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Abstract—We show that the widely used Kendall tau correlation coefficient, and the related Mallows kernel, are positive definite

kernels for permutations. They offer computationally attractive alternatives to more complex kernels on the symmetric group to learn

from rankings, or learn to rank. We show how to extend these kernels to partial rankings, multivariate rankings and uncertain rankings.

Examples are presented on how to formulate typical problems of learning from rankings such that they can be solved with

state-of-the-art kernel algorithms. We demonstrate promising results on clustering heterogeneous rank data and high-dimensional

classification problems in biomedical applications.

Index Terms—Kernel methods, permutation, Kendall tau correlation, Mallows model, cluster analysis of rank data,

supervised classification of biomedical data
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1 INTRODUCTION

Apermutation is a 1-to-1 mapping from a finite set into
itself. Assuming the finite set is ordered, a permutation

can equivalently be represented by a total ranking of the ele-
ments of the set. Permutations are ubiquitous in many
applications involving preferences, rankings or matching,
such as modeling and analyzing data describing the prefer-
ences or votes of a population [1], [2], learning or tracking
correspondences between sets of objects [3], or estimating a
consensus ranking that best represents a collection of indi-
vidual rankings [4], [5], [6]. Another potentially rich source
of rank data comes from real-valued vectors in which the
relative ordering of the values of multiple features is more
important than their absolute magnitude. For example, in
the case of high-dimensional gene expression data, [7]
showed that simple classifiers based on binary comparisons
between the expression of different genes in a sample show
competitive prediction accuracy with much more complex
classifiers built on quantitative gene expression levels, a line
of thoughts that have been further investigated by [8], [9],
[10]. In these approaches, an n-dimensional feature vector is
first transformed into a vector of ranks by sorting its entries,
which are presented as input to training a classifier.

Working with permutations is, however, computation-
ally challenging. There are n! permutations over n items,
suggesting that various simplifications or approximations
are necessary in pursuit of efficient algorithms to analyze or
learn permutations. Such simplifications include for exam-
ple, reducing ranks to a series of binary decisions [5], [11],
or estimating a parametric distribution over permutations
[3], [12], [13].

Kernel algorithms form a class of methods that have been
proved successful in numerous applications and enjoy great
popularity in the machine learning community [14], [15],
[16], [17]. The essential idea behind these methods is to
define a symmetric positive definite kernel K : X � X ! R

over an input space X , which expresses our belief of similar-
ities between pairs of points in the input space, and which
implicitly defines an embedding F : X ! F of the input
space X to a Hilbert space F in which the kernel becomes
an inner product

8x; x0 2 X ; Kðx; x0Þ ¼ hFðxÞ;Fðx0ÞiF :

Key to kernel methods is the fact that kernel algorithms only
manipulate data through evaluation of the kernel function,
allowing to work implicitly in the potentially high- or even
infinite-dimensional space F . This kernel trick is particularly
interesting when Kðx; x0Þ is inexpensive to evaluate, com-
pared to FðxÞ and Fðx0Þ. In particular, kernel methods have
found many applications where the input data are discrete
or structured, such as strings or graphs, thanks to the devel-
opment of numerous kernels for these data [17], [18], [19],
[20], [21], [22].

In this context, it is surprising that relatively little atten-
tion has been paid to the problem of defining positive defi-
nite kernels between permutations, which could pave the
way to benefiting from computationally efficient kernel
methods in problems involving permutations. A notable
exception is the work of [23], [24], who exploit the fact that
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the right-invariant positive definite kernels on the symmet-
ric group are fully characterized by Bochner’s theorem [23],
[25]. They derive interesting kernels, such as a diffusion ker-
nel for rankings or partial rankings, and demonstrate that
kernel methods are flexible to handle rank data of diverse
types. However, the kernels proposed in their papers have
typically a computational complexity that grows exponen-
tially with the number of items to rank, and remain prohibi-
tive to compute for more than a few items.

In this paper we study new computationally attractive
positive definite kernels for permutations and rankings.
Our main contribution is to show that two widely-used and
computationally efficient measures of similarity between
permutations, the Kendall tau correlation coefficient and
the Mallows kernel, are positive definite. Although these
measures compare two permutations of n items in terms of
n
2

� �
pairwise comparisons, they can be computed in

Oðn lognÞ, which allows us to use kernel methods for prob-
lems involving rank data over a large number of items. We
show how these kernels can be extended to partial rankings,
multivariate rankings, and uncertain rankings which are
particularly relevant when the rankings are obtained by
sorting a real-valued vector where ties or almost-ties occur.
We illustrate the benefit of kernel learning with the new ker-
nels on two applications, one concerning the unsupervised
clustering of rank data with kernel k-means, one focusing
on the supervised classification of genomic data with Sup-
port Vector Machines (SVMs), reaching in both cases state-
of-the-art performances.

The paper is organized as follows. In Section 2, we prove
our main theorem showing that the Kendall and Mallows
kernels are positive definite.We extend them to partial, multi-
variate and uncertain rankings respectively in Sections 3, 4
and 5. We highlight the relation to the diffusion kernel of [24]
in Section 6. Finallywe illustrate the relevance of kernelmeth-
ods for unsupervised (Section 7) and supervised (Section 8)
tasks. Data and R codes for generating all the plots in this
paper and reproducing more experiments are available via
https://github.com/YunlongJiao/kendallkernel_demo.

2 THE KENDALL AND MALLOWS KERNELS FOR

PERMUTATIONS

Let us first fix some notations. Given a list of n items
fx1; x2; . . . ; xng, a total ranking is a strict ordering on the n
items of the form

xi1 � xi2 � � � � � xin ; (1)

where fi1; . . . ; ing are distinct indices in f1; 2; . . . ; ng ¼:
½1; n�. A permutation is a 1-to-1 mapping from a finite set into
itself, i.e., s : ½1; n� ! ½1; n� such that sðiÞ 6¼ sðjÞ for i 6¼ j.
Each total ranking can be equivalently represented by a per-
mutation s in the sense that sðiÞ ¼ j indicates that a ranker
assigns rank j to item i where higher rank coincides higher
preference. For example, the ranking x2 � x4 � x3 � x1 is

associated to the permutation s ¼ 1 2 3 4
1 4 2 3

� �
; meaning

sð1Þ ¼ 1, sð2Þ ¼ 4, sð3Þ ¼ 2 and sð4Þ ¼ 3. There are n! differ-

ent total rankings, and we denote by Sn the set of all permu-

tations over n items. Endowed with the composition

operation ðs1s2ÞðiÞ ¼ s1ðs2ðiÞÞ, Sn is a group called the sym-
metric group.

