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Abstract—Accompanied with the rising popularity of compressed sensing, the Alternating Direction Method of Multipliers (ADMM) has
become the most widely used solver for linearly constrained convex problems with separable objectives. In this work, we observe that
many previous variants of ADMM update the primal variable by minimizing different majorant functions with their convergence proofs
given case by case. Inspired by the principle of majorization minimization, we respectively present the unified frameworks and
convergence analysis for the Gauss-Seidel ADMMs and Jacobian ADMMs, which use different historical information for the current
updating. Our frameworks further generalize previous ADMMs to the ones capable of solving the problems with non-separable
objectives by minimizing their separable majorant surrogates. We also show that the bound which measures the convergence speed of
ADMMs depends on the tightness of the used majorant function. Then several techniques are introduced to improve the efficiency of
ADMMs by tightening the majorant functions. In particular, we propose the Mixed Gauss-Seidel and Jacobian ADMM (M-ADMM) which
alleviates the slow convergence issue of Jacobian ADMMs by absorbing merits of the Gauss-Seidel ADMMs. M-ADMM can be further
improved by using backtracking, wise variable partition and fully exploiting the structure of the constraint. Beyond the guarantee in
theory, numerical experiments on both synthesized and real-world data further demonstrate the superiority of our new ADMMs in
practice. Finally, we release a toolbox at https://github.com/canyilu/LibADMM that implements efficient ADMMs for many
problems in compressed sensing.

Index Terms—Alternating Direction Method of Multipliers, Majorization Minimization, Convex Optimization
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1 INTRODUCTION

T HIS work aims to solve the following convex problem

min
x
f(x) = f(x1, · · · ,xn), s.t. Ax =

n∑
i=1

Aixi = b, (1)

where f : Rp1×···×pn → R is convex and n (≥ 2) denotes
the block number of variables. We denote x = [x1; · · · ;xn]
with xi ∈ Rpi , and A = [A1, · · · ,An] with Ai ∈ Rd×pi .
Problem (1) has drawn increasing attention recently for the emerg-
ing applications of compressive sensing in computer vision and
signal processing, e.g., sparsity based face recognition [40], [7],
saliency detection [36], motion segmentation [25], [28], [8], image
denoising [11], [22], video denoising [17], texture repairing [19]
and many others [5], [42], [38], [41], [16] .

To solve (1), the popular Augmented Lagrangian Method
(ALM) [14] updates the primal variable x by

xk+1 = arg min
x
L(x,λk, β(k)) = arg min

x
f(x) + rk(x), (2)

where L is the augmented Lagrangian function defined as

L(x,λ, β) = f(x) + 〈λ,Ax− b〉+
β

2
‖Ax− b‖2,

and

rk(x) =
β(k)

2

∥∥∥∥∥Ax− b +
λk

β(k)

∥∥∥∥∥
2

. (3)
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Then the dual variable λ is updated to minimize −L by gradient
descent with the step size β(k), i.e.,

λk+1 = λk + β(k)(Axk+1 − b). (4)

However, (2) may not be easily solvable, since rk is non-separable.
The Alternating Direction Method of Multipliers (ADMM) [9]
instead solves (2) inexactly by updating xi’s in an alternating way
and thus the per-iteration cost can be much lower. Many variants
of ADMM have been proposed by using different properties of f
and A. We will review the most related works in Section 1.1, and
claim our contributions in Section 1.2.

Notations. The `2-norm of a vector and Frobenius norm of a
matrix are denoted as ‖ · ‖. The spectral norm and the smallest
singular value of a matrix A are denoted as ‖A‖2 and σmin(A),
respectively. The identity matrix is denoted as I without specifying
its size. The all-one vector is denoted as 1. We denote S and S+ as
the set of symmetry and positive semidefinite matrices respectively
and define 〈a,a〉A = ‖a‖2A = a>Aa for A ∈ S. If A −B is
positive semi-definite, then we denote A � B. The block diagonal
matrix Diag{Ai, i = 1, · · · , n} has Ai as its i-th block on the
diagonal. A function f : Rp → R is said to be L-smooth (or ∇f
is Lipschitz continuous), if

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ Rp. (5)

1.1 Review of ADMMs
Most of ADMMs are only able to solve (1) with separable f ;
i.e., there exist fi’s such that f(x) =

∑n
i=1 fi(xi). They can

be categorized into Gauss-Seidel ADMMs and Jacobian ADMMs.
The Gauss-Seidel ADMMs update xi’s in a sequential way, i.e.,
update xk+1

i by fixing others as their latest versions, while the
Jacobian ADMMs update xi’s in a parallel way, i.e., update each
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xk+1
i by fixing xj = xkj , for all j 6= i. We review these two types

of ADMMs respectively. The difference between ADMMs lies in
the updating of xi’s, while λ is updated in the same way by (4).

Gauss-Seidel ADMMs solve (1) with n = 2 blocks. The
standard ADMM [2] solves (2) inexactly by updating x1 and x2

in a sequential way, i.e.,

xk+1
1 = arg min

x1

L([x1;xk2 ],λk, β(k))

= arg min
x1

f1(x1) + rk1 (x1), (6)

xk+1
2 = arg min

x2

L([xk+1
1 ;x2],λk, β(k))

= arg min
x2

f2(x2) + rk2 (x2), (7)

where

rk1 (x1) =
β(k)

2

∥∥∥∥∥A1x1 + A2x
k
2 − b +

λk

β(k)

∥∥∥∥∥
2

, (8)

rk2 (x2) =
β(k)

2

∥∥∥∥∥A1x
k+1
1 + A2x2 − b +

λk

β(k)

∥∥∥∥∥
2

. (9)

By using different properties of f1 and A1, x1 (the same
discussion is also applicable to x2) can be updated more efficiently
than solving (6). If f1 is L1-smooth, then x1 can be updated by

xk+1
1 = argmin

x1

f̂1(x1) + rk1 (x1), (10)

where f̂1(x1) = f(xk1)+ 〈∇f1(xk1),x1−xk1〉+ L1

2 ‖x1−xk1‖2.
The motivation is that f̂1 is a majorant (upper bound) function of
f1, i.e., f̂1 ≥ f1 [1]. If f1 = g1 + h1, where g1 is convex and
h1 is convex and L1-smooth, then x1 can be updated by (10) with
f̂1(x1) = g(x1)+h(xk1)+〈∇h1(xk1),x1−xk1〉+L1

2 ‖x1−xk1‖2.
In this case, f̂1 ≥ f1. We name the method using (10) as Proximal
ADMM (P-ADMM) for these two cases. Similar techniques have
been used in [1], [34].

If the columns of A1 are not orthogonal, solving (6) is usually
very expensive especially when f1 is nonsmooth. Then Linearized
ADMM (L-ADMM) [23] instead updates x1 by

xk+1
1 = arg min

x1

f1(x1) + r̂k1 (x1), (11)

where r̂k1 (x1) = rk1 (xk1)+〈∇rk1 (xk1),x1−xk1〉+
η1
2 ‖x1−xk1‖2

with η1 > ‖A1‖22. Note that r̂k1 ≥ rk1 since rk1 is ‖A1‖22-smooth.
For some nonsmooth f1, e.g., the `1-norm, (11) can be solved
efficiently with a closed form solution.

If f1 is a sum of a nonsmooth function and an L1-smooth
function, then we can simultaneously use the majorant function
f̂1 of f1 as P-ADMM and r̂k1 of rk1 as L-ADMM. Thus f̂1 + r̂k1 ≥
f1 + rk1 . This motivates the Proximal Linearized ADMM (PL-
ADMM) which updates x1 by

xk+1
1 = arg min

x1

f̂1(x1) + r̂k1 (x1). (12)

For (1) with n > 2 blocks of variables, the naive extension
of Gauss-Seidel ADMMs may diverge [3]. To address this issue,
several Jacobian ADMMs have been proposed by using different
properties of fi and Ai. The Linearized ADMM with Parallel
Splitting (L-ADMM-PS) [27] solves (2) inexactly by linearizing
rk in (3) at xki ’s and updates xi’s in parallel by

xk+1
i = arg min

xi

fi(xi) +
〈
A>i (β(k)(Axk − b) + λk),xi

〉
+
β(k)ηi

2
‖xi − xki ‖2, (13)

where ηi > n‖Ai‖22. A more general method proposed in the
Algorithm 4 of [6] updates xi’s in parallel by

xk+1
i = arg min

xi

fi(xi) +
β(k)

2

∥∥∥∥∥∥Aixi +
∑
j 6=i

Ajx
k
j − b− λk

β(k)

∥∥∥∥∥∥
2

+
β(k)

2
‖xi − xki ‖2Gi

, (14)

where Gi � (n−1)A>i Ai. Actually (13) is a special case of (14)
when Gi = ηiI −A>i Ai with ηi > n‖Ai‖22. So we name the
method using (14) as Generalized Linearized ADMM with Parallel
Splitting (GL-ADMM-PS) in this work. If fi = gi + hi, where
gi is convex and hi is convex and Li-smooth, then the Proximal
Linearized ADMM with Parallel Splitting (PL-ADMM-PS) [22]
updates xi’s in parallel by

xk+1
i = arg min

xi

f̂i(xi) +
〈
A>i (β(k)(Axk − b) + λk),xi

〉
+
β(k)ηi

2
‖xi − xki ‖2, (15)

where f̂i(xi) = g(xi)+h(xki )+〈∇hi(xki ),xi−xki 〉+ Li

2 ‖xi−
xki ‖2 and ηi > n‖Ai‖22. As we will show later, the updating
rules (14) and (15) are equivalent to minimizing different majorant
functions of f(x) + rk(x) in (2).

For the convergence guarantee, all the above ADMMs own
the convergence rate O(1/K) [12], [27], [22], where K is the
number of iterations. There are also some other works which
consider different special cases of our problem (1) and give
different convergence rates of ADMMs. For example, the works
[10], [29] propose fast ADMMs with better convergence rate. But
their considered problems are quite specific and their convergence
guarantees require several additional assumptions. For problem
(1) with separable objective and n > 2, the works [15], [20],
[21] prove the convergence of the naive multi-blocks extension
of ADMM under various assumptions, e.g., full column rank of
Ai, strong convexity or Lipschitz continuity of some fi and some
others which may be hard to be verified in practice. The work
[39] reformulates the multi-blocks problem into a two-block one
by variable splitting and solves it by ADMM. But it is verified to
be slower than GL-ADMM-PS in [6] since the variable splitting
substantially increases the number of variables and constraints,
especially when n is large.

1.2 Contributions
From the above discussions, we observe that different ADMMs
can be regarded as variants of inexact ALM in the sense that
the primal variable xk+1 in ADMMs is updated by solving (2)
in ALM approximately. This actually slows the convergence, but
the per-iteration cost is lower. So there is a trade-off between the
exactness of the subproblem optimization and the convergence
speed. In practice, we balance both to choose the proper solver.
Generally, if f is not very simple, e.g., sum of several nonsmooth
functions, ADMMs are much more efficient than ALM. ADMMs
use two main techniques for approximation and update xk+1 in
an easier way than ALM: Alternating Minimization (AM) and
Majorization Minimization (MM) [18]. AM, which updates one
block each time when fixing others, makes the subproblems easier
to solve. For example, the updating of [xk+1

1 ;xk+1
2 ] in ADMM

(6)-(7) is easier than the one in ALM (2). But the cost of the one
block updating may be still high and it can be further reduced by
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using MM, which minimizes a majorant function instead of the
original objective to find an approximated solution. For example,
as reviewed in Section 1.1, different Gauss-Seidel ADMMs update
x1 by minimizing different majorant functions of the objective
in standard ADMM (6), while different Jacobian ADMMs update
xi’s by minimizing different majorant functions of the objective in
ALM (2). Actually, Gauss-Seidel ADMMs first use AM and then
apply MM to update each block, while Jacobian ADMMs first use
MM and then AM to update each block (though this is equivalent
to updating all blocks simultaneously). Besides the primal vari-
ables, the dual variable λk+1 updating in (4) is also equivalent to
minimizing a majorant function of −L(xk+1,λ, β(k)), i.e.,

λk+1 = argmin
λ
−L(xk+1,λ, β(k)) +

1

2β(k)
‖λ−λk‖2. (16)

These observations suggest that MM provides a new insight
to interpret ADMMs. The convergences of ADMMs which use
different majorant functions are guaranteed, but they are proved
case by case. It is not clear what is the role of MM in ADMMs.
Another issue is that, in practice, one can develop many ADMMs
for the same problem. But it is generally difficult to see which one
converges faster. The proved same rate O(1/K) in the worst case
fails to characterize the different speeds of ADMMs in practice.
We lack practical principles and guidelines for designing efficient
ADMMs.

