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Abstract—Parallel magnetic resonance imaging (pMRI) techniques have gained a great importance both in research and clinical 
communities recently since they considerably accelerate the ¡mage acquisition process. However, the ¡mage reconstruction algorithms 
needed to correct the subsampling artifacts affect the nature of noise, i.e., it becomes non-stationary. Some methods have been 
proposed in the literature dealing with the non-stationary noise in pMRI. However, their performance depends on information not 
usually available such as multiple acquisitions, receiver noise matrices, sensitivity coil profiles, reconstruction coefficients, or even 
biophysical models of the data. Besides, some methods show an undesirable granular pattern on the estimates as a side effect of local 
estimation. Finally, some methods make strong assumptions that just hold in the case of high signal-to-noise ratio (SNR), which limits 
their usability in real scenarios. We propose a new automatic noise estimation technique for non-stationary Rician noise that 
overcomes the aforementioned drawbacks. Its effectiveness is due to the derivation of a variance-stabilizing transformation designed 
to deal with any SNR. The method was compared to the main state-of-the-art methods in synthetic and real scenarios. Numerical 
results confirm the robustness of the method and its better performance for the whole range of SNRs. 

Index Terms—MRI, parallel MRI, spatially variant noise, noise estimation, variance-stabilizing transformation, Rician distribution 

1 INTRODUCTION 

THE Johnson-Nyquist (thermal) noise, coming from the 
stochastic motion of free electrons in a receiver coil, is 

one of the most dominant sources of deterioration in mag­
netic resonance imaging (MRI). Apart from the image qual­
ity impoverishment, this noise also affects further stages of 
the data processing pipeline, such as image segmentation or 
registration procedures [1], accuracy of tensor estimation in 
diffusion tensor imaging (DTI) [2], and fiber tracts recon­
structions in diffusion tensor tractography [3], and fMRI 
analysis [4]. Moreover, noisy data might seriously affect the 
diagnostic performance of the image-derived metrics like 
signal-to-noise ratio (SNR) and contrast-to-noise ratio 
(CNR), or the evaluation of tumor tissues [5]. Consequently, 
an accurate modeling of the noise statistics is the keystone 
for better processing and interpretation of MRI data. 

The noise distribution of magnitude MRI depends on the 
configuration of the acquisition system and the image 

reconstruction algorithm [6]. In single-coil systems, the 
noise component is assumed to be complex additive white 
Gaussian noise (AWGN) in the k—space domain with con­
stant variance over the whole field of view (FOV) [7]. This 
variance is proportional to the resistive impedance of the 
receiver coil and it is pro rata transposed to the spatial 
domain (x—space) of the image by means of the inverse dis­
crete Fourier transform (DFT). After the reconstruction pro­
cess, the envelope (magnitude) of the complex signal 
follows a stationary Rician distribution [8], though in the 
background areas it reduces to a stationary Rayleigh due to 
the lack of water proton density. 

Over the last decade, the use of phased array coil to 
acquire MRI data is systematically displacing single-coil 
devices. Multiple coil data requires an image reconstruction 
algorithm to combine the complex signals from each individ­
ual coil into a single composite image. Depending on the 
assumptions about the coil configuration and image model, 
different algorithms can be applied for this reconstruction, 
like those based on a spatial-matched-filter (SMF) [9] and on 
the sums of squares (SoS) [10]. In the first case, the image can 
be considered as non-stationary Rician, while in the second, 
it follows a noncentral chi (nc-x) distribution [10]. However, 
if the correlation between coils is taken into account, the nc-x 
assumption becomes just an approximation of the real 
distribution, and effective values must be considered [11]. 

If the acquisition is accelerated via a subsampling of the 
k—space, the aliasing artifacts must be corrected using 
image reconstruction algorithms, known as parallel MRI 
(pMRI). Many different methods have been defined to 
reconstruct the final image from subsampled versions of the 



signals in each coil, being SENSitivity Encoding (SENSE) 
[12] and GeneRalized Autocalibrating Partially Parallel 
Acquisition (GRAPPA) [13] dominant in commercial scan­
ners. However, new reconstruction methods and modifica­
tions of the existing ones are continuously proposed. The 
use of these correction algorithms changes the underlying 
statistical model of the data. For SENSE imaging, the magni­
tude MRI signal is defined as non-stationary Rician [14] and 
for GRAPPA it can also be approximated by a non-station­
ary nc-x distribution with an increased effective variance of 
noise and decreased effective number of coils [15]. 

Although numerous dedicated noise estimation schemes 
in MRI were proposed in the literature (an extensive review 
can be found in [16]), a substantial majority of them require 
multiple acquisitions, background identification or fore­
ground extraction. Even in the case of automatic estimation 
based on a single image, like [16], [17], methods just esti­
mate a single value for the variance of noise without consid­
ering its local variation, making them useless for spatially 
variant noisy patterns, such it is the case for modern acqui­
sition systems. 

Some computational techniques dealing with non-statio-
narity have been suggested in the literature. However, in 
most of the cases, their accuracy is limited due to the granu­
larity caused by local estimation. Moreover, some of them 
require further information which is not always available in 
conventional in vivo examinations: receiver noise matrix 
[18], sensitivity coil profiles in SENSE and reconstruction 
coefficients for GRAPPA [19], biophysical model of the data 
[20] or repeated acquisitions [5], [20], [21], [22], [23]. 

In this paper, we propose an automatic method to esti­
mate the spatially variant Rician noise from MR imaging. 
This kind of noise is particularly interesting since we can 
find it in SENSE acquisitions and in multiple coil recon­
structions that use SMF. Compared to the state of the art, 
the proposed method shows the following advantages: 

1) It does not depend on repeated acquisitions a n d / o r a 
biophysical model of the data. 

2) Any additional information like sensitivity profiles 
or noise matrices in the receiver coils are also 
unnecessary. 

3) The noise map is estimated using only a single image 
without background or foreground region extraction. 

4) It supports different contrast type examinations: 
Tí -weighted, T2 -weighted and PD-weighted MR data. 

5) The method is not affected by granular effects due to 
local estimation. 

6) The method is robust for the whole range of SNRs 
(from very low SNRs—non-stationary Rayleigh—to 
very high SNRs, non-stationary Gaussian noise). 

The proposed method is developed by defining a suit­
able variance-stabilizing transformation (VST). This tech­
nique allows transforming the magnitude image from a 
non-stationary variate to a stationary variate. The proposed 
transformation provides a proper stabilization behavior 
throughout the whole range of SNRs and it is designed to 
provide Gaussian-like distributed varia tes. Afterward, the 
spatial variability of noise is retrieved by a homomorphic 
filtering. The proposal was compared to the most relevant 
state-of-the-art methods for non-stationary Rician noise esti­
mation showing a remarkably better behavior. 

2 BACKGROUND 

2.1 Non-Stationary Noise Estimation in MRI 
Traditionally, noise estimators proposed in the literature 
determine a single value of a for the whole image (e.g., [16], 
[44]). However, an increasing number of methods attempt to 
estimate non-homogeneous maps of noise in several fields 
related to imaging not strictly confined to the MRI context. 

One of the first attempts for spatially variable noise esti­
mation in Rician distributed data was proposed by Marzetta 
[24] and adapted by DeVore et al. [25] in the context of sin­
gle-polarization synthetic aperture radar (SAR) images. 
Authors propose an expectation-maximization (EM) itera­
tive algorithm to find maximum likelihood (ML) estimates 
of the parameters of a Rician distribution. To that end, mul­
tiple samples of the receiving signal are necessary. 

In a more general context, Goossens et al. proposed in 
[26] a method to estimate the spatially variant map of noise 
in images assuming they are corrupted by a non-stationary 
AWGN process. The wavelet transform was used to sepa­
rate the signal and the noise assuming that the high-high 
subband is strictly noise. 

In the MRI field, the pioneers of spatially variable noise 
estimation were Samsonov and Johnson [18], defining a 
method to calculate the noise map from the receiver coil 
noise matrix, which, in fact, is not always available in a clini­
cal routine. Delakis et al. [27] proposed a method to estimate 
spatially variant noise by suppressing the signal component 
without the need of extra information. To that end, they 
removed the low-low subband coefficients of the stationary 
wavelet transform (SWT) of the magnitude image. The esti­
mation is done assuming that the signal component has 
been completely removed and the resulting image is Ray­
leigh distributed noise. 

