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Abstract—One of the central themes in Sum-Product networks (SPNs) is the interpretation of sum nodes as marginalized latent

variables (LVs). This interpretation yields an increased syntactic or semantic structure, allows the application of the EM algorithm and to

efficiently performMPE inference. In literature, the LV interpretation was justified by explicitly introducing the indicator variables

corresponding to the LVs’ states. However, as pointed out in this paper, this approach is in conflict with the completeness condition

in SPNs and does not fully specify the probabilistic model.We propose a remedy for this problem bymodifying the original approach

for introducing the LVs, whichwe call SPN augmentation.We discuss conditional independencies in augmentedSPNs, formally establish

the probabilistic interpretation of the sum-weights and give an interpretation of augmented SPNs as Bayesian networks. Based on these

results, we find a sound derivation of the EM algorithm for SPNs. Furthermore, the Viterbi-style algorithm for MPE proposed in literature

was never proven to be correct. We show that this is indeed a correct algorithm, when applied to selective SPNs, and in particular when

applied to augmented SPNs. Our theoretical results are confirmed in experiments on synthetic data and 103 real-world datasets.

Index Terms—Sum-product networks, latent variables, mixture models, expectation-maximization, MPE inference
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1 INTRODUCTION

SUM-PRODUCT Networks (SPNs) are a promising type of
probabilistic model, combining the domains of deep learn-

ing and graphicalmodels [1], [2]. One of theirmain advantages
is that many interesting inference scenarios are expressed as
single forward and/or backward passes, i.e., these inference
scenarios have a computational cost linear in the SPN’s repre-
sentation size. SPNs have shown convincing performance in
applications such as image completion [1], [3], [4], computer
vision [5], classification [6] and speech and languagemodeling
[7], [8], [9]. Since their proposition [1], one of the central themes
in SPNs has been their interpretation as hierarchically struc-
tured latent variable (LV) models. This is essentially the same
approach as the LV interpretation inmixturemodels. Consider
for example a Gaussianmixturemodel (GMM)with K compo-
nents over a set of randomvariables (RVs)X

pðXÞ ¼
XK
k¼1

wkNðX jmmk;SSkÞ; (1)

where Nð� j �Þ is the Gaussian PDF, mmk and SSk are the means
and covariances of the kth component, andwk are themixture

weights with wk50,
P

wk ¼ 1. The GMM can be interpreted
in two ways: i) It is a convex combination of PDFs and thus
itself a PDF, or ii) it is amarginal distribution of a distribution
pðX; ZÞ over X and a latent, marginalized variable Z, where
pðX jZ ¼ kÞ ¼ N ðX jmmk;SSkÞ and pðZ ¼ kÞ ¼ wk. The second
interpretation, the LV interpretation, yields a syntacticallywell-
structured model. For example, following the LV interpreta-
tion, it is clear how to draw samples from pðXÞ by using ances-
tral sampling. This structure can also be of semantic nature, for
instance when Z represents a clustering of X or when Z is a
class variable. Furthermore, the LV interpretation allows the
application of the EM algorithm—which is essentially maxi-
mum-likelihood learning under missing data [10], [11]—and
enables advanced Bayesian techniques [12], [13].

Mixture models can be seen as a special case of SPNs
with a single sum node, which corresponds to a single LV.
More generally, SPNs can have arbitrarily many sum nodes,
each corresponding to its own LV, leading to a hierar-
chically structured model. In [1], the LV interpretation in
SPNs was justified by explicitly introducing the LVs in the
SPN model, using the so-called indicator variables (IVs) cor-
responding to the LVs’ states. However, as shown in this
paper, this justification is actually too simplistic, since it is
potentially in conflict with the completeness condition [1],
leading to an incompletely specified model. As a remedy
we propose the augmentation of an SPN, which additionally
to the IVs also introduces the so-called twin sum nodes, in
order to completely specify the LV model. We further inves-
tigate the independency structure of the LV model resulting
from augmentation and find a parallel to the local indepen-
dence assertions in Bayesian networks (BNs) [14], [15]. This
allows us to define a BN representation of the augmented
SPN. Using our BN interpretation and the differential
approach to inference [16], [17] in augmented SPNs, we
give a sound derivation of the (soft) EM algorithm for SPNs.
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Closely related to the LV interpretation is the inference
scenario of finding the most-probable-explanation (MPE),
i.e., finding a probability maximizing assignment for all
RVs. Using results from [18], [19], we first point out that this
problem is generally NP-hard for SPNs. In [1] it was pro-
posed that an MPE solution can be found efficiently when
maximizing over both model RVs (i.e., non-latent RVs) and
LVs. The proposed algorithm replaces sum nodes by max
nodes and recovers the solution by using Viterbi-style back-
tracking. However, it was not shown that this algorithm
delivers a correct MPE solution. In this paper, we show that
this algorithm is indeed correct, when applied to selective
SPNs [20]. In particular, since augmented SPNs are selec-
tive, this algorithm obtains an MPE solution in augmented
SPNs. However, when applied to non-augmented SPNs, the
algorithm still returns an MPE solution of the augmented
SPN, but implicitly assumes that the weights for all twin
sums are deterministic, i.e., they are all 0 except a single 1.
This leads to a phenomenon in MPE inference which we
call low-depth bias, i.e., more shallow parts of the SPN are
preferred during backtracking.

The main contribution in this paper is to provide a sound
theoretical foundation for the LV interpretation in SPNs
and related concepts, i.e., the EM algorithm and MPE infer-
ence. Our theoretical findings are confirmed in experiments
on synthetic data and 103 real-world datasets.

The paper is organized as follows: In the remainder of
this section we introduce notation, review SPNs and discuss
related work. In Section 2 we propose the augmentation of
SPNs, show its soundness as hierarchical LV model and
give an interpretation as BN. Furthermore, we discuss inde-
pendency properties in augmented SPNs and the interpreta-
tion of sum-weights as conditional probabilities. The EM
algorithm for SPNs is derived in Section 3. In Section 4 we
discuss MPE inference for SPNs. Experiments are presented
in Sections 5 and 6 concludes the paper. Proofs for our theo-
retical findings are deferred to the Appendix.

1.1 Background and Notation

RVs are denoted by upper-case letters W , X, Y and Z. The
set of values of an RV X is denoted by valðXÞ, where corre-
sponding lower-case letters denote elements of valðXÞ, e.g.,
x is an element of valðXÞ. Sets of RVs are denoted by bold-
face letters W, X, Y and Z. For RV set X ¼ fX1; . . . ; XNg, we

define valðXÞ ¼ �N
n¼1valðXnÞ and use corresponding lower-

case boldface letters for elements of valðXÞ, e.g., x is an ele-
ment of valðXÞ. For a sub-set Y � X, x½Y� denotes the projec-
tion of x onto Y.

The elements of valðXÞ can be interpreted as complete evi-
dence, assigning each RV in X a fixed value. Partial evidence
about X is represented as a subset X � valðXÞ, which is an
element of the sigma-algebra AX induced by RV X. For all
RVs we use AX ¼ fX 2 BB j X � valðXÞg, BB being the Borel-
sets over R. For discrete RVs, this choice yields the power-

set AX ¼ 2valðXÞ. For example, partial evidence X ¼ f1; 3; 5g
for a discrete RV X with valðXÞ ¼ f1; . . . ; 6g represents evi-
dence that X takes one of the states 1, 3 or 5, and
Y ¼ ½�1;p� for a real-valued RV Y represents evidence
that Y takes a value smaller than p. Formally speaking, par-
tial evidence is used to express the domain of marginaliza-
tion or maximization for a particular RV.

For sets of RVs X ¼ fX1; . . . ; XNg, we use the product

sets HX :¼ f�N
n¼1Xn j Xn 2 AXng to represent partial evi-

dence about X. Elements of HX are denoted using boldface
notation, e.g., XX . When Y � X and XX 2 HX, we define
XX½Y� :¼ fx½Y� j x 2 XXg. Furthermore, we use e to symbolize
any combination of complete and partial evidence, i.e., for
RVs X we have some complete evidence x0 for X0 � X and

some partial evidence XX00 2 HX00 for X
00 ¼ X n X0.

Given a node N in some directed graph G, let chðNÞ and
paðNÞ be the set of children and parents of N, respectively.
Furthermore, let descðNÞ be the set of descendants of N,
recursively defined as the set containing N itself and any
child of a descendant. Similarly, we define ancðNÞ as the
ancestors of N, recursively defined as the set containing N
itself and any parent of an ancestor. SPNs are defined as
follows.

