. Our
final MIX algorithm combines the proposed base algorithms
and often outperform their underlying constituents. It also
achieve performance superior to leading model transfer
algorithms and, moreover, are competitive with instance
transfer algorithms and even outperform some of them.

An attractive feature of the proposed method (and any
effective model transfer algorithm) is that the source data
can be discarded after training over the source domain,
and transferring the models to the target domain can be
computed later on, whenever needed. A nice application
of this property would be to devise a bank of models
computed over a variety of source domains that can later
be used to construct models for any related target domain.

An open issue is to capture formally and systematically
the ramifications of possible source/target transformations
over the tree structure. For example, we asserted above
that some geometrical transformation of the support of the
inputs density can be captured and modeled via threshold
changes in a decision tree. Yet it would be interesting to for-
mally map and relate these and other data transformations
to the tree adaptation mechanisms.

Furthermore, our work has not touched upon sample
complexity and formal generalization ability. This problem
of devising a comprehensive learning theory for transfer
learning of decision trees might be contingent upon formally
defining an effective model for possible relations between
the source and the target.

APPENDIX A
OTHER NUMERICAL EXAMPLES ON SYNTHETIC
DATA

In Section 3.4 we presented two small synthetic transfer
learning challenges to illustrate the behavior of our algo-
rithms. These two examples were selected from a set of
10 problems we synthetically designed to capture simple
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DS DT STRUT SER MIX

mixture 7.7 6.6 5.5

inversion 6.1 6.0 6.0

moving source 6.1 12.8 6.4

expanding 10.7 15.4 10.6

shrinking 7.1 3.7 4.9

axis swap 9.0 11.8 8.9

noisy target 23.4 14.9 15.1

noisy source 18.8 6.6 8.2

rotated source 19.2 13.4 16.3

fish-eye 18.5 17.3 17.8

refined sine 13.3 14.3 13.8
TABLE 7

Error measurements for transfer forests on synthetic source-target
transformations

transformations between the source and target problems.
Here we define all 10 of these problems, present the test
performance of the algorithms over these problems, and
provide details on the experimental protocol used.

Each challenge is defined via a fixed binary concept over
the source domain and a transformation that maps the con-
cept to the target domain. The concepts and transformations
are defined below for each challenge. All challenges were
defined such that X is the positive unit quadrant in R3

(using numeric features). In all experiments we maintained
the relation

∣∣SS∣∣ = 5
∣∣ST ∣∣ and took |ST | = 64. In all

cases, P (x), the marginal distribution over X , is the uniform
distribution over X . Each challenge was randomly repeated
1, 000 times and each test error reported was computed as
the averages over a test set consisting of 10, 000 random
target domain points. This large number of trials ensured
statistically significant comparisons of the results.

Each challenge is defined via a binary “concept” and
a transformation. The concept is the source region where
points are labeled ’+’. In most cases the concept is a random
3D box in the source domain, XS , whose volume is 25%
of vol(XS). Below we refer to such a box as a ”standard
random box”. We define the following transformations:

1) In the source/target mix, the source concept is a 50-50
mixture of two standard random boxes, and the target
concept is a single random box among the two.

2) In source inversion the source concept is a standard
random box. We represent this box by (α0, α1, α2)
and (β0, β1, β2), such that a point x = (x0, x1, x2)
is labeled as positive in the source domain (i.e., it is
in the box) iff αi ≤ xi ≤ βi, i = 0, 1, 2. Then , the
target concept is defined such that a target point, x =
(x0, x1, x2), is labeled positive iff xi < αi or βi < xi,
i = 0, 1, 2.

3) In moving source the source concept is a standard
random box and the target concept is obtained by a

random displacement of the source box along each of
the axes that still keeps the displaced box within XT .

4) In the expanding and shrinking source challenges, the
source concept is a standard random box. In the
expanding challenge we expand the source box so
that its volume is doubled in the target domain, and
in the shrinking challenge its volume is halved.

5) In axis-swap the source concept is a standard random
box and the target concept is obtained by swapping
two randomly selected dimensions (among the three).

6) In noisy target the source concept is a standard ran-
dom box and the target concept is the same box but
each point inverts its label with probability 0.25.

7) The noisy source challenge is precisely the inverse of
the noisy target challenge where the target concept is
a standard random box and the source concept is its
noisy distortion.

8) In the rotated source challenge, a standard random box
in the source is rotated about a random vector by a
random angle using a standard 3D rotation matrix.

9) In the fish-eye transformation challenge, each point
is represented within a spherical coordinate system,
namely, x = (r, θ, φ) where 0 ≤ θ ≤ π

4 and 0 ≤
φ ≤ π

2 . For every source point xs = (rs, θs, φs), there
exists a maximum value rm such that (rm, θs, φs)
is still inside the source feature space XS ; thus, we
transfer the point xs from the source domain to the
point xt = (rt, θs, φs) in the target domain, such that
rt = rs

rm
. This is of course a deterministic transforma-

tion applied to each standard random concept (box)
in the source.

10) Our final challenge is the refined sine boundary, in
which the source concept is defined by a sine wave
manifold that changes frequency and amplitude in
the target. A source point x = {x0, x1, x2} is labeled
positive iff 0.5 + 0.05 · sin (4π (x0 + x1)) < x2. Our
target domain is defined similarly, but with random
frequency 0.25 ≤ φ ≤ 0.5, and a random amplitude
0 ≤ a ≤ 0.5. Thus, a point x = (x0, x1, x2) in
the target domain is labeled positive iff 0.5 + a ·
sin
(
2π
φ (x0 + x1)

)
< x2.

In Table 7 we present the test error results of STRUT, SER
and MIX for these challenges.
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