
MSU-CSE-16-3, APRIL 2016 1

Clustering Millions of Faces by Identity
Charles Otto, Student Member, IEEE, Dayong Wang, Member, IEEE, and Anil K. Jain, Fellow, IEEE

Abstract—In this work, we attempt to address the following problem: Given a large number of unlabeled face images, cluster them into
the individual identities present in this data. We consider this a relevant problem in different application scenarios ranging from social
media to law enforcement. In large-scale scenarios the number of faces in the collection can be of the order of hundreds of million,
while the number of clusters can range from a few thousand to millions–leading to difficulties in terms of both run-time complexity and
evaluating clustering and per-cluster quality. An efficient and effective Rank-Order clustering algorithm is developed to achieve the
desired scalability, and better clustering accuracy than other well-known algorithms such as k-means and spectral clustering. We
cluster up to 123 million face images into over 10 million clusters, and analyze the results in terms of both external cluster quality
measures (known face labels) and internal cluster quality measures (unknown face labels) and run-time. Our algorithm achieves an
F-measure of 0.87 on a benchmark unconstrained face dataset (LFW, consisting of 13K faces), and 0.27 on the largest dataset
considered (13K images in LFW, plus 123M distractor images). Additionally, we present preliminary work on video frame clustering
(achieving 0.71 F-measure when clustering all frames in the benchmark YouTube Faces dataset). A per-cluster quality measure is
developed which can be used to rank individual clusters and to automatically identify a subset of good quality clusters for manual
exploration.

Index Terms—face recognition, face clustering, deep learning, scalability, cluster validity

F

1 INTRODUCTION

In this work, we attempt to address the following problem:
Given a large number of unlabeled face images, cluster them
into the individual identities present in this data. This situation is
encountered in a number of different application scenarios ranging
from social media to law enforcement, where the number of faces
in the collection can be of the order of hundreds of million. Often,
the labels attached to the face images are either missing or contain
noise. The number of clusters or the unknown number of identities
can range from a few thousand to hundreds of millions, leading to
difficulties in terms of both run-time and clustering quality.

Considering social media, Facebook reported that 350 million
images are uploaded per day on average1, and of those images, a
large number may reasonably be assumed to be images of people.
In social media some identity information may be provided via
tagging, but in general this is incomplete and may be inaccurate.
We consider grouping face images into discrete identities as one
possible approach for organizing this large volume of data.

In forensic investigations, triaging large-scale face collections
is also an emerging problem. Few examples are more relevant
than the Boston Marathon bombing [1], where tens of thousands
of images and videos needed to be analyzed during a time sensitive
investigation [2]. Other common cases that require the investiga-
tion of large media collections include identifying perpetrators
and victims in child exploitation cases2, an understanding of
which individuals exist in a collection of social media (such as
imagery from gang and terrorist networks), and organizing media
collections from hard drives (personal computers or servers).

In both social media, and forensic investigations we expect the
unknown number of individual identities present in a dataset to
be large, which is challenging from a scalability perspective since
runtimes tend to be related to the number of clusters. Additionally,
we expect the number of images per individual to be unbalanced
(some people may appear very often, others much less frequently),

1. https://goo.gl/FmzROn
2. http://www.nist.gov/itl/iad/ig/chexia-face.cfm

Unlabeled	
  Images	
  
Feature-­‐Space	
  
Representa6on	
   Clustered	
  Images	
  

G	
  
W

W

W

W

W
W

G	
  
G	
  

G	
  

G	
  

G	
  

Fig. 1: Given an unlabeled set of face images acquired e.g.
from social media or in the course of a forensic investigation,
we propose “clustering by identity” as a first step in exploring
and understanding the dataset. Face images here belong to two
individuals: George W. Bush (W) and George H.W. Bush (G).

which is challenging for e.g. clustering algorithms like k-means
which tend to generate similar sized clusters. It can also be
assumed that the quality of images in terms of pose, illumination,
occlusion, etc. being considered is relatively low, since social
media images, images taken at public events etc. are not generally
captured in the most favorable conditions for face recognition.
Following recent progress in unconstrained face recognition, we
attempt to mitigate the difficulty of the underlying face clustering
problem by using a state-of-the-art convolutional neural network
based face representation [11].

Even using a strong face representation, accuracy is not perfect
on verification tasks (particularly when considering difficult data).
Zhu et al. [7] reported success in clustering collections of per-
sonal photographs using a Rank-Order clustering method which
develops a distance measure based on shared nearest-neighbors
of face images being compared (since direct feature vector-to-
feature vector distances may be inaccurate given the difficulty of
the face recognition task). However, in addition to the problem of

ar
X

iv
:1

60
4.

00
98

9v
1 

 [
cs

.C
V

] 
 4

 A
pr

 2
01

6



MSU-CSE-16-3, APRIL 2016 2
TABLE 1: A summary of related studies on face clustering.

Publication Features Clustering method # Face images # Subjects

Ho et al. [3] Gradient and pixel intensity features Spectral clustering 1,386 66
Zhao et al. [4] 2DHMM + contextual Hierarchical clustering 1,500 8
Cui et al. [5] LBP, clothing color + texture Spectral 400 5
Tian et al. [6] Image + contextual Partial clustering 1,147 34
Zhu et al. [7] Learning-based descriptor [8] Rank-order 1,322 53
Vidal and Favaro [9] Joint subspace learning and clustering -† 2,432 38
Otto et al. [10] Component-based features, commercial face matcher k-Means, spectral, rank-order 1M 195,494
Ours Deep features [11] Approximate rank-order 123M Unknown‡

† In this work a unified algorithm is used for representation and clustering
‡ Due to the nature of the dataset used (face images blindly harvested from the Internet), we do not know the true number of identities, as is the case in
practical scenarios.

poor face quality, large scale face clustering tasks (on the order
of 100 million face images) are inherently difficult in terms of
scalability (run-time). We develop a version of the rank-order
clustering algorithm of Zhu et al. [7] leveraging an approximate
nearest neighbor method for improved scalability, and simplifying
the actual clustering procedure to achieve improved scalability and
clustering accuracy.

We evaluate large-scale clustering performance by combining
the well-known Labeled Faces in the Wild (LFW) dataset [12]
with up to 123M unlabeled images (downloaded from the web),
and clustering the augmented dataset. Additionally, considering
that even a reasonably accurate clustering of a truly large
dataset may still result in too many clusters to be manually
investigated, we investigate per-cluster “internal” quality measures
(which do not require external labels on face images) to identify
a subset of “good” clusters (relatively compact and isolated),
for manual exploration. In addition to large-scale clustering
on unconstrained still face images, we perform preliminary
investigations of clustering video frames leveraging the YouTube
Faces (YTF) database [13], clustering hundreds of thousands of
video frames.

The perceived contributions of this paper include: (i) an
updated clustering algorithm, improving on the method presented
by Zhu et al. [7] using an approximate nearest neighbor method for
improved scalability, which also attains better clustering accuracy,
(ii) large-scale face clustering experiments using a state-of-the-
art face representation learned for large scale supervised face
recognition based on deep networks [11], (iii) a preliminary
investigation of the applicability of the presented face clustering
method to video, and (iv) definition of a per-cluster quality
measure suitable for prioritizing a subset of clusters out of millions
of detected clusters.

2 BACKGROUND

2.1 Face Clustering
The clustering problem, a tool for exploratory data analysis, has
been well studied in pattern recognition, statistics, and machine
learning literature (Jain [14] provides a survey). Less studied is the
challenging problem of clustering face images, especially when
both the number of images and the number of clusters are very
large. An important consideration in clustering (and classifying)
face images is that since there is no universally agreed upon face
representation or distance metric, the clustering results depend
not only on the choice of clustering algorithm, but also on the
quality of the underlying face representation and metric. Table 1
lists prior work on face clustering, with the face representation
and clustering algorithm used, along with the largest dataset size
employed in terms of face images, as well as number of subjects.