Given two permutations s; s0 2 Sn, the number of concor-
dant and discordant pairs between s and s0 are respectively

ncðs; s0Þ ¼
X
i < j

�
1fsðiÞ< sðjÞg1fs0ðiÞ< s0ðjÞg

þ 1fsðiÞ> sðjÞg1fs0ðiÞ> s0ðjÞg
�
;

ndðs; s0Þ ¼
X
i < j

�
1fsðiÞ< sðjÞg1fs0ðiÞ> s0ðjÞg

þ 1fsðiÞ> sðjÞg1fs0ðiÞ< s0ðjÞg
�
:

As their names suggest, ncðs; s0Þ and ndðs; s0Þ count how
many pairs of items are respectively in the same or opposite
order in the two rankings s and s0. nd is frequently used as
a distance between permutations, often under the name
Kendall tau distance, and underlies two popular similarity
measures between permutations:

� TheMallows kernel defined for any � � 0 by

K�
Mðs; s0Þ ¼ e��ndðs;s0Þ; (2)

� The Kendall kernel defined as

Ktðs; s0Þ ¼ ncðs; s0Þ � ndðs; s0Þ
n
2

� � : (3)

The Mallows kernel plays a role on the symmetric group
similar to the Gaussian kernel on euclidean space, for exam-
ple for statistical modeling of permutations [26], [27], [28],
[29] or nonparametric smoothing [12], and the Kendall ker-
nel [30], [31] is probably the most widely-used measure of
rank correlation coefficient. In spite of their pervasiveness,
to the best of our knowledge the following property has
been overlooked:

Theorem 1. The Mallows kernel K�
M , for any � � 0, and the

Kendall kernelKt are positive definite.

Proof. Consider the mapping F : Sn ! R
n
2ð Þ defined by

FðsÞ ¼ 1ffiffiffiffiffiffiffi
n
2

� �q 1fsðiÞ> sðjÞg � 1fsðiÞ< sðjÞg
� �0B@

1CA
1	i< j	n

:

Then one immediately sees that, for any s; s0 2 Sn

Ktðs; s0Þ ¼ FðsÞ>Fðs0Þ;
showing thatKt is positive definite, and that

kFðsÞ �Fðs0Þk2 ¼ Ktðs; sÞ þKtðs0; s0Þ � 2Ktðs; s0Þ

¼ 1þ 1� 2
ncðs; s0Þ � ndðs; s0Þ

n
2

� � !

¼ 4
n
2

� �ndðs; s0Þ;

(4)

showing that �nd is conditionally positive definite
and therefore that K�

M is positive definite for all
� � 0 [32]. tu
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Although the Kendall and Mallows kernels correspond
respectively to a linear and Gaussian kernel on an
n
2

� �
-dimensional embedding of Sn such that they can in par-

ticular be computed in Oðn2Þ time by a naive implementa-
tion of pair-by-pair comparison, it is interesting to notice
that more efficient algorithms based on divide-and-conquer
strategy can significantly speed up the computation, up to
Oðn lognÞ using a technique based on Merge Sort algorithm
[33]. Computing in Oðn lognÞ a kernel corresponding to an
Oðn2Þ-dimensional embedding of Sn is a typical example of
the kernel trick, which allows to scale kernel methods to
larger values of n than what would be possible for methods
working with the explicit embedding.

3 EXTENSION TO PARTIAL RANKINGS

In this section we show how the Kendall and Mallows ker-
nels can efficiently be adapted to partial rankings, a situa-
tion frequently encountered in practice. For example, in a
movie recommender system, each user only grades a few
movies that he has watched based on personal interest. As
another example, in a chess tournament, each game results
in a relative ordering between two contestants, and one
would typically like to find a single ranking of all players
that globally best represents the large collection of binary
outcomes.

As opposed to a total ranking (1), partial rankings arise in
diverse form which can be generally described by

X1 � X2 � � � � � Xk;

where X1; . . . ; Xk are k disjoint subsets of n items
fx1; . . . ; xng: For example, x2; x4f g � x6 � x3; x8f g in a social
survey could represent the fact that items 2 and 4 are ranked
higher by an interviewee than item 6, which itself is ranked
higher than items 3 and 8. Note that it is uninformative of
the relative order between items 2 and 4, nor of how item 1
is rated. For ease of analysis, a partial ranking is often asso-
ciated with a subset R 
 Sn of permutations which are com-
patible with all partial orders described by the partial
ranking. In this study, two particularly interesting types are:

(i) Interleaving Partial Rankings. Such a partial ranking is
of the form

xi1 � xi2 � � � � � xik ; k 	 n;

where we have a total ranking for k out of n items. This type
of partial ranking is frequently encountered in real life, for
example in a social survey an interviewer is inexperienced
to rank all items listed so that there exist interleaved inac-
cessible values. The interleaving partial ranking corre-
sponds to the set of permutations compatible with it

Ai1;...;ik ¼ fs 2 SnjsðiaÞ > sðibÞ if a < b; a; b 2 ½1; k�g: (5)

(ii) Top-k Partial Rankings. Such a partial ranking is of
the form

xi1 � xi2 � � � � � xik � Xrest; k 	 n;

where we have a total ranking for k out of n items and also
know that these k items are ranked higher than all the other
items. For example, the top k hits returned by a search
engine leads to a top k partial ranking; under a voting

system in election, voters express their vote by ranking
some (or all) of the candidates in order of preference. The
top-k partial ranking corresponds to the set of compatible
permutations