In this work, we raise several crucial questions:

• What kind of majorant functions can be used in ADMMs?
• Is that possible to give a unified convergence analysis of

ADMMs which use different majorant functions by using
certain common properties of majorant functions?

• What is the connection between the convergence speed of
ADMMs and the used majorant functions?

• How to choose the proper majorant functions for designing
efficient ADMMs?

In this work, we show many interesting findings about ADMMs
through the lens of MM. We aim to address the above questions
and in particular we make the following contributions. First,
for a multivariable function f , we propose the majorant first-
order surrogate function f̂ , which requires three conditions to
be satisfied: majorization, proximity and separability. The first
two guarantee that f̂ is a reasonable approximation of f , while
the last one makes the minimizing of f̂ easy. Note that the
objective f in (1) can be non-separable since we only need to
minimize f̂ . Second, we present the unified frameworks of Gauss-
Seidel ADMMs and Jacobian ADMMs based on our majorant
first-order surrogate and give the unified convergence guarantee.
They not only draw connections with existing ADMMs, but
also extend them to solve new problems with non-separable
objective. Third, we show that the bound which measures the
convergence speed of ADMMs depends on the tightness of the
used majorant function. The tighter, the faster. This explains our
previous intuitive observation that ADMMs converge faster when
(2) in ALM is solved more accurately. Fourth, we develop several
useful techniques to tighten the majorant surrogates and thus
improve the efficiency of ADMMs. Consider (1) with n > 2,
we propose the Mixed Gauss-Seidel and Jacobian ADMM (M-
ADMM) algorithm. It divides n blocks of variables into two super
blocks, and then updates them in a sequential way as Gauss-Seidel
ADMMs, while the variables in each super block are updated in a
parallel way as Jacobian ADMMs. M-ADMM takes the structure

of A, e.g., 1
2‖Ax − b‖2 that may be partially separable, into

account to compute a tighter majorant surrogate, while previous
Jacobian ADMMs fail to do so. In addition, we show how to
partition n blocks of variables into two super blocks wisely, which
is crucial in the efficient implementation of ADMMs. The last
contribution is the developed toolbox which implements efficient
ADMMs for many popular problems in compressed sensing. See

https://github.com/canyilu/LibADMM.
Though there are already many toolboxes in compressed sensing,
the solved problems are more or less limited due to the appli-
cability of the used solvers, e.g., SPAMS [32] and SLEP [26]
focus more on sparse models and non-constrained problems. We
instead focus on the constrained problem (1), which is much more
general. See a list of problems in our toolbox in the supplementary
material.

2 MAJORANT FIRST-ORDER SURROGATE OF A
MULTIVARIABLE FUNCTION

In this section, we propose the majorant first-order surrogate of
the multivariable functions which enjoy some “good” properties.

Definition 1. (Lipschitz Continuity) Let f : Rp1×· · ·×Rpn → R
be differentiable. Then ∇f is called Lipschitz continuous if there
exist Li � 0, i = 1, · · · , n, such that

|f(x)− f(y)− 〈∇f(y),x− y〉| ≤ 1

2

n∑
i=1

‖xi − yi‖2Li
, (17)

for any x = [x1; · · · ;xn] and y = [y1; · · · ;yn] with xi,yi ∈
Rpi . In this case, we say that f is {Li}ni=1-smooth.

The Lipschitz continuity of the multivariable function is cru-
cial in this work. It is different from the single variable case
defined in (5). For n = 1, (17) holds if (5) holds (Lemma 1.2.3 in
[33]), but not vice versa. This motivates the above definition.

Definition 2. (Strong Convexity) A function f : Rp1 × · · · ×
Rpn → R is called {Pi}ni=1-strongly convex if there exist Pi �
0, i = 1, · · · , n, such that for any yi ∈ Rpi , the function x →
f(x)− 1

2

∑n
i=1 ‖xi − yi‖2Pi

is convex.

Definition 3. (Majorant First-Order Surrogate) A function f̂ :
Rp1 × · · · × Rpn → R is a majorant first-order surrogate of
f : Rp1×· · ·×Rpn → R near κ = [κ1; · · · ;κn] with κi ∈ Rpi
when the following conditions are satisfied:

• Majorization: f̂ is a majorant function of f , i.e., f̂(x) ≥
f(x) for any x.

• Proximity: there exists Li � 0 such that the approxima-
tion error h(x) := f̂(x)− f(x) satisfies

|h(x)| ≤ 1

2

n∑
i=1

‖xi − κi‖2Li
. (18)

• Separability: f̂ is separable w.r.t. xi’s; i.e., there exist f̂i’s
such that f̂(x) =

∑n
i=1 f̂i(xi).

We denote by S{Li,Pi}ni=1
(f,κ) the set of {Pi}ni=1-strongly

convex surrogates.

In MM, one aim to find an approximated solution to
minx f(x) by solving minx f̂(x), which is easier. To this end,
the above three conditions on f̂ look reasonable. Majorization
guarantees that f(x) tends to be minimized when f̂(x) is min-
imized. Proximity means that f̂(x) cannot be too loose and this
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guarantees a controllable approximation to f(x). The separability
makes the optimization on f̂(x) easier than f(x), which can be
non-separable. This is important for multi-blocks optimization.

Note that Li measures the difference f̂ − f , or the tightness
of the majorant surrogate f̂ . If ‖Li‖2 is smaller, then the majorant
surrogate is tighter. This plays an important role in this work.

Lemma 1. If the approximation error h(x) = f̂(x) − f(x)
satisfies the following Smoothness assumption, i.e.,

h(x) is {Li}ni=1-smooth, h(κ) = 0 and ∇h(κ) = 0, (19)

then the Proximity assumption in (18) holds.

Lemma 1 can be obtained by using (17) for h at κ. Lemma
1 is useful to verify the Proximity assumption. Some widely used
majorant first-order surrogates are (see Lemma 5 in Appendix):

• Proximal Surrogates. For any f and L � 0, f̂ ∈
S{L,L}(f,κ), where f̂(x) = f(x) + 1

2‖x− κ‖
2
L.

• Lipschitz Gradient Surrogates. Let f be {Li}ni=1-
smooth. Then f̂ ∈ S{Li,Li}ni=1

(f,κ), where f̂(x) =
f(κ) + 〈∇f(κ),x− κ〉+ 1

2

∑n
i=1 ‖xi − κi‖2Li

.
• Proximal Gradient Surrogates. Let f = f1 + f2, where

f1 is {Li}ni=1-smooth. Then f̂ ∈ S{Li,Li}ni=1
(f,κ),

where f̂(x) = f1(κ)+〈∇f1(κ),x−κ〉+ 1
2

∑n
i=1 ‖xi−

κi‖2Li
+ f2(x).

Note that if f is separable, then f̂ = f is also a majorant first-
order surrogate of f . Some other examples, e.g., DC programming
surrogates, can be found in [31].

Lemma 2. (Key Property of the Majorant First-Order Surrogate)
Let f̂ ∈ S{Li,Pi}ni=1

(f,κ). Then, we have

f(x) + 〈u,y − x〉 − f(y)

≤1

2

n∑
i=1

(
‖yi − κi‖2Li

− ‖yi − xi‖2Pi

)
, ∀x,y, (20)

where u ∈ ∂f̂(x) is any subgradient of the convex f̂ .

The majorant first-order surrogate given in Definition 3 is
motivated by [31]. However, they have many key differences:

• Our majorant first-order surrogate is defined based on the
multivariable function and thus it is much more general
than the single variable case considered in [31]. For exam-
ple, the Lipschitz continuity of the multivariable function
is different; the Separability of f̂ is new.

• For approximation error h = f̂−f , we use the Proximity
assumption in (18) which is less restricted than of the
Smoothness assumption in (19). We only require the error
h to be bounded, and it is not necessary to be smooth.

• Our Lemma 2 is new and it plays a central role in our
convergence analysis. Lemma 2.1 in [31] also introduces
some properties of the majorant first-order surrogate. But
their bounds are too loose and are not applicable to our
proofs due to the constraint of (1) considered in this work.

• The considered constrained problem in this work is dif-
ferent from the non-constrained problem in [31]. When
proving Proposition 2.3 in [31], they use a key property
f(xk+1) ≤ f(xk), while this does not hold in ADMMs.

At the end of this section, we discuss some properties of
1
2‖Ax−b‖2 which are important for designing efficient ADMMs.

Lemma 3. Let r(x) = 1
2‖Ax− b‖2, where x = [x1; · · · ;xn],

A = [A1, · · · ,An] and b are of compatible sizes. We have
(1) r(x) is {L′i}ni=1-smooth. The choice of L′i depends on

A>i Ai.
(2) r(x) ≤ r̂(x), where

r̂(x) =
1

2

n∑
i=1

∥∥∥∥∥∥Aixi +
∑
j 6=i

Ajyj − b

∥∥∥∥∥∥
2

+
1

2

n∑
i=1

‖xi − yi‖2Gi
+

1− n
2
‖Ay − b‖2, (21)

for any y = [y1; · · · ;yn] and Gi � L′i −A>i Ai.
(3) If Gi = ηiI−A>i Ai with ηi ≥ ‖L′i‖2, (21) reduces to

r̂(x) =
n∑
i=1

〈
xi − yi,A

>
i (Ay − b)

〉
+

n∑
i=1

ηi
2
‖xi − yi‖2 +

1

2
‖Ay − b‖2. (22)

To guarantee that r̂ ≥ r, it is required to choose L′i with
‖L′i‖2 sufficiently large. Without any additional assumption on
A, we can choose L′i = nA>i Ai. This explains the choice of
ηi > ‖L′i‖2 = n‖Ai‖22 in L-ADMM-PS (13). However, such a
choice of L′i may not be good since it does not make fully use
of the structure of A, and thus r̂ may not be a tight surrogate
of r. For example, let A1 = [C1;0], A2 = [C2;0], A3 =
[0;C3], A4 = [0;C4], and b = [b1;b2] of compatible sizes.
Then r(x) = 1

2‖
∑2
i=1 Cixi−b1‖2+ 1

2‖
∑4
i=3 Cixi−b2‖2. We

can choose L′i = 2A>i Ai, which is much better than 4A>i Ai.
Actually, the choice of L′i depends on the separability of r. In
practice, it is easy to compute L′i when given A. A good choice
of L′i gives a tight surrogate r̂, and this may significantly improve
the efficiency of Jacobian ADMMs (see Section 4).

3 UNIFIED GAUSS-SEIDEL ADMMS

In this section, we consider solving (1) with n = 2 blocks by
a unified framework of Gauss-Seidel ADMMs. In the (k + 1)-th
iteration, we compute the majorant surrogate f̂k of f near xk,
i.e., f̂k ∈ S{Li,Pi}2i=1

(f,xk) and f̂k is separable, i.e., f̂k(x) =

f̂k1 (x1)+ f̂k2 (x2). For rk1 and rk2 in (8) and (9), we construct their
proximal surrogates respectively as follows1

r̂k1 (x1) =rk1 (x1) +
β(k)

2
‖x1 − xk1‖2G1

, (23)

r̂k2 (x2) =rk2 (x2) +
β(k)

2
‖x2 − xk2‖2G2

, (24)

where G1 � 0 and G2 � 0. Then we update x1 and x2 by

xk+1
1 = arg min

x1

f̂k1 (x1) + r̂k1 (x1), (25)

xk+1
2 = arg min

x2

f̂k2 (x2) + r̂k2 (x2). (26)

Finally, λ is updated by (4). This leads to the unified framework
of Gauss-Seidel ADMMs, as shown in Algorithm 1.

Note that in Algorithm 1, f is not necessarily separable. In this
case, our algorithm and the convergence guarantee shown later
are completely new. If f is already separable, then the objectives
in (25) and (26) are majorant surrogates of the ones in (6) and

1. Note that the definitions of r̂ki in Section 3, 4 and 5 are different.
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Algorithm 1 A Unified Framework of Gauss-Seidel ADMMs
For k = 0, 1, 2, · · · do

1) Compute a majorant first-order surrogate f̂k ∈
S{Li,Pi}2i=1

(f,xk) with f̂k(x) = f̂k1 (x1) + f̂k2 (x2).
2) Update x1 by solving (25).
3) Update x2 by solving (26).
4) Update λ by λk+1 = λk + β(k)(Axk+1 − b).
5) Choose β(k+1) ≥ β(k).

end

(7), respectively. Many previous Gauss-Seidel ADMMs are special
cases by using different majorant surrogates f̂1 and r̂k1 (depending
on Gk

1) in Algorithm 1. See Table 1 for a summary.
Assume that there exists an KKT point (x∗,λ∗) of (1), i.e.,

Ax∗ = b and −A>λ∗ ∈ ∂f(x∗). Previous works prove that
ADMMs converge to the KKT point at the rate O(1/K) (K
is the number of iterations) in different ways. The works [12],
[34] give the same rate of ADMM, L-ADMM, and P-ADMM.
But they require that both the primal and dual feasible sets
should be bounded. The work [22] removes the above assumptions
and shows that the convergence rates of L-ADMM-PS and PL-
ADMM-PS are

f(x̄K)− f(x∗) + 〈A>λ∗, x̄K − x∗〉+
α

2

∥∥∥Ax̄K − b
∥∥∥2

≤O(1/K), (27)

where x̄K is a weighted sum of xk’s and α > 0. Now we give
the convergence bound of Algorithm 1 as (27).