Ho et al. [3] developed variations on spectral clustering
wherein the affinity matrix is computed based on (i) assuming a
Lambertian object with fixed camera/object positioning, and then
computing the probability that two face images are of the same
object (same convex polyhedral cone in the image space), or (ii)
the local gradients of the images being compared; evaluation is
done on the Yale-B and PIE-66 datasets.

Zhao et al. [4] clustered personal photograph collections. Their
approach combines a variety of contextual information including
time based clustering, and the probability of faces of certain people
to appear together in images, with identity estimates obtained via
a 2D-HMM, and hierarchical clustering results based on body
detection; a dataset of 1, 500 face images of 8 individuals is used
for evaluation.

Cui et al. [5] developed a semi-automatic tool for annotating
photographs, which employs clustering as an initial method for
organizing photographs. LBP features are extracted from detected
faces, and color and texture features are extracted from detected
bodies. Spectral clustering is performed, and the clustering results
can then be manually adjusted by a human operator. Evaluation
is done on a dataset consisting of 400 photographs of 5 subjects.
Tian et al. [6] further developed this approach, incorporating a
probabilistic clustering model, which incorporates a “junk” class,
allowing the algorithm to discard clusters that do not have tightly
distributed samples.

Zhu et al. [7] developed a dissimilarity measure based
on the rankings of two faces being compared in each face’s
nearest neighbor lists (formed using a basic distance metric), and
perform hierarchical clustering based on the resulting rank-order
distance function. The feature representation used is the result of
unsupervised learning [8]. The clustering method is evaluated on
several small datasets (the largest of which contains only 1, 322
face images). Wang et al. [15] primarily develop an approximate
k-NN graph construction method; in one of their experiments they
apply this method to construct the nearest neighbor lists required
by [7], on a dataset containing LFW and an additional 500K
unlabeled face images, and use the rank-order distance measure
to produce an improved k-NN graph (but do not perform hard
assignment of faces into clusters).

Vidal and Favaro [9] developed a joint subspace learning and
clustering approach. It derives several subspaces from the input
dataset which best capture clusters in the data. They evaluate the
method on the extended Yale-B database.

In related applications, Bhattarai et al. [16] develop a semi-
supervised method for organizing datasets for improved retrieval
speed via hierarchical clustering. Tapaswi et al. [17] address
organization of video frames, performing both within video
and cross-video clustering, incorporating constraints from face



MSU-CSE-16-3, APRIL 2016 3

tracking and common video editing patterns. Schroff et al. [18]
give some qualitative results of clustering personal photos using a
deep learning based face representation.

Some experimental work in face clustering has considered
hundreds of thousands of images, while some general object
clustering tasks have used datasets on the order of billions of
images [19]. In cases where the true number of clusters is known
a priori, that number is typically orders of magnitude lower
than the number of images. In general, the evaluation methods
used to determine how well clustering algorithms perform (when
true labels are available) are split. In some cases the clustering
accuracy is used [3], in others precision/recall [4], and in still
others normalized mutual information is employed [7].

2.2 General Image Clustering
For clustering images in general, rather than faces in particular,
Liu et al. [19] (i) extracted Haar wavelet features from images,
(ii) applied a distributed algorithm consisting of an approximate
nearest neighbor step, (iii) generated an initial set of clusters by
applying a distance threshold to the nearest neighbor lists, and
(iv) applied a union-find algorithm to get a final set of clusters.
Clustering was performed on approximately 1.5 billion unlabeled
images, along with an evaluation on 3, 385 labeled images. The
main goal of the procedure was to group images into sets of near
duplicates, but the total number of such sets in the 1.5 billion
image dataset was unknown.

Gong et al. [20] develop a version of k-means clustering which
is suitable for handling large datasets by encoding their feature
vectors to binary vectors, and then using an indexing scheme to
support constant time lookup of cluster centers for the assignment
step of k-means. They apply their binary k-means algorithm to
a subset of the ImageNet dataset, containing 1.2 million general
object images in 1, 000 classes.

Foo et al. [21] consider a related problem, the detection of
near-duplicate images in large datasets. In this case, rather than
grouping images of people by identity, the goal is to identify
near-duplicate images, which may be the result of various image
processing operations, such as cropping, rotation, colorspace
conversion, etc. Their image representation consists of applying
a visual words approach to local PCA-SIFT descriptors, indexed
with a Locality Sensitive Hashing (LSH) scheme. The clustering
method used is a union-find algorithm. Evaluation was performed
by generating a synthetic set of near duplicate images, and
performing clustering in the presence of a separate noise set; the
largest dataset used contained 300, 000 images.

2.3 Approximate Nearest Neighbor Methods
A common problem in some of the well-known clustering methods
is finding nearest neighbor sets for all n samples in a dataset.
Naively, the runtime is O(n2), which is a problem for large
n. This can be considered an instance of the k-NN graph
construction problem, or alternatively it can be considered a set
of n approximate nearest neighbor searches. For both of these
cases, approximation methods are available in the literature.

2.3.1 k-nn Graph Construction
One approximation method for computing the full k-NN graph is
given by Chen et al. [22]. The algorithm is a procedure based on
recursive subdivision of the feature space via Lanczos bisection.
We use a parallelized version of this algorithm, presented in [10],

A1	
  

A2	
  

B1	
  
U2	
  

U1	
  
A3	
  

Fig. 2: Diagram of a possible clustering configuration, used to
illustrate evaluation metrics. Six samples are partitioned into 2
clusters; A1, A2, and A3 are labeled with the same identity,
sample B1 is labeled with a different identity, and samples U1
and U2 are unlabeled.

which branches at each recursive subdivision, handling both halves
in separate threads.

This algorithm achieves improved runtime over the brute-force
method by skipping some sets of comparisons (the portion of
comparisons at each split between samples in opposite partitions,
not included in the overlap set), and as such the runtime is a
function in the degree of overlap chosen.

2.3.2 Randomized k-d Tree
In addition to k-NN graph construction, we may consider building
nearest neighbor lists for the entire dataset as n discrete nearest
neighbor search problems, and improve the total runtime by
employing an approximate nearest neighbor search method.
Among various approximate nearest neighbor algorithms, one
classic family is partitioning tree-based approaches. They follow
the classic k-d tree algorithm which develops an index that
subdivides the feature space by selecting a subset of features to
split the data on. The randomized k-d tree algorithm [23] improves
efficiency by building multiple randomized k-d tree indices, then
searches those indices in parallel.

2.4 Clustering Evaluation
In evaluating clustering performance, since we use a pre-defined
definition of “correct” clustering (clustering by identity), we can
evaluate accuracy in terms of clusters corresponding to known
identity labels. External measures for evaluating clustering quality
rely on identity labels; we will use pairwise precision/recall since
it can be computed efficiently. Run time is also an important
evaluation metric.

Pairwise precision is defined as the fraction of pairs of samples
within a cluster (considering all possible pairs) which are of the
same class (have the same identity), over the total number of same-
cluster pairs within the dataset. In Figure 2, (A1, A2) is a matching
pair, and (A1, B1) and (A2, B1) are mismatched pairs.

Pairwise recall is defined as the fraction of pairs of samples
within a class (considering all possible pairs) which are placed
in the same cluster, over the total number of same-class pairs
in the dataset. In Figure 2 (A1, A2) is a same class pair in the
same cluster, while (A1, A3) and (A2, A3) are same-class pairs in
different clusters.

These measures capture two types of error, a clustering which
places all samples as individual clusters will have high precision,
but low recall, while a clustering which places all samples in the
same cluster will have high recall, but low precision. The two
numbers can be summarized using F-measure, defined as F =
2× (Precision×Recall)/(Precision+Recall).

We extend these measure to handle partially labeled data, as
encountered in large-scale clustering problems, by simply omitting



MSU-CSE-16-3, APRIL 2016 4

3x3/1	
  

32	
  
64	
  

100	
  

100	
  

50	
  

…	
  
Feature	
  Layer	
  

Classifica:on	
  Layer	
  

Pooling	
  Conv.	
  

