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Hetero-manifold Regularisation for Cross-modal
Hashing

Feng Zheng, Yi Tang, and Ling Shao, Senior Member, IEEE

Abstract —Recently, cross-modal search has attracted considerable attention but remains a very challenging task because of the
integration complexity and heterogeneity of the multi-modal data. To address both challenges, in this paper, we propose a novel
method termed hetero-manifold regularisation (HMR) to supervise the learning of hash functions for efficient cross-modal search. A
hetero-manifold integrates multiple sub-manifolds defined by homogeneous data with the help of cross-modal supervision information.
Taking advantages of the hetero-manifold, the similarity between each pair of heterogeneous data could be naturally measured by
three order random walks on this hetero-manifold. Furthermore, a novel cumulative distance inequality defined on the hetero-manifold
is introduced to avoid the computational difficulty induced by the discreteness of hash codes. By using the inequality, cross-modal
hashing is transformed into a problem of hetero-manifold regularised support vector learning. Therefore, the performance of
cross-modal search can be significantly improved by seamlessly combining the integrated information of the hetero-manifold and the
strong generalisation of the support vector machine. Comprehensive experiments show that the proposed HMR achieve advantageous
results over the state-of-the-art methods in several challenging cross-modal tasks.

Index Terms —Cross-modal hashing, Manifold regularisation, Information propagation, Hinge loss constraint, Cumulative distance
inequality.

O

1 INTRODUCTION

EARCHING is dramatically changed by the amount and thsupervision information mainly focus on the similarity information
Sappearance of multi-modal data. Multi-modal data are hetf heterogeneity without considering the homogeneous informa-
erogeneous and large-scale because of the advancement of digdal but it is obvious that the within-modal similarity benefits
technologies and the Internet. Both of these fundamental charax-capture the intrinsic geometric structure. On the other hand,
teristics of multi-modal data require measuring the cross-modhe methods generated by emphasising within-modal similarity
similarity when developing any searching algorithms by hashinglecompose multi-modal data into a set of uni-modal data, which

To bridge the gap between modalities, various straightforwangdeans multi-modal similarity learning cannot be treated as a
strategies have been developed to learn the cross-modal similawtgole because more than one manifold are needed to represent
Some methods focus on the supervision information includidpth cross-modal and within-modal similarities. Therefore, it is
correspondencesdl], semantic correlation2], pairwise sets3] necessary taconnect and integrate all information from data
and semantic affinities4] between heterogeneous data, whilén different modalities to describe the diversity of the world.
others including composite multiple information sourcg - To achieve this, the key of cross-modal search is to overcome
average techniques], [7], Markov random field §] and deep neu- the obstacle of multiple modalities by considering both the local
ral networks 9] emphasise the value of homogeneous manifolgeometric and global supervision information.
in the problem of multi-modal similarity learning in a common In this paper, by integrating the supervision information and
space. the local structure of heterogeneous data, a novel method termed

However, despite the progress made by existing methoaetero-manifold regularisation (HMR) is proposed to learn hash
considering certain aspects of the problem, cross-modal seafighctions for efficient cross-modal search. Three significant ad-
remains a very challenging task because of the integration cov@ntages are illustrated in the schematic diagram of a hetero-
plexity and heterogeneity of the multi-modal data. In fact, thenanifold shown in Figl. Firstly, a hetero-manifold well describes
nature of multi-modal data is a combination of heterogeneity afie local information by representing homogeneous data on the
the homogeneity. Thus, in cross-modal search, the cross-mosidp-manifolds. In Figl, the data in three different modalities
and within-modal similarity information should be simultaneousl§re represented by three sub-manifolds which well model the

considered. On the one hand, the methods developed basedebfionship between homogeneous data. Secondly, the hetero-
manifold emphasises the global information of multi-modal data
as well, by modelling thénformation propagatioracross modal-
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2 RELATED WORK

The cross-modal similarity is generally established by mapping
multi-modal data into a common space. The projection based
method is motivated by the fact that multi-modal data are used
- to represent common objects. For example,if & non-linear
dimension reduction technique is introduced for cross-modal re-
trieval, where bimodal data are represented in a common low-
dimensional Euclidean space and the cross-modal similarity is
defined by using the Euclidean distance in the learned space.
Mao et al. [2] propose a cross-modal retrieval algorithm based on
parallel field alignment in which heterogeneous data are mapped
Fig. 1. A hetero-manifold with three modalities: the blue, red and green 9 53 common Euclidean space to measure the similarity between
closed curves represent three uni-modal data sub-manifolds; the lines heterogeneous data. Deep learnitlg [14], [16] is also employed
used to connect two uni-modal data sub-manifolds constitute a cross- ’
modal sub-manifold; all uni- and cross-modal sub-manifolds constitute a ~ t0 learn a common feature space which could be shared by hetero-
hetero-manifold; any change of a uni- or cross-modal sub-manifold will  geneous data. Similar to classical discriminant analysis methods,
result in a change of the hetero-manifold. in [3], two pairwise sets (must-link and cannot-link) on the cross
modal samples are considered to learn a similarity function. More
references can be foundl?], [17], [18], [19], [20], [21], [22].

=P Modality 1
== Modality 2
=@=Modality 3 \
——Cross-Modality| | |

are limited to two modalities2], [9], [10], [11], [12], [13] or The Hamming'spac.e' is more attracltive' than the Euclidear)
strive to cope with more than two modalities but are still evaluategpace because of its efficiency of searching in a large-scale multi-
on the datasets with only two modalities],[[14], [15]. modal datasetZ3]. Some existing cross-modal search algorithms,

Given a training set, the inherent similarity of multiple modal-SUCh as ], [19], [24], adopt an ideal hash coding resriction that

ities on the hetero-manifold is represented by the hetero-LapIacE{eﬁ[erOgeneous data representing common objects share the same

matrix. Thus, by minimising the regularisation item via the grap ash coding. Others, such a0l [11], [29], [26], [27], accept

. . - . amore relaxed hash coding restriction that heterogeneous data

hetero-Laplacian, a set of cross-modal hash functions which are . . . . .
._.representing common objects share similar binary codes which

smooth on the hetero-graph can be learned to embed origin . . S

o : means the Hamming distance of their binary codes, should be

data points into a Hamming space. In other words, the learne

hash functions will preserve the geometrical structure and gloig all enough. Some other interesting methods could be found
1, [28], [29], [30], [31], [32].