Theorem 1. In Algorithm 1, assume that f̂k ∈
S{Li,Pi}2i=1

(f,xk) with Pi � Li � 0, i = 1, 2, G1 � 0 in (23),
and G2 � 0 in (24). For any K > 0, let x̄K =

∑K
k=0 γ

(k)xk+1

with γ(k) = (β(k))−1/
∑K
k=0(β(k))−1. Then

f(x̄K)− f(x∗) + 〈A>λ∗, x̄K − x∗〉+
β(0)α

2
‖Ax̄K − b‖2

≤
∑2
i=1 ‖x∗i − x0

i ‖2H0
i

+ ‖λ∗ − λ0‖2
H0

3

2
∑K
k=0

(
β(k)

)−1 , (28)

where α = min
{

1
2 ,

σ2
min(G2)

2‖A2‖22

}
, H0

1 = 1
β(0)L1 + G1, H0

2 =

1
β(0)L2 + A>2 A2 + G2, and H0

3 =
(

1/β(0)
)2

I.

Consider H0
i , i = 1, 2, at the RHS of (28), it can be seen that

they depend on Li and Gi, which control the difference f̂ − f
and r̂ki −rki , respectively. This suggests a faster convergence when
using tighter majorant surrogates, though the convergence rate of
Gauss-Seidel ADMMs in Algorithm 1 is O(1/K) when β(k)’s
are bounded.

Note that the assumption G2 � 0 guarantees that α > 0.
Such an assumption is also used in [12], [34] which prove the
same convergence rate in different ways. It suggests that using
G2 � 0 instead of G2 = 0 in the traditional ADMM can achieve
the O(1/K) convergence rate.

4 UNIFIED JACOBIAN ADMMS

In this section, we consider solving (1) with n > 2 by a unified
framework of Jacobian ADMMs. The motivation is to solve (2)
inexactly by minimizing a majorant surrogate of f(x)+rk(x). In
the (k + 1)-th iteration, we first compute the majorant surrogate

TABLE 1: Previous Gauss-Seidel ADMMs are special cases of
Algorithm 1 with different f̂1 and G1. In this table, η1 > ‖A1‖22.

f̂k
1 (x1) G1

ADMM f1(x1) 0

P-ADMM
Lipschitz Gradient Surrogate or

0
Proximal Gradient Surrogate

L-ADMM f1(x1) η1I−A>1 A1

PL-ADMM
Lipschitz Gradient Surrogate or

η1I−A>1 A1
Proximal Gradient Surrogate

of f near xk, i.e., f̂k ∈ S{Li,Pi}ni=1
(f,xk), and f̂k is separable,

f̂k(x) =
∑n
i=1 f̂i(xi). Assume that 1

2‖Ax‖2 is {L′i}ni=1-
smooth. For rk in (2), we define its majorant surrogate r̂k by
using (21), i.e., r̂k(x) =

∑n
i=1 r̂

k
i (xi), where

r̂ki (xi)

β(k)
=

1

2

∥∥∥∥∥∥Aixi +
∑
j 6=i

Ajx
k
j − b +

λk

β(k)

∥∥∥∥∥∥
2

+
1

2
‖xi − xki ‖2Gi

+ cki , (29)

with Gi � L′i − A>i Ai and cki ’s are constants satisfying∑n
i=1 c

k
i = 1−n

2 ‖Axk − b‖2. Thus f̂k(x) + r̂k(x) is a ma-
jorant surrogate of f(x) + rk(x) in (2). Now we minimize
f̂k(x) + r̂k(x) instead to update x, i.e.,

xk+1 = arg min
x
f̂k(x) + r̂k(x). (30)

Note that both f̂ and r̂k are separable. Thus solving (30) is
equivalent to updating each xi in parallel, i.e.,

xk+1
i = arg min

xi

f̂ki (xi) + r̂ki (xi). (31)

Finally λ is updated by (4). This leads to the unified framework
of Jacobian ADMMs, as shown in Algorithm 2.

If f is non-separable, then our algorithm and convergence
guarantee shown later are completely new. If f is separable,
several previous Jacobian ADMMs are special cases by using
different majorant surrogates f̂i and r̂ki (depending on Gi) in
Algorithm 2. See Table 2 for a summary.

Theorem 2. In Algorithm 2, assume that f̂k ∈
S{Li,Pi}ni=1

(f,xk) with Pi � Li � 0, 1
2‖Ax‖2 is {L′i}ni=1-

smooth, and Gi � L′i − A>i Ai in (29). For any K > 0, let
x̄K =

∑K
k=0 γ

(k)xk+1 with γ(k) = (β(k))−1/
∑K
k=0(β(k))−1.

Then

f(x̄K)− f(x∗) + 〈A>λ∗, x̄K − x∗〉+
β(0)α

2
‖Ax̄K − b‖2

≤

∑n
i=1 ‖x∗i − x0

i ‖2H0
i

+ ‖λ∗ − λ0‖2
H0

n+1

2
∑K
k=0

(
β(k)

)−1 , (32)

where α = min

{
1
2 ,

σ2
min(Diag{A>

i Ai+Gi,i=1,··· ,n}−A>A)
2‖A‖22

}
,

H0
i = 1

β(0)Li + A>i Ai + Gi, i = 1, · · · , n, and H0
n+1 =(

1/β(0)
)2

I.
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Algorithm 2 A Unified Framework of Jacobian ADMMs
For k = 0, 1, 2, · · · do

1) Compute a majorant first-order surrogate f̂k ∈
S{Li,Pi}ni=1

(f,xk) with f̂k(x) =
∑n
i=1 f̂

k
i (xi).

2) Update xi, i = 1, · · · , n, in parallel by solving (31).
3) Update λ by λk+1 = λk + β(k)(Axk+1 − b).
4) Choose β(k+1) ≥ β(k).

end

The above bound implies an interesting connection between
the convergence speed and the tightness of the majorant surro-
gates. For simplicity, let β(k) = β. Then (32) reduces to∑n

i=1 ‖x∗i − x0
i ‖2βH0

i
+ 1

β ‖λ
∗ − λ0‖2

2(K + 1)

≤
1
2

∑n
i=1 ‖x∗i − x0

i ‖2Li+βL′
i

+ 1
2β ‖λ

∗ − λ0‖2

(K + 1)
, (33)

where (33) uses Gi � L′i − A>i Ai. Now consider the two
constant terms in the numerator of (33). The first term controls the
tightness of the used majorant surrogate for the x updating, i.e.,
|f̂0(x∗)+r̂0(x∗)−f(x∗)−r(x∗)| ≤ 1

2

∑n
i=1‖x∗i −x0

i ‖2Li+βL′
i
,

which uses (18) with x = x∗ and k = 0. The second
term is actually the difference function 1

2β ‖λ − λ
k‖2 between

−L(xk+1,λ, β(k)) and its majorant surrogate in (16) when
λ = λ∗ and k = 0. So the convergence bound depends on the
tightness of the used majorant surrogates for both the primal and
dual variables updating. If f̂k + r̂k is tighter (associated to the
x updating) or β is larger (associated to the λ updating), the
algorithm converges faster. In practice, ADMMs stop based on
certain criteria induced by the KKT conditions. If β is relatively
larger, the algorithm seems to converge faster but the objective
function value may be larger. How to choose the best β or β(k) is
still an open issue. In this work, we focus the discussion on how
to improve the tightness of the majorant surrogate for the primal
variable updating.

Note that Algorithm 2 improves previous Jacobian ADMMs
which use L′i = nA>i Ai. Such a choice of L′i does not fully
use the structure of A or r(x) (see the discussions after Lemma
3). Our Algorithm 2 instead uses the {L′i}ni=1-smooth property
of r(x). This may make the surrogate r̂k(x) tighter and thus the
algorithm converges faster. In Section 5, we discuss how to further
improve the tightness of r̂k(x) by introducing alternating mini-
mization in Jacobian ADMMs and the backtracking technique.

5 MIXED GAUSS-SEIDEL AND JACOBIAN ADMM
Consider solving (1) with n = 2 by Gauss-Seidel ADMMs and
Jacobian ADMMs, the former one will converge faster. The reason
is that Jacobian ADMMs require Gi � A>i Ai, while Gauss-
Seidel ADMMs only require Gi � 0. Thus the bound in (28)
is expected to be tighter than the one in (32). The superiority of
Gauss-Seidel ADMMs over Jacobian ADMMs is that the former
first use alternating minimization to reduce the complexity of the
problem (fewer variables) and then the used majorant surrogate
can be tighter when using majorization minimization.

In this section, we consider problem (1) with n > 2 blocks.
We propose the Mixed Gauss-Seidel and Jacobian ADMM (M-
ADMM), which introduces the alternating minimization before
using majorization minimization. M-ADMM first divides these n

TABLE 2: Previous Jacobian ADMMs are special cases of Algorithm
2 with different f̂i and Gi. In this table, ηi > n‖Ai‖22.

f̂k
i (xi) Gi

L-ADMM-PS fi(xi) ηiI−A>i Ai,
PL-ADMM-PS Proximal Gradient Surrogate ηiI−A>i Ai

GL-ADMM-PS fi(xi) � (n− 1)A>i Ai

blocks x = [x1; · · · ;xn] into two super blocks, i.e., xB1
=

[xi, i ∈ B1] with n1 blocks of variables, and xB2
= [xi, i ∈ B2]

with n2 blocks of variables, where B1 and B2 satisfy B1 ∩B2 =
∅ and B1 ∪ B2 = {1, · · · , n}. Then xB1

and xB2
are updated

in a sequential way as Gauss-Seidel ADMMs, while xi’s in each
super block are updated in a parallel way as Jacobian ADMMs.
As shown later, M-ADMM owns a tighter bound than (32), and
thus it will be faster than Jacobian ADMMs. In the following, we
first introduce M-ADMM, and then discuss the variable partition
and backtracking technique which are crucial for the efficient
implementation of M-ADMM in practice.

5.1 M-ADMM

Assume that we are given a partition of n blocks, denoted as
{B1, B2}. We accordingly partition A into AB1

= [Ai, i ∈ B1]
and AB2

= [Ai, i ∈ B2]. Then (1) is equivalent to

min
xB1

,xB2

f(x), s.t. AB1xB1 + AB2xB2 = b. (34)

In the (k + 1)-th iteration, we first compute the majorant sur-
rogate of f near xk, i.e., f̂k ∈ S{Li,Pi}ni=1

(f,xk), and f̂k is
separable, f̂k(x) = f̂kB1

(xB1
) + f̂kB2

(xB2
), where f̂kBi

(xBi
) =∑

j∈Bi
f̂kj (xj), i = 1, 2. Then (34) can be solved by updating

xB1 and xB2 as the traditional ADMM, i.e.,

xk+1
B1

= argmin
xB1

f̂kB1
(xB1) + rkB1

(xB1), (35)

xk+1
B2

= argmin
xB2

f̂kB2
(xB2) + rkB2

(xB2), (36)

where

rkB1
(xB1

) =
β(k)

2

∥∥∥∥∥AB1xB1 + AB2x
k
B2
− b +

λk

β(k)

∥∥∥∥∥
2

,

and

rkB2
(xB2

) =
β(k)

2

∥∥∥∥∥AB1
xk+1
B1

+ AB2
xB2
− b +

λk

β(k)

∥∥∥∥∥
2

.

However, the above problems are expensive to solve since they
may not be separable w.r.t. xi’s in B1 or B2. Assume that
1
2‖AB1

xB1
‖2 is {L′i}i∈B1

-smooth. By (21), we construct a
majorant surrogate r̂kB1

of rkB1
near xkB1

, i.e., r̂kB1
(xB1) =∑

i∈B1
r̂ki (xi), where

r̂ki (xi)

β(k)
=

1

2

∥∥∥∥∥∥∥Aixi +
∑
j∈B1
j 6=i

Ajx
k
j + AB2x

k
B2
− b +

λk

β(k)

∥∥∥∥∥∥∥
2

+
1

2
‖xi − xki ‖2Gi

+ cki , i ∈ B1, (37)

with Gi � L′i−AT
i Ai, i ∈ B1, and cki ’s satisfying

∑
i∈B1

cki =

1−n1

2

∥∥∥Axk − b + λk

β(k)

∥∥∥2
. Similarly, assume that 1

2‖AB2
xB2
‖2
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Algorithm 3 Mixed Gauss-Seidel and Jacobian ADMM
For k = 0, 1, 2, · · · do

1) Compute a majorant first-order surrogate f̂k ∈
S{Li,Pi}ni=1

(f,xk) with f̂k(x) =
∑n
i=1 f̂

k
i (xi).