2x2/2	
  

64	
  
100	
  

100	
  

50	
  
3x3/1	
  

45% 

30% 

25% 
55 

110 

(a)	
   (b)	
   (c)	
   (d)	
   (e)	
   (f)	
  

Fig. 3: Face representation. An RGB image is input (a), keypoints are detected (b), the image is normalized following the procedure
described in [11] (c), the normalized image is input to a convolutional neural network (d), and the 320-dimensional output of the final
average-pooling layer is used as the face representation (e). An N-way softmax classification layer (f) is used during training only.

the unlabeled data from evaluation, to the extent possible. In our
experiments, partially labeled data occurs when we mix LFW face
images (with known labels) against a large collection of faces
downloaded from the web with unknown labels.

We define modified pairwise recall by simply not counting
whether or not unlabeled identities are grouped together. For
precision, we consider labeled-unlabeled pairs (e.g. (A3, U1)
and (A3, U2) in Figure 2) mismatches, and omit unlabeled-
unlabeled pairs (i.e. (U1, U2) ) from the calculation. So, rather
than considering all possible pairs in a given cluster, we omit
any unlabeled-unlabeled pairs from the total. In the right cluster
in Figure 2, we would only use pairs (A3, U1) and (A3, U2)
to calculate the modified precision. The modified precision in
Figure 2 is then 1/5 (only the A1-A2 pair is correct, the U1-
U2 pair is not counted), the modified recall is 1/3, only class A
has more than one sample (and is labeled), and of the class A
pairs, only A1 and A2 are in the same cluster.

3 PROPOSED FACE CLUSTERING APPROACH

3.1 Face Representation

Since we are clustering faces captured under unconstrained
conditions, we leverage a deep convolutional neural network for
our face representation following the success of such methods
by various researchers on the LFW benchmark3. Many deep
learning approaches have been successfully applied to the LFW
benchmark; however, most leverage private training sets. In
our case, we use the architecture described in [11] and train
the network directly on aligned face images from the publicly
available CASIA-webface dataset [24]. Results on both the LFW
and IJB-A [25] benchmarks, and under larger-scale face retrieval
scenarios, using this trained network, were shown to be reasonably
competitive in [11], compared to the best approaches on LFW,
particularly considering the different scales of training data
involved.

The feature extraction process is outlined in Figure 3. Given
an input image, 68 facial landmarks are detected using the
DLIB implementation of Kazemi and Sullivan’s [26] ensemble
of regression trees method. Image normalization is performed
based on the detected keypoints, in particular in-plane rotation
is corrected based on the angle between the eyes, the eye line is
placed at 45% of image height from the top of the image, the

3. http://vis-www.cs.umass.edu/lfw/results.html

mouth line is placed at 25% of image height from the bottom of
the image, the midpoint of all detected points is centered in the
x dimension, the aligned image is scaled to 110 × 110, and the
center 100× 100 region is the final normalized image.

The normalized image is passed as input to a convolutional
neural network following a very deep architecture [27], with a
total of 10 convolution layers, and small (3 × 3) filters. The
architecture consists of pairs of convolutional layers followed by
max-pooling layers, repeated 4 times, then a final 2 convolutional
layers followed by an average pooling layer, with ReLU neurons
following all convolutional layers, except for the last one. The
320-dimensional output of the final average pooling layer is used
as our feature vector, and during training is fed into a fully
connected layer (regularized via dropout), followed by a softmax
loss. Only the 320-dimensional output of the average-pooling
layer is used in our clustering experiments.

The network is trained using 404, 992 face images of 10, 533
subjects from the CASIA-webface dataset (the images for which
face alignment was performed successfully), in minibatch stochas-
tic gradient descent. The loss layer used for training is a single
softmax loss function. The weight decay of all layers is set to
5 × 10−4, and the learning rate for stochastic gradient descent
(SGD) is initialized to 10−2, and gradually reduced to 10−5. The
network is implemented using the cuda-convnet2 library4.

3.2 Clustering Method

A large number of clustering methods have been proposed in the
literature based on squared-error, mixture models, nearest neigh-
bor and graph-theoretic approaches [14]. Based on evaluation
of different approaches for face clustering in [10], we leverage
an approximate version of the rank-order clustering algorithm
proposed by Zhu et al. [7]. We present the original algorithm in
detail, then our modified version.

3.2.1 Rank-Order Clustering
The rank-order clustering algorithm proposed by Zhu et al. [7],
similar to the method of Gowda and Krishna [28], is a form of
agglomerative hierarchical clustering, using a nearest neighbor
based distance measure. The overall procedure for agglomerative
hierarchical clustering, given some distance metric, is to initialize
all samples to be separate clusters and then iteratively merge the

4. https://code.google.com/p/cuda-convnet2/

http://vis-www.cs.umass.edu/lfw/results.html
https://code.google.com/p/cuda-convnet2/


MSU-CSE-16-3, APRIL 2016 5

Face	
  Images	
   Nearest	
  Neighbor	
  Lists	
   Distance	
  Measure	
  

a)	
  

b)	
  

dm(a,b)	
  =	
  3	
  
dm(b,a)	
  =	
  3	
  
Oa(b)	
  =	
  6	
  
Ob(a)	
  =	
  5	
  

Dm(a,b)	
  =	
  (3+3)	
  /	
  min(5,6)	
  
	
  	
  

=	
  6	
  /	
  5	
  

(a)	
   (b)	
   (c)	
  

Fig. 4: Approximate Rank-Order clustering. Given a set of unlabeled face images (a), nearest neighbor lists are computed for each
image (b); nearest neighbor lists are then used to compute distances between faces (c). (b) shows the nearest neighbor lists of only five
faces in (a). dm(a, b) (Eq. 3) is the asymmetric distance between faces a and b whereas Dm(a, b) (Eq. 4) is the symmetric distance
between faces a and b.

two closest clusters together. This requires defining a cluster-to-
cluster distance metric. In the algorithm, the distance between two
clusters is considered to be the minimum distance between any
two samples in the clusters.

The first distance metric used in Rank-Order clustering is given
by:

d(a, b) =

Oa(b)∑
i=1

Ob(fa(i)), (1)

where fa(i) is the i-th face in the neighbor list of a, and Ob(fa(i))
gives the rank of face fa(i) in face b’s neighbor list. This
asymmetric distance function is then used to define a symmetric
distance between two faces, a and b, as:

D(a, b) =
d(a, b) + d(b, a)

min(Oa(b), Ob(a))
. (2)

The symmetric rank order distance function gives low values
if the two faces are close to each-other (face a ranks high in
face b’s neighbor list, and face b ranks high in face a’s neighbor
list), and have neighbors in common (high ranking neighbors of
face b also rank highly in face a’s neighbor list). After distances
are computed, clustering is performed by initializing every face
image to its own cluster, then computing the symmetric distances
between each cluster, and merging any clusters with distance
below a threshold. Then, nearest neighbor lists for any newly
merged clusters are merged, and distances between the remaining
clusters are computed again iteratively, until no further clusters
can be merged. In this case, rather than specifying the desired
number of clusters C, a distance threshold is specified; it is the
threshold that determines the specific number of clusters for a
particular dataset being clustered, and effective threshold values
are empirically determined. We use our own implementation of
this algorithm.

In terms of run-time, computing the full nearest neighbor
lists for each sample incurs an O(n2) cost. Additionally, the
actual clustering step used here is iterative, with cost per iteration
proportional to the current number of clusters squared (with
number of clusters starting at n and decreasing across iterations),
so both the nearest neighbor computation, and the clustering step
itself are costly with increasing dataset size.

3.2.2 Proposed Approximate Rank-Order Clustering
The Rank-Order clustering method has an obvious scalability
problem in that it requires computing nearest neighbor lists
for every sample in the dataset, which has an O(n2) cost if
computed directly. Although various approximation methods exist
for computing nearest neighbors, they are typically only able to
compute a short list of the top k nearest neighbors efficiently,
rather than exhaustively ranking the dataset. We use the FLANN
library implementation of the randomized k-d tree algorithm [30]
to compute a short list of nearest neighbors.