An alternative technique was proposed by Landman 
et al. [20], [28], based on a robust scale estimator followed 
by a regularization procedure using a coil sensitivity model. 
Although this method was proposed to cope with multiple 
independent MR scans, in its basic scenario it can be used to 
estimate the noise map from a single image. 

Other significant estimation methods are the following: 
Guo and Huang [29] proposed a local variance as a noise level 
estimator after edges exclusion by means of local mutual 
information and k-means segmentation; Aja-Fernández 
et al. in [35] proposed a noise estimation approach for non­
accelerated SoS reconstructed MR images from correlated 
multiple-coil; Maggioni and Foi [33] exploited the sparsity of 
the representation of similar 2D patches in the non-local 
scheme using Gaussian and Rician assumptions; Rajan et al. 
[32] proposed another scheme employing ML estimator for 
Rician distributed data; in Pan et al. [34] a blind local noise 
estimation procedure was proposed assuming that the kurto-
sis of the MR image is constant across different discrete cosine 
transformation (DCT) bands. 

Unlike previously cited methodologies, there are some 
estimation techniques that initially calculate noise maps 
assuming a Gaussian distribution, and correct them to the 
Rician/nc-x case for low SNRs. This correction is usually 
achieved by using the celebrated Koay's correction pro­
posed in [45]. Note that all these techniques require the esti­
mation of an extra measure, the SNR, which is also position 



dependent. Sharing this strategy, Manjón et al. [31] modeled 
noise variance as a minimal distance between local neigh­
borhood (patch) of the current pixel and the remaining 
patches in the non-local means (NLM) scheme. This 
approach uses the difference between noisy and the low-
pass filtered image to determine local noise estimates. In a 
similar fashion, Borrelli et al. [37] use the difference between 
noisy and an NLM pre-filtered image to obtain local sample 
variances followed by median filtering and Rician adapta­
tion. Maximov et al. [21] generalized the median absolute 
deviation (MAD) robust estimator, initially proposed for 
stationary Rician case by Coupe et al. [46], to estimate non-
stationary noise in DTI data sets. 

All the approaches reviewed so far were intended for 
general purpose MRI (although most of them were only 
tested over brain data). However, some authors took advan­
tage of the specificity of particular acquisitions to extract the 
noise information. Veraart et al. [22] proposed a method 
very similar to the one in [21], where the MAD estimator is 
calculated using the information of the signal along the dif­
ferent diffusion-weighted images (DWIs) in a diffusion MRI 
acquisition. Glenn et al. [23] presented a simple estimation 
scheme for diffusion kurtosis imaging (DKI) using a sample 
variance over all the diffusion gradients followed by a bias 
correction and Gaussian smoothing of the raw estimates. In 
Ding et al. [30], a random noise in dynamic MR image series 
such as cardiac function imaging or blood flow velocity 
mapping was considered. This approach takes advantage of 
the temporal redundancy between acquisitions and it does 
not require any specific data distribution or image recon­
struction technique assumptions. 

In the last two years, the number of proposals for non-
stationary noise estimators in literature has remarkably 
increased. This is a clear sign of the awareness of the impor­
tance of this task by the MRI community. 

Liu et al. [36] adapted the MAD estimator to single MR 
images. In Dikaios et al. [5], the Koay's correction was gen­
eralized for the approximation of the sum of the Rician 
probability density functions (PDFs) providing the correc­
tions for MAD in averaged diffusion images. In [19], Aja-
Fernández et al. showed a comprehensive statistical noise 
analysis for SENSE and GRAPPA providing closed-form 
expressions for the non-stationary variance of noise for both 
modalities. They propose some techniques to estimate 
noise, but those methods need extra information for an 
accurate estimation, like the sensitivity coil profiles and the 
reconstruction coefficients. In a similar fashion, Hansen 
et al. [38] developed another scheme to measure the noise 
level of any linear combination of complex, magnitude, or 
phase pixel values of a Cartesian MRI acquisition. The 
method requires access to the raw MR data and additional 
technical details about the acquisition process. 

Tabelow et al. [39] adapted the propagation-separation 
method to nc-x distributed data followed by a median filter 
smoothing. This approach calculates spatially variant noise 
maps by means of the weighted ML estimator which is 
restricted to homogeneous regions. Aja-Fernández et al. [14] 
proposed a homomorphic approach to separate spatially 
variant noise into two terms: a stationary noise term and the 
low-frequency component corresponding to the noise pat­
tern. This technique avoids the granular effect due to local 

estimation and leads to a simple implementation based on 
basic filtering—a great advantage when compared to the 
other methods. The homomorphic filter was further 
extended in [40] to blind noise estimation in GRAPPA. At 
the same time, Manjón et al. [41] proposed another noise 
estimation technique using sparseness and self-similarity 
properties of MR images. They utilize a principal compo­
nent analysis (PCA) decomposition in the NLM scheme to 
extract the noisy component of the signal. The noise stan­
dard deviation is finally obtained as a median of the eigen­
values of the PCA decomposition and it is subsequently 
corrected to deal with the Rician case. In [42], Poot and 
Klein proposed a spatially regularized ML estimator to 
simultaneously estimate the noise pattern and diffusion ten­
sor parameters. Finally, Veraart et al. [43] presented another 
scheme to estimate the spatially variant noise maps in diffu­
sion MR imaging using the redundancy of the signal in 
DWI data. The method identifies the noise level using the 
combination of local PCA with random matrix theory. 

The methodologies of the state of the art dealing with 
spatially variant noise are summarized in Table 1, where we 
specify the context in which the method was designed 
(image modality in the case of non-MRI images or the recon­
struction method in the case of MRI, where non-pMRI 
accounts for single-coil MRI). Besides, although all methods 
were defined for non-stationary noise, some of them take 
advantage of the multidimensional nature of the acquisition 
to get the spatial estimation of noise in each voxel. The 
underlying noise model is described as well as the domain 
where the estimation is performed. Finally, we include if 
any repeated acquisition or additional data is required. 

2.2 The Variance-Stabilizing Transformation 
The variance-stabilizing transformation is a data transfor­
mation that has been historically applied to simplify the 
analysis of variance of a certain random variable whose var­
iance is related to the mean level of the measurements [47]. 
The main goal of a VST is to compensate the change of the 
variance with respect to the change of the mean value— 
whenever this relationship is known—in order to provide a 
constant variance. 

The derivation of the VST is commonly associated to the 
so-called delta method, which links the central limit theorem 
with the convergence of the transformed random variable 
Y = f(X) by a differentiable function / . Formally speaking, 
let Xn be a sequence of random variables that satisfies 

\fn{Xn — ¡i) —• -/V(0, a2) (i.e., convergence in distribution). 

Then the first order Taylor expansion of f(Xn) around ¡i is 
f(Xn) = /(/i.) + f(ii)(Xn — ¡i), which reordering terms gives 

Mf(Xn) ~ f(fl)) = f'MMXn ~ fl). 