2) For all i ∈ B1, update xi’s in parallel by solving (39).
3) For all i ∈ B2, update xi’s in parallel by solving (40).
4) Update λ by λk+1 = λk + β(k)(Axk+1 − b).
5) Choose β(k+1) ≥ β(k).

end

is {L′i}i∈B2
-smooth. Then a majorant surrogate r̂kB2

of rkB2
near

xkB2
is r̂kB2

(xB2) =
∑
i∈B2

r̂ki (xi), where

r̂ki (xi)

β(k)
=

1

2

∥∥∥∥∥∥∥Aixi +
∑
j∈B2
j 6=i

Ajx
k
j + AB1

xk+1
B1
− b +

λk

β(k)

∥∥∥∥∥∥∥
2

+
1

2
‖xi − xki ‖2Gi

+ cki , i ∈ B2, (38)

with Gi � L′i − A>i Ai, i ∈ B2, and cki ’s satisfying∑
i∈B2

cki = 1−n2

2

∥∥∥AB1x
k+1
B1

+ AB2x
k
B2
− b + λk

β(k)

∥∥∥2
. By

replacing rkB1
(xB1

) and rkB2
(xB2

) with their majorant surrogates
r̂kB1

(xB1
) and r̂kB2

(xB2
) in (35) and (36) respectively, we update

xB1
and xB2

by

xk+1
B1

= argmin
xB1

f̂kB1
(xB1

) + r̂kB1
(xB1

),

xk+1
B2

= argmin
xB2

f̂kB2
(xB2

) + r̂kB2
(xB2

).

Note that the above two problems are separable for each xi in B1

and B2. They are respectively equivalent to

xk+1
i = argmin

xi

f̂ki (xi) + r̂ki (xi), i ∈ B1, (39)

xk+1
i = argmin

xi

f̂ki (xi) + r̂ki (xi), i ∈ B2. (40)

Finally λ is updated by (4). This leads to the Mixed Gauss-Seidel
and Jacobian ADMM (M-ADMM), as shown in Algorithm 3. Now
we give its convergence bound as (27).

Theorem 3. In Algorithm 3, assume that f̂k ∈
S{Li,Pi}ni=1

(f,xk) with Pi � Li � 0, 1
2‖AB1

xB1
‖2

is {L′i}i∈B1 -smooth, 1
2‖AB2xB2‖2 is {L′i}i∈B2 -smooth,

Gi � L′i − A>i Ai, i ∈ B1 in (37) and Gi � L′i − A>i Ai,
i ∈ B2 in (38). For any K > 0, let x̄K =

∑K
k=0 γ

(k)xk+1 with
γ(k) = (β(k))−1/

∑K
k=0(β(k))−1. Then

f(x̄K)− f(x∗) + 〈A>λ∗, x̄K − x∗〉+
β(0)α

2
‖Ax̄K − b‖2

≤

∑2
j=1 ‖x∗Bj

− x0
Bj
‖2
H0

j
+ ‖λ∗ − λ0‖2

H0
3

2
∑K
k=0

(
β(k)

)−1 , (41)

where α = min

{
1
2 ,

σ2
min(Diag{A>

i Ai+Gi,i∈B2}−A>
B2

AB2)
2‖AB2

‖22

}
,

H0
1 = Diag

{
1
β(0)Li + A>i Ai + Gi, i ∈ B1

}
− A>B1

AB1 ,

H0
2 = Diag

{
1
β(0)Li + A>i Ai + Gi, i ∈ B2

}
, and H0

3 =(
1/β(0)

)2
I.

M-ADMM in Algorithm 3 further unifies Gauss-Seidel AD-
MMs in Algorithm 1 and Jacobian ADMMs in Algorithm 2.

Algorithm 4 M-ADMM with backtracking

Initialization: k = 0, xki , Gk
i � 0, λk, βk > 0, τ > 0, µ > 1.

For k = 0, 1, 2, · · · do
1) Compute a majorant first-order surrogate f̂k ∈
S{Li,Pi}ni=1

(f,xk) with f̂k(x) =
∑n
i=1 f̂

k
i (xi).

2) Set Gi = Gk
i and compute xk+1

i by (39)-(40).
3) If (42) does not hold, set Gk

i = µGk
i , i ∈ B1. Go to 2).

If (44) does not hold, set Gk
i = µGk

i , i ∈ B2. Go to 2).
4) Update λ by λk+1 = λk + β(k)(Axk+1 − b).
5) Choose β(k+1) ≥ β(k). Set Gk+1

i = Gk
i , i = 1, · · · , n.

end

If n = 2, let B1 = {1} and B2 = {2}. Then M-ADMM
degenerates into the Gauss-Seidel ADMMs, and (41) reduces to
(28). If n > 2, let B1 = ∅ and B2 = {1, · · · , n}. Then M-
ADMM degenerates into the Jacobian ADMMs, and (41) reduces
to (32). More importantly, for the case of n > 2 and other choices
of B1 and B2, M-ADMM will be faster than Jacobian ADMMs,
since the right hand side of (41) may be much smaller than the one
of (32). This is due to their different choices of Gi. Without the
additional assumption on the structure of A, Jacobian ADMMs
require Gi � (n − 1)A>i Ai for all i = 1, · · · , n, while M-
ADMM only requires Gi � (n1 − 1)A>i Ai for i ∈ B1 and
Gi � (n2 − 1)A>i Ai for i ∈ B2. Note that n = n1 + n2.
The improvement benefits from the sequential updating rules of
xB1 and xB2 by using tighter majorant surrogates in M-ADMM.
Indeed, M-ADMM only needs to majorize rkB1

(xB1) in (35) and
rkB2

(xB2
) in (36) for xB1

and xB2
respectively, while Jacobian

ADMMs need to majorize rk(x) in (3) for all xi’s simultaneously.
Note that the work [13] proposes a block-wise ADMM which

is another special case of our Algorithm 3. But their considered
problem is more specific and the convergence guarantee requires
much stronger assumptions, e.g., Ai that has a full column rank.

5.2 M-ADMM with Backtracking

We have given the convergence guarantee of M-ADMM when
fixing Gi. In practice, we can estimate it by the backtracking
technique which will lead to tighter majorant surrogate. The
effectiveness has been verified in first-order optimization [1]. Now,
we introduce the backtracking technique into M-ADMM.

To guarantee the convergence, Gi can be replaced by Gk
i such

that rkB1
(xk+1
B1

) ≤ r̂kB1
(xk+1
B1

) and rkB2
(xk+1
B2

) ≤ r̂kB2
(xk+1
B2

).
They are guaranteed when

‖AB1
(xk+1
B1
− xkB1

)‖2 ≤
∑
i∈B1

‖xk+1
i − xki ‖2Gk

i +A>
i Ai

, (42)

‖AB2
(xk+1
B2
− xkB2

)‖2 ≤
∑
i∈B2

‖xk+1
i − xki ‖2Gk

i +A>
i Ai

. (43)

To achieve the O(1/K) convergence rate, we replace (43) as

τ‖xk+1
B2
− xkB2

‖2 ≤ ‖xk+1
B2
− xkB2

‖2Kk
2−A>

B2
AB2

, (44)

for some small constant τ > 0 and Kk
2 = Diag{A>i Ai+Gk

i , i ∈
B2}. In this case, we may be able to find Gk

i with relatively
smaller ‖Gk

i ‖2, and thus r̂kB1
(xk+1
B1

) and r̂kB2
(xk+1
B2

) are tighter
upper bounds of rkB1

(xk+1
B1

) and rkB2
(xk+1
B2

), respectively. This
leads to a better approximation solution and improves the effi-
ciency. We summarize M-ADMM with backtracking in Algorithm
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4. Note that Step 3) will only be performed for finitely many times.
Similarly, the convergence guarantee is given as follows.

Theorem 4. In Algorithm 4, assume that f̂k ∈
S{Li,Pi}ni=1

(f,xk) with Pi � Li � 0. Then (41) holds with

H0
1 = Diag

{
1
β(0)Li + A>i Ai + G0

i , i ∈ B1

}
− A>B1

AB1 ,

H0
2 = Diag

{
1
β(0)Li + A>i Ai + G0

i , i ∈ B2

}
,

H0
3 =

(
1/β(0)

)2
I, and α = min

{
1
2 ,

τ
2‖AB2

‖22

}
.

Note that Algorithm 4 reduces to Algorithm 3 by choosing
Gi’s in Theorem 3. Theorem 3 is a special case of Theorem 4 by
setting τ = σ2

min

(
Diag

{
A>i Ai + Gi, i ∈ B2

}
−A>B2

AB2

)
.

So we only give the proof of Theorem 4 in Appendix. It is worth
mentioning that, when using backtracking, r̂kBj

is not a majorant
first-order surrogate of rkBj

, since the majorization condition may
not hold. Actually, r̂kBj

only majorizes rkBj
locally at xk+1

Bj
. But

this is sufficient for the convergence proof, since the formulations
of rkBj

and r̂kBj
are known and we are able to use their specific

properties instead of (20) in the proofs.

5.3 Variable Partition
For (1) with n > 2, M-ADMM requires partitioning variables
into 2 super blocksB1 andB2. Different variable partitions lead to
different choices of L′i which controls the tightness of the majorant
surrogates, and thus the convergence behaviors of M-ADMM are
different. Looking for an intelligent way of variable partition may
significantly improve the efficiency of M-ADMM. We discuss how
to partition variables in three cases by considering the property
of Ai’s in (1). The principle is to find a partition such that the
constructed surrogate r̂kB1

for rkB1
in (35) and r̂kB2

for rkB2
in (36)

can be as tight as possible.
Case I (complex case): A>i Al 6= 0 for any i 6= l. This

case is complex since rkBj
, j = 1, 2 in (35)-(36) are non-

separable for any partition. Then the separable surrogates r̂kBj
’s

may be loose when considering the choices of Gi in (37)-(38).
As suggested by Theorem 3, to tighten the bound of (41), a
reasonable partition is to make LB1

+ LB2
, where LB1

= (n1 −
1)
∑
i∈B1

‖Ai‖22−‖AB1
‖22 and LB2

= (n2−1)
∑
i∈B2

‖Ai‖22,
as small as possible2. We have a heuristic approach to this end:
Step 1: Sort ‖Ai‖22’s in a descending order.
Step 2: Group the largest n1 elements as the first block and the
rest as the second block.
Step 3: The best value of n1 is the one which minimizes LB1

+
LB2

by a one-shot searching from 1 to n.
Case II (simple case): there exists a partition such that

A>i Al = 0, i 6= l, for any i, l ∈ B1 and i, l ∈ B2. (45)

This case is simple since the above partition makes rkBj
, j = 1, 2

in (35)-(36) separable. Then r̂kBj
’s tend to be tight since we can

compute each r̂ki independently and use Gi � 0, i ∈ B1 in
(37) and Gi � 0, i ∈ B2 in (38). Even, the per-iteration cost
is cheap when using r̂ki = rki for many problems in practice.
In this case, (34) can be solved by (35)-(36), which is similar to
the standard ADMM. For example, the Low-Rank Representation
model in [24] satisfies (45),

min
Z,J,E

‖J‖∗ + λ‖E‖2,1, s.t. X = AZ + E,Z = J, (46)

2. If n1 is not very small, ‖AB1‖22 is usually much smaller than (n1 −
1)

∑
i∈B1

‖Ai‖22. We can use LB1
= (n1 − 1)

∑
i∈B1

‖Ai‖22 in this case.

where λ > 0. The augmented Lagrangian function is

L(Z,J,E,λ1,λ2) = ‖J‖∗ + λ‖E‖2,1 + 〈λ1,X−AZ−E〉

+ 〈λ2,Z− J〉+
β

2

(
‖X−AZ−E‖2 + ‖Z− J‖2

)
.

Based on the partition {J,E} and {Z}, they can be updated by
{Jk+1,Ek+1} = arg min

J,E
L(Zk,J,E,λk1 ,λ

k
2),

Zk+1 = arg min
Z
L(Z,Jk+1,Ek+1,λk1 ,λ

k
2).

This is the standard ADMM and its convergence is guaranteed.
Note that L(Zk,J,E,λk1 ,λ

k
2) is separable w.r.t. J and E and thus

Jk+1 and Ek+1 can be computed independently. The updates of
the three blocks are similar to the naive multi-block extension of
ADMM used in [24], but in different updating orders. Our simple
modification fixes the convergence issue of the naive multi-block
extension of ADMM in [24] for (46).