Applying approximation methods for faster nearest neighbor
computation then requires some modification of the original Rank-
Order clustering algorithm. In particular, rather than considering
all neighbors in the summation equation (1), we sum up to at most
the top k neighbors (under the assumption that cluster formation
relies on local neighborhoods).

Further, we note that if only a short list of the top-k neighbors
is considered, the presence or absence of a particular example on
the short list may be more significant than the sample’s numerical
rank. As such, we consider a distance measure based on directly
summing the presence/absence of shared nearest neighbors, rather
than the ranks, resulting in the following distance function:

dm(a, b) =

min(Oa(b),k)∑
i=1

Ib(Ob(fa(i)), k), (3)

where Ib(x, k) is an indicator function with a value of 0 if face
x is in face b’s top k nearest neighbors, and 1 otherwise. In
practice, we find that this modification leads to better clustering
accuracy compared to summing the ranks directly, as in the
original formulation. Effectively, this distance function implies
that the presence or absence of shared neighbors towards the
top of the nearest neighbor list (say within the top-200 ranks)
is important, while the numerical values of the ranks themselves
are not.

The normalization procedure employed in the original algo-
rithm (only summing up to the rank of the other sample being
compared, and dividing by min(Oa(b), Ob(a))) is still effective,
and contributes to more accurate clustering results even with this
modification to the original algorithm. The combined modified
distance measure is defined as:

Dm(a, b) =
dm(a, b) + dm(b, a)

min(Oa(b), Ob(a))
. (4)



MSU-CSE-16-3, APRIL 2016 6

Fig. 5: Two-dimensional t-SNE [29] embedding of 320-dimensional deep features for the LFW dataset, including only clusters from
the proposed clustering with two or more images. Lines are drawn between all same-cluster faces.

Additionally, to improve the runtime of the clustering step itself,
we 1) only compute distances between samples which share
a nearest neighbor, and 2) only perform one round of merges
of individual faces into clusters. This means that compared
to the original algorithm which has a runtime of C2 per
clustering iteration, we only perform one iteration of clustering,
and additionally only check for merges on a subset of all possible
pairs (since we consider the 200 nearest neighbors for each
sample), meaning that the final runtime of the clustering step
(assuming pre-computed nearest neighbors) is O(n).

The final clustering procedure we employ is then:

1) Extract deep features for every face in the dataset
2) Compute a set of the top-k nearest neighbors for each

face in the dataset
3) Compute pairwise distances between each face and its

top-k nearest neighbor lists following equation 4
4) Transitively merge all pairs of faces with distances below

a threshold

Selecting a threshold to determine the number of clusters, C
in a given dataset is one of the perennial difficult issues in data
clustering. In practical applications we cannot assume that the true
number of clusters will be known a priori, therefore in the absence
of a robust procedure for determining the true number of clusters,
we simply evaluate our algorithm at several effective values of C
and report the best results attained in our experiments.

3.3 Per-Cluster Quality Evaluation

Our overall goal is to facilitate the investigation of very large
collections of unlabeled face images. We have proposed clustering
face images by identity as a first approach, but for very large
datasets even clustering by identity may leave too many clusters
for manual exploration. We attempt to address this issue by using
internal cluster validity measures to identify a subset of “good”
individual clusters, suitable for manual investigation.

In practical applications where the dataset is completely
unlabeled, evaluating clustering according to external labels is
not possible. But, there is a body of work in the literature on
different internal cluster quality measures [31] which attempt
to characterize cluster quality without the use of labels. These
measures can typically be understood as measures of either
compactness (how well the cluster members are grouped together
in terms of pairwise similarity), or isolation (how well different
clusters are separated from each other in terms of inter-cluster
similarity). Additionally, we can make a distinction between
evaluating the overall quality of a given clustering of a dataset,
and evaluating the quality of individual clusters in a particular
clustering; we will use per-cluster quality measures as a means of
ranking individual clusters.

When dealing with very large datasets, one fundamental
concern is run-time. It is generally infeasible to compute distances
between all samples in the dataset, and additionally infeasible to
compute distances between all clusters in cases where both the
dataset and number of clusters present in the dataset are large. In
this case, we are pre-computing a k-nearest neighbor graph, so it
is natural to consider graph-based quality measures, and alleviate
computational concerns by using the pre-computed graph.

Coverage [32] is defined as the fraction of intra-cluster edges
present out of the complete set of edges in the graph. We modify
this for use as a per-cluster quality measure by just considering
nodes in the current cluster, i.e. define per-cluster coverage
as the fraction of edges out-bound from nodes in the current
cluster which link to other nodes in the cluster. Modularization
quality [33] is defined as the difference between an inter-cluster
connectivity measure (the fraction of edges present between nodes
in a cluster out of possible edges in a complete graph of those
nodes), and an intra-cluster connectivity measure (average fraction
of cross-cluster edges present out of possible edges between each
pair of clusters in a complete graph).

These graph-based measures are formulated solely in terms of



MSU-CSE-16-3, APRIL 2016 7

a)	
   b)	
   c)	
   d)	
  

Fig. 6: Example face images from the a) LFW, b) Youtube Faces, c) Webfaces, and d) CASIA-webface datasets.

the presence or absence of edges between certain vertices. But
we also find motivation to look at some simple distance based
measures by looking at Figure 5 which shows a 2-dimensional
t-SNE [29] embedding of the original 320-dimensional feature
space for non-singleton clusters generated from the full LFW
dataset. In this visualization, lines are drawn between all images
placed in the same clusters. One thing which is apparent is
that some cluster assignment errors cover a large distance in
the embedding, and may indicate that these errors occur over a
large distance in the original feature space. We will therefore also
consider simple compactness and isolation measures based on the
distances between edges present in the k-NN graph, primarily the
average distance of samples to other samples in the same cluster
in their nearest neighbor lists (average intra-cluster distance), and
the average distance of samples in a cluster to samples outside
that cluster in their nearest neighbor lists (average inter-cluster
distance).

4 DATASETS

Our clustering experiments use several unconstrained face
datasets, the CASIA-webface face dataset [24] for training the
deep network feature representation, the Labeled Faces in the
Wild (LFW) [12] and YouTubeFaces (YTF) [13] datasets for
clustering evaluation, and a collection of 123M unlabeled web
face images used to augment the labeled datasets for larger-scale
clustering evaluation. Example face images from each dataset are
shown in Figure 6.

• LFW [12]: LFW contains 13, 233 face images of 5, 749
individuals; of those 5, 749 individuals, 4, 069 have only
one face image each. The dataset was constructed by
searching for images of celebrities and public figures,
and retaining only images for which an automatically
detectable face was present.

• YTF [13]: Similar in spirit to LFW, the YouTube Faces
(YTF) dataset consists of videos of celebrities and public
figures harvested from the Internet. The dataset contains
1, 595 subjects (which are a subset of the subjects in
LFW), in 3, 425 videos, consisting of a total of 621, 126
individual frames. Labels are provided for the subject
of interest for every frame of video where a face could
be detected. In our experiments we use the pre-cropped
frames, to avoid confusion between the primary subject in
each video, and any unlabeled individuals that may be in
a given frame.

• Webfaces: To evaluate our clustering method on larger
scale datasets, a cooperating research group used a crawler

to automatically download a total of 123, 654, 141 web
images. Similar to LFW, these images were filtered to
contain faces detectable by an automatic face detector, in
particular the DLIB face detector.5

• CASIA-webface [24]: The CASIA-webface dataset con-
tains 494, 414 images of 10, 575 subjects (mostly celebri-
ties); however, we are unable to localize faces in some of
the images, and so use a subset of 404, 992 face images
of 10, 533 subjects to train our network [11].

5 EXPERIMENTS

In this section, we will present our overall evaluation of large-scale
face clustering, in several steps. First, we will evaluate various
clustering algorithms on a small dataset (the entire LFW dataset),
evaluate the nearest neighbor approximation used, then carry out
large-scale face clustering experiments (involving up to a 123
million face dataset), and finally present some preliminary work
on video clustering.