Since Xn converges in distribution to a constant, Xn —* ¡i, 
it also converges in probability and the Slutsky's Theorem 
[48] can be applied to ensure convergence in distribution as 

f(li)y/n(Xn - ¡i) -^ ./V(0, O- 2 ( / ' (M)) 2 ) - Thus, we conclude 

Mf(Xn) - /00) í Af(p,*2(/'(M))2). (i) 



TABLE 1 
Comparison of Spatially Variable Noise Estimation Techniques in MRI or Rician/nc-x Distributed Data 

Method 

Marzetta [24] 

DeVoreetal [25] 
Samsonov et al. [18] 

Goossens et al. [261 

Delakis eta/. [27] 

Landman et al. [20], [28] 

Guo and Huang [29] 

Ding et al. [30] 

Manjón et al [31] 

Rajan et al. 132] 

Maximov et al. [21] 

Maggioni & Foi [33] 

Pan et al. [34] 

Aja-Fernández et al. [35] 

Veraart et al. [22] 

Aja-Fernández et al. [19] 

Liu et al [36] 

Borrelli et al. [37] 

Dücaios et al [5] 

Glenn et al. [23] 

Hansen et al [38] 

Aja-Fernández et al. [14] 

Tabelow et al [39] 

Aja-Fernández et al. [40] 

Manjón et al. [41] 

Poot & Klein [42] 

Veraart et al. [43] 

Our proposal 

Year 

1995 

2000 

2004 

2006 

2007 

2009 

2009 

2010 

2010 

2011 

2012 

2012 

2012 

2013 

2013 

2014 

2014 

2014 

2014 

2015 

2015 

2015 

2015 

2015 

2015 

2015 

2016 

Imaging context 

SAR 

SAR 

SENSE 

No pMRI, pMRI 

SENSE 

SENSE 

SENSE, GRAPPA 

No pMRL SoS, SENSE 

No pMRI, SENSE 
GRAPPA 

NopMRI 

NopMRI 

NopMRI 

SENSE 

SoS 

SENSE, SoS 

SENSE, GRAPPA, SoS 

No pMRI, SENSE 

SENSE, GRAPPA 

SENSE, GRAPPA 

NopMRI 

pMRI(-H) 

SENSE 

SENSE, GRAPPA, 

zoomed GRAPPA 

GRAPPA 

SENSE 

No pMRI, SENSE 

GRAPPA 

SENSE 

Spatially variable noise 

yes 

yes 

yes 

yes 

yes 

yes(*) 

yes 

yes 

yes 

yes 

yes(*) 

yes 

yes 

yes 

yes(*) 

yes 

yes 

yes 

yes(*) 

yes(*) 

yes 

yes 

yes 

yes 

yes 

yes(*) 

yes(*) 

yes 

Noise assumptions 

Rician 

Rician 

Gaussian 

Gaussian 

Rayleigh 

Gaussian 

Gaussian 

Gaussian (O) 

Gaussian 
+ Rician adaptation 

Rician 

Gaussian + Rician adaptation 

Gaussian, Rician 

Gaussian 

nc-x 
Gaussian + Rician/nc-x 

adaptation 

Rayleigh, c-x 

Gaussian 
+ Rician adaptation 

Gaussian + Rician adaptation 

Gaussian + Rician adaptation 

Rician 

Gaussian 

Gaussian, Rayleigh, Rician 

nc-x 

Gaussian 

Gaussian + Rician adaptation 

Rician 

Gaussian + nc-x adaptation (O) 

Rician 

Estimation domain 

-
image 

image (=p) 

wavelet 

wavelet - image 

image 

image (±) 

image 

image 

image 

image 

image 

image 

image 

wavelet 

image 

wavelet 

image 

wavelet 

image 

image 

image 

image 

wavelet 

image 

image 

image 

image 

Repeated acquisitions 

-
yes 

no 

no 

no 

yes(f) 
no 

no (J) 

no 

no 

yes 

no 

no 

no 

yes(x) 

no 

no 

no 

yes 

yes 

no 

no 

no 

no 

no 

no 

n o ( x ) 

no 

Additional data 

no 

no 

yes (e ) 
no 

no 

yes(®) 

no 

no 

no 

no 

no 

no 

no 

no 

no 

yes(O) 

no 

no 

no 

no 

yes(0) 

no 

no 

no 

no 

no 

no 

no 

(-j-) The method can measure the noise level for any linear combination of pixels in an MR image. 
(0) Additional samples of the air background are required for SENSE. 
(^) Noise level is represented as a local conductance parameter in the anisotropic diffusion filter. 
(f) A biophysical model of the imaging data is required. 

(*) Noise is spatially measured with samples from different acquisitions, (e.g. different gradients in DTI). 
(0) Sensitivity maps for SENSE; reconstruction coefficients and correlations for GRAPPA are required. 

(X) Method uses the information of different DWIs to estimate the noise. 
(CO The eigenvalues of the covariante are assumed to be Marchenko-Pastur distributed. 
( i ) Noise level is estimated indirectly as a smoothing weight in the total variation regularization. 
(®) Multiple contrast type signals and a coil sensitivity model are required. 

(Í) Method intended for successive dynamic image series rather than repeated acquisitions. 
(0) The image reconstruction matrix, sampling pattern and the complex images are required. 

Now, let us suppose that the variance depends on the 
mean value, a2 — Var(/x). We are interested in finding a 
transformation /(•) such that a2(f(¡.i)) is a constant. For 
that purpose, the following differential equation can be set: 
a2(f(¡.i)) — C2, whose solution provides the expression 
commonly used to calculate the VST [47] 

where C is arbitrary constant. 
The VST has lately gained importance in the image proc­

essing field. In the case of MRI, this methodology has 
mainly focused on signal-dependent noise estimation and 
removal procedures [49], [50]. In the case of Rician distrib­
uted data, the problem of stabilizing its variance stems from 
its functional dependence with the mean. In [49], Foi 
derived an asymptotic stabilizer for Rician data considering 
the asymptotic approximation of the variance for large val­
ues of A in the following way. 

Let M denote a Rician random variable (RV) with non-
centrality parameter A and scale parameter a (i.e., 
M ~ Rice(^4, a)), whose PDF is defined as 

M 
p(M\A, a) = —^-exp 

M2+Á 

2^~ '•(£ M > 0, (3) 

where IQ(-) is the modified Bessel function of the first kind 
and zeroth order. 

The functional dependence of the variance of M for large 

values of A is Var{M|^4, a} « a2 — -^. Thus, by means of 

Eq. (2), the asymptotic stabilizer of the Rician RV becomes 

/stab(M|ff) = 
M 2 

2~ 

1 
- + a, a <E (4) 

with M > -j- and a an arbitrary constant. 

Due to the asymptotic derivation of Eq. (4), this result is 
valid for high SNR areas, though it no longer applies for 
lower ratios (SNR < 5). To properly handle low SNRs, Foi 
proposed in [49] a numerical stabilization which accounts for 
smoothness and asymptotic convergence of Eq. (4). During 
the optimization procedure, the constraints are weighted 
with different configurations giving two different stabilizers 
that, for the sake of comparison, will be denoted as Foi's 
model A and Foi's model B. The numerical optimization 
applied requires the estimation of the a parameter to stabilize 
the RV, which is iteratively refined by means of an algorithm 
based on the fixed-point theorem (see [49] for more details). 

Foi's method proved its suitability for single-coil sys­
tems, where the noise is assumed to be stationary. However, 
a problem arises in the case of non-stationary Rician data, 
since the estimation of a must be done locally, i.e., er(x). The 



direct implication is a considerable reduction of the number 
of samples available for local estimation and, thus, the accu­
racy of the estimation is consequently reduced. This leads to 
an inaccurate estimator of er(x), especially near edges, which 
results in a poor stabilization. 

It is important to note that other transformations could be 
proposed in order to transform a Rician distributed RV to a 
Gaussian varíate. For instance, in [51] Koay et al. used the 
well-known inverse transform method also known as the 
quantile-quantile transformation, which maps the quantiles 
from the original data to the quantiles of a Gaussian RV. 
This is achieved by using the cumulative distribution func­
tion (CDF) of the Rician RV, FM(-\A,O), and then applying 
the inverse CDF of a Gaussian RV as follows: 

MG = FM
1
G(FM(M\A,a)\A,a), (5) 

where F^1 (• \A, a) is the inverse CDF of a Gaussian RV with 
the expectation A and the standard deviation a. This 
approach requires the parameters of Rician signal to be 
known in advance to apply the transformation. The result­
ing Gaussian distribution strongly depends on the estima­
tion of the mean and variance and becomes less robust than 
the VST as we will see in the following sections. 

2.3 Goals of the Proposed Methodology 
Attending to the main characteristics of the aforementioned 
techniques we propose a methodology that provides the 
same advantages of them but also overcomes their limita­
tions. The methodology we pursue should show the follow­
ing features: 

1) No Granularity. It should avoid granular patterns in 
the estimation due to inaccurate estimates near the 
edges or inhomogeneities in tissues. 