In computer vision and signal processing, there are a lot of
multi-blocks problems, or their equivalent ones by introducing
auxiliary variables, with the property (45) and thus can be solved
more efficiently by the Gauss-Seidel ADMMs than Jacobian
ADMMs, e.g., sparse subspace clustering model (70) in [8],
nonnegative matrix completion problem (143) in [22], multi-
task low-rank affinity pursuit model (4) in [5], sparse spectral
clustering model (6) in [30], nonnegative low-rank and sparse
graph model (5) in [42], simultaneously structured models (3.3) in
[35], convex program (8) in [4] for graph clustering, robust multi-
view spectral clustering model (3) in [41] and consolidated tensor
recovery model (2.6) in [16]. However, some of previous works
do not use the property (45) to implement the efficient ADMMs,
and this is the reason why we release the toolbox.

Case III (other cases): neither assumptions in Case I and
Case II holds. It is generally difficult to find the best partition in
this case. But one can combine the ideas in both Case I and II.
For example, there exists one or more subgroups BS , such that
A>i Al = 0, i 6= l, for any i, l ∈ BS . We can put the whole
subgroup in one super block, i.e., BS ⊂ B1.

In practice, one usually needs to reformulate the original
problem as an equivalent one by introducing auxiliary variables
such that the subproblem in ADMMs can be simple. When design-
ing efficient ADMMs, the problem reformulation and the above
variable partition strategies should be considered simultaneously.
Some more examples can be found in our released toolbox.

6 EXPERIMENTS

In this section, we conduct several experiments to show the effec-
tiveness of our new ADMMs. All the algorithms are implemented
by Matlab and are tested on a PC with 8 GB of RAM and Intel
Core 2 Quad CPU Q9550. The details of the compared solvers can
be found in the supplementary material.

6.1 Experimental Analysis of M-ADMM
Besides the unified analysis of several variants of ADMMs,
another main contribution of this work is the proposed M-ADMM
for multi-block problems. In this subsection, our purpose is to
perform some analyses on M-ADMM. For the simplicity, we first
consider the following nonnegative sparse coding problem

min
{xi}

n∑
i=1

‖xi‖1, s.t. y =
n∑
i=1

Aixi,xi ≥ 0, (47)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

0 50 100
0

500

1000

1500

(a)

n
1

0 50 100

#106

2

4

6

8

10
L

B1
+L

B2

Best n1=59

(b)

Iteration
0 20 40 60 80 100

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

0

50

100

150

200

250

300

n
1
=1

n
1
=40

n
1
=80

n
1
=99

n
1
=59 (our method)

(c)

Iteration
0 20 40 60 80 100

R
es

id
ua

l

0

100

200

300

400

500
n

1
=1

n
1
=40

n
1
=80

n
1
=99

n
1
=59 (our method)

(d)

Fig. 1: Plots of (a) sorted {‖Ai‖22, i = 1, · · · , n}; (b) LB1 + LB2

v.s. n1; (c) f(xk) v.s. k and (d) ‖Axk − b‖ v.s. k based on different
partitions (corresponding to different n1).

6.1.1 Analysis of the Proposed Partition Strategy
We conduct an experiment to compare the different convergence
behaviors of M-ADMM with different variable partitions and
demonstrate the effectiveness of the proposed partition method
for Case I in Section 5.3. By choosing Gi � ηiI−A>i Ai in (37)
and (38), M-ADMM solves (47) by the following rules

xk+1
i = arg min

xi≥0
‖xi‖1 +

β(k)ηi
2

∥∥∥xi − uki

∥∥∥2
, i ∈ B1,

xk+1
i = arg min

xi≥0
‖xi‖1 +

β(k)ηi
2

∥∥∥xi − vki

∥∥∥2
, i ∈ B2,

λk+1 =λk + β(k)(Axk+1 − y),

where uki = xki −
AT

i (λk+β(k)(Axk−y))

β(k)ηi
, vki = xki −

AT
i (λk+β(k)(AB1

xk+1
B1

+AB2
xk
B2
−y))

β(k)ηi
, ηi ≥ n1‖Ai‖22, i ∈ B1,

and ηi > n2‖Ai‖22, i ∈ B2. In M-ADMM, xi and λ
are initialized as zeros. We set β(0) = 10−4 and update
β(k+1) = min(ρβ(k), 106) with ρ = 1.1. Let ηi = n1‖Ai‖22
for i ∈ B1, and ηi = 1.02n2‖Ai‖22 for i ∈ B2. We test
M-ADMM for (47) on the synthetic data generated as follows.
We set n = 100, d = 50, mi = 10i and the elements
of Ai ∈ Rd×mi are independently sampled from an N(0, 1)
distribution. We generate x with 90% elements being zeros and
others independently sampled from an N(0, 1) distribution. Then
y = [A1, · · · ,An]x. The sizes of Ai’s are different, and so
are the Lipschitz constants ‖Ai‖22’s. We plot the sorted ‖Ai‖22’s
in Figure 1 (a). M-ADMM requires dividing these n blocks of
variables into two super blocks, i.e., xB1 with n1 blocks, and xB2

with n2 blocks. Our partition strategy finds n1 by minimizing
LB1 +LB2 , where LB1 = (n1−1)

∑
i∈B1

‖Ai‖22−‖AB1‖22 and
LB2

= (n2 − 1)
∑
i∈B2

‖Ai‖22. In this experiment, our method
gives the best n1 = 59. See the plot of LB1

+ LB2
v.s. n1

in Figure 1 (b). Note that one may have many other choices of
n1 ∈ {1, 2 · · · , 100}. Figure 1 (c) plots the objective function
value f(xk) v.s. iteration k (≤ 100) and Figure 1 (d) plots the
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Fig. 2: Top row: comparison of L-ADMM-PS, M-ADMM and M-
ADMM with backtracking based on f(xk) v.s. k (left) and ‖Axk−b‖
v.s. k (right) in the case n = 500. Bottom row: comparison of L-
ADMM-PS (left), M-ADMM (middel), and M-ADMM with back-
tracking (right) in different cases of n = 100 and n = 500.

residual ‖Axk − b‖ v.s. iteration k (≤ 100), based on different
choices of n1 ∈ {1, 40, 80, 99, 69}. Generally, the convergences
of ‖Axk − b‖ based on different partitions are quite similar
since it heavily depends on the same updating rule of β(k+1).
However, different n1 leads to quite different convergences of
f(xk), and n1 = 59, predicted by our method, performs well.
The choice of n1 = 1 is the worst case since LB1 + LB2 is the
largest. These results verify that M-ADMM converge faster when
using our proposed variable partition strategy, which leads to tight
majorant surrogates.

6.1.2 Analysis of M-ADMM with backtracking
We conduct three experiments to show the advantage of M-
ADMM with backtracking, which uses tighter majorant surrogate,
over L-ADMM-PS and M-ADMM. We still consider (47) on
synthetic data. We generate A ∈ Rd×m, where d = 50 and
m = 10, 000, with its elements independently sampled from an
N(0, 1) distribution. We generate x with 90% elements being
zeros and others independently sampled from an N(0, 1) distri-
bution, and y = Ax. Then we uniformly split A and x into
n blocks, [A1, · · · ,An] and x = [x1; · · · ;xn], respectively.
We consider two cases: n = 100 and n = 500. Though n is
different, the solved problems are equivalent. We are interested
in the different convergence behaviors of the used solvers in
both cases. In M-ADMM with backtracking, we set τ = 1.3,
ηi = 0.01n1‖Ai‖22, i ∈ B1 and ηi = 0.01n2‖Ai‖22, i ∈ B2.
The other settings and the initializations are the same as M-
ADMM in Section 6.1.1. Note that though the backtracking in
Algorithm 4 requires some additional cost to estimate ηi’s, the cost
can be ignored since the conditions in (42) and (44) fail only in a
few iterations. Considering that the per-iteration complexity of the
three solvers are the same, we simply compare their performance
based on f(xk) v.s. k and ‖Axk − b‖ v.s. k.

Figure 2 shows the comparison results. In Figure 2 (a)-(b),
we consider the case n = 500 and compare the three solvers
based on f(xk) v.s. k (k ≤ 100) and ‖Axk − b‖ v.s. k. It can
be seen that M-ADMM with backtracking achieves the smallest
objective function value when the algorithm converges and it
reduces the residual much faster than the other two methods. M-
ADMM also outperforms L-ADMM-PS. These results well veri-
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Fig. 3: Comparison of (a) L-ADMM-PS, (b) M-ADMM and (c) M-
ADMM with backtracking on different choices of ρ, where β(k+1) =
ρβ(k). Top row: plots of f(xk) v.s. k; bottom row: plots of ‖Axk−b‖
v.s. k.

fies the effectiveness of M-ADMM and the proposed backtracking
technique, and are consistent with our theoretical analysis. Second,
we compare the convergence behaviors of the three solvers based
on different splits of A, i.e., n = 100 and n = 500. From Figure
2 (c)-(d), it can be seen that L-ADMM-PS and M-ADMM for
the case n = 100 perform much better than the case n = 500,
respectively. This is not a surprise since both two solvers use
constant ηi’s which depend on the block number (see Theorem
3). Intuitively, the smaller n leads to a tighter majorant surrogate,
e.g., (37), and thus it leads to a better approximated solution.
However, M-ADMM with backtracking performs the best and it
is not sensitive to n, since it estimates ηi’s locally and this leads
to a tight majorant surrogate.

Furthermore, we compare the three solvers based on different
choices of ρ ∈ {1.1, 1.2, 1.3, 1.4, 1.5, 2}, where β(k+1) =
ρβ(k). We test on the same dataset as the above experiment with
n = 500, and plot f(xk) v.s. k and ‖Axk−b‖ v.s. k in Figure 3.
For all the three solvers, when ρ is larger, the residual ‖Axk−b‖
decreases faster. More importantly, the price is that the objective
f(xk) decreases slower. Considering the convergence of f(xk),
both L-ADMM-PS and M-ADMM are sensitive to the choice
of ρ, though the later one performs better. However, M-ADMM
with backtracking performs very well even when ρ increases.
The reason is that the larger ρ implies that β(k) increases much
faster and this makes the majorant surrogates in (37)-(38) much
looser. In contrast, the surrogates r̂kB1

and r̂kB2
in M-ADMM with

backtracking are computed locally based on (42) and (44) and
thus the surrogates are much tighter. This experiment verifies that
the backtracking technique allows a relatively faster increasing
sequence {β(k)} and improves the convergence.

6.2 Solving Non-separable Objective Problem

To show that M-ADMM can solve the problem with non-
separable objective, we consider the Latent Low-Rank Represen-
tation (LatLRR) problem [25] for affine subspace clustering

min
Z,L
‖Z‖∗+‖L‖∗+

λ

2
‖XZ+LX−X‖2F , s.t. 1>Z = 1>, (48)

where λ > 0 and the constraint is due to the affine subspace
structure of data X [8]. The objective of (48) is non-separable and
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Fig. 4: Comparison of L-ADMM-PS (3), M-ADMM (3) and M-
ADMM (2) on different choices of λ: (a) λ = 0.001; (b) λ = 0.1
and (c) λ = 10. Top row: plots of f(xk) v.s. CPU time; middle row:
plots of ‖Axk − b‖ v.s. CPU time. (d) Subspace clustering accuracy
v.s. λ. In (a)-(c), for better visualization, we plot the objective value
and residual within a relatively smaller range of CPU time in sub-
figures.

can be rewritten as the following one with separable objective

min
Z,L,E

‖Z‖∗ + ‖L‖∗ +
λ

2
‖E‖2F ,

s.t. 1>Z = 1>, XZ + LX−X = E.

(49)

We compare the following three solvers which own the conver-
gence guarantee to solve the latent LRR problem:

• L-ADMM-PS (3): use (13) for 3 blocks problem (49).
• M-ADMM (3): use M-ADMM for 3 blocks problem (49).
• M-ADMM (2): use M-ADMM for 2 blocks problem (48).

Note that h(Z,L) = 1
2‖XZ + LX − X‖2F in (48) is

{2‖X‖22I, 2‖X‖22I}-smooth. M-ADMM (2) uses the Lipschitz
gradient surrogate in (22) to make the subproblems separable. For
M-ADMM (3), we partition the three variables into two super
blocks: {Z} and {L,E}, and update them in the Gauss-Seidel
way. In contrast, L-ADMM-PS updates Z, L and E in parallel.