5.1 Clustering Algorithm Evaluation

Before investigating performance on large-scale datasets, we will
attempt to cluster the entire LFW dataset by identity. One issue is
that the distribution of images per subject is quite imbalanced in
LFW (indeed, the majority of subjects have only a single image,
accounting for approximately a third of all images in the dataset).
Although we could conceivably construct a subset of LFW with
more “balanced” clusters, in practice for the application domains
of large-scale clustering (analyzing social media imagery, and
forensic applications), there is no basis to assume that the number
of images per subject is well balanced. In the absence of prior
knowledge about the expected distribution of images per subject
in practical applications, we cluster the entire LFW dataset.

As a baseline, we will consider k-means clustering, since (i)
it is perhaps the most well-known clustering algorithm, (ii) has
only a few parameters for tuning, (iii) is one of the most efficient,
and (iv) large-scale clustering methods are often approximations
of k-means clustering with improved scalability. We use the
MATLAB r2015a implementation of the k-means algorithm,
with the euclidean distance metric. We additionally use spectral
clustering [34], which approaches the problem from a graph theory

5. In some cases, the detected faces are in fact false positive detections
(e.g. non-human faces (such as cartoons), or non-face objects). We estimate
approximately 2% of the total detections may be false positives, based on a
manual examination of a random sample of 10, 000 detections from the full
dataset. We did not delete the identified non-human faces from the dataset.



MSU-CSE-16-3, APRIL 2016 8

(a)	
   (b)	
  

(c)	
   (d)	
  

Fig. 7: Examples of “pure” (single individual) clusters (a, b), and “impure” (multiple individuals) clusters (c,d) generated by the
proposed Approximate Rank-Order clustering on the entire LFW dataset. Faces not belonging to the majority identity in each cluster
are outlined in red.

TABLE 2: Clustering results on the complete LFW dataset. Times
are given as HH:MM:SS, measured using 20 cores of an Intel
Xeon CPU clocked at 2.5 GHz. The proposed algorithm (last row)
has the highest clustering accuracy (F-measure) and the shortest
run-time.

Clustering Algorithm # Clusters F-measure Run-Time

k-Means 100 0.36 00:00:16
k-Means 6,508 0.07 04:58:49
Spectral 200 0.20 00:11:18
Rank-Order 6,591 0.80 00:00:18
Approx. Rank-Order (proposed) 6,508 0.87 00:00:08

perspective, as a baseline. We induce a graph structure in the
adjacency matrix by keeping the top 200 neighbors non-zero (this
value seems effective in capturing local structures), and again use
Euclidean distance. The number of clusters C must be specified.
We use a MATLAB implementation of spectral clustering6.
Additionally, we use our implementation of the original rank-order
clustering algorithm as a baseline.

For k-means and spectral clustering, the algorithm is pa-
rameterized on a fixed number of clusters, while for rank-order
clustering the number of clusters found depends on the distance
threshold parameter. In practical applications we cannot assume
that the true number of clusters will be known a priori, therefore in
the absence of a robust procedure for determining the true number
of clusters we simply evaluate all algorithms at several effective
values of C , and report the best results attained in Table 2.

For k-means and spectral clustering, clustering performance,
per F-measure, with C close to the true number of identities is
quite poor (this is expected, since these algorithms are not able to
handle highly unbalanced data well). For this reason, the optimal
value of C in terms of F-measure is relatively low (˜200 in both

6. http://www.mathworks.com/matlabcentral/fileexchange/
34412-fast-and-efficient-spectral-clustering/content/files/SpectralClustering.
m

TABLE 3: Clustering Results on the LFW dataset, with
approximate rank-order clustering, and LFW with additional 1
million web-downloaded face images. Times measured using 20
cores of an Intel Xeon CPU clocked at 2.5 GHz.

Nearest Neighbor Algorithm Dataset F-measure Run-Time

Brute-Force LFW 0.72 00:00:12
Chen et al. [22] LFW 0.69 00:26:36
Randomized k-d Tree [23] LFW 0.87 00:00:08

Brute-Force LFW + 1M 0.49 14:18:24
Chen et al. LFW + 1M 0.41 01:06:58
Randomized k-d Tree LFW + 1M 0.79 00:07:20

cases). For rank-order clustering, the distance threshold which
leads to the best overall F-measure results in a number of clusters
close to the true number of identities, and the overall F-measure is
significantly higher than the spectral and k-means results.

In terms of runtime, per Table 2, even for just 13, 233 face
images in LFW spectral clustering takes noticeably large compute
time, while the proposed rank-order clustering is substantially
faster. Some example clusters are shown in Figure 7; 7(a) and
(b) show pure clusters, while 7(c) and (d) show example impure
clusters in terms of subject identity. In cluster 7(c), 3 images
of different individuals, all with similar demographics, were
grouped in with the majority identity (Walter Mondale); while
in cluster 7(d), 2 images of 1 additional individual with similar
demographics, and face pose were grouped with the majority
identity (Michael Douglas).

5.2 Approximation Performance

We evaluate the performance of our k-NN approximation method
in terms of clustering accuracy, and run-time. We consider two
approximation methods for computing the full k-NN graph,
and compare their performance to the brute force approach of
performing all pairwise comparisons. Results are shown in Table 3
for these three nearest neighbor calculation methods on the full

http://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-efficient-spectral-clustering/content/files/SpectralClustering.m
http://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-efficient-spectral-clustering/content/files/SpectralClustering.m
http://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-efficient-spectral-clustering/content/files/SpectralClustering.m


MSU-CSE-16-3, APRIL 2016 9

O
cc
ur
re
nc
e	
  
Co

un
t	
  

Image	
  Index	
   Image	
  Index	
  

O
cc
ur
re
nc
e	
  
Co

un
t	
  

(a)	
   (b)	
  

Fig. 8: Numbers of times each face in the LFW database appeared in any other face’s top-200 nearest neighbor list for a) the exact
nearest neighbors, and b) the nearest neighbors computed via randomized k-d tree approximation.

TABLE 4: Clustering results using Approximate Rank-Order
clustering on the LFW dataset with increasing amounts of
augmented data, and different search size strategies for the
approximate nearest neighbor calculations. Times measured using
5 cores for LFW+5M dataset experiments, and a single core used
for the smaller experiments, on an Intel Xeon CPU clocked at 2.5
GHz.

Dataset Search Size F-measure Run-Time

Just LFW 2,000 0.87 00:00:19
LFW + 1M 2,000 0.79 01:03:25
LFW + 5M 10,000 (linear increase) 0.67 06:28:42
LFW + 5M 4,000 (logarithmic increase) 0.33 02:51:13
LFW + 5M 2,000 (fixed) 0.13 01:52:32

LFW dataset, and the LFW dataset augmented with an additional
1 million unlabeled images from the Webfaces dataset. In practice,
the Randomized k-d Tree method [23] achieves the best run-time
of the three methods and the best clustering accuracy as well.

This is a surprising result, since an approximation method
would generally be expected to give less accurate results than
the process it is approximating; however, since our objective is
to perform clustering based on the nearest neighbor lists, rather
than simply find the exact k nearest neighbors for each item, this
counter-intuitive result can be explained as follows. Figure 8 plots
the number of times each face in the LFW dataset occurs in the
top 200 nearest neighbor list of every face in the dataset. For the
exact nearest neighbors, there are a number of face images which
occur very frequently in the nearest neighbor lists (up to over half
of all nearest neighbor lists), while for the approximate nearest
neighbors these faces occur less frequently. From the perspective
of clustering based on the nearest neighbor lists, the lists computed
from the randomized k-d tree approximation actually form more
discriminative features, since certain faces are not present in very
large fractions of the nearest neighbor lists, as is the case with the
exact nearest neighbors.