Definition 1 (Sum-Product Network). A Sum-Product net-
work S over a set of RVs X is a tuple ðG; wwÞ where G is a con-
nected, rooted and acyclic directed graph, and ww is a set of non-
negative parameters. The graph G contains three types of nodes:
distributions, sums and products. All leaves of G are distribu-
tions and all internal nodes are either sums or products. A dis-
tribution node (also called input distribution or simply
distribution) DY : valðYÞ7!½0;1� is a distribution function
over a subset of RVs Y � X, i.e., either a PMF (discrete RVs), a
PDF (continuous RVs), or a mixed distribution function (dis-
crete and continuous RVs mixed). A sum node S computes a
weighted sum of its children, i.e., S ¼P

C2chðSÞ wS;C C, where

wS;C is a non-negative weight associated with edge S! C,
and ww contains the weights for all outgoing sum-edges. A prod-
uct node P computes the product over its children, i.e.,
P ¼Q

C2chðPÞ C. The sets SðSÞ and PðSÞ contain all sum

nodes and all product nodes in S, respectively.
The size jSj of the SPN is defined as the number of nodes and

edges in G. For any nodeN in G, the scope ofN is defined as

scðNÞ ¼ Y if N is a distribution DYS
C2chðNÞscðCÞ otherwise:

(

(2)

The function computed by S is the function computed by its
root and denoted as SðxÞ, where without loss of generality we
assume that the scope of the root is X.

We use symbols D, S, P, N, C and F for nodes in SPNs,
where D denotes a distribution, S denotes a sum, and P
denotes a product. Symbols N, C and F denote generic
nodes, where C and F indicate a child or parent relationship
to another node, respectively. The distribution pS of an
SPN S is defined as the normalized output of S, i.e.,
pSðxÞ / SðxÞ. For each node N, we define the sub-SPN SN
rooted at N as the SPN defined by the graph induced by the
descendants of N and the corresponding parameters.

Inference in unconstrained SPNs is generally intractable.
However, efficient inference in SPNs is enabled by two
structural constraints, completeness and decomposability [1].
An SPN is complete if for all sums S it holds that

8C0;C00 2 chðSÞ : scðC0Þ ¼ scðC00Þ: (3)
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An SPN is decomposable if for all products P it holds that

8C0;C00 2 chðPÞ;C0 6¼ C00 : scðC0Þ \ scðC00Þ ¼ ;: (4)

Furthermore, a sum node S is called selective [20] if for all
choices of sum-weights ww and all possible inputs x it holds
that at most one child of S is non-zero. An SPN S is called
selective if all its sum nodes are selective.

As shown in [17], [19], integrating SðxÞ over arbitrary sets
XX 2 HX, i.e., marginalization over XX , reduces to the corre-
sponding integrals at the input distributions and evaluating
sums and products in the usual way. This property is
known as validity of the SPNs [1], and key for efficient infer-
ence. In this paper we only consider complete and decom-
posable SPNs. Without loss of generality [17], [21], we
assume locally normalized sum-weights, i.e., for each sum
node S we have

P
C2chðSÞ wS;C ¼ 1, and thus pS � S, i.e., the

SPN’s normalization constant is 1.
For RVs with finitely many states, we will use so-called

indicator variables as input distributions [1]. For a finite-
state RV X and state x 2 valðXÞ, we introduce the IV
�X¼xðx0Þ :¼ 11ðx ¼ x0Þ, assigning all probability mass to x.
A complete and decomposable SPN represents the
(extended) network polynomial of pS , which can be used in
the differential approach to inference [1], [16], [17]. Assume
any evidence e which is evaluated in the SPN. The deriv-
atives of the SPN function with respect to the IVs (by
interpreting the IVs as real-valued variables, see [16], [17]
for details) yield

@SðeÞ
@�X¼x

¼ SðX ¼ x; e nXÞ; (5)

representing the inference scenario of modified evidence, i.e.,
evidence e is modified such that X is set to x. The computa-
tionally attractive feature of the differential approach is that
(5) can be evaluated for allX 2 X and all x 2 valðXÞ simulta-
neously using a single back-propagation pass in the SPN,
after evidence has been evaluated. Similarly, for the second
(and higher) derivatives, we get

@2SðeÞ
@�X¼x�Y¼y

¼ SðX ¼ x; Y ¼ y; e n fX;Y gÞ if X 6¼ Y

0 otherwise:

�
(6)

Furthermore, the differential approach can be generalized to
SPNs with arbitrary input distributions, i.e., SPNs over RVs
with countably infinite or uncountably many states (cf. [17]
for details).

1.2 Related Work

SPNs are related to negation normal forms (NNFs), a
potentially deep network representation of propositional
theories [22], [23], [24]. Like in SPNs, structural constraints
in NNFs enable certain polynomial-time queries in the rep-
resented theory. In particular, the notions of smoothness,
decomposability and determinism in NNFs translate to the
notions of completeness, decomposability and selectivity in
SPNs, respectively. The work on NNFs led to the concept of
network polynomials as a multilinear representation of BNs
over finitely many states [16], [25]. BNs were cast into an
intermediate deterministic decomposable NNF (d-DNNF)

representation in order to generate an arithmetic circuit
(AC), representing the BN’s network polynomial. ACs,
when restricted to sums and products, are equivalent to
SPNs but have a slightly different syntax. In [26], ACs were
learned by optimizing an objective trading off the log-
likelihood on the training set and the inference cost of the
AC, measured as the worst-case number of arithmetic oper-
ations required for inference (i.e., the number of edges in
the AC). The learned models still represent BNs with con-
text-specific independencies [27]. A similar approach learn-
ing Markov networks represented by ACs is followed in
[28]. SPNs were the first time proposed in [1], where the
represented distribution was not defined via a background
graphical model any more, but directly as the normalized
output of the network. In this work, SPNs were applied to
image data, where a generic architecture reminiscent to con-
volutional neural networks was proposed. Structure learn-
ing algorithms not restricted to the image domain were
proposed in [2], [3], [4], [29], [30], [31]. Discriminative learn-
ing of SPNs, optimizing conditional likelihood, was pro-
posed in [6]. Furthermore, there is a growing body of
literature on theoretical aspects of SPNs and their relation-
ship to other types of probabilistic models. In [32] two fami-
lies of functions were identified which are efficiently
representable by deep, but not by shallow SPNs, where an
SPN is considered as shallow if it has no more than three
layers. In [17] it was shown that SPNs can w.l.o.g. be
assumed to be locally normalized and that the notion of
consistency does not allow exponentially more compact
models than decomposability. These results were indepen-
dently found in [21]. Furthermore, in [17], a sound deriva-
tion of inference mechanisms for generalized SPNs was
given, i.e., SPNs over RVs with (uncountably) infinitely
many states. In [21], a BN representation of SPNs was
found, where LVs associated with sum nodes and the model
RVs are organized in a two layer bipartite structure. The
actual SPN structure is captured in structured conditional
probability tables (CPTs) using algebraic decision diagrams.
Recently, the notion of SPNs was generalized to sum-
product functions over arbitrary semirings [33]. This yields
a general unifying framework for learning and inference,
subsuming, among others, SPNs for probabilistic modeling,
NNFs for logical propositions and function representations
for integration and optimization.

2 LATENT VARIABLE INTERPRETATION

As pointed out in [1], each sum node in an SPN can be inter-
preted as a marginalized LV, similar as in the GMM exam-
ple in Section 1. For each sum node S, one postulates a
discrete LV Z whose states correspond to the children of S.
For each state, an IV and a product is introduced, such that
the children are switched on/off by the corresponding IVs,
as illustrated in Fig. 1.1 When all IVs in Fig. 1b are set to 1, S
still computes the same value as in Fig. 1a. Since setting all
IVs of Z to 1 corresponds to marginalizing Z, the sum S
should be interpreted as a latent, marginalized RV.