Bi1;...;ik ¼ fs 2 SnjsðiaÞ ¼ nþ 1� a; a 2 ½1; k�g: (6)

To extend any kernelK over Sn to a kernel over the set of
partial rankings, we propose to represent a partial ranking
by its compatible subset R 
 Sn of permutations, and define
a kernel between two partial rankings R and R0 by adopting
the convolution kernel, written with a slight abuse of nota-
tions as

KðR;R0Þ ¼ 1

jRjjR0j
X
s2R

X
s02R0

Kðs; s0Þ: (7)

As a convolution kernel, it is positive definite as long asK is
positive definite [18]. However, a naive implementation to
compute (7) typically requires Oððn� kÞ!ðn� k0Þ!Þ opera-
tions when the number of observed items in partial rank-
ings R;R0 is respectively k; k0 < n, which can quickly
become prohibitive. Fortunately Theorem 2 guarantees that
we can circumvent the computational burden of naively
implementing (7) with the Kendall kernel Kt on at least the
two particular cases of partial rankings (5) or (6).

Theorem 2. The Kendall kernel Kt between two interleaving
partial rankings of respectively k and m observed items, or
between a top-k partial ranking and a top-m partial ranking, of
form (7) can be computed in Oðk log kþm logmÞ operations.
Proof and explicit algorithms are postponed to the sup-

plementary material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2017.2719680. Note that the convolu-
tion kernel (7) taking the Mallows kernel K�

M is not straight-
forward to evaluate, which will be further discussed in
Section 6. However, since we have extended the Kendall
kernel to partial rankings, an exponential kernel can be con-
structed trivially following (4), for which the computation
remains just as simple as the extended Kendall kernel. Since
this technique also applies in following sections, we focus
mainly on extending Kendall kernel henceforth.

4 EXTENSION TO MULTIVARIATE RANKINGS

In contrast to the rankings defined in previous sections, a
multivariate ranking can be seen as a collection of multiple
(univariate) partial/total rankings from the same ranker
based on different sources. For example, a commercial sur-
vey is designed to analyze the preference routines of a cus-
tomer based on various categories such as music, movies
and novels, where the item sets are generally incomparable
in crossing categories; an electoral system asks a voter to
express his opinion in consecutive sessions across years,
where the candidates are usually different across elections.
In that case, it is desirable to process and integrate the rank
data from different sources when extensively comparing
the similarity between two rankers. Known as “data
fusion”, this problem is well studied in the kernel learning
literature [21], [34].
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Let us now denote that a ranker is represented by a mul-
tivariate ranking R ¼ ðR1; . . . ; RpÞ, in which each compo-
nent Rj for 1 	 j 	 p is a partial ranking over nj items, i.e., a
subset of permutations (or exactly one permutation when
all nj items are totally ranked) in Snj . Suppose K is any ker-
nel for univariate rankings, a kernel for multivariate rank-
ings that integrates information from several variates can be
constructed by a weighted average of the kernels evaluated
individually for each variate, written with a slight abuse of
notations as

KðR;R0Þ ¼
Xp
j¼1

mjKðRj;R
0
jÞ s.t.

Xp
j¼1

mj ¼ 1; (8)

where a kernel K for partial rankings has been defined in
(7). A practically simple approach would be to set the
weights mj ¼ 1=p for 1 	 j 	 p in (8), but the weights can be
learned as well through multiple kernel learning under
appropriate setting [35], [36], [37], [38].

5 EXTENSION TO UNCERTAIN RANKINGS

When data to analyze are n-dimensional real-valued quanti-
tative vectors, converting them to permutations in Sn by
ranking their entries can be beneficial in cases where we
trust more the relative ordering of the values than their
absolute magnitudes. For example in social surveys or rec-
ommender systems, users are sometimes asked to rate a
score for each item individually instead of providing a pref-
erence order on the item set. The scale of ratings usually
varies according to personal preference of each user and it
can therefore be safer to adopt ranking-based methods to
analyze such score-based rating data [39]. As another exam-
ple, an interesting line of work in the analysis of gene
expression data promotes the development of classifiers
based on relative gene expression within a sample, based
on the observations that gene expression measurements are
subject to various measurement errors such as technological
biases and normalization issues, while assessing whether a
gene is more expressed than another gene is generally a
more robust task [7], [8], [9], [10]. This suggests that the Ken-
dall kernel can be relevant for analyzing quantitative
vectors.

The Kendall kernel for quantitative vectors now takes
exactly the same form as for permutations, i.e.,

Ktðx; x0Þ ¼ FðxÞ>Fðx0Þ; (9)

where F : Rn ! R
n
2ð Þ is defined for x ¼ x1; . . . ; xnð Þ>2 Rn by

FðxÞ ¼ 1ffiffiffiffiffiffiffi
n
2

� �q 1fxi >xjg � 1fxi <xjg
	 
0B@

1CA
1	i < j	n

: (10)

In this case, the interpretation of the Kendall kernel in terms
of concordant and discordant pairs (3) is still valid, with the
caveats that in the presence of ties between entries of x, say
two coordinates i and j such that xi ¼ xj, the tied pair
fxi; xjg will be neither concordant nor discordant. This
implies in particular that if x has ties or so does x0, then
jKtðx; x0Þj < 1 strictly. Notably in the presence of ties, the
fast implementation of Kendall kernel still applies to

quantitative vectors in Oðn lognÞ time [33]. However, fea-
ture mapping (10) is by construction very sensitive to the
presence of entry pairs that are ties or almost-ties. In fact,
each entry of FðxÞ is, up to a normalization constant, the
Heaviside step function which takes discrete values in
�1; 0;þ1f g, and thus can change abruptly even when x
changes slightly but reverses the ordering of two entries
whose values are close. In addition to pairwise relative
ordering as defined in (10), it can be wise to also exploit the
information given by pairwise absolute difference in the fea-
ture values.