2) Robustness for all SNRs. Some methods rely on the 
asymptotic behavior of Rician RVs and are just appli­
cable for high SNRs. Others such as the inverse 
transformation method strongly depend on accurate 
estimates. These assumptions may cause an unde-
sired bias that may result in an inaccurate estimate 
of noise when SNR is low. 

3) No need of extra information. We want to keep the 
methodology as simple as possible in order to avoid 
information that is not usually available in conven­
tional acquisitions (repeated acquisitions, multiple 
contrast images, biophysical models, background or 
foreground region extraction). 

3 NON-STATIONARY RICIAN NOISE ESTIMATION 

In this section, we propose a methodology especially 
designed to meet the aforementioned features by defining a 
function that maps non-stationary Rice data to its stationary 
Gaussian distributed counterpart. This function is inspired 
by the VST theory already presented. Finally, the data can 
be stabilized by performing a suitable homomorphic filter­
ing that estimates the non-stationary noise map without 
granular patterns. 

It is important to note that the proposed transformation 
does not fall into the field of VST in the classical sense, in 
which the transformation is obtained by considering the 

differential equation resulting from the delta method. 
Instead, we propose to extend the stabilization function 
obtained by the classical VST equation, Eq. (2), to a more 
general case in which low SNRs are also considered. This is 
achieved by introducing two degrees of freedom by means 
of a versatile parametric form derived from Eq. (4). This 
way, the proposed formulation links the philosophy of the 
inverse transform method, which is not subject to constraints 
on the SNRs, to the asymptotic approach obtained with the 
VST theory. This implies that an estimate of the SNR is 
required and, though it could seem as an inconvenience, we 
will show that both the initialization of a and the estimation 
of the SNR per pixel can be efficiently achieved avoiding 
the main problems of other estimators. Besides, this formu­
lation shows some important advantages: 1) It stabilizes the 
whole range of SNRs; 2) Is a single-shot transformation that 
does not need an iterative estimation of a. 

3.1 Whole Range Variance-Stabilizer Transform 
First, we propose the parametrization of the stabilization 
transformation shown in Eq. (4) using a vector parameter 
0 = (0i, 02) as follows: 

/ s t ab(M|cr,©) = J m a x J 0 2 — - 0 2 , Q\. (6) 

Note that when (0i,02) = (1,0.5), Eq. (6) becomes the 
asymptotic solution of Eq (4). 

In order to cope with the different behaviors of the stabi­
lizer as a function of the SNR, the parameters should be 
tuned conveniently. This can be efficiently achieved by 
using a numerical optimization procedure with the follow­
ing optimization criterion 

0opt = argmin J(/ s t ab(M|cr, ©)), (7) 
0 

with ©opt = (0iopt,#2oPt) and J : R2 H-• R being a cost func­
tion to be minimized 

J(/stab(M|or, ©)) = Ai • (1 - Var{/ s t a b(M|or, ©)})2 

+ A2 • (Skewness {/stab(M|<r,©)})2 (8) 

+ A3 • (ExcessKurtosis{/s tab(M|or, &)})2, 

Note that the cost function favors a unitary variance, zero 
skewness and zero excess of kurtosis, enforcing the desired 
Gaussian behavior of the transformed RV. 

The selection of parameter A 6 A{(Ai, A2, A3) 6 [0,1] : 
Ai + A2 + A3 = 1} was done empirically by following the 
minimum distance estimation criterion, where the distance d 
was induced from the supremum norm as 

A = arginf{d = | | ÍV - F(J(/stab(x|<x, ©op t), A ) ) ^ : A e A}, 
A 

(9) 

where x Rician distributed samples; i*V is 

the CDF of a standardized Gaussian distribution, A/"(0,1); 

F(y) is the empirical CDF of samples in y. The values for A2 

and A3 were set equal but smaller than Ax to ensure the 

1. The Kurtosis of a Gaussian random variable is 3. 
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Vo.lOli2 + 0.014 + 1.396 x< 1.171 

1 x > 1.171 
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between Rician distributed data and different stabilizing transforms, (c) standard deviation of the variance-stabilizing parametric approach 
/stab(Af |<r, ©opt) compared to Foi's stabilizers. 

stabilization. Eventually, the configuration was set to 
Ai = 0.998, A2 = A3 = 0.001. 

The numerical optimization of Eq. (7) is carried out for 
each SNR step, a = 1 and A between 0.001 and 20 (logarith­
mically increasing) by means of the Nelder-Mead method. 
Variance, skewness and kurtosis are calculated in terms of 
the r th raw moments of the transformed RV 

Var{/s tab(M|cr, ©)} = m2 - m\, 

7713 — 3miT7l2 + 2 m ^ 
Skew{/ s t a b(M|cr,©)}=-

Kurt{/B t a b(M|ff,e)} 

(m2 - m\y 

mi — 4mim3 + Qm\m2 — 3mf 

(m2 
.2^2 

where 

fBtah(M\a,&)p(M\A,a)dM: 

is calculated by means of the adaptive Gauss-Kronrod 
quadrature in the interval M € [0, 30]. 

The optimal values of 6\ and 62 obtained according to 
Eq. (7) for different SNRs (with SNR = A/a) are shown in 
Fig. l a jointly to their closed-form approximations. Besides, 
in Fig. l b we show the standard deviations of non-stabilized 
and stabilized data for different sets of optimized parame­
ters. Note that the stabilization obtained with the asymptotic 
solution, (61, 62) = (1, 0.5), slightly improves when the opti­
mal value #2opt is considered, though it still lacks of good sta­
bilization for small SNR (where the Rayleigh assumption 
holds). Conversely, the optimal set of parameters (#iopt, #2oPt) 
show an outstanding stabilization through the whole SNR 
range as was desired. In Fig. l c , the proposed parametric 
form of VST is compared to Foi's models [49]. 

3.2 Spatially Variant Noise Estimation 
We propose a new methodology to estimate the non-station­
ary noise out of Rician data, following the pipeline summa­
rized in Fig. 2. The strength of this methodology lies in a 
proper stabilization of the Rician image for all SNRs that 

allows the subsequent processing of the data as Gaussian. 
The first step of the process is the application of the 
parametric VST to the magnitude MR image, which trans­
forms the non-stationary Rician data to a stationary Gauss­
ian-like distributed data. A prior estimation of the SNR and 
the variance of noise will be needed as input parameters. 
Once the data is stabilized, we can use a non-stationary 
Gaussian noise estimator to extract the variance of noise 
from the image. In this work, we will make use of the 
Gaussian homomorphic approach proposed in [14], since it 
has proved its accuracy and robustness. In what follows, we 
analyze each step separately. 

First, the aforementioned parametric VST is applied to 
the noisy magnitude MR image I(x) 

7(X) = <To(x)-/stab(/(x) CO ( x ) 1 #lopt ( x ) 1 #2opt (x) , (10) 

where oo(x) is the prior noise map, #iopt(x) and #2opt(x) are 
the optimized to local SNR transformation parameters 

0iopt(x) = (6i o SNR)(x), 02opt(x) = (62 o SNR)(x), (11) 

Note that the with pointwise SNR defined as SNR(x) = ^ j 
stabilization needs an estimate of both the SNR and a for 
each location. Many of the methods in literature can be used 
for that purpose. In this work, we use the local mean of the 

image 7(x) as the estimate of the underlying signal A(x) in a 
square window and the noise estimate provided in [14]. 
This simple strategy avoids granularities of the SNR map 
usually provided by other methods. However, any method 

discussed in Section 2.1 can be used to calculate er(x). In the 

SENSE 
MR data Initial map Oo(x) 

• J Prior noise 1^. 
B ^ T I estimation I T ^ 

Spatially variable 

jx) 

14SNR estimation 

1 .w I Gaussian homomorphic L 
I I noise estimation ' 

B map ahí 

Fig. 2. General scheme of the proposed non-stationary Rician noise 
estimation algorithm. The red rectangles indicate interchangeable 
modules of the algorithm. 



experimental section, we will show the performance of each 
initialization and we will justify our choice. 