Generally, the randomized k-d tree algorithm has O(n log n)
expected run-time for tree construction, and performing n
searches. In practice, the FLANN implementation of the
algorithm is parametrized with the number of randomized trees
constructed, as well as the total number of nodes available to
visit per search. If fixed parameters are used, the total runtime is
indeed O(n log n); however, if either the number of indices built

or search size is increased with larger dataset size, the effective
runtime of the algorithm will increase. In practice, we construct 4
trees per index (and have found little impact from using slightly
higher or lower values), but the number of nodes visited per
search must be selected with care. One primary question is to
determine if a fixed number of node visits per search is feasible
for larger datasets, or if the number of nodes visited per search
should increase with dataset size. Table 4 presents results for
clustering based on the LFW dataset, the LFW + 1M dataset, and
the LFW + 5M dataset, using different strategies for selecting the
number of nodes visited per search on the LFW + 5M dataset. In
practice, using the same number of nodes visited per search on the
LFW + 5M dataset as was used on the LFW + 1M dataset leads to
a drastic reduction in clustering accuracy on the larger dataset. In
fact, even a logarithmic increase in search size leads to significant
accuracy loss, relative to a linear increase in search size. In
the following large-scale experiments, we therefore increase the
search size linearly with dataset size. In practice, this means the
run-time of the approximation algorithm cannot be considered to
be O(n log n), since we increase the cost of each search linearly
with the dataset size n, giving a full O(n2) cost for performing n
nearest neighbor searches.

By using the randomized k-d tree algorithm for approximate
nearest neighbor computation, with our updated clustering algo-
rithm we get improved runtime in the clustering step, and also
better clustering accuracy (compared to the baseline algorithm).
Although we still have an O(n2) run-time for the nearest neighbor
computation step, there is still a significant reduction in run-time,
an improvement by a factor of 120 for the LFW+1M image dataset
over brute-force computation.

5.3 Large-Scale Face Clustering
In this section, we will consider clustering truly large-scale face
datasets, up to 123 million face images. As discussed, we will
use the randomized k-d tree nearest neighbor approximation
method to reduce the total cost of computing nearest neighbors
for these datasets; however, when considering very large scale
datasets, additional problems arise. Considering the total size of
the dataset, 123 million 320-dimensional feature vectors, with
each dimension represented by one float takes up approximately
157 gigabytes of space, without considering any supporting data
structures. This amount of data is difficult to fit on a single



MSU-CSE-16-3, APRIL 2016 10

(a)	
   (b)	
   (c)	
  

Fig. 9: Example images from clusters generated from the YTF dataset. a) shows two clusters, each containing frames from one video
of the same subject, b) shows a cluster containing frames from two videos of the same subject, where the background for the video is
apparently identical, c) shows 28 identities which were incorrectly grouped into a single cluster; many of these images are poorly lit.

TABLE 5: Large-scale clustering results using the proposed
Approximate Rank-Order clustering, with randomized k-d tree
nearest neighbor approximation. Times measured using the
specified number of cores of Intel Xeon CPUs clocked at 2.5
GHz. # Clusters is the resulting number of clusters, excluding
single-image clusters.

Dataset F-measure # Clusters # Cores Run-Time

LFW 0.87 1,463 1 00:00:19
LFW + 1M 0.79 94,740 1 01:03:25
LFW + 5M 0.67 445,880 5 06:28:42
LFW + 10M 0.56 933,278 10 12:11:33
LFW + 30M 0.42 2,800,202 30 30:44:58
LFW + 123M 0.27 10,619,853 123 289:04:53

machine, considering that a tree structure must also be loaded
in memory, and additionally since the approximation method we
are using incurs a full O(n2) cost in time, computing nearest
neighbors for this dataset becomes infeasible on a single machine.

Fortunately, a distributed memory variation of the randomized
k-d tree algorithm is available as part of the FLANN library [30].
The strategy employed is to split the dataset into disjoint subsets,
assign one subset to every discrete machine used, and construct
separate k-d tree indices for each disjoint chunk. During nearest
neighbor computation, we find a separate set of nearest neighbor
candidates from each chunk, and merge the results to get a final
set of nearest neighbors for the search. In practice, this simple
strategy works well. In the following experiments the initial
dataset is partitioned into 1 million image chunks, and each chunk
is distributed to a separate machine for index construction. Since
our datasets are a small labeled subset (LFW), in a larger unlabeled
background set, we randomize the order of the LFW images, and
assign a portion of the labeled images to each of the discrete
chunks of data, to avoid any bias due to constructing one of the
sub-indices with e.g. the entire LFW dataset as part of it.

Results for progressively larger datasets (constructed by
adding larger and larger sets of unlabeled background data to
LFW) are presented in Table 5. Due to our strategy of allocating

1 million images per core, we linearly increase the number of
cores with dataset size, resulting in an overall O(n) increase
in runtime when moving to larger datasets. Computing nearest
neighbors for the largest dataset considered (123 million images)
took approximately 2 weeks of real-time using 123 nodes in the
MSU High-Performance Computing Center. While the observed
run time increases is approximately linear, the clustering accuracy
progressively decays when considering larger and larger datasets.
This is as expected, considering a larger dataset means a larger
chance of finding impostors for each individual image as nearest
neighbors. Even so, on the 123 million image dataset, we still
attain 0.27 F-measure on the labeled subset, which is considerably
better than a random result (which is close to zero, since 13, 233
images can easily be grouped into 123M images without keeping
any of the same identity face images together).

5.4 Video Frame Clustering
We also consider the problem of clustering video frames, using the
Youtube Faces (YTF) dataset. Similar to our treatment of LFW, we
cluster all faces in YTF, and evaluate the results in terms of their
consistency with arranging the individual frames by identity. The
results are summarized in Table 6. The overall F-measure appears
reasonably consistent with our LFW results, at 0.74 for 621, 126
total frames of video (compared to 0.79 F-measure for clustering
the LFW + 1M dataset); a lower accuracy on the YTF dataset is
expected because of its generally lower image quality. However,
closer analysis of the results reveals some confounding factors.

Unlike LFW clustering results, where precision and recall are
relatively close for the optimal F-measure values, our clustering
results on YTF have very high precision, and relatively lower
recall. Effectively, we are getting more clusters than the number
of identities, but the clusters are relatively pure. Further analyzing
the recall, we find that although the overall value is 0.589, the
fraction of same-video pairs grouped together is much higher than
the fraction of cross-video pairs grouped together. This indicates
that we are successfully grouping frames into videos, but having
relatively little success grouping identities across videos. Some
example clusters are shown in Figure 9. In most cases, clusters



MSU-CSE-16-3, APRIL 2016 11
TABLE 6: YTF clustering results using the proposed Approximate
Rank-Order clustering, with randomized k-d tree nearest neighbor
approximation. Time is given as HH:MM:SS, measured using 20
cores of a Intel Xeon CPU clocked at 2.5 GHz.

Performance Measure Value

F-Measure 0.71

Precision 0.79
Recall 0.67

Within-Video Recall 0.56
Cross-Video Recall 0.91

Nearest Neighbor Computation Time 00:04:10

roughly correspond to single videos, in a few cases, e.g. 9(b),
frames from different videos of the same individual are correctly
grouped together, and in a small subset of clusters (e.g. 9(c)),
multiple identities are grouped in the same cluster.

These results indicate some weaknesses in our clustering
algorithm. One confounding factor is the nature of the fixed
nearest neighbor lists we use. We generate the top 200 nearest
neighbors for face each image, but in a video dataset, it is
possible, and even likely that all 200 of the closest neighbors
are other frames of the same video (since a subjects appearance
within a video will typically change less than across videos). One
potential strategy would be to first conduct clustering, attempting
to consolidate the different identities present within a video (this
is not possible to evaluate using the YTF database, since only
one identity is labeled per video in YTF), then perform clustering
again on a reduced dataset to consolidate the per-video identities
across different videos.