1. In graphical representations of SPNs, IVs are depicted as nodes
containing a small circle, general distributions as nodes containing a
Gaussian-like PDF, and sum and products as nodes with þ and � sym-
bols. Empty nodes are of arbitrary type.
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However, when we regard a larger structural context in
Fig. 1b, we recognize that this justification is actually too
simplistic. Explicitly introducing the IVs renders the ances-
tor S0 incomplete, when S is no descendant of N, and Z is
thus not in the scope of N. Note that setting all IVs to 1 in an
incomplete SPN generally does not correspond to marginali-

zation. Furthermore, note that also S0 corresponds to an LV,
say Z0. While we know the probability distribution of Z if Z0

is in the state corresponding to P, namely the weights of S,
we do not know this distribution when Z0 is in the state cor-
responding to N. Intuitively, we recognize that the state of
Z is irrelevant in this case, since it does not influence the
resulting distribution over the model RVs X. Nevertheless,
the probabilistic model is not completely specified, which is
unsatisfying.

A remedy for these problems is shown in Fig. 1c. We
introduce the twin sum node �S whose children are the IVs

corresponding to Z. The twin �S is connected as child of
an additional product node, which is interconnected

between S0 and N. Since this new product node has scope

scðNÞ [ fZg, S0 is rendered complete now. Furthermore, if
Z0 takes the state corresponding to N (or actually the state
corresponding to the new product node), we now have a
specified conditional distribution for Z, namely the weights
of the twin sum node. Clearly, given that all IVs of Z are set
to 1, the network depicted in Fig. 1c still computes the same

function as the network in Fig. 1a (or Fig. 1b), since �S con-
stantly outputs 1, as long as we use normalized weights for

it. Which weights should be used for the twin sum node �S?
Basically, we can assume arbitrary normalized weights,

which will cause �S to constantly output 1, where, however,

a natural choice would be to use uniform weights for �S
(maximizing the entropy of the resulting LV model).
Although the choice of weights is not crucial for evaluating
evidence in the SPN, it plays a role in MPE inference, see
Section 4. For now, let us formalize the explicit introduction
of LVs, denoted as augmentation.

2.1 Augmentation of SPNs

Let S be an SPN over X. For each S 2 SSðSÞ we assume an
arbitrary but fixed ordering of its children chðSÞ ¼
fC1

S; . . . ;C
KS
S g, where KS ¼ jchðSÞj. Let ZS be an RV on the

same probability space as X, with valðZSÞ ¼ f1; . . . ; KSg,
where state k corresponds to child Ck

S. We call ZS the LV
associated with S. For sets of sum nodes SS we define
ZSS ¼ fZS jS 2 SSg. To distinguish X from the LVs, we will

refer to the former as model RVs. For node N, we define the
sum ancestors/descendants as

ancSðNÞ :¼ ancðNÞ \ SðSÞ; (7)

descSðNÞ :¼ descðNÞ \ SðSÞ: (8)

For each sum node Swe define the conditioning sums as

ScðSÞ :¼ fSc 2 ancSðSÞ n fSg j 9C 2 chðScÞ : S =2 descðCÞg:
(9)

Furthermore, we assume a set of locally normalized twin-
weights �w�w, containing a twin-weight �wS;C for each weight
wS;C in the SPN. We are now ready to define the augmenta-
tion of an SPN.

Definition 2 (Augmentation of SPN). Let S be an SPN over
X, �ww be a set of twin-weights and S0 be the result of algorithm
AUGMENTSPN, shown in Fig. 2. S0 is called the augmented

SPN of S, denoted as S0 ¼: augðSÞ. Within the context of S0,
Ck

S is called the kth former child of S. The introduced product

node Pk
S is called link of S, Ck

S and �ZS¼k, respectively. The
sum node �S, if introduced, is called the twin sum node of S.
With respect to S0, we denote S as the original SPN.

In steps 4–11 of AUGMENTSPN we introduce the links

Pk
S which are interconnected between sum node S and its

kth child. Each link Pk
S has a single parent, namely S, and

simply copies the former child Ck
S. In steps 13–15, we intro-

duce IVs corresponding to the associated LV ZS, as

Fig. 1. Problems occurring when IVs of LVs are introduced. (a): Excerpt
of SPN containing a sum S, corresponding to LV Z. (b): Introducing IVs
for Z renders S0 incomplete, assuming that S =2 descðNÞ. (c): Remedy by

extending SPN further, introducing twin sum node �S.

Fig. 2. Pseudo-code for augmentation of an SPN.
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proposed in [1]. As we saw in Fig. 1 and the discussion
above, this can render other sum nodes incomplete. These
sums are clearly the conditioning sums ScðSÞ. Thus, when
necessary, we introduce a twin sum node in steps 17–23, to
treat this problem. The following proposition states the
soundness of augmentation.

Proposition 1. Let S be an SPN over X, S0 ¼ augðSÞ and
Z :¼ ZSðSÞ. Then S0 is a complete and decomposable SPN over

X [ Z with S0ðXÞ � SðXÞ.
Proposition 1 states that the marginal distribution over X

in the augmented SPN is the same distribution as repre-
sented by the original SPN, while being a completely specified
probabilistic model over X and Z. Thus, augmentation pro-
vides a sound way to generalize the LV interpretation from
mixture models to more general SPNs. An example of aug-
mentation is shown in Fig. 3.

Note that we understand the augmentation mainly as
a theoretical tool to establish and work with the LV inter-
pretation in SPNs. In most cases, it will be neither neces-
sary nor advisable to explicitly construct the augmented
SPN.

An interesting question is how the sizes of the origi-
nal SPN and the augmented SPN relate to each other. A
lower bound is jS0j 2 VðjSjÞ, holding, e.g., for SPNs with
a single sum node. An asymptotic upper bound is

jS0j 2 OðjSj2Þ. To see this, note that the introduction of
links, IVs and twin sums cause at most a linear increase
of the SPN’s size. The number of edges introduced when

connecting twins to the links of conditioning sums is

bounded by jSj2, since the number of twins and links are

both bounded by jSj. Therefore, we have jS0j 2 OðjSj2Þ.
This asymptotic upper bound is indeed achieved by cer-
tain types of SPNs: Consider, e.g., a chain consisting of
K sum nodes and K þ 1 distribution nodes. For k < K
the kth sum is the parent of the ðkþ 1Þth sum and the
kth distribution, and the Kth sum is the parent of the
last two distributions. For the kth sum, all preceding
sums are conditioning sums, yielding k� 1 introduced

edges. In total this gives
PK

k¼2ðk� 1Þ ¼ K ðK�1Þ
2 ¼ K2�K

2

edges, i.e., in this case jS0j indeed grows quadratically in
jSj.

2.2 Conditional Independencies in Augmented
SPNs and Probabilistic Interpretation
of Sum-Weights

It is helpful to introduce the notion of configured SPNs,
which takes a similar role as conditioning in the literature
on DNNFs [22], [23], [24].

Definition 3 (Configured SPN). Let S be an SPN over X,
Y � ZSðSÞ and y 2 valðYÞ. The configured SPN Sy is obtained
by deleting the IVs �Y¼y and their corresponding link for each
Y 2 Y, y 6¼ y½Y � from augðSÞ, and further deleting all nodes
which are rendered unreachable from the root.

Intuitively, the configured SPN isolates the computa-
tional structure selected by y. All sum edges which
“survive” in the configured SPN are equipped with the
same weights as in the augmented SPN. Therefore, a config-
ured SPN is in general not locally normalized. We note the
following properties of configured SPNs.

Proposition 2. Let S be an SPN over X, Y � ZSðSÞ and Z ¼
ZSðSÞ n Y. Let y 2 valðYÞ and let S0 ¼ augðSÞ. It holds that

1) Each node in Sy has the same scope as its correspond-
ing node in S0.

2) Sy is a complete and decomposable SPN over
X [ Y [ Z.

3) For any node N in Sy with scðNÞ \ Y ¼ ;, we have

that SyN ¼ S0N.
4) For y0 2 valðYÞ it holds that

SyðX;Z; y0Þ ¼ S0ðX;Z; y0Þ if y0 ¼ y

0 otherwise:

�
(10)

The next theorem shows certain conditional independen-
cies in the augmented SPN. For ease of discussion, we make
the following definitions.

Definition 4. Let S be a sum node in an SPN and ZS its associ-
ated LV. All other RVs (model RVs and LVs) are divided into
three sets:

� Parents Zp, which are all LVs “above” S, i.e.,
Zp ¼ ZancSðSÞnZS

.

� Children Yc, which are all model RVs and LVs “below”
S, i.e., Yc ¼ scðSÞ [ ZdescSðSÞnZS

.

� Non-descendants Yn, which are the remaining RVs,
i.e., Yn ¼ ðX [ ZSðSÞÞ n ðZp [ Yc [ ZSÞ.