We propose to make the mapping more robust by assum-
ing a random noise � � P added to the feature vector x and
checking where Fðxþ �Þ is on average (similarly to, e.g.,
[40]). In other words, we consider a smoother mapping
C : Rn ! R

n
2ð Þ defined by

CðxÞ ¼ EFðxþ �Þ ¼: EFð~xÞ; (11)

where � is an n-dimensional random noise and ~x :¼ xþ �
denotes the random-jittered vector of x. The corresponding
kernel is the underlying dot product as usual

G x; x0ð Þ ¼ CðxÞ>Cðx0Þ ¼ EFð~xÞ>EFð~x0Þ ¼ EKtð~x; ~x0Þ; (12)

where ~x and ~x0 are independently noise-perturbed versions
of x and x0. In fact, we can deduce from (10) thatC is equiva-
lently written as

CðxÞ ¼ 1ffiffiffiffiffiffiffi
n
2

� �q ðP ~xi > ~xj

� �� P ~xi < ~xj

� �Þ
0B@

1CA
1	i < j	n

:

Depending on the noise distribution, various kernels are
thus obtained. For example, assuming specifically that
� � ðU½� a

2 ;
a
2�Þn the n-dimensional uniform noise of window

size a centered at 0, the ði; jÞth entry of CðxÞ for all i < j
becomes

CijðxÞ ¼ 1ffiffiffiffiffiffiffi
n
2

� �q gaðxi � xjÞ; (13)

where

gaðtÞ :¼

1 t � a

2ðtaÞ � ðtaÞ2 0 	 t 	 a

2ðtaÞ þ ðtaÞ2 �a 	 t 	 0

�1 t 	 �a

8>>><>>>: :

Note that ga is odd, continuous, piecewise quadratic
between ½�a; a� and constant elsewhere at �1, and thus can
be viewed as smoothed version of the Heaviside step func-
tion to compare any two entries xi and xj from their differ-
ence xi � xj (Fig. 1).

Although the smoothed kernel (12) can be an interesting
alternative to the Kendall kernel (9), we unfortunately lose
for G the computational trick that allows to compute Kt in
Oðn lognÞ. Specifically, we have two ways to compute G:

(i) Exact Evaluation. The first alternative is to compute
explicitly the n

2

� �
-vector representation C in the feature

space, and then take the dot product to obtain G. While the
kernel evaluation is exact, an analytic form of the smoothed
mapping (11) is required and the computational cost is lin-
ear with the dimension of the feature space, i.e., Oðn2Þ.
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(ii) Monte Carlo Approximation. The second alternative
requires the observation that the smoothed mapping
CðxÞ ¼ EFð~xÞ appears in the form of expectation and can
thus be approximated by aD-sample mean of jittered points
mapped by F into the feature space

CDðxÞ ¼ 1

D

XD
j¼1

Fð~xjÞ;

where ~x1; . . . ; ~xD are i.i.d. noisy versions of x. The dot prod-
uct induces a kernel

GDðx; x0Þ ¼ CDðxÞ>CDðx0Þ ¼ 1

D2

XD
i¼1

XD
j¼1

Kt ~xi; ~x0j
� �

; (14)

which is a D2-sample empirical estimate of Gðx; x0Þ ¼
EKtð~x; ~x0Þ when x; x0 are independently jittered with identi-
cally distributed noise. Since Kt is of computational com-
plexity Oðn lognÞ, computing GD requires OðD2n lognÞ.

Note that the second alternative is faster to compute than
the first one as long as, up to constants, D2 < n=logn, and
small values of D are thus favored on account of computa-
tional consideration. In that case, however, the approxima-
tion performance can be unappealing. To better understand
the trade-off between the two alternatives, the question
should be addressed upon how large D should be so that
the approximation error is not detrimental to the perfor-
mance of a learning algorithm if we use the approximate
kernel GD instead of G. Lemma 1 provides a first answer to
this question, showing that the approximation error of the
kernel is upper bounded by Oð1= ffiffiffiffi

D
p Þwith high probability:

Lemma 1. For any 0 < d < 1, the following holds:

(a) For any x 2 Rn, with probability greater than 1� d,

CDðxÞ �CðxÞk k 	 1ffiffiffiffi
D

p 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 log

1

d

r !
:

(b) For any x1; . . . ; xm 2 Rn, with probability greater than
1� d,

sup
i¼1;...;m

CDðxiÞ �CðxiÞk k 	 1ffiffiffiffi
D

p 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 log

m

d

r� �
:

Proof is referred to the supplementary material, available
online. The uniform approximation bound of Lemma 1 in
turn implies that learning with the approximate kernel GD

can be almost as good with the kernel G, as we now discuss.
For that purpose, let us consider for example the case where
the smoothed kernel G is used to train a Support Vector
Machine (SVM) from a training set D ¼ fðxi; yiÞgmi¼1 

ðRn � f�1;þ1gÞm, specifically to estimate a function
hðxÞ ¼ w>CðxÞ by solving

min
w

F ðwÞ ¼ �

2
kwk2 þ bRðwÞ; (15)

where bRðwÞ ¼ 1
m

Pm
i¼1 ‘ðyiw>CðxiÞÞ is the empirical loss,

with ‘ðyiw>CðxiÞÞ ¼ maxð0; 1� yiw
>CðxiÞÞ the hinge loss

associated to the ith point, � the regularization parameter.
Now suppose that instead of training the SVMwith smoothed
featuremapping on the original points fCðxiÞgi¼1;...;m, we first
randomly jitter fxigi¼1;...;m D times at each point, resulting
in f~xjigi¼1;...;m;j¼1;...;D, and then replace each CðxiÞ by the
D-sample empirical average of jittered points mapped by F
into the feature space, that is

CDðxiÞ :¼ 1

D

XD
j¼1

Fð~xjiÞ:

Note that CDðxiÞ>CDðxjÞ ¼ GDðxi; xjÞ, hence training an
SVMwith the Monte Carlo approximate GD instead of exact
version G is equivalent to solving (15) with fCDðxiÞgi¼1;...;m

in the hinge loss instead of fCðxiÞgi¼1;...;m. Theorem 3 quan-
tifies the approximation performance in terms of objective
function F which helps to answer the question on the trade-
off between G and GD in computational complexity and
learning accuracy.