5.5 Per-Cluster Quality: Internal Measures
We are interested in identifying a good subset of clusters from a
large group of clusters, as a means of aiding manual exploration of
large datasets. To evaluate the effectiveness of different measures
experimentally, we need methods for evaluating the effectiveness
of the internal measures. As a first approach, we consider the
correlation between the internal measures and an external measure,
the pairwise precision computed individually for each cluster.
Correlation between the various internal measures considered, and
precision are show in Table 7. In practice, the graphical measures
do not perform particularly well, while the simpler measures based
on edge weights perform better. In particular, the best correlation
is observed for the “average inter-cluster edge weight”, and this
can be further improved by subtracting the average inter and intra
cluster edge weights. This is reasonable, since we are effectively
combining a compactness measure (average intra cluster edge
weight), and a separability measure (average inter-cluster edge
weight). Even so, the best correlation achieved is only 0.42.
This correlation can be improved by excluding size 2 clusters
from consideration (so only examining clusters with 3 or more
members), which improves correlation to 0.46.

While a correlation of 0.46 is not very high, for our application
there is no particular need for the relationship between the
internal and external measures to be linear. Figure 10 plots the
external measure (Precision) vs. the best performing internal
measure {(avg. intra-cluster edge weight) - (avg. inter-cluster edge
weight)}. One notable feature on the left side of the plot is a set
of clusters with exactly zero precision, that still score relatively
highly on the internal measure. Closer examination reveals that

TABLE 7: Correlation of internal cluster quality measures with
precision, for the LFW dataset. Average precision@100 is the
unweighted average of per-cluster pairwise precision for the top-
100 scoring clusters for each metric.

Internal Measure Correlation Avg. Precision@100

Inter-MQ 0.128 0.748
Intra-MQ 0.117 0.837
MQ (Combined) 0.120 0.829
Coverage 0.117 0.748
Max Intra-cluster Edge Distance 0.022 0.860
Total Intra-Cluster Edge Distance 0.030 0.850
Average Intra-Cluster Edge Dis-
tance

0.080 0.853

Minimum Inter-Cluster Edge Dis-
tance

0.205 0.893

Total Inter-Cluster Edge Distance 0.125 0.852
Average Inter-Cluster Edge Dis-
tance

0.325 0.880

(Avg. Intra-Cluster Edge Distance)
- (Avg. Inter-Cluster Edge Dis-
tance)

0.427 0.908

(Avg. Intra-Cluster Edge Distance)
- (Avg. Inter-Cluster Edge Dis-
tance, cluster size ≥ 3)

0.460 0.979

all of these high scoring zero-precision clusters are of size two
(so they consist of relatively isolated faces of different people
that happen to score highly), which explains the improvement in
correlation (from 0.42 to 0.46) when restricting consideration to
size 3 or larger clusters. Another interesting feature of Fig. 10
is that the points on the plot almost form a triangle (with a
variety of precision values for low-scoring clusters, but mostly
just high precision values for high-scoring clusters), so although
the relationship between the external and internal measures is not
linear, it is still possible to select a subset of high precision clusters
by taking a high threshold on the internal measure.

5.5.1 Ranking Evaluation

As an alternative to considering correlation, we can use the internal
measure to rank all the clusters, and compute the unweighted
average of per-cluster precision values for the top C clusters
(ranked by the internal measure), inspired by analysis typically
done in retrieval problems. Table 7 shows the average precision of
the various internal measures considered for the top-100 clusters
in the full LFW dataset. Figure 11 shows a plot of the average
precision of the top C clusters, with C cut off at each possible
rank in the sorted list of clusters, for the best performing internal
measure. The internal measure is effective in selecting high
precision clusters (relative to the average precision of all the
clusters) on the LFW dataset. In fact, the first several clusters
ranked by the internal measure have a pairwise precision of 1.
Figure 12 extends this concept to the augmented datasets (in this
case, only clusters containing some labeled data from LFW are
ranked, and precision is computed omitting unlabeled clusters as
in our previous evaluation).

Initially, the internal measure is still effective; however, for
very large datasets (LFW+ 30M and above), ranking clusters
according to the internal measure, as expected, becomes less
effective. Some example top ranking clusters are shown in
Figure 13. The top-5 clusters for the LFW dataset are all
single identity, relatively small clusters, indicating that the quality
measure works as expected. For larger datasets (LFW+10M,
LFW+123M), we show both the top-5 clusters ranked purely



MSU-CSE-16-3, APRIL 2016 12

Fig. 10: Pairwise precision vs. the proposed internal quality
measure, for all clusters generated by the proposed Approximate
Rank-Order clustering algorithm on the full LFW dataset. Points
in blue are clusters of size 3 or larger, points in red are of size
2. The highlighted set of points on the left edge of the figure are
all of size 2, with zero pairwise precision. Since we can’t reliably
distinguish between good and bad 2-item clusters, we discard them
from consideration.

in terms of the quality measure, (b) and (d), as well as the
top-5 results containing any labeled data, (c) and (e) (since
we use the labeled subset in our numerical evaluations). The
top clusters in absolute ranking typically involve near-duplicate
images (e.g. similar images uploaded in different locations, with
minor differences due to cropping, resolution, or color correction
differences), and often cartoon faces (which were detected by face
detectors) in addition to actual photographs.

The top clusters involving LFW images show that there are in
fact a number of images of the LFW subjects in the unlabeled
dataset–this indicates that our performance evaluation is to a
certain extent overly conservative, since we consider grouping
LFW and unlabeled data together to be incorrect (due to lack
of label information). Although the results for the LFW+10M
dataset appear reasonable (in the sense that multiple images of
the same identity are being grouped together, that are not just
slight alterations of the same original image), for the LFW+123M
dataset we begin to see a large number of near duplicate images,
e.g. the clusters ranked 1 through 4 on the list of clusters
with LFW images have a single LFW image, and multiple near
duplicate images that happened to be in the background set.
Nevertheless, these clusters appear to be pure, and the proposed
clustering algorithm is meeting its objective.

6 CONCLUSIONS

We have shown the feasibility of clustering a large collection of
unlabeled face images (up to 123M) into an unspecified number
of identities (on the order of millions). This problem is of practical
interest as a first step in organizing a large collection of unlabeled
face images prior to human examination due to the high volume of
face images uploaded to social media, and potentially encountered
in forensic investigations. There are computational challenges in
processing datasets with tens of millions of faces (which we
address via approximation methods, and parallelization). Even
if the computational challenges are met, producing meaningful
clusters on data of this scale is very difficult. In terms of
clustering accuracy, we achieved 0.27 pairwise F-measure on
the largest dataset considered (123M unlabeled faces + 13, 233
labeled images from LFW), which indicates that at least some of

Fig. 11: Average pairwise precision for lists of clusters ordered by
the proposed internal cluster quality measure, terminated at each
possible rank. The horizontal black line indicates the unweighted
average precision of all clusters considered. Clusters are generated
by the proposed Approximate Rank-Order clustering algorithm
from the full LFW dataset.

the clusters produced by our algorithm correspond well to true
identities in LFW. To identify these high quality clusters, we
developed an internal per-cluster quality measure, that does not
involve external identity labels, to rank the clusters by quality
for manual examination. Experimental results showed that this
measure was extremely effective for smaller datasets, but for
the larger datasets considered (LFW + 123M unlabeled faces),
performance, as expects falls. Still, some good quality (compact
and isolated) face clusters can be identified.

In terms of future work, while the underlying face represen-
tation we employ works reasonably well for unconstrained face
images, it could still be improved in a number of ways (e.g. using
larger training sets, or improving the deep model architecture).
While we were able to apply our clustering algorithm to datasets
up to 123 million face images, we need to improve the clustering
method (e.g. by incorporating more accurate nearest neighbor
methods) to obtain better clustering accuracy. Other areas for
improvement include the automatic selection of the number of
clusters in a fully unlabeled dataset, as well as improving our
per-cluster quality evaluation methods, and utilizing pair-wise
constraints (must-link and cannot-link) to improve clustering
accuracy.

ACKNOWLEDGEMENTS

We would like to thank the Noblis corporation for their assistance
in acquiring the unlabeled background images used in this work.