supervision information of the hetero-manifold. Meanwhile, M ks of dal h ad h ifold
novel weighted cumulative distance inequality on hetero-graj)h any works of cross-modal search adopt the manifold concept

is introduced to cross the gap between Hamming distance dnodel multi-modal data, however, the motivations of construct-
Euclidean distance. By using this novel distance inequality, i) the manifold are different. Firstly, multi-modal data are treated

problem of learning hash functions is transformed into training@ 2n ensemble of homogeneous data, which are modeled as
hetero-manifold regularised support vector machine. multiple homogeneous manifolds, such a [5], [6], [33]. For
example, Gaoet al. [33] constructed a similarity graph matrix

In summary, our contributions are four-fold: (1) A noveksr each uni-modal feature or label feature, and then learned an
hetero-manifold is firstly proposed as a well-defined platform 'i?ptimal similarity graph matrix for the given multi-modal data
capture both local information of sub-manifolds corresponding, fysing the similarity information of uni-modal similarity graph
to homogeneous data and global information of hetero-manifqightrices and the label information with semi-supervised learning.
corresponding to multi-modality data. (2) A weighted cumulagecondly, a cross-modal manifold is constructed whereas uni-
tive distance inequality on the hetero-manifold is provided t@,odal manifolds are omitted, such a.[In [1], Mahadevaret
theoretically guarantee the reasonability of replacing Hammigfocysed on using covariance between the labels of different
distance by Euclidean distance during supervised learning. (3}fydal data to measure the similarity between cross-modal data.
novel hetero-manifold regularised support vector machine, takipgstly, both uni- and cross-modal manifolds are adopted to model
advantages of the hetero-manifold in representing the informatigyy similarity relation between multi-model data. For example,
of multi-modality data and the support vector machine in geneasci et al. [34] use two uni-modal manifolds and one cross-
alisation, is proposed based on the proposed weighted cumulagy§qal manifold to represent bi-modal data; however, the informa-
distance inequality for generating more efficient hash functiogy, of these two uni-modal manifolds cannot be used at the same
for cross-modality searching. (4) Extensive experiments on thge pecause of the usage of gradient based optimization. Zoidi
multi-modality data with six modalities are reported for showing; [35] employed a high-order similarity matrix (similarity ter$o
the flexibility of the hetero-manifold regularised support vectqg represent the similarity information of uni- and cross-modal
machine as more than two modalities are considered. data. Amiri and Jamzad3f] modeled the similarity information

The rest of this paper is organised as follows. The relat@f multi-modal data with a supergraph in which the similarity
work is introduced in Sec2. In Sec.3, constructing a Hetero- information of uni-modal data is represented by a subgrahp of the
manifold for the multi-modal data is detailed. Next, based osupergraph and the similarity information between cross-modal
this Hereo-manifold, learning a set of hash functions for crosgata is modeled by the connected weights between subgraphs.
modal retrieval is presented in Set. Then, Sec5 provides a Besides manifold-related methods, other techniques are also
sequential strategy to solve a complicated objective function. Sexplored for cross-modal retrieval. For example, Magcl. [34]

6 illustrates comprehensive experimental results for fotaskts. proposed a novel deep learning framework to simultaneously learn
Section7 draws our conclusions. multiple hash functions for preserving multi-modal similarity.
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Songet al. [37] proposed another deep learning framework faand the similarity matrixS satisfies
|nteg_rat|ng sgml-superwsed similarity learning and hash function g g2 . gm
learning. Laiet al. [38] proposed deep neural networks for 21 99 oM
simultaneous feature learning and hash functions learning. Zhu S = S S e 8 ; (1)
et al. [18] proposed a cross-modal dictionary learning framework
for representing multi-modal features with common sparse codes.
Pereiragt al. [17]'pai'd more attention on the role of Semami‘?/vhereS(xy 2?) = SU (2, 2Y).
correlation matching in multi-modal retrieval. More references for J J
similarity search on locality sensitive hashing and learning to hash Three-order random walks on the hetero-graph is used to
can be found in39], [40]. model the information diffusion among the vertices on the hetero-
The methods, such ag][ [5], [15], [19], support our view that graph. For each pair of vertices', 27 on the hetero-graph, the
exploiting the manifold structure is very important for boostingonnection between them consists of three steps: from thelend
the performance of cross-model retrieval. However, no genefdl@ Possible neighbour afi*, from the neighbour ofrj' to the
frameworks for multi-modalities are available, no higher-orddteighbour ofz?, and from the neighbour of} to the endz?,
relationships have been considered, and, except for CHEIIS [just like the path shown in Fig2. On the one hand, for the first
most existing methods can hardly be extended to more compf3d third steps, the neighbours of the end must be represented
multi-modalities. As stated before, in this paper, a general-purpd8e2 common modality. Thus, the similarity betweefi and its
multi-modal graph embedding framework, which can preserve tRgighbourz is generally measured by a Gaussian kernel, such as
uni-modal local structure and cross-modal similarity of high-order [

random walks, is proposed for cross-modal hashing. Sz}, xl) = exp{—xi_iz}, )
g

M1 gM2 ... gMM

where o # 0 is a kernel parameter. Similarly, the similarity
S¥(x},z} ) betweenz} and its neighbour?, for the third step

3 HETERO-MANIFOLD OF MULTI-MODAL DATA can be also defined by the Gaussian kernel.
o ) On the other hand, for the second step, the similarity between
Let O = {01,0,,---,0n} be a set containinV objects. For ;% andz?, should be defined according to the different situations

the u-th modality, O is recorded as &, x NN matrix X* where of their modalities. Ifz% andz?, share a same modality where

thei-th column vector ofX™*, z* corresponds t@);, 1 < u < M, 4 = y, the similarity between them could be defined according to
M is the number of modalities, and, is the dimension of:;".  their neighborhood relationship, such as:

Generally, the number of modalities is larger tian.e., M > 2. _
A hetero-manifold is an ensemble of uni- and cross-modal PW(z% 2%) = { L, Su(;/,Jl) <49, 3)
sub-manifolds. Uni-modal sub-manifolds are the manifolds whose ! 0, S*(,5) >4,

elements corresponding to different objects share a comm@pere 5 > 1 is a parameter for controlling the connection
modality. For exampleX™ is a dataset in which all samples are ofyonveen two points on a uni-graph. Otherwisezif andz?, are

. . . . . 7 J/
the u-th uni-modal sub-manifold. It is clear that uni-modal subrepresented in different modalities, the similarity between them
manifolds are used to represent the intra-structure of uni-modgloyid be defined according to the credible priori. For example,
data. In contrast, cross-modal sub-manifolds serve as bridges{g similarity P (z%, 2%,) betweenz% andz?, could be set to