We apply latent LRR for subspace clustering by using the
learned Z based on both the synthesized and real data. For
the synthesized data, we generate X = [X1,X2, · · · ] with its
columns sampled from different subspaces. We construct k = 5
independent subspaces {Si}5i=1 ⊆ R200 whose bases {Ui}5i=1

are computed by Ui = TUi, 1 ≤ i ≤ 4, where T is a random
rotation and U1 ∈ R200×5 is a random orthogonal matrix. We
sample 100 vectors from each subspace by Xi = UiQ + 0.1,
1 ≤ i ≤ 5 with Q ∈ R5×100 being an i.i.d. N(0, 1) matrix.
Furthermore, 20% of data vectors are chosen to be corrupted, e.g.,
for a data vector x chosen to be corrupted, its observed vector is
computed by adding Gaussian noise with zero mean and variance
0.2‖x‖. Given X ∈ R200×500 by the above way, we can solve the
latent LRR problem by the three solvers and obtain the solution
Z∗. Then the data vectors can be grouped into k groups based
on the affinity matrix (|Z∗| + |(Z∗)>|)/2 by spectral clustering
[25]. The clustering accuracy is used to evaluate the clustering
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TABLE 3: Comparison of L-ADMM-PS (3) and M-ADMM (3) and
M-ADMM (2) for latent LRR on the Hopkins 155 dataset.

Methods L-ADMM-PS (3) M-ADMM (3) M-ADMM (2)

Accuracy (%) 90.9 92.7 87.1

CPU Time (s) 756.2 738.5 932.1

performance [25]. We test on different choices of λ and compare
the three solvers based on f(xk) v.s. CPU time (in seconds),
‖Ax − b‖ v.s. CPU time and clustering accuracy. The results
are shown in Figure 4 and we have the following observations:

• M-ADMM (3) always outperforms L-ADMM-PS (3) in
the sense that the objective value is smaller when the
algorithms converge and the residual decreases much
faster. Both solve the same problem (49) with 3 blocks
of variables. But M-ADMM (3) updates Z and {L,E}
sequentially, and thus it is faster than L-ADMM-PS (3)
which updates them in parallel. This is consistent with our
analysis at the end of Section 5.1.

• When λ is relatively small, M-ADMM (2) converges
faster than M-ADMM (3). When λ is relatively large,
M-ADMM (2) leads to a smaller objective value, but
it requires much more running time (many more itera-
tions). Both solvers have their advantages and disadvan-
tages. In this experiment, the block number n and the
looseness of the surrogate are two crucial factors. M-
ADMM (2) solves (48) with only 2 blocks, but it requires
constructing the Lipschitz gradient surrogate by (22) for
h(Z,L) = λ

2 ‖XZ+LX−X‖2F . This surrogate is looser
when λ is lager. This is why M-ADMM (2) is slower
when λ increases (the same phenomenon also appears in
ISTA and FISTA [1]). On the other hand, M-ADMM (3)
for 3 blocks problem (49) converges quickly regardless of
the choice of λ. The issue of M-ADMM (3) is that the
surrogate r̂ki (xi) in (37)-(38) also becomes looser when
β(k) increases. So M-ADMM (3) may quickly get stuck
and the final objective value is larger than M-ADMM (2).
In practice, one has to balance the effects of both the
block number n and the looseness of the surrogate, by
considering the specific problems.

We further apply latent LRR for motion segmentation and
test on the Hopkins 155 dataset [37]. This dataset contains 156
sequences, each with 39∼550 vectors drawn from two or three
motions (one motion corresponds to one subspace). Each sequence
is a sole segmentation (clustering) task and thus there are 156
clustering tasks in total. We follow the experimental settings in
[25] but without the complex post-processing. We set λ = 500 and
compare the performance by using M-ADMM (2), L-ADMM-PS
(3) and M-ADMM (3). We stop the algorithms when

‖Axk − b‖/‖b‖ ≤ ε, and ‖xk+1 − xk‖/‖b‖ ≤ ε, (50)

where ε = 10−4. For each motion sequence, we record the
clustering accuracy and the CPU time of solvers. Then the mean
clustering accuracy and the total CPU time of all 156 sequences
are reported in Table 3. It can be seen that, due to the same
stopping criteria in (50), the CPU time of L-ADMM-PS (3) and
that of M-ADMM (3) are similar. But the solution to latent LRR
obtained by M-ADMM (3) achieves better clustering accuracy
than L-ADMM-PS (3). The reason is that M-ADMM (3) obtains

parrot barbara boat cameraman foreman house lena monarch

Fig. 5: Images used for nonnegative matrix completion.
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Fig. 6: Top row: the observed noisy image (left), recovered image by
L-ADMM-PS (middle), and recovered image by M-ADMM (right).
Bottom row: plots of f(xk) v.s. CPU time (left), plots of ‖Axk −b‖
v.s. CPU time (middle), and PSNR values v.s. CPU time (right).

a better solution with much smaller objective value within similar
running time (or similar number of iterations). In this experiment,
M-ADMM (2) for (48) is inferior to the other two solvers since
the used λ is relatively large and thus the used majorant surrogate
is loose.

6.3 Solving Nonnegative Matrix Completion
In this subsection, we show how to use Gauss-Seidel ADMM to
solve a class of problems (n > 2) with the condition (45) being
satisfied. We consider the following nonnegative noisy matrix
completion problem [27]

min
X,E
‖X‖∗ +

λ

2
‖E‖2, s.t. PΩ(X) + E = B, X ≥ 0, (51)

where Ω is an index set and PΩ is a linear mapping that keeps
the entries in Ω unchanged and those outside Ω zeros. The above
problem can be reformulated as a 3 blocks problem by (94) in [27]
and then solved by L-ADMM-PS. We instead reformulate (51) as

min
X,E,Z

‖X‖∗ +
λ

2
‖E‖2,

s.t. PΩ(Z) + E = B, X = Z, Z ≥ 0.
(52)

Note that (45) holds for (52) with the partition {X,E} and {Z}.
Thus (52) can be solved using (35)-(36) with closed form solutions
for each variable. We still refer to this method as M-ADMM in
this experiment.

We consider the same image inpainting problem in [27]
which is to fill in the missing pixel values of a corrupted
image. As the pixel values are nonnegative, the image inpaint-
ing problem can be solved by (51). The corrupted image is
generated from the original image by sampling 60% of the
pixels uniformly at random and adding Gaussian noise with
mean zero and standard deviation 0.1. We use the same adaptive
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TABLE 4: Numerical comparison on the image inpainting.

L-ADMM-PS M-ADMM
images PSNR CPU # Iter. PSNR CPU #Iter.

parrot 28.51 3.50 87 28.54 2.00 55
barbara 27.69 3.36 85 27.72 2.27 60

boat 28.91 3.54 85 28.93 2.21 58
cameraman 26.06 3.33 84 26.08 2.15 58

foreman 31.83 3.80 86 31.84 2.06 54
house 31.26 3.48 87 31.26 2.29 56
lena 27.65 3.55 85 27.68 2.33 62

monarch 25.29 3.47 85 25.33 2.52 63

penalty to update β(k) as [27]. We set λ = 10, ε1 = 10−3,
ε2 = 10−4 and β(0) = min (d1, d2)ε2, where d1 × d2 is
the size of X. We update β(k+1) = max (10β(k), 106) when
maxi(β

(k)‖xk+1
i − xki ‖/‖b‖) ≤ ε1. The stopping criteria are

maxi(‖xk+1
i − xki ‖/‖b‖) ≤ ε2 and ‖Axk − b‖/‖b‖ ≤ ε1.

We test on 8 images, all with size 256 × 256, in Figure 5 and
evaluate the recovery performance based on the PSNR value.
The higher PSNR value indicates better recovery performance.
The quantitative results are reported in Table 4 and Figure 6
gives more results test on the parrot image. It can be seen that,
with slightly better recovery performance, M-ADMM converges
faster than L-ADMM-PS. The improvement benefits from the
sequential updating of {X} and {Z,E} and avoids computing
of the majorant surrogate as that in L-ADMM-PS.

7 CONCLUSIONS

This paper revisits ADMM, an old but reborn method for convex
problems with linear constraint. Many previous ADMMs can be
categorized into the Gauss-Seidel ADMMs and Jacobian ADMMs
according to different updating orders of the primal variables. We
observed that many previous ADMMs update the primal variables
by minimizing different majorant functions. Then we proposed
the majorant first-order surrogate functions and presented the
unified frameworks with unified convergence analysis. They not
only draw the connections with existing ADMMs, but also can be
used to solve new problems with non-separable objectives. The
convergence bound show that the convergence speed depends on
the tightness of the used majorant functions. We then analyzed
how to improve the tightness to improve the efficiency. We
improve Jacobian ADMMs by introducing the Mixed Gauss-
Seidel and Jacobian ADMM and the backtracking technique.
We also discussed how to perform variable partition for efficient
implementations. Experiments on both synthesized and real-world
data well demonstrated the effectiveness of our new ADMMs.

In the future, one may consider extending our unified analysis
based on MM to develop new ADMMs or solve other problems,
e.g., strongly convex or nonconvex problems, and other ADMMs,
e.g., stochastic ADMMs.
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APPENDIX

Lemma 4. Given any a, b, c, d and G � 0 of compatible sizes,
we have

〈a− b, c− a〉G

=
1

2

(
‖b− c‖2G − ‖a− c‖2G − ‖a− b‖2G

)
, (53)

〈a− b, c− d〉

=
1

2

(
‖a− d‖2 − ‖a− c‖2 − ‖b− d‖2 + ‖b− c‖2

)
. (54)

Lemma 5. (Combination Rules for Majorant First-Order Sur-
rogates) Let f̂ ∈ S{Li}ni=1

(f,κ) and f̂ ′ ∈ S{L′
i}ni=1

(f ′,κ). Then
the following combination rules hold:

• Linear combination: for any α, α′ > 0, αf + α′f ′ is
a majorant surrogate function in S{αLi+α′L′

i}ni=1
(αf +

α′f ′,κ);
• Transitivity: let F ∈ S{L′′

i }ni=1
(f̂ ,κ). Then F is a

majorant surrogate in S{Li+L′′
i }ni=1

(f,κ).

Proof of Lemma 2. We deduce

f(x)
¬

≤ f̂(x)

=

(
f̂(x)− 1

2

n∑
i=1

‖xi − κi‖2Pi

)
+

1

2

n∑
i=1

‖xi − κi‖2Pi



≤
(
f̂(y)− 1

2

n∑
i=1

‖yi − κi‖2Pi

)
− 〈u,y − x〉

+
n∑
i=1

〈xi − κi,yi − xi〉Pi
+

1

2

n∑
i=1

‖xi − κi‖2Pi

®

≤
(
f(y) +

1

2

n∑
i=1

‖yi − κi‖2Li−Pi

)
− 〈u,y − x〉

+
n∑
i=1

〈xi − κi,yi − xi〉Pi
+

1

2

n∑
i=1

‖xi − κi‖2Pi

¯
=

(
f(y) +

1

2

n∑
i=1

‖yi − κi‖2Li−Pi

)
− 〈u,y − x〉

− 1

2

n∑
i=1

(
‖xi − κi‖2Pi

+ ‖yi − xi‖2Pi
− ‖yi − κi‖2Pi

)
+

1

2

n∑
i=1

‖xi − κi‖2Pi

=f(y)− 〈u,y − x〉+
1

2

n∑
i=1

(
‖yi − κi‖2Li

− ‖yi − xi‖2Pi

)
,

where ¬ is from the fact that f̂ is a majorant function of f , 

is from the convexity of f̂(x) − 1
2

∑n
i=1 ‖xi − κi‖2Pi

(or f̂ is
{Pi}ni=1-strongly convex), ® uses (18), and ¯ is from (53). �

Proof of Lemma 3. By using (53), for any x and y, we have

1

2
‖Ax− b‖2 − 1

2
‖Ay − b‖2 (55)

=
1

2
‖A(x− y)‖2 + 〈A(x− y),Ay − b〉

≤1

2

n∑
i=1

‖xi − yi‖2L′
i

+ 〈A(x− y),Ay − b〉 (56)

≤1

2

n∑
i=1

(
‖xi − yi‖2Gi

+ ‖Ai (xi − yi) ‖2
)

(57)

+
n∑
i=1

〈Ai(xi − yi),Ay − b〉

=
1

2

n∑
i=1

‖xi − yi‖2Gi

+
1

2

n∑
i=1

(
‖Ai (xi − yi) + Ay − b‖2 − ‖Ay − b‖2

)

=
1

2

n∑
i=1

‖xi − yi‖2Gi
+

∥∥∥∥∥∥Aixi +
∑
j 6=i

Ajyj − b

∥∥∥∥∥∥
2


− n

2
‖Ay − b‖2,

where (56) holds for some L′i’s; e.g., we can choose L′i �
nA>i Ai, and (57) uses Gi � L′i − A>i Ai. Note that r(x) is
convex and (55)-(56) imply that (17) holds. Thus, r is {L′i}ni=1-
smooth. By the definition of r̂ in (21), the above inequality implies
that r(x) ≤ r̂(x). Furthermore, it is easy to obtain (22) by
substituting Gi = ηiI−A>i Ai into (57). �

We give the proof of Theorem 4. In the following, we define

λ̂k+1 = λk + β(k)(AB1
xk+1
B1

+ AB2
xkB2
− b). (58)

Proposition 1. In Algorithm 4, under the assumptions of Theorem
4, for any x, we have

f(xk+1)− f(x)− 〈A>λ̂k+1,x− xk+1〉

≤β
(k)

2

2∑
j=1

(
‖xBj − xkBj

‖2Hk
j
− ‖xBj − xk+1

Bj
‖2
Hk+1

j

)

− β(k)

2
‖xk+1

B2
− xkB2

‖2Kk
2
, (59)

where Hk
1 = Diag

{
1

β(k)Li + A>i Ai + Gk
i , i ∈ B1

}
−

A>B1
AB1 , Hk

2 = Diag
{

1
β(k)Li + A>i Ai + Gk

i , i ∈ B2

}
and

Kk
2 = Diag{A>i Ai + Gk

i , i ∈ B2}.