Using the proposed parametric VST, Eq. (10) reads 

I(x) = <r0(xj 

\ 
m a x ^ L t W 

J2(x) 
72opt (x), 0 (12) 

where 7(x) is the stabilized image multiplied by the initial 

noise map estimate OQ (X) . After the stabilization, this image 
is assumed to be a noise-free component A(x) corrupted 
with additive Gaussian distributed noise iV(x; 0, <?2(x)) with 
zero mean and spatially variable variance er2(x) 

7(x) « A(x) + N(x; 0, <r2(x)) = A(x) + <r(x) • N(x; 0,1). (13) 

This is the same assumption considered in [49], [52]. In the 
experiments section, we will show that it perfectly holds for 
the whole range of SNRs. 

In the second stage, we need to separate the low-fre­
quency noise map er(x) from Eq. (13). To do so we adopt the 
homomorphic approach proposed in [14], where a log trans­
formation is first applied to the centered data. To center the 
data, we remove the mean to the signal 

/ c (x) = 7(x) - E{/(x)} = <r(x) • TV(x; 0,1), (14) 

where E{-} is the (local) expectation operator applied to the 
variance-stabilized image. E{-} must be approximated for 
practical implementation. One straight forward approxima­
tion would be the local average in a neighborhood as was 
done in [14]. However, this method is prone to provide inac­
curate estimates due to the presence of different tissues 
within the local window. Once more, different methods 
from literature could be used here. In this paper, we con­
sider two edge-preserving algorithms: the bilateral filter for 
grayscale images proposed in [53] and the SWT [22]. 

The bilateral filter is applied to the magnitude of vari­

ance-stabilized MR image 7(x) as follows: 

Fig. 3. Data sets used in the experiments: (a) synthetic noise-free Ti-, 
(b) T2- and (c) PD-weighted MR data, (d) synthetic noisy ^-weighted 
SENSE simulated ¡mage, (e) real noisy ^-weighted SENSE phantom 
and (f) in vivo T2-weighted FFE SENSE brain data. 

Once the data is centered, the logarithm is applied 

log | i c (x ) |= logcr(x) + log|JV(x;0,l)[. 

low frequency high frequency 

Since the multiplicative character of the noise can be rep­
resented as two additive components, we can separate the 
low-frequency component by simple low-pass filtering 

LPFJlog | íc (x) |} « logcr(x) - LPF{log \N(x; 0,1)|}, (17) 

where LPF is a low-pass filter. Thus, considering that 
-/V(x; 0,1) | follows a half-Gaussian distribution and assum­

ing that we can consider the LPF as a good approximation 
of the mean, we can write 

L P F J l o g l i c M l l - l o g a M - l o g v ^ - l , (18) 

with y being the Euler-Mascheroni constant. 
Finally, Eq. (18) leads to a spatially variant noise estima­

tor defined as follows: 

ffW^v^e^NkcMl}- (19) 

¥(x) 
E Pej)(x; IMHP x| |)W r( | /(p)-/(x) |) /(p) 

E pei;( x)VVg(l|p- x | | ) W r ( | / ( p ) - / ( x ) 
(15) 

where r¡(x) is a neighborhood of pixel x, \jra and \jra are geo­
metric and radiometric distances [53]. In our case, \jra and 

\jrar are defined as \jrar = \jra (x) = exp(— ^¡). Therefore, the 

centered data can be calculated by Ic( x ) = ^(x) — ^ ( x ) -
Alternatively, this task can be done by an SWT, which 

directly centers the data, since it extracts the noise compo­
nent from 7(x) using the high-high (HH) subband of SWT 
algorithm at scale s = 1. Specifically, the noise component 
corresponds to the diagonal detail coefficients 

ic(x) = ((i®g(r))®g(c))(> (16) 

where the convolution procedure is performed with a sepa­
rable one-dimensional high-pass filter g (i.e., g^> convolves 
along the rows and </c) along the columns). 

4 MATERIALS AND METHODS 

In this section, we introduce the MR data used in the valida­
tion process of the proposal and the characterization of extra 
parameters used by evaluated state-of-the-art techniques in 
non-stationary Rician noise estimation. 

4.1 Materials 
The following data sets are used for comparison: 

• Synthetic MRI: three MR slices from Brain Web simu­
lated database [54] at different transverse planes 
(Tí-, T2- and PD-weighted MR data) all with inten­
sity non-uniformity INU = 0 percent. The data is 
free of noise, the background areas are set to zero, 
the slice thickness is 1 m m and the intensity range 
normalized to [0-255] (Figs. 3a, 3b, and 3c). 

• Artificial noise patterns: four different spatially variant 
noise maps normally observed in real pMRI acquisi­
tions of the brain [19], [20], [31] (Fig. 4). 
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Fig. 4. Spatially variant noise patterns used in the experiments for syn­
thetic MRI. 

• Synthetic SENSE MRI: a synthetic Tí -weighted image 
from Brain Web database is used to simulate the Car­
tesian SENSE data reconstructed from eight receiver 
coils (L = 8), reduction factor r = 2, correlations 
Pij = 0.2 between coils and variance of the noise 
of (x) = 75 per coil (Fig. 3d). 

• Real SENSE MR phantom: twenty repetitions of 
Tí -weighted scan of a doped ball phantom were per­
formed using Philips Achieva 3.0T TX device pro­
vided with a 32-channel coil system using Turbo Field 
Echo (TFE) sequence, volume size 224 x 224 x 59, 
TR = 5.264 ms/TE = 2.569 ms, slice thickness 3.20 
mm, and reduction factor r = 2 (Fig. 3e). 

• In vivo SENSE MR brain data: T2-weighted scan of 
the brain in transverse plane was acquired using 
Fast Field Echo (FFE) sequence. The volume size 
equals 240 x 180 x 161, TR = 3,000 m s / T E = 
80 ms, slice thickness 3.20 m m and the reduction 
factor r = 4 (Fig. 3f). 

The noise patterns are adapted to the synthetic images by 
adding complex Gaussian noise to the x-space domain of 
the phantom and then the final noisy image is given by 

J(x) = \A(x) + Nm(x) + j • Nim(x)\: (20) 

where A(x) is a noise-free MRI and Nm(x), Nim(x) ~ 
./V(0,o2(x)) are uncorrelated Gaussian distributed noise 
with scale parameter o2(x) varying across the image. 

The accuracy of noise estimators in synthetic experi­
ments is evaluated using the pointwise relative error (RE) of 
an estimate o¿(x) for zth repetition of the experiment, 
REj(x), and then averaged along R repetitions 

| o I ( x ) - o ( x ) | XR 
R E * ( X ) = J Z7Z\ L > RE(x)=-^REI(x). (21) 

o(x) 

For quantitative numerical evaluations, the parameter 
RE(x) is averaged across the foreground area of the image 
to get one single value for a given SNR level. 

Furthermore, we define the variance (VAR) of the param­
eter RE(x) as follows: 

VAR(x) = - _ _ ¿ ( R E l ( x ) - RE(x))2 (22) 

Similarly, we spatially average VAR(x) in the foreground 
area of the image to get the variance of the estimator. 

4.2 Methods 
For the sake of comparison, we used the 14 noise estimation 
techniques included in Table 1 and described in Section 2.1. 
All these methods can be directly applied to retrospectively 
reconstructed single MR slices. The implementation was 
done in MATLAB, except Tabelow's method [39], whose 
source code in GNU R was provided by authors.4 For 
Maggioni and Foi [33] and Aja-Fernández et al. [14] we 
used the code downloaded from the their websites. • The 
code of our proposed method is available at. 

Below, we give a brief description of the parameters used 
by the state-of-the-art methods: 

• DeVore et al. [25]: 10 iterations. 
• Delakis et al. [27]: the Daubechies 7 (db7) wavelet 

was used for SWT decomposition. 
• Maximov et al. [21]: the Koay correction uses 5 x 5 

window size for local SNR estimation. 
• Liu et al. [36]: the db7 wavelet was used for SWT and 

Koay correction with 5 x 5 windows. 
• Goossens et al. [26]: db7 wavelet was used for SWT. 
• Landman et al. [20]: the biophysical model is 

obtained as the NLM pre-filtered image for size 
5 x 5 and 1 1 x 1 1 (local and search windows). 