. . . . il Lgr il 4l
connect different uni-modal data. Ideally, any pair of data poinfg, 1 if they correspond fo a same object, and set t6 btherwise.
on different uni-modal sub-manifolds could be connected viajore meaningful priori depending on a particular task can be used

path on the cross-modal manifolds and the distance of the pgifye such as labeld ], semantic affinities and correlations.
could be used to represent the similarity between the cross-modal-rhus, all possible one-order similarities between the vertices

data.. o . on a uni- or cross-modal sub-graph could be respectively repre-
Given training samples, the hetero-manifold could be reprgented by the two kinds of matric€&’ and P“*. Furthermore, in

sented as a hetero-gralh = (V,S), where'V is the set of this paper, we assume that the priori matf%" satisfies:
vertices andS is the set of edges. In this papéV, contains

all feature matricesX', X2,.--, XM and the edge between pw — (pr)T. 4)
two vertices is defined as the similarity measurement between o R o
these two vertices. Following the idea of the hetero-manifold, a BY combining these one-order similarities, the similarity infor-
hetero-graph could be decomposed into a set of sub-graphs”&?‘n”on diffusion model could be defined by a three-order random
the homogeneous sub-manifolds and a set of sub-graphs on Wi as

cross-modal sub-manifolds. Generally, both sub-graphes could be quv _ qupuv gy ()
defined as follows:

As a special case, the similarity matrix of a uni-modal sub-graph
is Sv* = SvputrS* The similarity matrix S*¥ satisfies the
following Lemmas.

Definition 1. Uni-modal sub-graph. G** = (V"% S"") is a
uni-modal sub-graph, if all vertices in this graph come froftf.

Definition 2. Crossrmodal sub-graph. G** = (.VM’ S*)isa Lemma 1. Non-negativity. The elements of similarity matri¥**
cross-modal sub-graph, if, for each edge of this graph, one vertgx, non-negative

comes fromX'* and the other vertex comes fraf®.
Lemma 2. Asymmetry. In general, if two matrice$™* and S

Definition 3. Hetero-graph. G = (V, S) is a hetero-graph, if, 4o unequal,S“" is an asymmetric matrix.

its vertices correspond to all multi-modal dat@!, X2,.-. , XM,
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numbers tol and other numbers t0. Specifically, we have the
k-th element ofy;":

Priori
Correspondence

yi' (k) = (f () +- @

4.1 Distance inequality on a graph

In general, learning to hash tries to minimise a cumulative Ham-
ming distance with some constraints. If the distance is defined on a
manifold, then a weighted cumulative Hamming distadi¢gG)
should be minimised.

Uni-modal
sub-graph

.............
Uni-modal
sub-graph
cecca

Cross-modal

sub-graph

M N
LHG)= D > S"(af ad)Dalyy u)), ®)
u,v=114,5=1

Fig. 2. Cross-modal similarities between features of two objects O; and

U v H 1 1 v
O; captured in two modalities. The lines represent the similarity between whereDj, (yl ’yj) is the Hamming distance betwegfi and Y-

two points. The longer the lines, the less similar the two points are.
The black lines represent the uni-modal similarity while the dashed lines
represent the similarity defined by three-order random walks from one
modality to another modality. Among them, we can see that the features
mi and a:§ are connected by two red dashed lines whilst the two features
x5 and x7 are connected by only one dashed blue line. This point reflects
the asymmetry of S* in Lemma 2.

Lemma 3. Equivalence. Any pair of similarity matricesS™" and
SV satisfies the relationship:

Actually, the weights between the samples embody the intrinsic
structures and useful information including local neighbourhood,
prior semantic cues and affinities. By considering these weights,
the original structure and information can be preserved in a new
learned space. In this paper, the weights reflect the information
contained in the hetero-manifold.

Meanwhile, besides the Hamming distance, for any pair of
pointsz;* andx} on graphG, an accompanied Euclidean distance
can be defined a®.(F(x}'), F(xY)) = ||F(z}) — F(z3)]5.

Same as Hamming distance, a weighted cumulative Euclidean

S = (§vT, ©) distance on graphG, S) is given as:

M N
Therefore, the similarity matri$ on the hetero-graph satisfies £S(G) = Y > 5"(af,a?)Dc(F(x}), F(zY)).  (9)
S = ST. Lemmal is a result of the non-negativeness of Gaussian

kernel @) and the definition op(z}, z7). Lemma2 is the result Normally, during the matching stage, the Hamming distance is
of the def|n|t|qn of matn)_( multiplication. The proof of Lemng far less computationally expensive than the Euclidean distance.
can be found'ln Appendlk.. . . However, despite the simplicity in E@, minimisation of the
Lemmal is the theoretical base of learning hash functiongamming distance is generally intractable, because it is a con-
on a hetero-manifold. Lemma unveils the intrinsic barrier of a0 quantity. Thus, we seek to minimise an alternative item,

treating & multi-modal problem in a cross-modal view because @fich guarantees that the Hamming distance will be minimised
the asymmetry of both similarity matricés*” and S**. Lemma simultaneously.

3 hints the advantages of the global view to understandingimult First, a constraint42] will be given as follows:

modal data as the hetero-manifold because of the symmetry of the

similarity matrix on the hetero-manifol8. See Fig.2 for more  Definition 4. Hinge loss constraint. For a function f;* in the

detalils. u-th modality, if any points}' captured in this modality and its
corresponding hash code defined in Ecsatisfies

yi' (R)fi (@) =2 1 = &,

where&; is a minimal non-negative value, thif§' is the hinge

) ) ) ) loss constraint-satisfied function in tlweth modality.
A hetero-manifold integrates multi-modal data into a common

manifold, however, a huge gap still exists for efficient cross-modal Next, under the above constraint, a distance inequality in the
retrieval because of the difference of different modalities. To thfgllowing can be obtained:

end, a framework of hetero-manifold regularised hash functiQuyma 4. Distance inequality. If two sets of function&* and
learning is introduced to embed multi-modal data into & COMMOR. g6 the hinge loss constraint-satisfied functions in modalities
Hamming space and simultaneously preserve the cross-modal gRd,, respectively, for any two sample¥ andz?, the two types of
within-modal similarities on the hetero-manifold. distance in the learned Hamming space and the Euclidean space
For theu-th uni-modal dataX™, a set of functions#™ = haye the following relationship, when satisfyi, €% +£%, < 1:
{f#,1 <k <K} is used to generate the hash codesXof, /
where K is the length of codes. Using these functio#&, Du(yi',y;) < De(F(x}'), F(x7)), (11)
for each samplez?, a vector of real valuds F(z%)
(f(x), fa(zd), -, fi(z2))T € RE can be obtained. Then,
a binary code vectoy;* of x} can be learned by using} = It is worth to point out thatf! is a hinge loss constraint-
(F(z¥))+, where (-);+ is an operator which sets all positivesatisfied function only when all the samples in modalitgatisfy
condition 10. And Eqg. 11 can be proved, when a condition
Vk, & + & < 1 is given. We can see thdf; and {j, are

u,v=114,5=1

(10)
4 HASH FUNCTION LEARNING ON THE HETERO-

MANIFOLD

whereD), and D, are defined in Eg8 and 9, respectively.