REFERENCES

[1] J. C. Klontz and A. K. Jain, “A case study of automated face recognition:
The Boston Marathon bombings suspects,” IEEE Computer, vol. 46,
no. 11, pp. 91–94, 2013. 1

[2] B. S. Swann, “FBI video analytics priority initiative,” in 17th Annual
Conference & Exhibition on the Practical Application of Biometrics,
2014. 1

[3] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman, “Clustering
appearances of objects under varying illumination conditions,” in Proc.
CVPR. IEEE, 2003. 2, 3

[4] M. Zha, Y. Teo, S. Liu, T. Chua, and R. Jain, “Automatic person
annotation of family photo album,” in Image and Video Retrieval.
Springer, 2006, pp. 163–172. 2, 3

[5] J. Cui, F. Wen, R. Xiao, Y. Tian, and X. Tang, “Easyalbum: an interactive
photo annotation system based on face clustering and re-ranking,” in
Proc. of the SIGCHI conference on Human factors in computing systems.
ACM, 2007, pp. 367–376. 2



MSU-CSE-16-3, APRIL 2016 13

(a)	
  LFW	
  +	
  1M	
   (b)	
  LFW	
  +	
  30M	
   (c)	
  LFW	
  +	
  120M	
  

Fig. 12: Average pairwise precision at rank, ordered by the proposed internal cluster quality measure for augmented datasets. Clusters
are generated by the proposed Approximate Rank-Order clustering algorithm.

[6] Y. Tian, W. Liu, R. Xiao, F. Wen, and X. Tang, “A face annotation
framework with partial clustering and interactive labeling,” in Proc.
CVPR. IEEE, 2007. 2

[7] C. Zhu, F. Wen, and J. Sun, “A rank-order distance based clustering
algorithm for face tagging,” in Proc. CVPR. IEEE, 2011, pp. 481–488.
1, 2, 3, 4

[8] Z. Cao, Q. Yin, X. Tang, and J. Sun, “Face recognition with learning-
based descriptor,” in Proc. CVPR. IEEE, 2010, pp. 2707–2714. 2

[9] R. Vidal and P. Favaro, “Low rank subspace clustering (lrsc),” Pattern
Recognition Letters, vol. 43, pp. 47–61, 2014. 2

[10] C. Otto, B. Klare, and A. Jain, “An efficient approach for clustering face
images,” in Proc. ICB. IEEE, 2015. 2, 3, 4

[11] D. Wang, C. Otto, and A. K. Jain, “Face search at scale: 80 million
gallery,” arXiv preprint arXiv:1507.07242, 2015. 1, 2, 4, 7

[12] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces
in the wild: A database for studying face recognition in unconstrained
environments,” University of Massachusetts, Amherst, Tech. Rep. 07-49,
October 2007. 2, 7

[13] L. Wolf, T. Hassner, and I. Maoz, “Face recognition in unconstrained
videos with matched background similarity,” in Proc. CVPR. IEEE,
2011, pp. 529–534. 2, 7

[14] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern
Recognition Letters, vol. 31, no. 8, pp. 651–666, 2010. 2, 4

[15] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, “Scalable k-NN
graph construction for visual descriptors,” in Proc. CVPR. IEEE, 2012,
pp. 1106–1113. 2

[16] B. Bhattarai, G. Sharma, F. Jurie, and P. Pérez, “Some faces are more
equal than others: Hierarchical organization for accurate and efficient
large-scale identity-based face retrieval,” in ECCV Workshops, 2014, pp.
160–172. 2

[17] M. Tapaswi, O. M. Parkhi, E. Rahtu, E. Sommerlade, R. Stiefelhagen,
and A. Zisserman, “Total cluster: A person agnostic clustering method
for broadcast videos,” in Proc. of the Indian Conference on Computer
Vision Graphics and Image Processing. ACM, 2014, p. 7. 2

[18] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proc. CVPR, 2015.
3

[19] T. Liu, C. Rosenberg, and H. A. Rowley, “Clustering billions of images
with large scale nearest neighbor search,” in Proc. WACV. IEEE, 2007,
pp. 28–28. 3

[20] Y. Gong, M. Pawlowski, F. Yang, L. Brandy, L. Boundev, and R. Fergus,
“Web scale photo hash clustering on a single machine,” in Proc. CVPR.
IEEE, 2015, pp. 19–27. 3

[21] J. J. Foo, J. Zobel, and R. Sinha, “Clustering near-duplicate images in
large collections,” in Proc. of the International Workshop on Multimedia
Information Retrieval. ACM, 2007, pp. 21–30. 3

[22] J. Chen, H. Fang, and Y. Saad, “Fast approximate k-NN graph
construction for high dimensional data via recursive lanczos bisection,”
The Journal of Machine Learning Research, vol. 10, pp. 1989–2012,
2009. 3, 8

[23] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image
descriptor matching,” in Proc. CVPR. IEEE, 2008, pp. 1–8. 3, 8,
9

[24] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from
scratch,” arXiv preprint arXiv:1411.7923, 2014. 4, 7

[25] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen,
P. Grother, A. Mah, M. Burge, and A. K. Jain, “Pushing the frontiers of
unconstrained face detection and recognition: IARPA Janus benchmark
A,” in Proc. CVPR. IEEE, 2015, pp. 1931–1939. 4

[26] V. Kazemi and J. Sullivan, “One millisecond face alignment with an
ensemble of regression trees,” in Proc. CVPR. IEEE, 2014, pp. 1867–
1874. 4

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014. 4

[28] K. C. Gowda and G. Krishna, “Agglomerative clustering using the
concept of mutual nearest neighbourhood,” Pattern Recognition, vol. 10,
no. 2, pp. 105–112, 1978. 4

[29] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. 2579-2605, p. 85, 2008. 6, 7

[30] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for high
dimensional data,” IEEE Trans. on PAMI, vol. 36, 2014. 5, 10

[31] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Prentice
Hall, 1988. 6

[32] U. Brandes, M. Gaertler, and D. Wagner, “Experiments on graph
clustering algorithms,” Algorithms-ESA 2003, pp. 568–579, 2003. 6

[33] S. Mancoridis, B. S. Mitchell, C. Rorres, Y.-F. Chen, and E. R. Gansner,
“Using automatic clustering to produce high-level system organizations
of source code.” in IWPC, vol. 98. Citeseer, 1998, pp. 45–52. 6

[34] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007. 7

Charles Otto received his B.S. degree in the De-
partment of Computer Science and Engineering
at Michigan State University in 2008. He was
a research engineer at IBM during 2006-2011.
Since 2012, he has been working towards the
Ph.D. degree in the Department of Computer
Science and Engineering at Michigan State Uni-
versity. His research interests include pattern
recognition, image processing, and computer
vision, with applications to face recognition.

Dayong Wang received his bachelor degree
from Tsinghua University in 2008 and his Ph.D.
degree from Nanyang Technological University,
Singapore, 2014. He is currently a Postdoctoral
Researcher at Michigan State University, USA.
His research interests are statistical machine
learning, pattern recognition, and multimedia in-
formation retrieval. In his research areas, he
has published several papers in top venues,
including TPAMI, TKDE, ACM MM, and SIGIR.

Anil K. Jain is a University distinguished profes-
sor in the Department of Computer Science and
Engineering at Michigan State University. His
research interests include pattern recognition
and biometric authentication. He served as the
editor-in-chief of the IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (1991-
1994), a member of the United States Defense
Science Board, and The National Academies
committees on Whither Biometrics and Impro-
vised Explosive Devices. He has received Ful-

bright, Guggenheim, Alexander von Humboldt, and IAPR King Sun Fu
awards. He was elected to the National Academy of Engineering in
2016.



MSU-CSE-16-3, APRIL 2016 14

Fig. 13: Top-5 ranked clusters for the LFW, LFW+10M, and LFW+123M datasets. For the LFW+10M, and LFW+123M datasets,
both the absolute top-5 ranking clusters in terms of the proposed quality measure, and the top-5 ranking clusters out of those clusters
containing at least some LFW images are shown. Unlabeled background images grouped in with the LFW images in the LFW+10M
and LFW+123M datasets are outlined in red, these images are all of the same subject as the LFW images in each cluster, showing the
strength of the proposed quality measure.