Theorem 3. For any 0 	 d 	 1, the solution bwD of the
SVM trained with the Monte Carlo approximation (14) with D
random-jittered samples for each training point satisfies, with
probability greater than 1� d,

F ðbwDÞ 	 min
w

F ðwÞ þ
ffiffiffiffiffiffiffi
8

�D

r
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 log

m

d

r� �
:

Proof is referred to the supplementary material, available
online. It is known that compared to the exact solution of
(15), an Oðm�1=2Þ-approximate solution is sufficient to reach
the optimal statistical accuracy [41]. This accuracy can be
attained in our analysis when D ¼ Oðm=�Þ, and since typi-
cally � � m�1=2 [42], this suggests that it is sufficient to take
D of order m3=2. Going back to the comparison strategy of
the two alternatives G and GD, we see that the computa-
tional cost of computing the full m�m Gram matrix with
the exact evaluation is Oðm2n2Þ, while the cost of computing
the approximate Gram matrix with D ¼ Oðm3=2Þ random
samples is Oðm2D2n lognÞ ¼ Oðm5n lognÞ. This shows that,
up to constants and logarithmic terms, the Monte Carlo
approximation is interesting when m ¼ oðn1=3Þ, otherwise
the exact evaluation using explicit computation in the fea-
ture space is preferable.

Interestingly we can look at the extended Kendall kernel
(12) to uncertain rankings from the perspective of Hilbert
space embeddings of probability distributions [43]. In fact,
for x fixed, the smoothed mapping CðxÞ ¼ EFðxþ �Þ is

Fig. 1. Smooth approximation (in red) of the Heaviside function (in black)
used to define the mapping (13) for a ¼ 1.
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exactly an embedding for the distribution P of an additive
noise � in the reproducing kernel Hilbert space (RKHS) asso-
ciated with Kendall kernel. As a consequence, the idea of
smoothed kernelGðx; x0Þ for x; x 2 X is essentially equivalent
to how [40, Lemma 4] defines kernels on two probability dis-
tributions from fP þ xjx 2 Xg using the Kendall kernel as
the level-1 embedding kernel and linear inner product as the
level-2 kernel in the feature space. As a result, given a fixed
training set D, training an SVM with G in place of Kt is
equivalent to training a Flex-SVM instead of an ordinary
SVM with Kt [40]. In this case, Theorem 3 provides an error
bound in terms of the optimal accuracy for cases when train-
ing a Flex-SVM if exact evaluation of G is intractable and its
Monte Carlo approximate GD is employed. This serves to
obtain a trade-off between computation complexity and
approximation accuracy which is particularly interesting
whenwe areworking in high dimensions.

6 RELATION TO THE DIFFUSION KERNEL ON Sn

It is interesting to relate the Mallows kernel (2) to the diffu-
sion kernel on the symmetric group proposed by [24], which
is the diffusion kernel [44] on the Cayley graph of Sn gener-
ated by adjacent transpositions with left-multiplication.
This graph, illustrated for a specific case of n ¼ 4 in Fig. 2, is
defined by G ¼ ðV; EÞ with V ¼ Sn as vertices, and undi-
rected edge set E ¼ �fs;psg : s 2 Sn;p 2 Q

�
, where Q ¼

fði; iþ 1Þji ¼ 1; . . . ; n� 1g the set of all adjacent transposi-
tions. Note Q is symmetric in the sense that p 2 Q ,
p�1 2 Q, and the graph adjacency relation is a right-invari-
ant relation, that is s � s0 , s0s�1 2 Q. The corresponding
graph Laplacian is the matrix Dwith

Ds;s0 ¼
1 if s � s0

�ðn� 1Þ if s ¼ s0

0 otherwise

8><>: ;

where n� 1 is the degree of vertex s (number of edges con-
nected with vertex s), and the diffusion kernel on Sn is finally
defined as

Kb
difðs; s0Þ ¼ ½ebD�s;s0 ; (16)

for some diffusion parameter b 2 R, where ebD is the matrix
exponential.Kb

dif is a right-invariant kernel on the symmetric
group [24, Proposition 2], and we denote by k

b
dif the positive

definite function induced by Kb
dif such that Kb

difðs; s0Þ ¼
k
b
difðs0s�1Þ: Since theMallows kernelK�

M is straightforwardly
right-invariant, we denote by k�M the positive definite func-
tion induced by the Mallows kernel K�

M such that
K�

Mðs; s0Þ ¼ k�Mðs0s�1Þ: One way to interpret the diffusion
kernel (16) is by the heat equation on the Cayley graph

d

db
Kb

dif ¼ DKb
dif s.t. Kb

dif jb¼0 ¼ I:

Kb
dif is thus the product of a continuous process, expressed

by the graph Laplacian D, gradually transforming local
structure Kb

dif jb¼0 ¼ I to a kernel with stronger and stronger
off-diagonal effects as b increases.

Interestingly, the Mallows kernel can also be interpreted
with the help of the Cayley graph. Indeed, it is well-known
that the Kendall tau distance ndðs; s0Þ is the minimum num-
ber of adjacent swaps required to bring s to s0, i.e., ndðs; s0Þ
equals to the shortest path distance on the Cayley graph, or
simply written

ndðs; s0Þ ¼ dGðs; s0Þ:
Different from the diffusion kernel for which communica-
tion between permutations is a diffusion process over the
graph, the Mallows kernel

K�
Mðs; s0Þ ¼ e��ndðs;s0Þ ¼ e��dGðs;s0Þ;

considers exclusively the shortest path over the graph when
expressing the similarity between permutations s; s0.