• Manjón et al. (2010) [31]: data is smoothed in 3 x 3 
windows, the NLM filter uses 5 x 5 and 1 1 x 1 1 win­
dows, the Koay correction uses 5 x 5 . 

• Rajan et al. [32]: It uses a 11 x 11 windows for ML 
and the threshold for tissue classification is obtained 
from a histogram with 1,000 bins. 

• Pan et al. [34]: It uses 8 x 8 DCT basis and local 
moments are calculated in 5 x 5 windows. 

• Maggioni and Foi [33]: algorithm uses standard 
parameters recommended by the authors. 

• Borrelli et al. [37]: NLM filter uses 5 x 5 and 11 x 11 
windows, the Koay correction and median smooth­
ing are obtained with 5 x 5 windows. 

• Tabelow et al. [39]: 10 iterations were applied and 
parameters recommended by the authors. 

• Manjón et al. (2015) [41]: NLM scheme uses 5 x 5 and 
1 1 x 1 1 windows, tr immed median as a noise estima­
tor, and smoothing of the raw estimates with 1 1 x 1 1 
windows. 

• Aja-Fernández et al. [14]: the EM algorithm is used to 
extract a noise component for Ti-weighted MR data 
and the SWT with db7 wavelet is applied for T2- and 
PD-weighted MR data, the low pass filter is set to 
of = 3.4, 

• The proposal: the SWT uses db7 wavelet and the 
edge-preserving bilateral filter with 5 x 5 windows, 
the low pass filter is implemented as a Gaussian filter 
in the frequency domain with a variance of Of = 3.4. 

The selection of parameters was done by using those sug­
gested in the original papers and, whenever those parame­
ters have the same meaning (local and search windows, 
estimation windows) we use the same parameters. 
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Fig. 5. Anderson-Darling test of Gaussianity for the noise component in 
variance-stabilized MR signal. 

5 EXPERIMENTAL RESULTS AND DISCUSSION 

In this section we compare our proposal with the aforemen­
tioned state-of-the-art techniques for non-stationary Rician 
noise estimation. We carry out several experiments in the 
synthetic and real MRI datasets. 

5.1 Statistical Analysis of the Underlying 
Assumption 

Before testing the quantitative and qualitative perfor­
mance of the method, we verify the underlying assump­
tion of Gaussianity of the stabilized noise with an 
Anderson-Darling test. To extract the noise component 
from the stabilized signal, we apply the SWT decomposi­
tion using a high-pass filter with the db7 wavelet. We 
perform 104 independent trials of the Anderson-Darling 
test for each SNR step with sample size -/V = 256 and a 
significance level a = 0.05. The comparison is performed 
with Foi's model B since it has better performance than 
Foi's model A. Results are depicted in Fig. 5 where one 
can see that the proposal overcomes Foi's model B for 
low SNR and it obtains at least 99.1 percent of the null 
hypothesis (being Gaussian) acceptances. 

Finally, we visually compare the noise components 
extracted from stabilized and non-stabilized 7\ -weighted 
brain MRI. For this purpose, the noise-free image was cor­
rupted with the first pattern of Fig. 4 by means of Eq. (20) 
with maximum value of SNR in foreground area of the 
image given by SNRmax = 7.68. Now, following the underly­
ing assumptions, the proposed VST should change the char­
acter of the noise component to AWGN and therefore it 
allows applying Gaussian-dedicated noise extraction proce­
dures such as SWT decomposition. In Fig. 6, we show the 
noise extraction with and without VST. The presence of 
brain edges confirms that the methods applied to the non-
stabilized image cannot successfully extract the noise from 
the signal (Figs. 6a and 6b shows the noise extraction from 
[14] and Fig. 6d from [40]), whereas the proposed methods 
applied to stabilized image retrieve a noise estimate without 
interactions of the signal (Figs. 6e and 6f). 

The results obtained from these experiments evidence: 
1) the assumption of Gaussianity after stabilizing the 
Rician data by the proposed VST still holds for low SNRs, 
2) Gaussian-driven methods can be used to recover the 
noise component from variance-stabilized Rician data, 

Fig. 6. Noise component extracted with different techniques: (a) local 
mean, (b) local EM algorithm, (c) bilateral filter, (d) HH subband of 
SWT, (e) VST + bilateral filter (proposed), (f) VST + HH subband of 
SWT (proposed). 

3) With this stabilization, post-correction factors like [14], 
[41], [45] are no longer required for Rician RVs. 

5.2 Robustness Analysis 
The sensitivity to SNR mismatch was studied in a set of 
Rician distributed images of size 256 x 256 with SNRs in the 
range [0,8], which were conveniently stabilized with the 
proposed VST. The SNR mismatch was intentionally intro­
duced between —100 and +100 percent. 

The resulting standard deviation of the stabilized data is 
shown in Fig. 7 for each SNR and mismatch. The contour lines 
describe the over/ underestimation of the stabilized standard 
deviation. Note that this picture shows that a ±25 percent of 
SNR mismatch produces around 7 percent of error in the sta­
bilized standard deviation. This means that any estimation 
methodology proposed in the state of the art can be effectively 

used as the initial guess, OQ{X), and we expect to remarkably 
improve the accuracy with our methodology. 

Now, we extend this experiment to check the improve­
ment of the proposed methodology when the 14 methods 
described in Section 4.2 are used as the initialization. We 
considered a synthetic T\ -weighted brain MR image with 
the noise pattern shown in Fig. 4a. Four SNRmax levels and 
100 repetitions for each SNRmax level were used. 

The averaged relative errors of the proposed noise 
estimation scheme are shown in Table 2 with respect to 
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TABLE 2 
Averaged Relative Errors of the Proposed Scheme Using 

Different State-of-the-Art Techniques to Initialize a0(x) 

Method to 
estimate CTQ (x) 

SNR„ 

5.63 8.71 11.79 14.87 

DeVore 
Delakis 
Maximov 
Liu 
Goossens 
Landman 
Manjón (2010) 
Rajan 
Pan 
Maggioni/Foi 
Borrelli 
Tabelow 
Manjón (2015) 
Aja-Fernández 

4.77(17.6) 
4.53 (16.8) 
4.60 (19.7) 
4.62 (27.0) 
5.52 (22.8) 
5.23 (18.5) 
4.56 (13.3) 
5.83 (20.0) 
6.09 (25.1) 
5.57(19.2) 
4.53(11.3) 
6.18 (15.7) 
4.64 (9.2) 
4.51 (12.5) 

4.41 (19.1) 
4.59 (21.2) 
4.48 (20.8) 
4.64 (27.1) 
4.93 (20.7) 
4.80 (16.4) 
4.20 (12.9) 
5.07(16.9) 
5.16(18.6) 
4.81 (12.2) 
4.19(11.6) 
5.56 (10.8) 
4.31 (7.4) 
4.1 (10.9) 

4.46 (23.3) 
4.48 (23.9) 
4.45 (22.1) 
4.41 (26.9) 
4.81 (20.0) 
4.68 (15.5) 
4.23 (12.5) 
4.60 (15.8) 
4.93 (15.2) 
4.66 (9.2) 

4.25(11.9) 
5.42 (9.9) 
4.37 (6.9) 
4.15 (9.3) 

4.53 (29.6) 
4.41 (26.2) 
4.36 (23.7) 
4.35 (26.7) 
4.51 (19.7) 
4.37 (15.4) 
4.03 (12.2) 
4.57 (17.7) 
4.54 (13.0) 
4.35 (8.2) 
4.03 (12.1) 
5.03 (10.2) 
4.13 (6.7) 
3.9 (7.7) 

ffoW 4.17 3.95 4.11 3.87 

Notation: VST (w/o VST) %. The best performance for each SNRn 

bold letters. 

the results obtained from the method used for the ini­
tialization (shown in parentheses). Note that the pro­
posal is able to estimate the final noise map even if the 
prior estimation provides inaccurate results (around 15 
percent of SNR mismatch). Moreover, the average rela­
tive error is nearly constant among all verified methods 
and SNRmax levels, obtaining an accuracy about 5 per­
cent, close to the error that would be obtained with an 

ideal estimate OQ{X) = o{x). Note that the highest Relative 
Error obtained with the VST method is always lower 
than the best result obtained with any of the state-of-the-
art methods. These results confirm the robustness of the 
method for OQ{X) mismatch and its better behavior when 
compared to the rest methods. 