1. For simplicity,F'(z}') = F*(«}) without confusion.
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two minimal non-negative values in the definition of the hingashere £} is a slack variable. The first and second constraint
loss constraint. If the two modalities are the same= v), the conditions which are from Lemmad ensure Euclidean distance
same inequality can be established for any two samples captubaded lossC¢(G) be the upper bound of the Hamming distance

in the same modality.

based los<C” (G). The third constraint condition corresponds to

Then, based on the conditid®, we can extend the inequality the requirement of orthogonality between two hash functions.

11to a weighted cumulative distance inequality on a graph.

Corollary 1. Weighted distance inequality. For a graphG =
(V,S), if two sets of functiong™ and FV satisfy the condition in

Eq. 10, thus the following weighted cumulative distance inequalit

can be established, whef is a similarity matrix with non-
negative members:

LMNG) < L£YG). (12)

To further simplify the optimisation problemlY), the last
two constraint conditions are slightly relaxed and transferred into
the objective function by using the Lagrangian principle. The
constramt condition (iii) will be considered when the projections
are learned using a sequential strategy. As for constraint condition
(ii), the total number of pairsy, &Y, is W because of
the structure of the hetero-graph, and edgh exists in M N
constraint conditions. Thus all of these constraint conditions can
be summed up and the conditions will be relaxed as

Consequently, with the help of the inequality in the Corollary

1, a relaxed optimisation problem which will be introduced in
the following section can be generated. In this paper, we will
consider to learn linear hash functions via minimising the upper

bound £¢(G) of the cumulative Hamming distanc&? (G). In
fact, Corollaryl is a direct result of Lemmd. More proof details
of Lemma4 are provided in the Appendig.

4.2 Objective function

Specifically, the binary codes of' are defined by linear functions

o)+, (W) @), (Wi) " 2')+
z}')+, whereW™ is a matrix whosék-th column vector

asy = (((up)” G JTat) )T —

(we)r

is wy,. Then, for theu-th uni-modal dataseX'*, the corresponding

binary code set i3 = ((W*)T X"),, in which thei-th column
y;' is the binary code vector af}'.
Furthermore, denote projection matrix

W= (WhHt, (w2t . (W), (13)
and multi-modal data matrix
Xt 0 .- 0
x=| 0 X0 19
0 0 XM
Thus, the binary codes can be obtained:
Y = (W'X), (15)
Using Y* = (W")TX%),, it is easy to prove thaly =
(Yl,...,Ye ... ' YM) Meanwnhile, using Eq13 and 14, the

cumulative Euclidean distanc&’(G) can be rewritten as

LE(G) = 2tr(WTXLXTW), (16)
where Laplacian matrix L = D - S, D =
diag(dii,di2, -+ ,du;, - ,dun) anddy; = 3, ; S(z}, x7).

In this paperdiag is an operator to generate a dlagonal matrix

The detailed proof of EqL6is given in AppendixC.

With the hinge loss constraint, the problem of hash functio

learning on hetero-manifold) could be approximated by min-
imising its upper boundl@) with some constraint conditions:

1
W* = argmin 5tr(vaXLXTW) 17)
W

s.t. Yu,ik

(@) yi' (k) (wip) Ty > 1 —
(4) &k + & < 1,
(iii) WIW =1,

zk’ zk>0

M N K

PRPBPIL

u=11:=1 k=1
Therefore, the original optimisation problem7f is trans-
formed by replacing the constraint conditidis) with the relaxed
constraint conditions1) and using the Lagrangian principle into

MNK

(18)

1
W* = argmin 5tr(WTXLXTW) (19)
A%%
M N K
+C130 > > i
u=1i=1 k=1
s.t. Yu,i, k
() yi' (k) (wi) "oy > 1 =&, €5, >0
(ii) WIW = 1,

whereC; > 0 is the regularisation parameter.

It should be noticed that the Laplacian matfixdepends on
all uni- and cross-modal similarity matrices because any sole sub-
matrix used to define the similarity matr, for exampleS“?,
is not enough for defining the counterpart sub-matrixLof It
implies that the Laplacian matrix contains the global information
of the hetero-manifold. Therefore, the optimisation problés) (
is a hetero-manifold regularised hash function learning problem.

5 SEQUENTIAL OPTIMISATION

In order to solve the problem in E49, we first divide it into sub-
problems, in each of which only one projection for theh code
is considered. Thus, in EQJ5, the k-th row vectory, of Y is a

binary vector which corresponds thketh bits of all samples in all
modalities while the correspondirigth column vector ofW is

denoted asv;,. Then, we have

Yk = (W£X>+a

Where the vectow? = ((w})?, (wi)?, -, (wi)T).

Although these sub-problems are not independent with each
ther, they are convex when all the other variables are fixed. The
convexity will be reflected by the standard quadratic programming
problems in the following EqR1 and23. Hence, the optimisation
problem (L9) could be resolved bit by bit in a sequential way. A
similar work of sequential learning could be found 3], when
the sub-problems can be solved by a direct eigen-decomposition.
In this paper, more specifically, the local optimal solutiévi*
is learned by sequentially optimising each of its column vec-
torswy,k = 1,2,---, K. For distinguishing the iterations of
optimisation, ther-th W* and w; are denoted a3 (") and

(20)

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2645565, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. *, NO. *, ** 2015 6
. . 1) . .. .
w,(;), respectively. In round-, before solving the s.ub-problem,whereozf€ ) is the result of Lagrange dual of optimisation problem

the binary codeg” " should be initiated using codes in the las{23) and X" will be updated according to the binary vectdf’.

round or generated randomly. WhenW (U is learned according to the formulaxlj and @5),
the followingW (™), 7 = 2,3, --- | ¢ could be learned by using a
5.1 The first hash function learning similar objective function. The differences to probledi) are the

. . , definition of the orthogonal item:
To train the hash functions, the hash cogré%) will be randomly g

initialised in the first round whem = 1. Then,wi" could be  Q{” =S w{™ V(w{™™)7 — w{ (w7,

learned from the optimisation problem I#£k
Wg” = argmin EW{XLXTwl (21) and, according to the bits learned in the last romﬁﬂ_l), the
. quantity X7~ should be also updated. Similarly, the optimal
u esultw!™ could be represented
+C1ZZ§,-1 resultw,, u repres as
e w() = (XLXT + 0,Q{7) X Val", (26)

s.t.  Yu,i, yf(l)(w%)T:cf >1-&4, &4 > 0.
o ) ) The objective functions in EQ@1and23can be considered as a

The optimisation problem2() is derived from the problem general dual problefy when we defind? = XLX? + C,Q.
(19) where the orthogonall)constralnt condition becomes z&§9, ;s the optimal solution can be obtained by a Representation
because it is assumed that") is orthogonal with the other pro- Theory in AppendixD. Therefore, all of these steps of optimising
jection directionsw{" | k = 2,3, - , K without any information the original optimisation problem16) can be summarised in
aboutw'" k=23 ... K. Algorithm 1.