Fig. 3. Augmentation of an SPN. (a): Example SPN over X ¼
fX1; X2; X3g, containing sum nodes S1, S2, S3 and S4. (b): Augmented
SPN, containing IVs corresponding to ZS1 , ZS2 , ZS3 , ZS4 , links and twin

sum nodes �S2, �S3, �S4. For nodes introduced by augmentation, smaller
circles are used.
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We will show that the parents, children and non-
descendants play the likewise role as for independencies
in BNs [14], [15], i.e., ZS is independent of Yn given Zp. We
will further show that the sum-weights of S are the con-
ditional distribution of ZS, conditioned on the event that
“Zp select a path to S”. One problem in the original LV
interpretation [1] was, that no conditional distribution of
ZS was specified for the complementary event. Here, we
will show that the twin-weights are precisely this condi-
tional distribution. This requires that the event “Zp select

a path to the twin �S” is indeed the complementary event
to “Zp select a path to S”. This is shown in following
lemma.

Lemma 1. Let S be an SPN over X, let S be a sum node in S and
Zp be the parents of ZS. For any z 2 valðZpÞ, the configured

SPN Sz contains either S or its twin �S, but not both.

We are now ready to state our theorem concerning condi-
tional independencies in augmented SPNs.

Theorem 1. Let S be an SPN over X and S0 ¼ augðSÞ. Let S be
an arbitrary sum in S and wk ¼ w

S;Ck
S
, �wk ¼ �w

S;Ck
S
,

k ¼ 1; . . . ; KS. With respect to S, let Zp be the parents, Yc be
the children and Yn be the non-descendants, respectively. Then

there exists a two-partition of valðZpÞ, i.e., ZZ; �ZZ : ZZ [ �ZZ
¼ valðZpÞ, ZZ \ �ZZ ¼ ;, such that

8z 2 ZZ : S0ðZS ¼ k;Yn; zÞ ¼ wkS0ðYn; zÞ; and (11)

8z 2 �ZZ : S0ðZS ¼ k;Yn; zÞ ¼ �wkS0ðYn; zÞ: (12)

From Theorem 1 it follows that the weights and twin-
weights of a sum node S can be interpreted as conditional
probability tables of ZS, conditioned on Zp and that ZS is con-
ditionally independent of Yn given Zp, i.e.,

S0ðZS ¼ k jYn; zÞ ¼ S0ðZS ¼ k j zÞ ¼ wk if z 2 ZZ
�wk if z 2 �ZZ:

�
(13)

Using this result, we can define a BN representing the
augmented SPN as follows: For each sum node S, connect
Zp as parents of ZS, and all RVs scðSÞ as children of ZS.
By doing this for each LV, we obtain our BN representa-
tion of the augmented SPN, serving as a useful tool to
understand SPNs in the context of probabilistic graphical
models. An example of the BN interpretation is shown in
Fig. 4.

Note that the BN representation by Zhao et al. [21] can
be recovered from the BN representation of augmented
SPNs. They proposed a BN representation of SPNs using

a bipartite structure, where an LV is a parent of a model
RV if it is contained in the scope of the corresponding
sum node. The model RVs and LVs are unconnected
among each other, respectively. When we constrain the
twin-weights to be equal to the sum-weights, we can see
in (13) that ZS becomes independent of Zp. This special
choice of twin weights effectively removes all edges
between LVs, recovering the BN structure in [21]. In the
next section, we use the augmented SPN and the BN
interpretation to derive the EM algorithm for SPNs.

3 EM ALGORITHM

The EM algorithm is a general scheme for maximum like-
lihood learning, when for some RVs complete evidence is
missing [10], [11]. Thus, augmented SPNs are amenable
for EM due to the LVs associated with sum nodes. More-
over, the twin-weights can be kept fixed, so that EM
applied to augmented SPNs actually optimizes the
weights of the original SPN. This approach was already
pointed out in [1], where it was suggested that for evi-
dence e and for any LV ZS, the marginal posteriors

should be given as pðZS ¼ k j eÞ / w
S;Ck

S

@SðeÞ
@SðeÞ , which

should be used for EM updates. These updates, however,
cannot be the correct ones, as they actually leave the
weights unchanged. Here, using augmented SPNs, we for-
mally derive the standard EM updates for sum-weights
and the input distributions, when they are chosen from
an exponential family.

3.1 Updates for Weights

Assume a dataset D ¼ feð1Þ; . . . ; eðLÞg of L i.i.d. samples,

where each eðlÞ is any combination of complete and par-
tial evidence for the model RVs X, cf. Section 1.1. Let
Z ¼ ZSðSÞ be the set of all LVs and consider an arbitrary

sum node S. Eq. (13) shows that the weights can be
interpreted as conditional probabilities in our BN inter-
pretation, where

S0ðZS ¼ k jZp ¼ zÞ ¼ wk if z 2 ZZ
�wk if z 2 �ZZ:

�
(14)

As mentioned above, the twin-weights �wk are kept fixed.
Using the well-known EM-updates in BNs over discrete
RVs [10], [15], the updates for sum-weight wk are given by
summing over the expected statistics

S0ðZS ¼ k;Zp 2 ZZ j eðlÞÞ; (15)

followed by renormalization. We make the event Zp 2 ZZ
explicit, by introducing a switching parent YS of ZS: When
the twin sum of S exists, YS assumes the two states
valðYSÞ ¼ fyS; y�Sg, where YS ¼ yS , Zp 2 ZZ and

YS ¼ y�S , Zp 2 �ZZ. When the twin sum does not exist, YS

just takes the single value valðYSÞ ¼ fySg. Clearly, when
observed, YS renders ZS independent from Zp. The switch-
ing parent can be explicitly introduced in the augmented
SPN, as depicted in Fig. 5.

Here we simply introduce two new IVs �YS¼yS and

�YS¼y�S , which switch on/off the output of S and �S,

respectively. It is easy to see that when these IV are

Fig. 4. Dependency structure of augmented SPN from Fig. 3, repre-
sented as BN.
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constantly set to 1, i.e., when YS is marginalized, the
augmented SPN performs exactly the same computations
as before. It is furthermore easy to see that completeness
and decomposability of the augmented SPN are main-
tained when the switching parent is introduced. Using
the switching parent, the required expected statistics (15)
translate to

S0ðZS ¼ k; YS ¼ yS j eðlÞÞ: (16)

To compute (16), we use the differential approach, [16], [17],
[19], cf. also Section 1.1. First note that

S0ðZS ¼ k; YS ¼ yS; e
ðlÞÞ ¼ @2S0ðeðlÞÞ

@�YS¼yS@�ZS¼k
: (17)

The first derivative is given as

@S0ðeðlÞÞ
@�YS¼yS

¼ @S0ðeðlÞÞ
@P

SðeðlÞÞ (18)

¼ @S0ðeðlÞÞ
@P

XKS

k¼1
�ZS¼k wk C

k
SðeðlÞÞ; (19)

where P is the common product parent of S and �YS¼yS in
the augmented SPN (see Fig. 5b). Differentiating (19) after
�ZS¼k yields the second derivative

@2S0ðeðlÞÞ
@�YS¼yS@�ZS¼k

¼ @S0ðeðlÞÞ
@P

wk C
k
SðeðlÞÞ; (20)

delivering the required posteriors

S0ðZS ¼ k; YS ¼ yS j eðlÞÞ ¼ 1

S0ðeðlÞÞ
@S0ðeðlÞÞ

@P
wk C

k
SðeðlÞÞ: (21)

We do not want to construct the augmented SPN explicitly,
so we express (21) in terms of the original SPN. Since all

LVs are marginalized, it holds that S0ðeðlÞÞ ¼ SðeðlÞÞ and
@S0ðeðlÞÞ

@P ¼ @SðeðlÞÞ
@S , yielding

S0ðZS ¼ k; YS ¼ yS j eðlÞÞ ¼ 1

SðeðlÞÞ
@SðeðlÞÞ

@S
wk C

k
SðeðlÞÞ; (22)

delivering the required statistics for updating the sum-
weights. We now turn to the updates of the input
distributions.