According to the results obtained in Table 2, it seems that 
the best option for a suitable initialization is the one pro­
vided by Aja-Fernández's [14]. This is mainly because the 
proposed methodology takes advantage of the smooth 
solution and the better estimate of the SNR provided in 
[14]. Thus, in what follows, we adopt the Aja-Fernández's 
method as the initialization step for our proposed meth­
odology. However, our method is not confined to this ini­
tialization and any other method could be used with 
good results. 

We finally evaluate the propagation of the mismatch 
error in a throughout the proposed transformation against 
the inverse transform method (QQ mapping) of Eq. (5). We 
show in Fig. 8 the relative error calculated as the average of 
2,000 independent experiments. Note that the proposed 
VST is systematically more robust than the inverse trans­
form method. Both curves converge to the same values as 
the Rician RV converges to a Gaussian RV, i.e., SNR —• oo. 

5.3 Synthetic MRI Experiments 
As a first experiment, we compare quantitatively the pro­
posed variance-stabilizing homomorphic filter with 
the aforementioned methods using synthetic T\-, T2- and 

50 100 150 

a mismatch (%) 

SNR-4 /}. 

Proposed 
QQ Mapping 

50 100 150 

a mismatch (%) 

Fig. 8. Analysis of the error propagation in both the Quantile-Quantile 
transformation and the proposed methodology. 

PD-weigh ted MR images (Figs. 3a, 3b, and 3c). The syn­
thetic images were corrupted following Eq. (20). All noise 
patterns from Fig. 4 were used to evaluate the perfor­
mance in the foreground region (the background was 
intentionally avoided to provide more reliable compari­
sons in the region of interest). The upper bounds of the 
noise patterns were conveniently scaled to provide a cor­
rect comparison for the SNRmax levels in the foreground 
regions. A set of 100 independent trials were used for the 
calculations. The spatial correlations of the noise were not 
considered in this experiment. 

The results are depicted in Fig. 9 where it is clear that 
local methods (DeVore, Delakis, Maximov and Liu) give 
poor results in terms of averaged RE and VAR for all modal­
ities: the RE of the methods exceeds 20 percent for 
SNRmax > 10. On the other hand, Goossens yields almost 
fixed RE and VAR parameters for SNRmax > 10 as a conse­
quence of AWGN assumptions of the estimator, though still 
too high (around 20 percent). Note that the Liu's estimator 
is clearly outperformed by the proposed methodology, even 
though both Liu's and the proposed methodologies make 
use of the H H subband of the SWT of the image. This con­
firms the importance of the stabilization step in our method. 

The highest accuracy among all local methods is 
achieved by the Landman's approach. We remind here that 
Maximov's and Landman's methods were initially pro­
posed to deal with repeated acquisitions and they do not 
show their considerable potential in a voxelwise estimation. 

The second group of the tested algorithms comprises the 
non-local estimators based on patch-based calculations. The 
leading method in this group is Manjón (2015), though it 
has a poorer performance for low SNRmax values. These 
results could be improved by using stacked MR data as sug­
gested in [41], but it assumes the same underlying noise pat­
tern in all the acquired images, which is not a realistic 
assumption. Borrelli's method shows a robust response for 
RE and VAR measures regardless of SNRmax level though it 
is always over 10 percent. Other non-local methods 
(Maggioni and Foi, Manjón (2010)) along with Tabelow and 
Pan are characterized by an extremely low VAR parameter 
and consequently they are preferred for image denoising 
procedures among non-local estimators. 

Regarding the proposed method, the results show its out­
standing robustness for the whole SNR range (the average 
RE is almost constant around 5 percent, considerably lower 
than any other state-of-the-art method). This behavior is of 
special interest when low SNR values are considered. 
Besides, it offers a much lower variance in the estimate, 
which results in a more reliable estimate. 
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Fig. 9. Comparison of noise estimators for synthetic MR data contaminated by non-stationary Rician noise. First column: Spatially averaged relative 
error RE(x) of the estimators; Second column: Spatially averaged variance VAR(x) of the estimators; Third column: Zoomed VAR(x) parameter to 
the range [0-0.01] from the second column. The first row corresponds to T i - , the second row to T2- and the third one to PD-weighted MRI. 

We carried out a second experiment focused on the qualita­
tive behavior of estimators on a synthetic T\ -weighted 
image contaminated by spatially variable noise following 
Eq. (20) and the first pattern from Fig. 4. The noise pattern is 
scaled to the range [5-20], the exact SNR map is a priori 
known, and its maximum value equals SNRmax = 8.73. The 
spatial correlations of the noise component were not consid­
ered in this experiment. 

The estimated noise maps and relative errors in fore­
ground areas are shown in Fig. 10. Note that the spatial 
granularity shown with several techniques like DeVore, 
Delakis, Maximov, Liu, Goossens and Landman are due to 
the calculation of noise levels in fixed neighborhoods 
(i.e., 5 x 5 windows) resulting in inaccurate spatial estima­
tions (Figs. 10a, 10b, 10c, lOd, lOe, and lOf). On the other 
hand, Manjón (2010), Rajan, Maggioni and Foi show a less 

I Reference niose map II Noisy Image 
a) DeVore 
b) Delakis et al. 
c) Maximov et al. 
d) Liu et al. 
e) Goossens et al. 

f) Landman et al. 
g) Manjón et al. (2010) 
h) Rajan et al. 
i) Pan et al. 
j) Maggioni & Foi 

k) Borrelli et al. 
I) Tabelow et al. 
m) Manjón et al. (2015) 
n) Aja-Fernández et al. 
o) The proposal 

0.8 

0.6 

0.4 

0.2 

Estimated spatially variant noise maps Relative errors of the estimators 

Fig. 10. Visual inspection of the methods for synthetic ^ -we igh ted MR brain data distorted by spatially variable noise (left figure) and corresponding 
relative errors of the estimators (right figure). 



Fig. 11. Visual inspection for simulated I^-weighted SENSE MR brain 
data. (I) Ground truth and silver standard methods for 500 repetitions: 
(II) DeVore, (III) Maximov, (IV) Landman and (V) Glenn (the methods fol­
low the notation of Fig. 10). 

granular pattern as a result of the patch-based estimation 
(Figs. lOg, lOh, and lOj). A similar result was obtained from 
Pan's method (Fig. lOi) with the advantage of a much less 
computationally cost than the patch-based methods. The 
last advances in spatially variable noise estimation (Borrelli, 
Tabelow, Manjón (2015)) include an additional post-relaxa­
tion step of the raw estimates (Figs. 10k, 101, and 10m) pro­
viding fairly smoothed and reliable noise maps, though the 
high-frequency components of the image (skull edges) are 
still observed (Fig. 101). 

Finally, Aja-Fernández and our proposal provide granu­
lar-free noise estimates without the presence of high-
frequency components from the image (Figs. lOn and 10o). 
Some underestimation can be observed in Aja-Fernández, 
especially in low SNR areas, though the global pattern of 
the noise map is reproduced properly. In contrast, our pro­
posal compensates these underestimations and it provides 
the most accurate representation of the underlying noise 
pattern (Fig. 10o). Moreover, our method can estimate noise 
levels in background regions as well, where the data follows 
Rayleigh distribution. 

In a third experiment, we analyze the performance for 
SENSE. We considered a Ti-weighted image acquired with 
eight coils (L = 8) and subsampling rate r = 2 (Fig. 3d). The 
data coming from each coil is contaminated by AWGN with 
of (x) = 75 and correlation p¿ = 0.2 between zth and jth 
coil. The image is reconstructed following the Cartesian 
SENSE reconstruction algorithm, which leads to a magni­
tude MR image affected by spatially variable, correlated 
and signal-dependent noise component. 