It is clear that the optimisation problenl) is convex.
Meanwhile, the Lagrange dual of the optimisation probl@f) ( Algorithm 1 Hetero-manifold Regularised Hashing (HMR)

is a problem of quadratic programming. Therefore, the optinalut: Dataset{ X', .-, X}, parameter€, Ca, the number of iterations
ng) could be defined as t and thf length of hash coding vectar.
Output: W,
(1) _ T\—1~(0) (1) Initialisation
Wi = (XLX ) Xy1 ay (22) (0) Construct matrixS according to Egs.2), (5), and Q).

(0) . 1 M2 . w (1) Construct Laplacian graph according to Eq.16).
where Xy, diag(Xy,,---, X )% the matrix X = (2) Randomly initiate the binary cods<” and calculatex(?) .
(i (), -y (1)a%), andagl) is the result of the Lagrange(3) Generate the first projection’") according to Eq.22).

For k=2,--- | K
(4) Randomly initiate the binary codgéco).
5) CalculateQ(l) andxg,(?.
) ) ) (6) Generate;vkl) according to Eq.25).
5.2 The following hash function learning (7) Updatew () andy,(cl) using Eq.20.
Givenwi' wi) ... wl'  the next optimal projectiow!") End

) . . R ko For r=2,-- ¢
could be defined via the following optimisation problem °rF§r k=1, K

dual problem of 21). y¥(1) is the initial bit fromygo) for object
O; in theu-th modality.

8) CalculateQ (™ andX (" Y.
o _ Lo T ( K Vi
Wi = ar%vmm Wi, XLX" wy, (23) (9) Generate thé-th projectionw]iT) according to Eq.26).
F VN (10) UpdateW (7) andy7, using Eq.20.
Cy 1 End
Qs G Y 3 el end
u=1i=1 Return

s.t.  Yu,i, yf(k)(w}:)Ta:f >1-=&, & >0,

where Co > 0 is a regularisation parameter, ar(Q,(:) =

k-1 T 6 EXPERIMENTS

1—1 Wiw; which is used to measure the orthogonality between
w;, and the other learnedr;, [ =1,2,--- ,k — 1. Itis clear that The proposed HMR is validated on four recent public datasets: the
1 VIPeR [44] and CUHKO1 B5] datasets for cross-camera person
1 re-identification, the Wiki datasetlf] for cross-modal retrieval
wiQwe = 3" (whwi)?, (24) i

and the FG-NET ageing datasetq for cross-age face image
retrieval where the number of modalitiestisFour state-of-the-art
where wj'w; defines the linear correlation between; and cross-modal binary code learning methods, including PDe),

w;. By minimising the termw?, fﬁl)wk, the learned projection CVH [15], CMSSH 4] and CMFH [L1], are mainly compared
direction w}(€1) will be approximatively orthogonal to all of the with and some other area-specific methods are also used for
other learned projection directions. Similar to formu2®)( the comparative analysis in our experiments.

optimisation problem Z3) could also be resolved by using the Evaluation Metrics: On the one hand, for identification sys-
Lagrange dual method tems, the Cumulated Matching Characteristics (CM&J] [are

commonly used for performance evaluation and measuring how

=1

1 _ T (1)y—1+(0) . (1) . o . e
wy = (XLX" +C2Q;7) X;(yk)% ) (25)  well an identification system ranks the identities in the gallery
2. Without confusion, the Subscrifxy(g) will be simplified asX§,01). 3. In the case of ER1, the parameter can be setds = 0.
1
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Method R1 R5 R10 R15 R20 AUC
HMR 0.299 | 0.590 | 0.729 | 0.826 | 0.880 || 0.897
CMFH 0.247 | 0.528 | 0.712 | 0.766 | 0.816 || 0.871
PDH 0.171 | 0.449 | 0.604 | 0.693 | 0.778 || 0.822
CMSSH | 0.190 | 0.437 | 0.639 | 0.725| 0.791 || 0.831
CCA 0.168 | 0.427 | 0.551 | 0.633 | 0.693 || 0.776
CVH 0.085| 0.209 | 0.294 | 0.345 | 0.399 || 0.551

TABLE 1
Ranking accuracy comparison at ranks 1, 5, 10, 15 and 20 and overall
AUC performance comparison when 512 dimensional binary codes are
learned. R1 denotes Rank 1.

Fig. 3. Some image examples of the two person re-identification
datasets: VIPeR (left) and CUHKOL1 (right).

CMC rank score on VIPeR cameras). In this experiment, the similarity is calculated in the
learned Hamming space across the cameras and the maximum

1] 4 rank of AUC is85.
VIPeR: This dataset containg32 pedestrian image pairs in

0.8l an outdoor environment. Each pair contains two images of the
Q same individual taken from two different camera views. Changes
o of viewpoint, illumination and pose are the most significant causes
2 AP0 f h Each i has b led128be
= 0.6 —8— HMR—-800-0.324 of appearance change. Each image has been scaledife8be
S —4— HMR-512-0.299 48 pixels. Some example images in VIPeR are shown in Big.
g === SDALF-0.200 (Left). The experimental setting is the same 49].[Half of the

0.4 _._2552527 dataset including 16 images for each view is used for training the

—— KISSME-0.192 algorithms and the remaining 16 pedestrian) is used for testing.
MLF-0.291 . H H f
0. SalMateh=0.302 CUHKO1: Two cameras setting in different places of a campus

i i i T

. environment are used to collect the samples. Camera A captures
106 20 30 40 50 60 70 80 the frontal view or back view of pedestrians, while camera B
Rank captures the side view. This dataset contdii$ persons, each
of which has two images. Some example images in CUHKO1 are
Fig. 4. The CMC rankings of the compared methods on the VIPeR  shown in Fig.3 (Right). All the images are normalised to 1660
dataset'with #316 test persons. Numbers in legend are the Rank-1  for evaluations. The experimenta| se[[ing is the Samé@sﬂ[here
e and HMR-512 means the length of leared codes of HMR g4 hersons are chosen for testing and the remaining persons for
training.