3.2 Updates for Input Distributions

For simplicity, we derive updates for univariate input dis-
tributions, i.e., for all distributions DY we have
jscðDYÞj ¼ 1. Similar updates can rather easily be derived
also for multivariate input distributions. In [17], the so-
called distribution selectors (DSs) were introduced to
derive the differential approach for generalized SPNs.
Similar as the switching parents for (twin) sum nodes, the
DSs are RVs which render the respective model RVs inde-
pendent from the remaining RVs. More formally, for each
X 2 X, let DDX be the set of all input distributions which
have scope fXg. Assume an arbitrary but fixed ordering
of DDX and let ½DX� be the index of DX in this ordering. Let
the DS WX be a discrete RV with jDDXj states. The so-called
gated SPN Sg is obtained by replacing each distribution
by the product node

DX ! DX � �WX¼½DX �: (23)

The introduced product is denoted as gate. As shown in
[17], X is rendered independent from all other RVs in the
SPN when conditioned on WX. Moreover, DX is the con-
ditional distribution of X given WX ¼ ½DX�. Therefore,
each X and its DS WX can be incorporated as a two RV
family in our BN interpretation. When each input distri-
bution DX is chosen from an exponential family with nat-
ural parameters uDX

, the M-step is given by the expected

sufficient statistics

uDX
 

P
l SgðWX ¼ k j eðlÞÞ R DXðx j eðlÞÞuDX

ðxÞdxP
l SgðWX ¼ k j eðlÞÞ ; (24)

where k ¼ ½DX�. When eðlÞ contains complete evidence x0 for
X, then the integral

R
DXðx j eðlÞÞuDX

ðxÞdx reduces to

uDX
ðx0Þ. When eðlÞ contains partial evidence X , then

Z
DXðx j eðlÞÞuDX

ðxÞdx ¼
R
X DXðxÞuDX

ðxÞdxR
X DXðxÞdx : (25)

Depending on X and the the type of DX, evaluating (25)
can be more or less demanding. A simple but practical
case is when DX is Gaussian and X is some interval, per-
mitting a closed form solution for integrating the

Gaussian’s statistics uðxÞ ¼ ðx; x2Þ, using truncated Gaus-
sians [34].

To obtain the posteriors SgðWX ¼ k j eðlÞÞ required in (24),
we again use the differential approach. Note that

SgðWX ¼ k; eðlÞÞ ¼ @SgðeðlÞÞ
@�WX¼k

¼ @SgðeðlÞÞ
@P

DXðeðlÞÞ; (26)

Fig. 5. Explicitly introducing a switching parent YS in an augmented SPN.
(a): Part of an augmented SPN containing a sum node with three chil-
dren and its twin. (b): Explicitly introduced switching parent YS using IVs
�YS¼yS and �YS¼y�S .
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where k ¼ ½DX� and P is the gate of DX , cf. (23). If we do not
want to construct the gated SPN explicitly, we can use the

identity @SgðeðlÞÞ
@P ¼ @SðeðlÞÞ

@DX
. Thus the required posteriors are

given as

SgðWX ¼ k j eðlÞÞ ¼ 1

SðeðlÞÞ
@SðeðlÞÞ
@DX

DXðeðlÞÞ: (27)

The EM algorithm for SPNs, both for sum-weights and
input distributions, is summarized in Fig. 6. In Section 5.1
we empirically verify our derivation of EM and show that
standard EM successfully trains SPNs when a suitable
structure is at hand.

Note that recently Zhao and Poupart [35] derived a con-
cave-convex procedure (CCCP) which yield the same sum-
weight updates as the EM algorithm presented here and in
[19]. This result is surprising, as EM and CCCP are rather
different approaches in general.

4 MOST PROBABLE EXPLANATION

In [1], [4], [7], SPNs were applied for reconstructing data
using MPE inference. Given some distribution p over X and
evidence e, MPE can be formalized as finding argmax

x2e
pðxÞ;

where we assume that p actually has a maximum in e.

MPE is a special case of MAP, defined as finding

argmax
y2e½Y�

Z
e½Z�

pðy; zÞ dz; for some two-partition of X, i.e.,

X ¼ Y [ Z;Y \ Z ¼ ;. Both MPE and MAP are generally
NP-hard in BNs [36], [37], [38], and MAP is inherently
harder than MPE [37], [38]. Using the result in [18], it fol-
lows that MAP inference is NP-hard also in SPNs. In partic-
ular, Theorem 5 in [18] shows that the decision version of
MAP is NP-complete for a Naive Bayes model, when the
class variable is marginalized. Naive Bayes is represented
by the augmentation of an SPN with a single sum node, the
LV representing the class variable. Therefore, MAP in SPNs
is generally NP-hard. Since MAP in the augmented SPN
representing the Naive Bayes model corresponds to MPE
inference in the original SPN, i.e., a mixture model, it fol-
lows that also MPE inference is generally NP-hard in SPNs.
A proof tailored to SPNs can be found in [19].

However, when considering the the sub-class of selective
SPNs (cf. Section 1.1 and [20]), an MPE solution can be
obtained using a Viterbi-style backtracking algorithm in
max-product networks (MPN).

Definition 5 (Max-Product Network). Let S be an SPN over

X. We define the max-product network Ŝ, by replacing each dis-
tribution node D by amaximizing distribution node

D̂ : HscðDÞ 7!½0;1�; D̂ðYYÞ :¼ max
y2YY

DðyÞ; (28)

and each sum node S by a max node

Ŝ :¼ max
Ĉ2chðŜÞ

wŜ;ĈĈ: (29)

A product node P in S corresponds to a product node P̂ in Ŝ.
Theorem 2. Let S be a selective SPN over X and let Ŝ the corre-

sponding MPN. Let N be some node in S and N̂ its correspond-

ing node in Ŝ. Then, for every XX 2 HscðNÞ we have

N̂ðXXÞ ¼ max
x2XX

NðxÞ.

Theorem 2 shows that the MPN maximizes the probabil-
ity in its corresponding selective SPN. The proof (see appen-
dix) also shows how to actually find a maximizing
assignment. For a product, a maximizing assignment is
given by combining the maximizing assignments of its chil-
dren. For a sum, a maximizing assignment is given by the
maximizing assignment of a single child, whose weighted
maximum is maximal among all children. Here the child-
ren’s maxima are readily given by the upwards pass in the
MPN. Thus, finding a maximizing assignment of any node
in an selective SPN recursively reduces to finding maximiz-
ing assignments for the children of this node; this can be
accomplished by a Viterbi-like backtracking procedure.
This algorithm, denoted as MPESELECTIVE, is shown in
Fig. 7. Here Q denotes a queue of nodes, where Q2N and
N2Q denote the en-queue and de-queue operations,
respectively. Note that Theorem 2 has already been derived
for a special case, namely for arithmetic circuits represent-
ing network polynomials of BNs over discrete RVs [39].

A direct corollary of Theorem 2 is that MPE inference is
tractable in augmented SPNs, since augmented SPNs are

Fig. 6. Pseudo-code for EM algorithm in SPNs.
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selective SPNs over X and Z. This can easily be seen in AUG-
MENTSPN, as for any z and any sum S, exactly one IV of

ZS is set to 1, causing that at most one child of S (or �S) can
be non-zero. Therefore, we can use MPESELECTIVE in aug-
mented SPNs, in order to find an MPE solution over both
model RVs and LVs. Note that an MPE solution for the aug-
mented SPN does in general not correspond to an MPE solu-
tion for the original SPN, when discarding the states of the
LVs. However, this procedure is a frequently used approxi-
mation for models where MPE is tractable for both model
RVs and LVs, but not for model RVs alone.

In [1], MPESELECTIVE was applied to original SPNs, not
to augmented SPNs, but also with the goal to recover an MPE
solution over both model RVs and LVs. The states of the
LVs were assigned during max-backtracking, as sum-chil-
dren and LV states are in one-to-one correspondence. The
states of the LVs whose sums are not visited during back-
tracking, are not assigned—again, this causes some confu-
sion, since some LVs appear to be undefined in some
contexts, cf. the illustrations in Section 2. However, since
this algorithm was used as approximation for MPE over
model RVs by discarding the states of the LVs, this situation
was not paid any further attention.