A notable advantage of the Mallows kernel over the dif-
fusion kernel is that the Mallows kernel enjoys faster evalu-
ation. On one hand if data instances are total rankings, i.e.,
s; s0 2 Sn, evaluating Kb

difðs; s0Þ would require exponentiat-
ing an n!-dimensional Laplacian matrix by naive implemen-
tation, and can reduce to exponentiating matrices of smaller
sizes by careful analysis in the Fourier space, which still
remains problematic if working dimension n is large [24].
However, evaluating K�

Mðs; s0Þ only takes Oðn lognÞ time.
On the other hand if data instances are partial ranking of
size k  n, i.e., R;R0 
 Sn, and we take convolution kernel
(7) to extend the two kernels, the analysis of exploring the
sparsity of the Fourier coefficients of the group algebra of
partial rankings R;R0 of size k reduces the evaluation of
both the diffusion kernel and the Mallows kernel to
Oðð2kÞ2kþ3Þ time, provided that the exponential kernel Four-
ier matrices ½k̂ðmÞ��½...�n�k

are precomputed before any kernel
evaluations take place [24, Theorem 13].

7 APPLICATION: CLUSTERING AND MODELING

RANK DATA

In this section we illustrate the potential benefit of kernel-
based algorithms using the Kendall and Mallows kernels

Fig. 2. Cayley graph of S4, generated by the transpositions (1 2) in blue,
(2 3) in green, and (3 4) in red.
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for the purpose of unsupervised cluster analysis, i.e., parti-
tioning a collection of rank data into sub-groups and/or
estimating densities of a collection of rank data. This is in
particular of great practical interest in social choice theory
in order to explore the heterogeneity and identify typical
sub-groups of voters with a common behavior to under-
stand, for example, their political support for various par-
ties [2], [45], [46].

7.1 Clustering with Kernel k-means

Let sif gmi¼1
 Sn be a collection of m permutations represent-
ing, say, the preferences of customers over n products or
the votes of electorate over n candidates. We aim at parti-
tioning these permutations into c 	 m clusters Sj

� �c
j¼1

. One

approach to cluster rank data is to follow a method similar
to k-means in the symmetric group. Assuming that each
cluster Sj has a “center” pj 2 Sn serving as a prototype per-
mutation of that cluster, the classic k-means clustering
attempts to put each point in the cluster with the nearest
center so as to minimize the sum of Kendall tau distance of
each permutation to the corresponding center of its cluster.
Specifically, when the number of clusters c is fixed, the
objective is to find

argmin
Sj;pj2Snf g

Xc
j¼1

X
i:si2Sj

ndðsi;pjÞ: (17)

Note that (17) reduces to a single-ranking aggregation prob-
lem when c ¼ 1, where the center p is commonly known as
Kemeny consensus [47] which is NP-hard to find [48]. With
the objective in (17) being non convex, Lloyd’s algorithm is
usually employed to find local minima in an iterative man-
ner consisting of two steps: the assignment step assigns each
point to its closest cluster, and the update step updates each
of the c cluster centers using the points assigned to that clus-
ter; the algorithm repeats until all the cluster centers remain
unchanged in an iteration. While the assignment step is
usually fast, the update step is indeed equivalent to sol-
ving a Kemeny consensus problem for each cluster, i.e.,
argminpj2Sn

P
i:si2Sj ndðsi;pjÞ. Since the exact Kemeny-

optimal ranking is difficult to find, approximate techniques
are usually employed in practice such as Borda Count [49]
or Copeland’s method [50].

As the Kendall tau distance is conditionally positive defi-
nite, we can propose as an alternative to use the kernel
k-means approach [51], [52] that relaxes the assumption that
the cluster center are permutations, and instead works
implicitly in the feature space where cluster centers can be
any vector in R

n
2ð Þ by considering the problem

argmin�
Sj;mj2R

n
2ð Þ�
Xc
j¼1

X
i:si2Sj

FðsiÞ � mj

 2;
for which local minima can be found efficiently by Algo-
rithm 1. Note that mj does not match a true permutation
pj 2 Sn in general, and the Kemeny consensus problem in
the update step is thus bypassed. It is worthwhile to note
that the algorithm is not exclusive for clustering permuta-
tions, kernel k-means clustering can be applied respectively
to total/partial/multivariate/uncertain rankings with app-
ropriate kernels defined.

7.2 Mallows Mixture Model with Kernel Trick

An alternative to k-means clustering is to consider mixture
models, which provide a method for modeling heteroge-
neous population in data by assuming a mixture of stan-
dard models for rankings in each homogeneous sub-
population. Mixture models not only allow to cluster data,
but more generally to estimate a distribution on the space of
permutation that can then be used for other purposes, such
as combining evidences. One popular choice of probabilistic
distribution over Sn is the Mallows model [26], which takes
the form in expressing the occurring probability of s by

fðsjp; �Þ ¼ Cð�Þexp½��ndðs;pÞ�; (18)

where the central ranking p 2 Sn and the precision � � 0 are
model parameters, and the normalization constant
Cð�Þ ¼ 1=

P
s02Sn exp½��ndðs0;pÞ� is chosen so that fð�jp; �Þ

is a valid probability mass function over Sn. Notably, Cð�Þ
does not depend on the center p due to the symmetry of Sn.

Algorithm 1. Kernel k-Means for Clustering Heteroge-
neous Rank Data

Input: a collection of permutations sif gmi¼1 and a kernel function
K over Sn, or a kernel matrix evaluated between pairwise data
pointsK ¼ ðKðsi; sjÞÞ1	i;j	m; the number of clusters c 	 m.
1: Randomly initialize cluster assignment for each data

points and form c clusters S1; . . . ; Sc.
2: For each data point, find its new cluster assignment, i.e.,

for i ¼ 1; . . . ;m;

j�ðsiÞ ¼ argmin
j

dij;

where

dij :¼ FðsiÞ � 1

jSjj
X
s‘2Sj

Fðs‘Þ



2

¼ Kðsi; siÞ � 2

jSjj
X
s‘2Sj

Kðsi; s‘Þ

þ 1

jSjj2
X

sv;s‘2Sj
Kðsv; s‘Þ:

3: Form updated clusters, i.e., for j ¼ 1; . . . ; c;

Sj ¼ si : j ¼ j�ðsiÞ; i ¼ 1; . . . ; mf g:

4: Repeat 2-3 until all cluster assignments remain unchanged
in an iteration.