Proposition 2. In Algorithm 4, for any λ, we have

〈Axk+1 − b,λ− λ̂k+1〉+
β(0)α

2
‖Axk+1 − b‖2

≤β
(k)

2

(
‖λ− λk‖2Hk

3
− ‖λ− λk+1‖2

Hk+1
3

)
+
β(k)

2
‖xk+1

B2
− xkB2

‖2Kk
2
, (60)

where Hk
3 =

(
1/β(k)

)2
I and α = min

{
1
2 ,

τ
2‖AB2

‖22

}
.
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Proof of Theorem 4. Let x = x∗ and λ = λ∗ in (59) and (60).
We have

f(xk+1)− f(x∗) + 〈A>λ∗,xk+1 − x∗〉

+
β(0)α

2
‖Axk+1 − b‖2

≤〈A>(λ∗ − λ̂k+1),xk+1 − x∗〉 − 〈Axk+1 − b,λ∗ − λ̂k+1〉

+
β(k)

2

 2∑
i=j

‖x∗Bj
− xkBj

‖2Hk
j

+ ‖λ∗ − λk‖2Hk
3


− β(k)

2

 2∑
i=j

‖x∗Bj
− xk+1

Bj
‖2
Hk+1

j

+ ‖λ∗ − λk+1‖2
Hk+1

3


=
β(k)

2

 2∑
i=j

‖x∗Bj
− xkBj

‖2Hk
j

+ ‖λ∗ − λk‖2Hk
3


− β(k)

2

 2∑
i=j

‖x∗Bj
− xk+1

Bj
‖2
Hk+1

j

+ ‖λ∗ − λk+1‖2
Hk+1

3

 ,
where the last equation uses the fact Ax∗ = b. Note that∑K
k=0 γ

(k) = 1. Multiplying γ(k) on both sides of the above
inequalities and summing them from 0 to K , we have

K∑
k=0

γ(k)f(xk+1)− f(x∗) +

〈
A>λ∗,

K∑
k=0

γ(k)xk+1 − x∗
〉

+
β(0)α

2

K∑
k=0

γ(k)‖Axk+1 − b‖2

≤

∑2
j=1 ‖x∗Bj

− x0
Bj
‖2
H0

j
+ ‖λ∗ − λ0‖2

H0
3

2
∑K
k=0

(
β(k)

)−1 .

By the definition of x̄K and the convexity of f and ‖ ·‖2, we have

f(x̄K)− f(x∗) + 〈A>λ∗, x̄K − x∗〉+
β(0)α

2
‖Ax̄K − b‖2

≤
K∑
k=0

γ(k)f(xk+1)− f(x∗) +

〈
A>λ∗,

K∑
k=0

γ(k)xk+1 − x∗
〉

+
β(0)α

2

K∑
k=0

γ(k)‖Axk+1 − b‖2

≤

∑2
j=1 ‖x∗Bj

− x0
Bj
‖2
H0

j
+ ‖λ∗ − λ0‖2

H0
3

2
∑K
k=0

(
β(k)

)−1 .

The proof is completed. �
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Supplementary Material

This document contains two parts. First, we give the proofs of some lemmas and propositions which are used to prove Theorem 4.
Second, we give the implementation details of some problems in the experiments.

1. Proofs

Proof of Lemma 5. Lemma 5 is obvious by using the definition of the majorant first order surrogate function and the following lemma.

Lemma 6. Let f, f ′ : Rp1 × · · · × Rpn → R be convex, and {Li}ni=1-smooth and {L′i}ni=1-smooth, respectively. We only consider
two cases: (1) if Li � L′i, define max{Li,L′i} = Li; (2) if L′i � Li, define max{Li,L′i} = L′i. Then f − f ′ is {max{Li,L′i}}ni=1-
smooth, and f + f ′ is {Li + L′i}ni=1-smooth.

Proof of Lemma 6. Let h = f − f ′. By using (17) and the convexity of f and f ′, for any x = [x1; · · · ;xn] and y = [y1; · · · ;yn]
with xi,yi ∈ Rpi , i = 1, · · · , n. we have

0 ≤ f(x)− f(y)− 〈∇f(y),x− y〉 ≤ 1

2

n∑
i=1

‖xi − yi‖2Li
,

−1

2

n∑
i=1

‖xi − yi‖2L′
i
≤ −f ′(x) + f ′(y) + 〈∇f ′(y),x− y〉 ≤ 0.

Summing the above two inequalities we have

|h(x)− h(y)− 〈∇h(y),x− y〉| ≤ 1

2

n∑
i=1

‖xi − yi‖2max{Li,L′
i}
.

Thus h is {max{Li,L′i}}ni=1-smooth. It is easy to see that f + f ′ is {Li + L′i}ni=1-smooth by applying (17) for f and f ′. �

Proof of Proposition 1. First, for i ∈ B1, by the optimality of xk+1
i to problem (39) in Algorithm 4, there exists uk+1

i ∈ ∂f̂ki (xk+1
i )

such that

− uk+1
i = ∇r̂ki (xk+1

i )
¬
=A>i

(
β(k)Ai(x

k+1
i − xki ) + β(k)(Axk − b) + λk

)
+ β(k)Gk

i (xk+1
i − xki )

=A>i

(
β(k)(AB1

xk+1
B1

+ AB2
xkB2
− b) + λk

)
− β(k)A>i AB1

(xk+1
B1
− xkB1

) + β(k)(A>i Ai + Gk
i )(xk+1

i − xki )


=A>i λ̂

k+1 − β(k)A>i AB1(xk+1
B1
− xkB1

) + β(k)(A>i Ai + Gk
i )(xk+1

i − xki ),

where ¬ uses the definition of r̂ki in (37), and  uses the definition of λ̂k+1 in (58). A dot-product with xk+1
i − xi on both sides of

the above equation gives

− 〈uk+1
B1

,xk+1
B1
− xB1〉 = −

∑
i∈B1

〈uk+1
i ,xk+1

i − xi〉

=
∑
i∈B1

〈
A>i λ̂

k+1 − β(k)A>i AB1(xk+1
B1
− xkB1

),xk+1
i − xi

〉
+
∑
i∈B1

〈
β(k)(A>i Ai + Gk

i )(xk+1
i − xki ),xk+1

i − xi
〉

=〈A>B1
λ̂k+1,xk+1

B1
− xB1

〉+ β(k)〈xk+1
B1
− xkB1

,xk+1
B1
− xB1

〉Kk
1−A>

B1
AB1

=〈A>B1
λ̂k+1,xk+1

B1
− xB1

〉+
β(k)

2
‖xk+1

B1
− xkB1

‖2Kk
1−A>

B1
AB1

+
β(k)

2
‖xB1

− xk+1
B1
‖2Kk

1−A>
B1

AB1
− β(k)

2
‖xB1

− xkB1
‖2Kk

1−A>
B1

AB1

¬

≥〈A>B1
λ̂k+1,xk+1

B1
− xB1〉+

β(k)

2
‖xB1 − xkB1

‖2Kk
1−A>

B1
AB1
− β(k)

2
‖xB1 − xk+1

B1
‖2Kk

1−A>
B1

AB1
, (61)

where Kk
1 = Diag{A>i Ai + Gk

i , i ∈ B1} and ¬ uses ‖xk+1
B1
− xkB1

‖2
Kk

1−A>
B1

AB1

≥ 0 due to (42).

Second, for i ∈ B2, by the optimality of xk+1
i to problem (40) in Algorithm 4, there exists uk+1

i ∈ ∂f̂ki (xk+1
i ) such that

− uk+1
i = ∇r̂ki (xk+1

i )

=A>i

(
β(k)Ai(x

k+1
i − xki ) + β(k)(AB1

xk+1
B1

+ AB2
xkB2
− b)

)
+ A>i λ

k + β(k)Gk
i (xk+1

i − xki )

=A>i λ̂
k+1 + β(k)(A>i Ai + Gk

i )(xk+1
i − xki ),
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where we use the definitions of r̂ki in (38) and λ̂k+1 in (58). A dot-product with xk+1
i − xi on both sides of the above equation gives

− 〈uk+1
B2

,xk+1
B2
− xB2

〉 = −
∑
i∈B2

〈uk+1
i ,xk+1

i − xi〉

=
∑
i∈B2

〈
A>i λ̂

k+1 + β(k)(A>i Ai + Gk
i )(xk+1

i − xki ),xk+1
i − xi

〉
=〈A>B2

λ̂k+1,xk+1
B2
− xB2

〉+ β(k)〈xk+1
B2
− xkB2

,xk+1
B1
− xB1

〉Kk
2

=〈A>B2
λ̂k+1,xk+1

B2
− xB2〉 −

β(k)

2
‖xB2

− xkB2
‖2Kk

2
+
β(k)

2
‖xB2

− xk+1
B2
‖2Kk

2
+
β(k)

2
‖xk+1

B2
− xkB2

‖2Kk
2
, (62)

where Kk
2 = Diag{A>i Ai + Gk

i , i ∈ B2}.
Third, note that f̂k ∈ S{Li,Pi}ni=1

(f,xk). By using (20), we have

f(xk+1)− f(x)

≤〈uk+1,xk+1 − x〉+
1

2

n∑
i=1

(
‖xi − xki ‖2Li

− ‖xi − xk+1
i ‖2Pi

)
≤〈uk+1,xk+1 − x〉+

1

2

n∑
i=1

(
‖xi − xki ‖2Li

− ‖xi − xk+1
i ‖2Li

)
=〈uk+1

B1
,xk+1
B1
− xB1

〉+ 〈uk+1
B2

,xk+1
B2
− xB2

〉+
1

2

2∑
j=1

(
‖xBj

− xkBj
‖2LBj

− ‖xBj
− xk+1

Bj
‖2LBj

)
¬

≤− 〈A>λ̂k+1,xk+1 − x〉 − β(k)

2
‖xk+1

B2
− xkB2

‖2K2
+
β(k)

2

2∑
j=1

(
‖xBj

− xkBj
‖2Hk

j
− ‖xBj

− xk+1
Bj
‖2
Hk+1

j

)
where LBj

= Diag {Li, i ∈ Bj} and ¬ uses (61)-(62), the definitions of Hk
j in Proposition 1 and the fact β(k+1) ≥ β(k). The proof

is completed. �

Proof of Proposition 2. By using line 4 of Algorithm 3, (54) and the fact that β(k+1) ≥ β(k), we have

〈Axk+1 − b,λ− λ̂k+1〉 =
1

β(k)
〈λk+1 − λk,λ− λ̂k+1〉

=
1

2β(k)

(
‖λ− λk‖2 − ‖λ− λk+1‖2

)
− 1

2β(k)

(
‖λ̂k+1 − λk‖2 − ‖λk+1 − λ̂k+1‖2

)
− 1

2β(k)

(
‖λ̂k+1 − λk‖2 − ‖λk+1 − λ̂k+1‖2

)
. (63)

Consider the last two terms in (63). We deduce

1

2β(k)

(
‖λ̂k+1 − λk‖2 − ‖λk+1 − λ̂k+1‖2

)
¬
=
β(k)

2
‖AB1

xk+1
B1

+ AB2
xkB2
− b‖2 − ‖AB2

(xk+1
B2
− xkB2

)‖2

=
β(k)

2

(
‖AB1

xk+1
B1

+ AB2
xkB2
− b‖2 − ‖xk+1

B2
− xkB2

‖2Kk
2

)
+
β(k)

2
‖xk+1

B2
− xkB2

‖2Kk
2−A>

B2
AB2



≥β
(k)

2

(
‖AB1

xk+1
B1

+ AB2
xkB2
− b‖2 − ‖xk+1

B2
− xkB2

‖2Kk
2

)
+

τ

‖AB2‖22
‖AB2

(xk+1
B2
− xkB2

)‖2

®

≥β(k)α‖AB1
xk+1
B1

+ AB2
xkB2
− b‖2 − β(k)

2
‖xk+1

B2
− xkB2

‖2Kk
2

+ β(k)α‖AB2
(xk+1
B2
− xkB2

)‖2

≥β
(k)α

2
‖AB1

xk+1
B1

+ AB2
xk+1
B2
− b‖2 − β(k)

2
‖xk+1

B2
− xkB2

‖2Kk
2

¯

≥β
(0)α

2
‖Axk+1 − b‖2 − β(k)

2
‖xk+1

B2
− xkB2

‖2Kk
2
, (64)

where ¬ uses (4) and (58),  uses (44), ® uses α = min
{

1
2 ,

τ
2‖AB2

‖22

}
, and ¯ uses β(k) ≥ β(k−1) ≥ · · · ≥ β(0). The proof is

completed by substituting (64) into (63). �
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2. Implementation Details

2.1 Latent Low-Rank Representation
Consider the following Latent Low-Rank Representation (LRR) problem

min
Z,L
‖Z‖∗ + ‖L‖∗ +

λ

2
‖XZ + LX−X‖2F , s.t. 1TZ = 1T , (65)

Problem (65) is equivalent to

min
Z,L,E

‖Z‖∗ + ‖L‖∗ +
λ

2
‖E‖2F , s.t. 1TZ = 1T , XZ + LX−X = E. (66)

(a) Solve (65) by M-ADMM (2)
The augmented Lagrangian function of (65) is

L(Z,L,λ, β) = ‖Z‖∗ + ‖L‖∗ +
λ

2
‖XZ + LX−X‖2F + 〈λ,1TZ− 1T 〉+

β

2
‖1TZ− 1T ‖2.