In this experiment, the Local Maximal Occurrence Feature
with respect to a probe sample. Moreover, the Area Under Cur({_ebMo) which was proposed in5fl] is used. The original
(AUC) corresponding to the CMC curves is also reported to shQnension of the LOMO feature 86960 and then is reduced
the overall performance at ranks fromto a fixed maximum. A 5 70 as suggested b]]. In this experiment, the parametefs

larger AUC score means the corresponding method is more robygiy C, of Algorithm 1 are set ta20 and?2, respectively. All the
On the other hand, for the ranking cases of multiple feedbacks, g its are reported by averagih@ runs.

precision and recall are normally calculated: To compare the performance with the state-of-the-art person

RIgRi{m vecall — RigRi{m re-identification methods, we evaluate the proposed HMR and the
’ o IS]% recently published algorithms on the VIPeR dataset including:
SDALF [52], CPS B3], KISSME [54], eSDC F5], SalMatch

precision =

where R is a set of retrieved s_ample§ is a set of_ r_elevant 6, MLF [50] and LADF [57]. For the proposed HMR, two
samples and- | denotes the size of the set. Precision-Rec

(PR) curves 48] which are often used in information retrieval areengths O.f binary code$12 and 800 have been learned and
the experimental results corresponded to both code lengths are

used _to_mgasure performance in cross-mod_a ! retrle\_/al. By varyi dnoted as HMR-512 and HMR-800, respectively. The compari-
the similarity measurement between the pair of retrieved samples

. . . . . .. son results are shown in Fig. Firstly, we can see that, except
(Hamming distance in this paper) and evaluating the Precisian. | \or MR (HMR-512 and 800) significantly outperforms

recall and the number of retrieved points accordingly, PR curve . .
can be obtained. Furthermore, Mean Average Precision (MAB er methods and the advantages are more obvious especially
' X higher ranks (fromb to 60). It is worth to point out that

[11], which is the average precision at the ranks where reca . .
. . R is the only hashing method among the compared ones
changes, is generally used to evaluate a ranking system. . . . - }
and still achieves comparative results to a non-hashing metric
o learning method LADF. In fact, due to quantisation loss, the
6.1 Cross-camera re-identification performance of hashing methods is normally lower than that of
Cross-camera person re-identification is a very challenging tasén-hashing methods in many applications. Secondly, HMR-
because of the variation of camera views and the environmesmthieves similar results as HMB0 and this demonstrates that
Given a probe image containing a person, the most popular mettioe performance keeps stable when the code length is above a
of recognising the person is to rank the similarities between tkertain threshold. Finally, we also compare with other hashing
probe image and the images in the gallery (captured by othmethods on the VIPeR dataset when the binary code length is
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fixed at5124 and the comparison results are illustrated in Table Task M(f\t/h}j’d 36285 gzlggg 841323
We can see that, both from the perspectives of ranks 10, 15 imace | CMSSH 0.2276 | 0.1940 | 0.1982
and 20 and the overall performance AUC, HMR achieves much Que?y PDH | 0.1885| 0.1796 | 0.2086
better results than state-of-the-art hashing methods. %"”\'{é" 8-%283 8-%221 8-%225
To further compare with other hashing methods, binary codes VA 07560 T 0.1902 | 02019
of shorter lengths32, 64 and128) are learned on the CUHKO1 Text CMSSH | 0.2483 | 0.2431 | 0.2505
dataset. The results are shown in Figand Table2. We can Query PDH | 0.2309 | 0.2278 | 0.2279
; CMFH | 0.3192 | 0.3347| 0.3351
observe that, as the code length increases, the performance of ‘MR | 03151 | 0.3408 | 0.3511

eigenvalue decomposition based methods such as CVH decreases
since the first few projection directions occupy most of variances.
However, it is reasonable that our HMR can achieve better when
the code length increases. More information can be kept because
HMR considers both the orthogonality and the cross-modal in-
trinsic structure. We can see that HMR achieves best results_at

all code lengths. Specifically, the advantages of HMR are mosr'emllar PR curve to the best one at code lentfih Finally, MAP

; . erformance on each category is shown in FigThe retrieval
obvious, when the length of learned codes increases. Thelrank._. = . : . _
! . . difficulties of the10 categories to the five methods are similar and
scores of the five methods are also shown in the legend ofsFig

and HMR obtains at lea$t024 higher scores than other methodsf.hree of them, .., Biology, Ggography and Warfare, seem to be
more easily classified. From Fig, we can see that HMR is more

TABLE 3
MAP Comparison on Wiki.

Method | CVH | CMFH | PDH | CMSSH | HMR robust on different categories over other methods. Very recently,
32bits | 45.66 | 65.39 | 58.96 | 5421 | 67.99 deep neural networks were also exploited for multi-modal hashing
64bits | 3847 6537 | 66.59| 5478 | 69.36 [16] or cross-modal hashinglf] and achieved more advanced
128 bits | 30.13 | 67.03 | 69.29 | 55.15 | 72.14 .
results than some other types of methods. However, the complexity
TABLE 2 of code generation in deep neural networks is generally much

AUC Comparison on CUHKOL corresponding to the curves in Fig. 5. pioper than that in linear functions. Take the model of layers

100 — 256 — 128 — 64 — 32 — 32in [16] for example, the number
of multiplications is 68608 times of that in the corresponding
linear function. Nevertheless, the capacity of hypothesis space
6.2 Cross-modal retrieval and the non-linearity exploited in deep learning make it feasible
Images and texts are the two popular modalities for testing cro$@- perform better in most cases. Thus, this motivates us to,
modal retrieval methods. There are several datasets available dgfides exploring the structure of the hetero-manifold, rewrite the
Wiki is the most popular one. Thus, in this experiment, the Wikiroposed framework in Reproduced Kernel Hilbert Sp&& ih
[17] dataset is used for our evaluations. the future to capture the non—linearity as well.
Wiki: It is generated from the “Wikipedia featured articles”
and consists 0f2866 image-text pairs in10 most populated )
categories. The texts are represented1bydimensional latent 6-3 Cross-age face retrieval