Output: Cluster assignments Sj

� �c
j¼1

:

We follow the mixture modeling setup in [53]. Now
suppose that a population consists of c sub-populations, a
Mallows mixture model assumes that an observation comes
from group j with probability pj � 0 for j ¼ 1; . . . ; c and,
given that the observation belongs to sub-population j, it is
generated from a Mallows model with central ranking pj

and precision �j, i.e., the occurring probability of s in the
Mallows mixture model is written as

fðsÞ ¼
Xc
j¼1

pjfðsjpj; �jÞ ¼
Xc
j¼1

pjCð�jÞexp½��jndðs;pjÞ�: (19)
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Denoting p ¼ pj

� �c
j¼1

, � ¼ �j

� �c
j¼1

, p ¼ pj
� �c

j¼1
such thatPc

j¼1 pj ¼ 1, the log-likelihood of a collection of m i.i.d. per-

mutations s ¼ sif gmi¼1 is therefore

Lðp; �; pjsÞ ¼
Xm
i¼1

log fðsiÞ

¼
Xm
i¼1

log
Xc
j¼1

pjCð�jÞexp½��jndðsi;pjÞ�
( )

:

(20)

The Mallows mixture model is usually fitted by maximum
likelihood using the EM algorithm. Specifically, by intro-
ducing latent (membership) variables z ¼ zij : i ¼ 1; . . . ;

�
m; j ¼ 1; . . . ; cg where zij ¼ 1 if si belongs to group j and 0
otherwise, the complete log-likelihood of data is

LCðp; �; pjs; zÞ ¼
Xm
i¼1

Xc
j¼1

zij½log pj þ logCð�jÞ � �jndðsi;pjÞ�:

The EM algorithm can be implemented to find local maxi-
mum likelihood estimates following two steps iteratively
until convergence: the E-step calculates the expected value
of membership variables ẑ conditioned on the current esti-
mates of the model parameters p; �; p, and the M-step
updates the model parameters p; �; p by maximizing the
expected complete log-likelihood L̂C ¼ LCðp; �; pjs; ẑÞ
where membership variables are replaced by their expected
values. The final estimate ẑij amounts to our belief of si

belonging to group j, and can thus be used to form clusters
Sj

� �c
j¼1

serving a partition of data where

Sj ¼ si : ẑij ¼ max
‘

ẑi‘; i ¼ 1; . . . ;m

� �
: (21)

A closer look at the EM algorithm reveals that optimizing
L̂C with respect to p alone in the M-step is indeed equiva-
lent to finding a (weighted) Kemeny consensus for each
group, i.e., solving argminpj2Sn

Pm
i¼1 ẑijndðsi;pjÞ; for which

exact solution is difficult as above-mentioned in the context
of k-means clustering. Similarly to the idea of kernel
k-means in contrast to classic k-means, we propose to seek
ways to bypass the Kemeny consensus problem by working
in the feature space instead. Note that the Mallows probabil-
ity mass function (18) is equivalently written as
fðsjp; �Þ / exp½��kFðsÞ �FðpÞk2� up to a constant scaling
on � by using (4), we propose to relax the constraint that the
center has to match a true permutation p 2 Sn and consider
the following two alternatives in place of f following the
mixture modeling approach stated above:

(i) Kernel Mallows. The Mallows probability mass func-
tion over Sn (18) is generalized to admit any point in the

feature space m 2 R
n
2ð Þ to be the population center, i.e.,

gðsjm; �Þ ¼ Cðm; �Þexp �� FðsÞ � mk k2
h i

; (22)

where the normalization constant Cðm; �Þ ¼ 1=
P

s02Sn
exp½��kFðs0Þ � mk2� is chosen so that gð�jm; �Þ is a valid
probability mass function over Sn. Notably, Cðm; �Þ now
depends on the center m as well.

If we replace the probability mass function of classic Mal-
lows f in (20) by that of kernel Mallows g, the Kemeny

consensus problem is averted when the EM algorithm is
used to fit a local maximum likelihood estimate. However,
another computational setback arises that the expected com-
plete log-likelihood L̂C to maximize in the M-step of the EM
algorithm is separately concave with respect to m or �, but
not jointly concave. Hence alternating optimization is often
used in practice with the caveats of intensive computation
and no guarantee to attain global optima for the M-step
optimization at each iteration.

(ii) Kernel Gaussian. Note that (22) has a similar form to
the Gaussian density, therefore we consider for s 2 Sn

gyðsjm; �Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

p

� � n
2ð Þ

s
exp �� FðsÞ � mk k2
h i

; (23)

which is exactly NðFðsÞjm; ð2�Þ�1IÞ, i.e., the n
2

� �
-dimen-

sional Gaussian distribution with mean m and isotropic
covariance matrix ð2�Þ�1I injected by FðsÞ. Notably,
gyð�jm; �Þ is not a valid probability mass function over Sn.

The mixture modeling approach stated above using gy

instead of f is in fact equivalently stated in Algorithm 2. It
is worthwhile to note that the algorithm also applies to
total/partial/multivariate/uncertain rankings with appro-
priate kernels defined as [54, Table 2] provides the counter-
part of Algorithm 2 in case that a kernel matrix evaluated
between data points is given instead. However, since gy

itself is not a valid probability mass function over Sn, an evi-
dent drawback is that we now lose the probabilistic inter-
pretation of the mixture distribution as in (19).

Algorithm 2. Kernel Trick Embedded Gaussian Mixture
Model for Clustering Heterogeneous Rank Data

Input: a collection of permutations sif gmi¼1 and a kernel
functionK over Sn; the number of clusters c 	 m.
1: Compute feature points FðsiÞ 2 R

n
2ð Þ mapped by the

Kendall embedding.
2: Fit a Gaussian mixture model for FðsiÞf gmi¼1 in R

n
2ð Þ using

maximum likelihood with the EM algorithm under the
constraint of isotropic covariance matrix, i.e., S ¼ ð2�Þ�1I.