Nevertheless, as we show here, applying MPESELEC-
TIVE to original (non-selective) SPNs effectively
“simulates” MPESELECTIVE in the corresponding aug-
mented SPN. Thereby, however, deterministic twin-weights
are implicitly assumed, i.e., twin-weights which are 0,
except a single 1. To see this, let us modify MPESELECTIVE,
such that it can be applied to an original SPN, but returning
an MPE solution for the corresponding augmented SPN.
First note that in the augmented MPN, every twin node sim-
ply outputs the maximal twin-weight among all children
whose states are contained in evidence e. For twin node �S,
let this maximal weight be denoted by ŵ�S. The effect of the
twin nodes can now be simulated in the original SPN by
replacing each weight wS;C in the original SPN by
wS;C � ~wS;C. Here ~wS;C is a correction factor and given as
~wS;C ¼

Q
�S ŵ�S, where the product runs over all twins of

those sums for which S is a conditioning sum. By using

these corrected weights, each max node in the correspond-
ing MPN gets the same input as in the MPN of the aug-
mented SPN, i.e., the twin nodes are simulated. We can
identify the maximizing states of those LVs whose sums are
visited during backtracking, as in [1]. The states of the sums
which are not visited are given by the child which corre-
spond to the maximal twin-weight ŵ�S. Pseudo-code for this
somewhat technical modification of MPESELECTIVE can
be found in [19].

We see that the algorithm used in [1] is essentially equiva-
lent to MPESELECTIVE in augmented SPNs when ~wS;C ¼ 1
for all sum nodes, which implies that the twin-weights are
deterministic. Therefore, although the LV model in [1] is not
completely specified and it was not shown that the Viterbi-
like algorithm recovers an MPE solution, it nevertheless cor-
responds toMPE inference in the augmented SPN for special
twin-weights, i.e., deterministic weights.

However, using deterministic twin-weights is a rather
unnatural choice, since this prefers one arbitrary state over
the others in cases where this LV is actually “rendered irrel-
evant”. In this case, MPE inference also has a bias towards
less structured sub-models, which we call low-depth bias.
This is illustrated in Fig. 8, which shows an SPN over three
RVs X1; X2; X3. The augmented SPN has two twin sum

nodes �S2 and �S3, corresponding to S2 and S3, respectively.
When their twin-weights are deterministic, the selection of
the state of ZS1 is biased towards the state corresponding to

P1, which is a distribution assuming independence among
X1, X2 and X3. This comes from the fact, that the values of

P2 and P3 are dampened by the weights of S2 and S3,
respectively, which are generally smaller than 1. Therefore,
when using deterministic weights for twin sum nodes, we
introduce a bias towards the selection of sub-SPNs that are
less deep and less structured. Using uniform weights for

twin sum nodes is somewhat “fairer”, since in this case P1

gets dampened by �S2 and �S3, P2 by S2 and �S3, and P3 by �S2

and S3. Uniform weights are to some extend the opposite
choice to deterministic twin-weights: the former represent

Fig. 7. Pseudo-code for MPE inference in selective SPNs.

Fig. 8. Illustration of the low-depth bias using an SPN over RVs
fX1; X2; X3g. The structure introduced by augmentation is depicted by
small nodes and edges. When deterministic twin-weights are used, the

state of ZS1 corresponding to P1 is preferred over P2 and P3, since their

probabilities are “dampened” by the weights of S2 and S3, respectively.
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the strongest possible dampening via twin-weights and
therefore actually penalize less structured distributions.
Investigating these effects further is subject to future work.

5 EXPERIMENTS

5.1 Experiments with EM Algorithm

In [1], [40] SPNs were applied to image data, where a
generic architecture reminiscent to convolutional neural
networks was proposed. We refer to this architecture as PD
architecture. Standard EM was not used in experiments for
two reasons: First, explicitly constructing the proposed
structure and to train it with standard EM is hardly possible
with current hardware, since the number of nodes grows

Oðl3Þ, where l is the square-length of the modeled image
domain in pixels [19]. Instead, a sparse hard EM algorithm
was used, which virtualizes the PD structure, i.e., sum and
products are generated on the fly (see [40] for details). Sec-
ond, using standard EM seemed unsuited to train large and
dense SPNs, either because it is trapped in local optima or
due to the gradient vanishing phenomenon.

In our experiments,2 we investigated three questions:

1) Is our derivation of EM correct, both for complete
and missing data?

2) Can the result of hard EM [1] be improved by stan-
dard EM?

3) Given a suited sparse structure, does EM yield a
good solution for parameters?

Question 1) is important since the original derivation
contained an error. Questions 2) and 3) are concerned with
the general applicability of EM for training SPN.

We used the same datasets and SPN structures as in [1],
obtainable from [40]. The datasets comprise Caltech-101
(inclusive background class) [43] and the ORL face images
[44], i.e., in total 103 datasets. The input distributions in
these SPNs are single-dimensional Gaussians (four for each
pixel), where means were set to the averages of the four-
quantiles and variances were constantly 1. We ran EM
(Fig. 6) for 30 iterations, with various settings:

� Update any combination of the three different types
of parameters, i.e., sum-weights, Gaussian means
and Gaussian variances. Each set of parameters
types is encoded by a string of letters W (weights), M
(means) and V (variances). (seven combinations)

� Use original parameters for initialization, obtained
from [40], or use three random initialization, where
sum-weights are drawn from a Dirichlet distribution
with uniform a ¼ 1 hyper-parameter (i.e., uniform
distribution on the standard simplex), Gaussian
means are uniformly drawn from ½�1; 1� and Gauss-
ian variances from ½0:01; 1�. Only parameters which
are actually updated are initialized randomly; other-
wise the original parameters [1] are used and kept
fixed. (four combinations)

� Use complete data or missing training data, ran-
domly discarding 33 or 66 percent of the observa-
tions, independently for each sample. (three
combinations)

Thus, in total we ran EM 7� 4� 3� 103 ¼ 8; 652 times,
yielding 259; 560 EM-iterations. To avoid pathological solu-
tions we used a lower bound of 0.01 for the Gaussian var-
iances. In no iteration we observed a decreasing likelihood
on the training set,3 i.e., our derived EM algorithm showed
monotonicity in our experiments. Moreover, as can be seen
in Fig. 9a, the training log-likelihood actually increased over
iterations. The curves for the missing data scenarios are sim-
ilar. This gives affirmative evidence for question 1).

Fig. 9b shows the log-likelihood on the test set. Note that
optimizing the parameter sets V and WV led to severe over-
fitting: while achieving extremely high likelihoods on the
training set, they achieved extremely poor likelihoods on
the test set. Also the parameter sets MV and WMV tend to
overfit, although not as strong as V andWV.

Regarding question 2), we closer inspected the test log-
likelihood when the original parameters are used for ini-
tialization, i.e., when the parameters obtained by [40] are
post-trained using EM. Table 1 summarizes the results.
When parameter sets not including Gaussian variances are
optimized (i.e., W, M, and WM), the test log-likelihood
increased most of the time, i.e., for 83.5 percent (M) to up to
92.23 percent (WM) of the datasets. Furthermore, having
oracle knowledge about the ideal number of iterations (i.e.,
column best), the average log-likelihood increased by 0.58
percent (M) to up to 1.39 percent (WM) relative to the origi-
nal parameters. Most of this improvement happens in the
first iteration, yielding 0.52 percent (M) up to 1.05 percent

Fig. 9. Normalized log-likelihood over EM-iterations, averaged over all
103 datasets and three random initializations. (a): Training set. (b): Test
set; Curves for V and WV are outside the displayed region, for better
readability of the other curves. They start at approximately �8; 000 nats
and decreased to approximately �11; 000 nats.

2. Code available under [41], and[42].
3. Except for tiny occasional decreases (always < 10�8) after EM

had converged, which can be attributed to numerical artifacts.
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(WM) improvement. These results indicate that the parame-
ters obtained by [40] slightly underfit the given datasets.
Similar as in Fig. 9, we see that parameter sets including the
Gaussian variances (V, WV, MV, WMV) are prone to over-
fitting: more than 60 percent of the datasets decreased their
test log-likelihood during EM. However, in the remaining
40 percent of the datasets, the test log-likelihood could be
improved substantially by at least 14 percent on average.

We now turn to question 3). As pointed out above, a
hard EM variant was used in [1], [40] which at the same
time finds the effective SPN structure. Optimizing W
using the three random initialization amounts to using
the oracle structure obtained by [1], [40], discarding the
learned parameters. For each dataset we selected the ran-
dom initialization which yielded the highest likelihood
on the training set in iteration 30. For this run, we
compared the log-likelihoods with the log-likelihoods
obtained by the original parameters. The results are sum-
marized in Table 2.