Dirichlet allocation model and each image hak2& dimensional |n this section, we validate the proposed HMR on a more challeng-
SIFT histogram feature. We follow the data partition adopted g task: cross-age face retrieval. Given a probe face image, we
[17] to split the dataset into a training set2f73 pairs and a test need to search for the face images of the same person but captured
set of 693 pairs. In our setting, both gallery and query sampleg gifferent age stages. This task is derived from age estimation
are from the test set which is different to the setting1d][In  [59] put it is more difficult and novel because: 1) The principal
[11], the gallery samples are from the training set and thus the§aracteristics of the face appearance of a same person vary
retrieval results are better than ours. If the query comes from tﬁgge|y along with the variation of his or her age. 2) The capturing
test set, then the samples in the text test set will be considere¢tggditions of images are quite diverse in different places and years.
the database and vice versa. In this experiment, the pararﬁhter%) As far as we know, the cross-age face retrieval is the first
and C; of Algorithm 1 are set as0 and 1.2, respectively. The my|ti-modal experiment, in whicl modalities are considered.
number of retrieved instances is se{#},x = 50. Intuitively, the ages of faces can be considered as modalities in
The MAP results on the test set are shown in Tabldhe oy setting, in which faces of different persons with the same age
same phenomenon of performance reduction as the code lengihge share similar characteristics including smoothness, wrinkles
increases for the eigenvalue decomposition based methods §aR hair.
be also observed on Wiki. From Tab: we can see that HMR  £G_NET: Some examples of an ageing datasi],[ which
outperforms the state-of-the-art methods at code lengthand  ontainss2 people with age ranges frofto 69, are shown in
G4, and achieves very close scores to the best method at Cegle g The images of a same person distribute unevenly and most
length16. Moreover, the Precision-Recall (PR) curves on the Wil the jmages are captured in the early ages. Thus, we divide the
dataset, which are obtained by varying the Hamming distangges intcs stages including —4, 5—9, 10— 14, 15— 19, 20— 30
between the query points and the retrieved points, are reportecyfy31 _ 9 which correspond t6 modalities in our method. In
Fig. 6. HMR can obtain higher scores for almost all the Hammingg experiment, the parametef§ and Cs of Algorithm 1 are
radii from 1 to the maximum at code lengthg andG4 and geta gt 10 10 and 0.1, respectively.10-fold cross validation is used

4. Because of the limitation of covariance, CVH and CCA cannot Iear%nd' in each fold)07% persons will be chosen as training and the

functions with a number exceeding the rank of the matrix. Thus, best resd’l%mai”i”_g as for testing. In this experiment, the maximum value
are reported at a certain length. for AUC is set to50.
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CMC rank score on CUHK01-32bits

CMC rank score on CUHK01-64bits

CMC rank score on CUHK01-128bits
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Fig. 5. The CMC rankings of five methods on the CUHKO1 dataset at code lengths 32, 64 and 128 with 486 test persons.
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Fig. 6. Precision recall curves on Wiki by varying the Hamming distance.
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Fig. 7. MAP performance for each category at 32 bits.

Firstly, same as most age estimation works, features aae CMFH, the optimisation is not even technically correct. By
directly extracted based on tlid landmarks offered by the FG- duplicating the samples of a same person, a diagonal correspon-
NET dataset. For each landmark, a simple descriptor G6B[li§ dence matrix can be obtained. Moreover, except for our HMR, no
used for representing a fixed rectangl® & 19) around it and then existing methods can directly tackle multiple modalities with an
a feature for a face image can be constructed by concatenatingitte®nsistent number of samples or features. To compare with these
features of all landmarks. Principal Component Analysis (PCA) imethods, any two modalities will be considered as the input of the
adopted to reduce the feature into a space ®ith dimensions. two-modality methods. Taking the PDH, CMFH, CCA, CMSSH
Secondly, it is worth to point out that the number of images @nd CVH as examples, these methods will be traihddimes
a same person differs significantly for different age stages. Théis; cross-age face retrieval and, for each modabhtydifferent
compared to person re-identification and cross-modal retrieval, g@ups of projections will be obtained. This demonstrates that
task becomes more difficult because the correspondence matix proposed HMR is very powerful and flexible to deal with
between two modalities is not diagonal. For some methods sudifferent tasks without particular limitations and the hash functions
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Ages: 0-4 5-9 10-14 15-19 20-30 31-69

Fig. 8. Some image examples of the FG-NET dataset. For person 007,
the dataset contains no image samples with age range 5-14.

CMC rank score on FG-NET
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Fig. 9. Overall performance comparison between the proposed HMR,
CCA and other state-of-the-art methods. The number in the legend is
the Area Under Curve (AUC) and the possible largest AUC can be up to

1.

Modalities | 0-4 5-9 10-14 | 15-19 | 20-30 | 31-69

0-4 - 0.284 | 0.216 | 0.151 | 0.085 | 0.111
5-9 0.537 - 0.437 | 0.358 | 0.400 | 0.250
10-14 0.515 | 0.565 - 0.387 | 0.328 | 0.490
15-19 0.346 | 0.488 | 0.414 - 0.460 | 0.536
20-30 0.337 | 0.367 | 0.233 | 0.424 - 0.589
31-69 0.333 | 0.340 | 0.374 | 0.347 | 0.370 -

TABLE 5
Rank 10 performance of cross-age retrieval on the FG-NET face
dataset with 6 modalities.

Modalities | 0-4 5-9 10-14 | 15-19 | 20-30 | 31-69

0-4 - 0.319 | 0.282 | 0.168 | 0.106 | 0.148
5-9 0.578 - 0.477 | 0.421 | 0.475 | 0.350
10-14 0.556 | 0.604 - 0.465 | 0.391 | 0.571
15-19 0.394 | 0.549 | 0.485 - 0.506 | 0.565
20-30 0.361 | 0.408 | 0.301 | 0.515 - 0.633
31-69 0.400 | 0.453 | 0.396 | 0.403 | 0.495 -

TABLE 6
Rank 20 performance of cross-age retrieval on the FG-NET face
dataset with 6 modalities.

based methods. Furthermore, compared to the above experiments
of two modalities, the advantages of the proposed HMR are more
obvious in this experiment. The substantial reason is that the
information can be propagated on the proposed Hetero-manifold
and then supervises the learning of hash functions. However, most
state-of-the-art methods are specially designed for two modalities
and, in the multi-modal cased/ > 2), to some extent, the global
information is ignored.

To investigate the details of cross-age retrieval, the perfor-
mance at ranks, 10 and20 between any modalities is shown in
Tables4, 5 and®6, respectively. On the one hand, we can see that,
in general, the performance of cross-age retrieval between two
adjacent modalities is higher than that of non-adjacent modalities.
In essence, the appearance changes between adjacent modalities
will be smaller than those between large age gaps. On the other
hand, it is interesting that the retrieval performance when the probe
image comes from older age stages and the gallery consists of
images from earlier ages normally will be better than the opposite
conditions. We think this is because the appearance variation
trend in the later age stages becomes smaller and some important
identification characteristics remain as age increases.

for different modalities can be obtained simultaneously by one Two probe samples with first matches are shown in Fig.

optimisation.

Modalities | 0-4 59 | 10-14 | 15-19 | 20-30 | 31-69
0-4 - 0.108 | 0.102 | 0.059 | 0.043 | 0.000
59 0.248 | - 0.216 | 0.179 | 0.050 | 0.050
10-14 0.220 | 0.265 | - 0.134 | 0.125 | 0.163
15-19 0.096 | 0.220 | 0.162 | - 0.149 | 0.304
20-30 0.120 | 0.102 | 0.055 | 0.141 | - 0.322

31-69 0.033 | 0.113 | 0.132| 0.125 | 0.103 | -

TABLE 4

Rank 1 performance of cross-age retrieval on the FG-NET face dataset

with 6 modalities.