Different references were considered in this experiment: 
the ground truth derivation in Aja-Fernández et al. [19] for 
SENSE reconstruction (Fig. I l l ) and the estimates obtained 
by DeVore, Maximov, Landman and Glenn methods for 500 
independent replicas of the image pointwise estimated along 
all repetitions to provide pseudo-reference maps as silver 
standard references (Figs. 11II, 11 III, 11IV, and 11V). These sil­
ver standard references will serve us to evaluate the methods 
in real images. The results shown in Figs. 11a, l i b , l i e , l i d , 
l i e , llf, l l g , l l h , H i , l l j , I l k , 111, 11m, l l n , and H o 

Fig. 12. Visual inspection for real ^-weighted SENSE MRI. Silver stan­
dard methods for 20 acquisitions: (I) DeVore, (II) Maximov, (III) Landman 
and (IV) Glenn (the methods follow the notation of Fig. 10). 

evidence the difficulties of estimating the spatially correlated 
noise. Note that local methods provide poor results and the 
patch-based methods do not perform better. The homomor-
phic approaches provide the most suitable estimates. 

5.4 Real MRI Experiments 
In this section we estimate the noise maps of real SENSE 
MRI data with two real datasets. First, a T\ -weighted TFE 
SENSE phantom reconstructed from L = 32 coils with sub-
sampling rate r = 2 (Fig. 3e) is considered. Since the gold 
standard or ground truth is not available in this case, we use 
the aforementioned silver standard references (DeVore, Max­
imov, Landman and Glenn) obtained from the twenty 
acquisitions (Figs. 121,1211,12III, and 12IV). 

Results are depicted in Figs. 12a, 12b, 12c, 12d, 12e, 12f, 
12g, 12h, 12i, 12j, 12k, 121,12m, 12n, and 12o, where one can 
see that some of the local techniques (DeVore, Maximov 
and Landman) perform well enough due to the local homo­
geneity of the source (see Figs. 12a, 12c, and 12f). The granu­
larity of the maps comes from the small number of samples 
used in the estimation process (typically 5 x 5 windows). In 
comparison with the second experiment, the wavelet-based 
methods (Delakis, Liu, Goossens shown in Figs. 12b, 12d 
and 12e respectively) failed in this case. This is due to the 
extraction of high-frequency components using an already 
smooth MR image. 

Maggioni and Foi's method (Fig. 12j) provides quite rea­
sonable results, though the noise map is significantly over­
estimated near edges. Manjón (2010), Borrelli and Tabelow 
(Figs. 12g, 12k and 121) provide highly underestimated 
noise patterns, but the structure of the map is still pre­
served. We note that Landman's and Rajan's methods 
(Figs. 12f and 12h) show a good behavior in the boundaries 
of the phantom, though the granularity is still a problem. 
Surprisingly, Manjón (2015) failed in this experiment, prob­
ably due to the differences in eigenvalues distribution in 
non-local PCA decomposition between synthetic and real 
MR data (Fig. 12m). Finally, Aja-Fernández (Fig. 12n) pro­
vides smooth and nongranular results but nevertheless 
slightly underestimated compared to the silver standards. 

The proposed method (Fig. 12o) retrieves smooth and 
granularity-free results and it does not underestimate noise 
levels in foreground areas. Some overestimations can be still 



Fig. 13. Visual inspection of the methods for in vivo T2-weighted FFE 
SENSE MRI slice from Fig. 3f. The examined methods follow the same 
notation as in legend as in Fig. 10. 

observed near edges of the phantom. These overestimations 
predominantly depend on the selected noise extraction 
procedure (bilateral filter in this example), and could be 
mitigated choosing other edge-preserving and AWGN-ded-
icated image filtering method. 

As a second experiment, we examine in vivo T2 -weighted 
FFE SENSE MRI brain data with subsampling rate r = 4 
(Fig. 3f). In this case, we can only check the consistency-by 
visual inspection—with previous experiments due to the 
lack of a ground truth or pseudo-reference map. 

Some local methods (DeVore, Delakis and Maximov) 
provide highly granular and overestimated noise maps 
especially near skull edges (Figs. 12a, 12b, and 12c). These 
results are consistent with the second and the third visual 
experiment in synthetic data. On the other hand, the meth­
ods by Liu, Goossens, Pan and Manjón (2015) show signifi­
cant underestimations of the noise for in vivo SENSE MRI 
acquisition (Figs. 13d, 13e, 13i, and 13m). These results are 
also fully consistent with results on real phantom data 
shown in Fig. 12. 

Maggioni/Foi and Tabelow generate consistent results 
with DeVore, Delakis and Maximov in the foreground area 
of the brain (as they did with synthetic data), although they 
show some overestimations in the skull edges. 

Finally, the results from the method by Aja-Fernández 
and our proposal (Figs. 13n and 13o) are consistent with the 
behavior observed with synthetic data. They both provide 
no granular patterns, with a higher variance in the central 
region of the brain that was glimpsed in the other methods. 
No outliers are appreciated in the edges of the skull. 

6 CONCLUSION 

The spatially variable noise models have become a neces­
sary ingredient for post-processing MR data acquired with 
parallel techniques. Thus, the need for suitable methods to 
estimate the spatially variant noise has motivated an 
increasing number of algorithms during the last years. In 
the first part of the paper, we provide an extensive analysis 
of the recent techniques proposed to retrieve the spatial var­
iant noise. As we saw, most of them followed a patch-driven 
way to estimate the noise, leading to a granular pattern 
because of inaccuracies in non-homogeneous regions. The 
homomorphic approach of Aja-Fernández et al. [19] over­
comes this limitation by assuming a high SNR, where the 

Gaussian assumption could hold, though it would provide 
important deviations in lower SNR parts of the image. 

In our proposal, we suggest adopting a variance-stabili­
zation strategy to transform the signal-dependence of noise 
into a signal independent noise map. To do so, we propose 
a parametric version of the formulation of the asymptotic 
Rician stabilizer proposed by Foi [49] whose parameters 
are efficiently estimated for different SNRs. In order to pro­
vide a Gaussian-like behavior of the transformed noise, we 
impose constraints on the kurtosis and skewness as well as 
Gaussian-like resulting distribution. The transformation 
was tested for both low SNRs and asymptotic SNRs show­
ing an outstanding behavior in the whole range. Addition­
ally, the statistical tests confirm the Gaussian-like behavior 
of noise which results in an efficient extraction of noise per­
formed by a homomorphic transformation, which avoids 
the granular effect of pixel wise and patch-driven methods. 
The unbiased estimation under the Gaussian assumption 
can be efficiently calculated due to the results of [14]. 

The limitations of our method are the need of an initial 

ero (x) and the SNR. However, the method has proven to be 
robust to this initialization showing important improve­
ments when initialized with the state-of-the-art methods. 
This fact was confirmed when the worst case obtained with 
the proposed method was compared to the best case of the 
methods of literature, showing its suitability and robustness. 

The performance of our method in synthetic and real 
images show that both the stabilization process and the 
homomorphic estimation eliminate the granularity, reduce 
the unde r / overestimation of noise and lead to more reliable 
estimates (low relative error and very low spatial variance). 

The main contributions of the proposed method, when 
compared to the state of the art, are: 1) It does not depend 
on repeated acquisitions a n d / o r a biophysical model of the 
data. 2) Any additional information like sensitivity profiles 
or noise matrices in the receiver coils is also unnecessary. 
3) Just one single image without background or foreground 
region extraction is required. 4) The method works for dif­
ferent MR modalities: 7\-weighted, T2-weighted and PD-
weighted MR data. 5) It is not affected by granular effect 
due to local estimation. 6) It works for the whole range of 
SNRs from the very low to the asymptotically Gaussian. 

Our estimation methodology serves as an initial phase of 
further MR image processing pipeline as could be image 
denoising in the MRI field requiring an estimate of the vari­
ant noise. Additionally, note that although the proposed 
VST homomorphic filter is designed for non-stationary 
Rician noise, it can be easily extended to other distributions 
presented in MRI, like the non-stationary nc-x-
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