We see that on all data sets the log-likelihood on the
training set is larger than for the original parameters. This is
also the case for each individual random start (not just best
one)—every random restart always yielded a higher train-
ing log-likelihood than the original parameters. Thus, by
considering the actual optimization objective—the likeli-
hood on the training set—EM successfully trains SPNs,
given a suited oracle structure. Furthermore, as can be seen
in Table 2, EM is also not more prone to overfitting than the
algorithm in [1]: on 67.96 percent of the datasets, EM deliv-
ered a higher test log-likelihood than the original parame-
ters, when using oracle knowledge about the ideal number
of iterations (column best).

5.2 Experiments with MPE Inference

To illustrate correctness of MPESELECTIVE (Fig. 7) when
applied to augmented SPNs, we generated SPNs using the
PD architecture [1], arranging 4, 9 and 16 binary RVs in a
2� 2, 3� 3 and 4� 4 grid, respectively. As inputs we used
two indicator variables for each RV representing their two
states. The sum-weights were drawn from a Dirichlet distri-
bution with uniform a-parameters, where a 2 f0:5; 1; 2g.
For all networks we drew 100 independent parameters sets.
We ran MPESELECTIVE on the augmented SPN, once
equipped with uniform twin-weights and once with deter-
ministic twin-weights. For uniform twin-weights, we
denote the result obtained by MPESELECTIVE as MPEUNI.
For deterministic twin-weights, we denote the result as
MPEDET. As described in Section 4, MPEDET corresponds
essentially to the result when MPESELECTIVE is applied to
the original SPN [1]. For each assignment, the log-
likelihoods were evaluated in the augmented SPN with
deterministic weights, the augmented SPN with uniform
weights and in the original SPN (discarding the states of the
LVs). Additionally, we found ground truth MPE assign-
ments in the two augmented SPNs and the original SPN
using exhaustive enumeration. The results relative to the
ground truth MPE solutions are shown in Tables 3, 4, and 5.
As can be seen, MPEUNI always finds an MPE solution in
the augmented SPN with uniform twin-weights and

TABLE 1
Changes in Test Log-Likelihoods When Original

Parameters Are Post-Trained Using EM

after 1st iteration best

% inc. % all. % pos. % neg. % all % pos. % neg.

W 91.26 0.55 0.61 �0.03 0.87 0.96 �0.03
M 83.50 0.52 0.67 �0.21 0.58 0.73 �0.21
WM 92.23 1.06 1.18 �0.30 1.39 1.53 �0.30
V 39.81 �13.47 14.44 �31.93 -13.45 14.51 �31.93
WV 39.81 �13.41 14.79 �32.06 �13.33 14.98 �32.06
MV 38.83 �17.24 14.27 �37.25 �17.21 14.35 �37.25
WMV 38.83 �17.18 14.63 �37.37 �17.12 14.78 �37.37
% inc.: percentage of datasets where log-likelihood increased in the first iteration.
% all, % pos., % neg.: relative change of log-likelihood, averaged over all datasets,
datasets with positive change, datasets with negative change, respectively.

TABLE 2
Log-Likelihoods When Sum-Weights (W) Are Trained,

Using Random Initialization

after 1st iteration best

%> % all. % pos. % neg. %> % all % pos. % neg.

train 70.87 0.68 1.38 �1.00 100.00 3.97 3.97 -
test 41.75 �0.11 0.40 �0.48 67.96 0.46 0.76 �0.18
% > : percentage of data sets, where log-likelihood is larger than for original
parameters.% all, % pos.,% neg.: relative log-likelihood w.r.t. original param-
eters, for all data sets, data sets where relative log-likelihood is positive/nega-
tive, respectively.

TABLE 3
Differences of Log-Likelihood to the Ground-Truth
MPE Solution Found by Exhaustive Enumeration,

Averaged over 100 Independent Draws
of Sum-Weights

MPEDET MPEUNI

a ¼ 0:5 0.00 (100) 0.00 (100)
4 RVs a ¼ 1:0 0.00 (100) 0.00 (100)

a ¼ 2:0 0.00 (100) 0.00 (100)

a ¼ 0:5 �0.10 (70) 0.00 (100)
9 RVs a ¼ 1:0 �0.10 (68) 0.00 (100)

a ¼ 2:0 �0.11 (62) 0.00 (100)

a ¼ 0:5 �0.63 (19) 0.00 (100)
16 RVs a ¼ 1:0 �0.85 (12) 0.00 (100)

a ¼ 2:0 �0.82 (12) 0.00 (100)

Numbers in parentheses are the number of times where an
MPE solution was found. Results for augmented SPNs
using uniform twin-weights.

TABLE 4
Similar as in Table 3

MPEDET MPEUNI

a ¼ 0:5 0.00 (100) 0.00 (100)
4 RVs a ¼ 1:0 0.00 (100) 0.00 (100)

a ¼ 2:0 0.00 (100) 0.00 (100)

a ¼ 0:5 0.00 (100) �0.10 (70)
9 RVs a ¼ 1:0 0.00 (100) �0.12 (68)

a ¼ 2:0 0.00 (100) �0.15 (62)
a ¼ 0:5 0.00 (100) �0.89 (19)

16 RVs a ¼ 1:0 0.00 (100) �1.11 (12)
a ¼ 2:0 0.00 (100) �1.01 (12)

Results for augmented SPNs using deterministic twin-weights.
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MPEDET always finds an MPE solution in augmented SPNs
with deterministic twin-weights. This gives empirical evi-
dence for the correctness of MPESELECTIVE for MPE infer-
ence in augmented SPNs.

Furthermore, we wanted to investigate the quality of
both algorithms when serving as approximation for MPE
inference in the original SPNs. For the SPNs considered
here, MPEDET delivered on average slightly better approxi-
mations than MPEUNI. However, these results should be
interpreted with caution, due to the rather similar nature of
the distributions considered here. Closer investigating
approximate MPE for (original) SPNs is an interesting direc-
tion and will be subject to future research.

6 CONCLUSION

In this paper we revisited the interpretation of SPNs as hier-
archically structured LV models. We pointed out that the
original approach to explicitly incorporate LVs does not
produce a sound probabilistic model. As a remedy we pro-
posed the augmentation of SPNs and proved its soundness
as LV model. Within augmented SPNs, we investigated the
independency structure represented as BN, and showed
that the sum-weights can be interpreted as structured CPTs
within this BN. Using augmented SPNs, we derived the EM
algorithm for sum-weights and single-dimensional input
distributions from exponential families. While MPE-infer-
ence is generally NP-hard in SPNs, we showed that a
Viterbi-style backtracking algorithm recovers an MPE solu-
tion in selective SPNs, and in particular in augmented
SPNs. In experiments we give empirical evidence support-
ing our theoretical results. We furthermore showed that
standard EM can successfully train generative SPNs, given
a suitable network structure at hand.

APPENDIX A
PROOFS

A.1 Proof of Proposition 1

If S0 is a complete and decomposable SPN over X [ Z,

then S0ðXÞ � SðXÞ is immediate: Computing S0ðxÞ for any
x 2 valðXÞ is done by marginalizing Z, i.e., setting all
�ZS¼k ¼ 1. In this case, it is easy to see that none of the

structural changes modifies the output of the SPN, i.e.,

the outputs of S and S0 agree for each x, i.e.,

S0ðXÞ � SðXÞ.

It remains to show that S0 is complete and decomposable,
and that the root’s scope is X [ Z. Steps 4–11 in AUG-
MENTSPN introduce the links, representing “private copies”
of the sum’s children, and clearly leave the SPN complete and
decomposable. In steps 13–15 the LV ZS is introduced in the
scope of S and thus in the scope of the root. Since this is done
for all sum nodes, all Z are introduced in the root’s scope.
Steps 13–15 cannot render products non-decomposable, since
this would imply that S is reachable by two distinct children
of this product—a contradiction to the fact that the SPN was
decomposable before. However, as shown in Fig. 1, steps 13–
15 can render ancestor sums incomplete. These are treated in

steps 17–23. The twin sum �S, if introduced, is clearly complete
and has scope fZg. Furthermore, incompleteness of any
conditioning sum Sc can only be caused by links not having
ZS in their scope. The scope of these links is augmented byZS

in step 21. These links clearly remain decomposable and
moreover,Sc is rendered complete now.