10. The two persons have images from the- 4 modality to the

15 — 19 modality. The left probe comes from tie— 9 modality

while the right one comes from tH&— 4 modality. We can see

that several images with a same person have been successfully
matched in different age stages by cross-age retrieval.

7 CONCLUSION

In this paper, the concept of hetero-manifold was introduced for
integrating the uni- and cross-modal similarities of multi-modal
data in a global view. Both types of similarity are represented
in the Laplacian matrix, corresponding to the hetero-manifold.

The overall performance comparison of cross-age face rEde Laplacian matrixl. appears smoothly when the Hamming
trieval is given in Fig.9 and the different methods are rankedlistance in Eq.8) is replaced by the Euclidean distance in Eq.
according to the Area Under Curve (AUC). From this figure(17), which hints that no hash functions could be learned without
we can see that the proposed method consistently outperforisini- and cross-modal similarities being defined on the hetero-
other methods at all ranks. Moreover, we can conclude that nonanifold. Therefore, the proposed framework of hetero-manifold
hashing method CCA achieves better results than other hashiregularised hash function learning (E4.7)) could benefit from
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Fig. 10. The cross-modal first three matching results of two probe
images. The red rectangles demonstrate the correctly matched images
in the gallery of a same person.

@) I (fE(@t)4 # (F2(a3))+, we assume thalf;! (z1)) . = 1
(Otherwise, same conclusmn can be also obtained). There must be
(fg(z}))+ = —1. Since the two linear projections are both hinge
loss constraint-satisfied functions, we have:
fi@i) =1 - §zk7
K@) <=1+

So, there i — i — & < [fi(z}) — f;g(:cg)|. Provided that
i T & < 1, the following mequallty is true:

yi (k) @y (k) =1 <2 = &5 — &5 < |fit(ay) — fi (5.

In total, we obtain the following conclusion by satisfyivig, £;. +

v
the view of treating multi-modal data as a whole. The experimené;z}’f <1

results demonstrate that the proposed HMR outperforms the state-

of-the-art methods on four popular datasets.

The hetero-manifold also offers some interesting problems in
the field of cross-modal hashing. Firstly, it is interesting to con-

sider a kernel extension of the proposed HMR. It is clear that the

proposed hetero-manifold regularised framework (E@))(can be

n (s yY) Zyz ) @ vy (k)
le (fi(@i)+ # (fr(@]))+),
*212 (fe(@i)+ # (fr(x5))+),

rewritten in Reproducing Kernel Hilbert Space (RKHS). By using

RKHS, nonlinear hash functions could be learned, which may
improve the performance of HMR. However, to achieve this, an
induced problem needs to be considered for multi-modalities. For
a common reproduced space or several individually reproduc-gae
spaces, which case is more reasonable? Moreover, what is
relationship between the reproduced spaces and the kernels? Sec-
ondly, it would be interesting to consider the proposed framework

(Eq. 7)) in semi-supervised settings.

APPENDIX A
PROOF OF LEMMA 3
Proof. We haveS"’ = SutpuvSvv gnd Sv* = SvvpveSue,
The transposition o6V* is:
(Swu)T _ (Sm;Pquuu)T

= ("7 (P (5™

— SUUPUWS’UW

=S5
The third equation holds because matriggd’, SU¥ and P*¥ =
(PU)T" are symmetric.

According to the definition of similarity matri$, the symme-
try of S could be proved by using the fact p§**)? = S“0. O

APPENDIX B
PROOF OF LEMMA 4

Proof. The Hamming distance between two binary coggsand
y; is defined by:
Z yi'(

Z

wherel(-) is an indicator function. Thus, for arfy, we consider
two conditions:

O IF (fr @)+ = (fi(z
yi' (k) @ yj (k) = 0 < [fif (=) —

k) @ yj (k)

N+ # (fi (2]

Dh yz 7yj

i))+);

)+ itis obvious that

fR(@5)].

SZ fr(xd) — k(wi))Q

k
third equation holds due to tha2 = 0 and 12 = 1.
'l['ll?grefore, we have:

< [|F(f) = F(z})]]3

= D.(F(x}), F(x7)).

Dn(yi'>y5)

APPENDIX C
PROOF OF EQUATION (16)

Proof. According to the definition oW’ (13) and the definition
of X (14), itis clear that

WX
X0 - 0
=Ty [ 0T 0
0 0 XM
_ ((WI)TX17(W2)TX2,"' ,(WM)TXM) (27)
Then
tr(WIXSXTW)
_ (((Wu)TXu) (Suv)uv 1((X’U)TW’U)’U_ )
= > tr(W)TXuS™(X)TWY) (28)
Notice the definition of F'(z¥) and X* = (a¥,---,z%), we
have
tr(WTXSXTW)
= Ztr((F(xl*‘))LS““((F(x}?))?’zl)T)
:ZZWUJ F(z!),F(z¥))2. (29
uU,v 1,5
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Meanwhile, we have the following equations

tr(WTXDXTW) = 3~ dyil|F(21)]3

S IFGHIBEY S a))

v,J

SN S, @) Fad)3

u,v 4,

(30)

where D = diag(du, d12, cee 7dui; cee ,d]\/[N) and duz =
>0, S(xf, ). Similarly, the following equation is true.

tr(W'XDX"W) = 33" S(al, a9)||F(23)]13

u i

(31

Combining the equations29), (30) and @1) and considering

S(zf, z7) = S*(x, x¥), we have
2tr(WT XLXTW)
= 2tr(W/XDXTW) — 2tr(WTXSX'W)
= D> S(aal)||F(a) — F(ah)ll3

u,v 1,j
= L(G) (32)
O
APPENDIX D

PROOF OF THE FORMULA (25 AND 22)

Proof. For simplicity, we delete the index of projections and, then

the objective function ir23 become similar to the function i2l1.

The only difference between them is EXg has a orthogonal item. 5

Thus, if further definedd = XLX7T + C>Q, we obtain:
1 M N
* . T 2
w* = argmin —w' Hw + C b
gmin 5 | uZ:l izzlé

s.t.Yu, 1, yz"(w“)Tmf >1-¢& & >0,

(33)

Substituting the above equations into the original Lagrange func-
tion (34), we obtain the dual problem:

*

1
« = argmin—e’a + —aTbe,Hleya
«@

st. 0 S Q; S Cl. (35)

The problem 85) is a standard quadratic programming problem.
Therefore, ifa™* is the solution of 85), the optimal projection
direction can be obtained as:

w* = (XLX" + C,Q) ' X a*.
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