It is easy to verify that 1
2‖XZ+LX−X‖2F is {L1I, L2I}-smooth, where L1 = L2 = 2‖X‖22, and 1

2‖1
TZ−1T ‖2 is η-smooth,

where η > ‖1‖2. By using these properties, M-ADMM (2) solves (65) by the following updating rules



Zk+1 = arg min
Z
‖Z‖∗ +

λL1 + β(k)η

2

∥∥∥∥∥∥Z− Zk +
λXT (XZk + LkX−X) + 1

(
β(k)(1TZk − 1T ) + λk

)
λL1 + β(k)η

∥∥∥∥∥∥
2

F

,

Lk+1 = arg min
L
‖L‖∗ +

λL2

2

∥∥∥∥∥L− Lk +
(XZk + LkX−X)XT

L2

∥∥∥∥∥
2

F

,

λk+1 =λk + β(k)(1TZk+1 − 1T ).

(b) Solve (66) by L-ADMM-PS (3)
The augmented Lagrangian function of (66) is

L(Z,L,λ, β) =‖Z‖∗ + ‖L‖∗ +
λ

2
‖E‖2F + 〈λ1,1

TZ− 1T 〉+
β

2
‖1TZ− 1T ‖2

+ 〈λ2,XZ + LX−X−E〉+
β

2
‖XZ + LX−X−E‖2F .

Note that h(Z,L,E) = 1
2‖1

TZ− 1T ‖2 + 1
2‖XZ + LX−X− E‖2F is {η1I, η2I, η3I}-smooth, where η1 > ‖1‖2 + 3‖X‖22,

η2 > 3‖X‖22 and η3 > 3. By using such a property, L-ADMM-PS (3) solves (66) by the following updating rules



Zk+1 = arg min
Z
‖Z‖∗ +

β(k)η1

2

∥∥∥∥∥Z− Zk +
1(λk1 + β(k)(1TZk − 1T )) + XT (λk2 + β(k)(XZk + LkX−X−Ek))

β(k)η1

∥∥∥∥∥
2

F

,

Lk+1 = arg min
L
‖L‖∗ +

β(k)η2

2

∥∥∥∥∥L− Lk +
(λk2 + β(k)(XZk + LkX−X−Ek))XT

β(k)η2

∥∥∥∥∥
2

F

,

Ek+1 = arg min
E

λ

2
‖E‖2F − 〈λk2 + β(k)(XZk + LkX−X−Ek),E〉+

β(k)η3

2
‖E−Ek‖2F ,

λk+1
1 =λk1 + β(k)(1TZk+1 − 1T ),

λk+1
2 =λk2 + β(k)(XZk+1 + Lk+1X−X−Ek+1),

(c) Solve (66) by M-ADMM (3)
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M-ADMM (3) divides the variables {Z,L,E} into two super blocks, i.e., {Z} and {L,E}. Then it solves (66) by the following
updating rules

Zk+1 = arg min
Z
‖Z‖∗ +

β(k)η1

2

∥∥∥∥∥Z− Zk +
1(λk1 + β(k)(1TZk − 1T )) + XT (λk2 + β(k)(XZk + LkX−X−Ek))

β(k)η1

∥∥∥∥∥
2

F

,

Lk+1 = arg min
L
‖L‖∗ +

β(k)η2

2

∥∥∥∥∥L− Lk +
(λk2 + β(k)(XZk+1 + LkX−X−Ek))XT

β(k)η2

∥∥∥∥∥
2

F

,

Ek+1 = arg min
E

λ

2
‖E‖2F +

β(k)

2

∥∥∥∥∥XZk+1 + LkX−X−E +
λk2
β(k)

∥∥∥∥∥
2

F

+
β(k)η3

2
‖E−Ek‖2F ,

λk+1
1 =λk1 + β(k)(1TZk+1 − 1T ),

λk+1
2 =λk2 + β(k)(XZk+1 + Lk+1X−X−Ek+1),

where η1 = ‖1‖2 + ‖X‖22, η2 > 2‖X‖22 and η3 > 1.

2.2 Nonnegative Matirx Completion

min
X,E
‖X‖∗ +

λ

2
‖E‖2, s.t. PΩ(X) + E = B, X ≥ 0, (67)

(a) L-ADMM-PS
Problem (67) is equivalent to (see (94) in [22])

min
X,E,Z

‖X‖∗ +
λ

2
‖E‖2,

s.t. PΩ(X) + E = B, X = Z, Z ≥ 0.
(68)

The partial augmented Lagrangian function is

L(X,E,Z, β) = ‖X‖∗ +
λ

2
‖E‖2 + 〈λ1,PΩ(X) + E−B〉+

β

2
‖PΩ(X) + E−B‖2

+ 〈λ2,X− Z〉+
β

2
‖X− Z‖2.

Then L-ADMM-PS solves (68) by the following updating rules

Xk+1 = arg min
X
‖X‖∗ +

β(k)η1

2

∥∥∥∥∥X−Xk +
PΩ(λk1) + λk2 + β(k)PΩ(Xk + Ek −B) + β(k)(Xk − Zk)

β(k)η1

∥∥∥∥∥
2

F

,

Ek+1 = arg min
E

λ

2
‖E‖2 + 〈E,λk1 + β(k)(PΩ(Xk) + Ek −B)〉+

β(k)η2

2
‖E−Ek‖2,

Zk+1 = arg min
Z≥0
〈λk2 + β(k)(Xk − Zk),−Z〉+

β(k)

2
‖Xk − Z‖2 +

β(k)η3

2
‖Xk − Z‖2,

λk+1
1 =λk1 + β(k)(PΩ(Xk+1) + Ek+1 −B),

λk+1
2 =λk2 + β(k)(Xk+1 − Zk+1),

where η1 > 3 + 2, η2 > 3 + 2 and η3 > 2.
(b) M-ADMM

Problem (67) is equivalent to

min
X,E,Z

‖X‖∗ +
λ

2
‖E‖2,

s.t. PΩ(Z) + E = B, X = Z, Z ≥ 0.
(69)

The partial augmented Lagrangian function is

L(X,E,Z, β) = ‖X‖∗ +
λ

2
‖E‖2 + 〈λ1,PΩ(Z) + E−B〉+

β

2
‖PΩ(Z) + E−B‖2

+ 〈λ2,X− Z〉+
β

2
‖X− Z‖2.
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Partition the three blocks into two super blocks {X,E} and {Z}. Then M-ADMM solves (69) by the following updating rules

Xk+1 = arg min
X
‖X‖∗ +

β(k)

2

∥∥∥∥∥X− Zk +
λk2
β(k)

∥∥∥∥∥
2

F

,

Ek+1 = arg min
E

λ

2
‖E‖2 + 〈λk1 ,E〉+

β(k)

2
‖PΩ(Zk) + E−B‖2,

Zk+1 = arg min
Z≥0
〈λk1 ,PΩ(Z)〉+

β(k)

2
‖PΩ(Z) + Ek+1 −B‖2 + 〈λk2 ,−Z〉+

β(k)

2
‖Xk+1 − Z‖2,

λk+1
1 =λk1 + β(k)(PΩ(Xk+1) + Ek+1 −B),

λk+1
2 =λk2 + β(k)(Xk+1 − Zk+1).

Note that the Zk+1 updating has a closed form solution.

3 A List of Problems Involved in Our Released Toolbox
Table 5 gives a list of convex problems in compressed sensing solved by M-ADMM in our released LibADMM package. For each

problem, we consider its specific structure to implement efficient M-ADMM by using several techniques proposed in this work.

TABLE 5: Applicability of the LibADMM package

Model Problem Function Description and Reference

Sparse

models

minx r(x)

s.t. Ax = b

r(x) = ‖x‖1 l1 `1

r(x) =
∑

g∈G‖xg‖2 groupl1 Group Lasso
r(x) = ‖x‖1 + λ2‖x‖22 elasticnet Elastic net
r(x) = ‖x‖1 + λ2

∑p
i=2 |xi − xi−1| fusedl1 Fused Lasso

r(x) = ‖ADiag(x)‖∗ tracelasso Trace Lasso
r(x) = 1

2
‖x‖2ksp ksupport k support norm

minx,e l(e) + λr(x)

s.t. Ax+ e = b

l(e) = ‖e‖1

l(e) = 1
2
‖e‖22

l1R Reg. `1
groupl1R Reg. Group Lasso
elasticnetR Reg. Elastic net
fusedl1R Reg. Fused Lasso
tracelassoR Reg. Trace Lasso
ksupportR Reg. k support norm

Low-rank

matrix

models

minX,E ‖X‖∗ + λl(E), s.t. PΩ(X) +E = M lrmcR Reg. Low-rank matrix completion
minX,E ‖X‖∗ + λl(E), s.t. A = BX+E lrr Low-rank representation
minZ,L,E ‖Z‖∗ + ‖L‖∗ + λl(E)

latlrr Latent low-rank representation
s.t. XZ+ LX−X = E

minX,E ‖X‖∗ + λ1‖X‖1 + λ2l(E)
lrsr Low-rank and sparse representation

s.t. A = BX+E

minLi,Si
‖L‖∗ + λ

∑m
i=1‖Si‖1,

rmsc Robust multi-view spectral clustering
s.t. Xi = L+ Si, i = 1, · · · ,m, L ≥ 0, L1 = 1

minZi,Ei

∑K
i=1(‖Zi‖∗ + λl(Ei)) + α‖Z‖2,1 mlap Multi-task low-rank affinity pursuit

s.t. Xi = XiZi +Ei, i = 1, · · · ,K
minL,S ‖L‖∗ + λ‖C ◦ S‖1, s.t. A = L+ S, 0 ≤ L ≤ 1 igc Improved graph clustering
minP 〈P,L〉+ λ‖P‖1, s.t. 0 � P � I,Tr(P) = k sparsesc Sparse spectral clustering

Low-rank

tensor

models

minL,S
∑k

i=1 αi‖Li(i)‖∗ + ‖S‖1, s.t. X = L+ S trpca_snn
Tensor robust PCA based on
sum of nuclear norm

minX
∑k

i=1 αi‖X i(i)‖∗, s.t. PΩ(X ) = PΩ(M) lrtc_snn
Low-rank tensor completion based on
sum of nuclear norm

minX ,E
∑k

i=1 αi‖X i(i)‖∗ + λl(E)
lrtcR_snn

Reg. low-tank tensor completion based on
s.t. PΩ(X ) + E = M sum of nuclear norm

minL,S ‖L‖∗ + λ‖S‖1, s.t. X = L+ S trpca_tnn
Tensor Robust PCA based on
tensor nuclear norm

minX ‖X‖∗, s.t. PΩ(X ) = PΩ(M) lrtc_tnn
Low-rank tensor completion based on
tensor nuclear norm

minX ,E ‖X‖∗ + λl(E), s.t. PΩ(X ) + E = M lrtcR_tnn
Reg. low-rank tensor completion based on
tensor nuclear norm

∗In this table, the loss function l(·) can be ‖·‖1, 1
2
‖·‖2F and ‖·‖2,1. The ‖·‖2,1 norm is only applicable to the matrix.
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