A.2 Proof of Proposition 2

ad 1.) When deleting the IVs and their links, the scopes of
any (twin) sum remains the same, since it is complete and is
left with one child. Thus also the scope of any ancestor
remains the same.

ad 2.) The graph of Sy is rooted and acyclic, since the root
cannot be a link and deleting nodes and edges cannot intro-

duce cycles. When an IV �Y¼y is deleted, also the link Py
SY

is

deleted, so no internal nodes are left as leaves. The roots in

Sy and S0 are the same, and by point 1., X [ Y [ Z is the
scope of the root. Sy is also complete and decomposable:
Whenever an IV and its link are deleted, the corresponding
sum node and twin sum node remain trivially complete,
since they are left with a single child. Furthermore, com-

pleteness and decomposability of any ancestor of SY or �SY

is left intact, since neither SY nor �SY changes its scope.
ad 3.) According to point 1., the scope of N is the same in

S0 and Sy. Since scðNÞ \ Y ¼ ;, the disconnected IVs and
deleted links are no descendants of N, i.e., no descendants
of N are disconnected during configuration. Since N is pres-
ent in Sy, it must still be reachable from the root. Therefore

also all descendants of N are reachable, i.e., SyN ¼ S0N.
ad 4.) When the input is fixed to x; z; y, all IVs and links

which are deleted from the configured SPN Sy evaluate to

zero in the augmented SPN S0. The outputs of all sums and

twin sums are therefore the same in S0 and Sy. Therefore, also
the output of all other nodes remains the same. This includes

the root and therefore Syðx; z; yÞ ¼ S0ðx; z; yÞ, for any x; z.
When y0 6¼ y, then there must be a Y 2 Y such that the IV

�Y¼y0½Y � has been deleted, i.e., �Y¼y0 ½Y � =2 descðNÞ, where N is

the root of Sy. Using Lemma 1 in [17], it follows that
Syðx; z; y0Þ ¼ 0.

A.3 Proof of Lemma 1

Sz must contain either S or �S, since ZS is in the scope of the
root by Proposition 2. To show that not both are in Sz, let PPk

denote the set of paths of length k from the root to any nodeN
withZS 2 scðNÞ. For k > 1, all paths inPPk can be constructed
by extending each path in PPk�1 with each child of this path’s

TABLE 5
Similar as in Table 3

MPEDET MPEUNI

a ¼ 0:5 �0.06 (72) �0.06 (72)
4 RVs a ¼ 1:0 �0.09 (59) �0.09 (59)

a ¼ 2:0 �0.10 (52) �0.10 (52)
a ¼ 0:5 �0.31 (32) �0.38 (27)

9 RVs a ¼ 1:0 �0.47 (12) �0.48 (12)
a ¼ 2:0 �0.40 (6) �0.37 (7)
a ¼ 0:5 �0.76 (5) �1.04 (4)

16 RVs a ¼ 1:0 �0.76 (3) �1.18 (2)
a ¼ 2:0 �0.67 (1) �0.92 (0)

Results for original SPNs.

PEHARZ ET AL.: ON THE LATENT VARIABLE INTERPRETATION IN SUM-PRODUCT NETWORKS 2041



last node, if it has ZS in its scope. LetK be the smallest num-

ber such that there is a path inPPk containingS or �S.
We show by induction, that jPPkj ¼ 1, k ¼ 1; . . . ; K. Note

that PP1 contains a single path ðNÞ, where N is the root, there-
fore the induction basis holds.

For the induction step, we show that given jPPk�1j ¼ 1,
then also jPPkj ¼ 1. Let ðN1; . . . ;Nk�1Þ be the single path in
PPk�1. If Nk�1 is a product node, then it has a single child C
with ZS 2 scðCÞ, due to decomposability. If Nk�1 is a sum
node, then it must be in ancSðSÞ n fSg, and therefore has
a single child in the configured SPN. Therefore, there is a
single way to extend the path and therefore jPPkj ¼ 1;

k ¼ 1; . . . ; K. This single path does either lead to S or �S.

Since S =2 descð�SÞ and �S =2 descðSÞ, Sz contains a single
path to one of them, but not to both.

A.4 Proof of Theorem 1

By Lemma 1, for each z 2 valðZpÞ the configured SPN Sz
contains either S or �S, but not both. Let ZZ be the subset of

valðZpÞ such that S is in Sz and �ZZ be the subset of valðZpÞ
such that �S is in Sz.

Fix ZS ¼ k and z 2 ZZ. We want to compute

S0ðZS ¼ k;Yn; zÞ, i.e., we marginalize Yc. According to Prop-
osition 2 (4.), this equals SzðZS ¼ k;Yn; zÞ. According to

Proposition 2 (3.), the sub-SPN rooted at former child Ck
S is

the same in S0 and Sz. Since S0 is locally normalized, this
sub-SPN is also locally normalized in Sz. Since the scope of

the former child Ck
S is a sub-set of Yc, which is marginalized,

and �ZS¼k ¼ 1, the link Pk
S outputs 1. Since �ZS¼k0 ¼ 0 for

k0 6¼ k, the sum S outputs wk.
Now consider the set of nodes in Sz which have ZS in

their scope, not including �ZS¼k and Pk
S. Clearly, since

�S is

not in Sz, this set must be ancðSÞ. Let N1; . . . ;NL be a topo-
logically ordered list of ancðSÞ, where S is N1 and NL is the
root. Let Yn;l :¼ scðNlÞ \ Yn and Zl :¼ scðNlÞ \ Zp. We show

by induction that for l ¼ 1; . . . ; L, we have

NlðZS ¼ k;Yn;l; z½Zl�Þ ¼ wk NlðYn;l; z½Zl�Þ: (30)

Since Yn;1 ¼ ; and Z1 ¼ ;, and N1ðZS ¼ kÞ ¼ wk, the induc-
tion basis holds. Assume that (30) holds for all N1; . . . ;Nl�1.
If Nl is a sum, we have due to completeness

NlðZS ¼ k;Yn;l; z½Zl�Þ ¼
X

C2chðNlÞ
wNl;C wk CðYn;l; z½Zl�Þ (31)

¼ wk NlðYn;l; z½Zl�Þ; (32)

i.e., the induction step holds for sums. When Nl is a product,
due to decomposability, it must have a single child with ZS

in its scope. Hence, this child must be a node Nm 2 ancðSÞ
We have

NlðZS ¼ k;Yn;l; z½Zl�Þ (33)

¼ wk NmðYn;m; z½Zm�Þ
Y

C2chðNlÞnNm

CðYn;l \ scðCÞÞ (34)

¼ wk NlðYn;l; z½Zl�Þ; (35)

i.e., the induction step holds for products. Therefore, by
induction, (30) also holds for the root, and (11) follows.

Now we show (12). If the twin sum �S does not exist, �ZZ is
empty and (12) holds trivially. Otherwise, fix the input to

ZS ¼ k and z 2 �ZZ. Clearly, �S outputs �wk and (12) can be
shown in similar way as (11).

A.5 Proof of Theorem 2

We prove the theorem using an inductive argument. The
theorem clearly holds for any D̂ by definition. Consider a

product P̂ and assume the theorem holds for all chðP̂Þ. Then
the theorem also holds for P̂, since

P̂ðXXÞ ¼
Y

C2chðP̂Þ
max
x2XX

CðxÞ ¼ max
x2XX

Y
C2chðP̂Þ

CðxÞ ¼ max
x2XX

PðxÞ;

(36)

where the max and the product can be switched due to
decomposability.

Now consider a max node Ŝ and its corresponding sum
node S. Let the support of an SPN-node N be the set
supN :¼ fx jNðxÞ > 0g. Since S is selective, its support is
partitioned by the supports of its children, i.e.,

supS ¼
S

C2chðSÞsupC, supC0
T
supC00 ¼ ;, for C0 6¼ C00.

Assuming that the theorem holds for all chðŜÞ, we have

ŜðXXÞ ¼ max
C2chðSÞ

wS;C max
x2XX

CðxÞ (37)

¼ max
C2chðSÞ

wS;C max
x2supC\XX

CðxÞ (38)

¼ max
C2chðSÞ

max
x2supC\XX

wS;C CðxÞ (39)

¼ max
x2supS\XX

SðxÞ ¼ max
x2XX

SðxÞ: (40)

In (38) we have a slight abuse of notation, as we actually
should use suprema over the sets supC \ XX and define the
supremum over the empty set as 0. In (39) we used the fact
that the support of the sum node is partitioned by the sup-
ports of its children and that for selective sums we have
S ¼ wS;C Cwhenever we have single child with C > 0.

We see that the induction step also holds for Ŝ. There-
fore, the theorem holds for all nodes.
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