3: Use the membership estimates ẑ to form clusters by (21).
Output: Cluster assignments Sj

� �c
j¼1

:

7.3 Experiments

Clustering 1980 APA Election Data. In the 1980 American
Psychological Association (APA) presidential election, vot-
ers were asked to rank 5 candidates in order of preference,
and 5,738 votes in form of total rankings were reported and
thus used in our experiment. The dataset was thoroughly
studied by [1].

We first use k-means approaches to cluster the data.
We compare the proposed kernel k-means algorithm
(Algorithm 1 with Kendall kernel Kt) to the classic k-means
algorithm formulated as (17). For the classic k-means where
cluster centers are required to be a prototype permutation,
three methods are employed in the center-update step for
each iteration: brute-force search of Kemeny-optimal rank-
ing, approximate ranking induced by Borda Count and
Copeland’s method. In each case, we vary the number of
clusters ranging from 2 to 10 and the algorithm is repeated
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50 times with randomly initialized configurations for each
fixed number of clusters. We observe from Fig. 3 (Left)
that the kernel k-means or classic k-means with approxi-
mate centers runs much faster than optimal k-means for
which the Kemeny-optimal ranking is time-consuming to
find by a brute-force search. Further, Fig. 3 (Middle) shows
that the kernel k-means outperforms all three methods
based on classic k-means in terms of the average silhouette
scores of the clustering results, which justifies that the
kernel k-means splits the data into more consistent sub-
groups in the sense that instances, measured by Kendall
tau distance on average, are more similar in the same clus-
ter and more dissimilar in different clusters. We also
observe that kernel k-means returns more robust clusters
in case of perturbation in data (Section 2 in supplementary
material, available online).

Mixture modeling is then used to fit the data and a parti-
tion of the votes is converted from the fitted models forming
a clustering result. Baseline models are the Mallows mixture
models fitted by the EM algorithm [53] using three different
center-update algorithms at each iteration: brute-force
search for Kemeny-optimal ranking, approximate ranking
induced by Borda Count and Copeland’s method. As pro-
posed in this paper, we embed the kernel trick in Mallows
mixture modeling with two alternatives g (22) and gy (23) in
place of f (18). In each case, we vary the number of clusters
ranging from 2 to 10 and the algorithm is repeated 50 times
with randomly initialized configurations for each fixed
number of clusters. As shown in Fig. 3 (Right), modeling a
Gaussian mixture to data in the feature space, or equiva-
lently using gy instead of f , provides a preferable split of the
data into sub-groups with higher average silhouette scores
across different number of clusters selected a priori.

Clustering ESC Voting Data.We finally perform clustering
on a dataset of multivariate partial rankings. In the finale of
Eurovision Song Contest (ESC), each participating country
casts one top-k vote over the finalists who represent their
home country. Taken from [55], the dataset consists of 34
multivariate ranking instances, each being a series of 6 par-
tial votes over top 8 finalists from 2007 to 2012 respectively.

In comparison with the mixture of Insertion Sorting Rank
(ISR) model for clustering multivariate partial rank data
proposed by [55], we implement the kernel k-means algo-
rithm (Algorithm 1) with the extended Kendall kernel to
multivariate rankings (8) and equal weights mj ¼ 1=p where
p ¼ 6 corresponding to the six contests across years. For

each fixed number of clusters, the kernel k-means algorithm
is repeated 100 times with randomly initialized configura-
tions while 10 times for the ISR mixture modeling approach.
We vary the number of clusters ranging from 2 to 6, and the
optimal number is selected to be 2 for kernel k-means with
respect to highest average silhouette score while 5 for the
ISR mixture model with respect to highest BIC value. It con-
sumes 2 hours in total to fit the ISR mixture model in order
for clustering while it only takes less than 10 seconds to
form the partition of data with kernel k-means. Although it
is beyond the scope of this study to further explore the
meaningful voting blocs, the colored map of Asia-Europe in
terms of clustering results of participating countries to the
ESC according to their voting behavior (Fig. 4, Left) depicts
that there exists interesting geographical alliances between
countries in the voting data. For example, country-clusters
returned by both algorithms present a sign of strong amity
within Eastern Europe. Silhouette plots for both algorithms
are shown in Fig. 4 (Right). Despite a relatively small num-
ber of clusters selected for the kernel k-means, the silhouette
plot (Fig. 4a, Right) attests that the underlying clusters are
well formed. Note that both silhouette plots opt for the
same distance used by kernel k-means, which may show
bias against a clustering scheme based on probabilistic
modeling with ISR mixtures. However, the two approaches
behave distinctly in identifying subgroups. For example,
the ISR mixture model distinguishes Portugal as a singleton
among all countries, while interpreting such clustering
results remains to be studied. On the other hand, the
k-means based approach tends to find more evenly distrib-
uted subgroups, in the sense that the number of individuals
in each subgroup is more consistent. Therefore kernel
k-means clustering is favored if the study of interest lies in
populous behaviors in voting despite of potential outlier
individuals. Notably the detection of outliers can be done
by other kernel algorithms (Section 9).

8 APPLICATION: SUPERVISED CLASSIFICATION OF

BIOMEDICAL DATA

In this section we illustrate the relevance of supervised clas-
sification of rank data with an SVM using the Kendall ker-
nel, when the ranking are derived from a high-dimensional
real-valued vector. More precisely, we investigate the per-
formance of classifying high-dimensional biomedical data,
motivated by previous work demonstrating the relevance of

Fig. 3. Across different number of clusters: Left: Computational time (in seconds) of k-means algorithms per run.Middle: Average silhouette scores of
k-means methods. Right: Average silhouette scores of Mallows mixture modeling methods.
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replacing numerical features by pairwise comparisons in
this context [7], [8], [9], [10].

For that purpose, we collected 10 datasets related to
human cancer research publicly available online [65],
[66], [67], as summarized in Table 1. The features are
proteomic spectra relative intensities for the Ovarian Can-
cer dataset and gene expression levels for all the others.
The contrasting classes are typically “Non-relapse versus
Relapse” in terms of cancer prognosis, or “Normal versus
Tumor” in terms of cancer identification. The datasets
have no missing values, except the Breast Cancer 1 dataset
for which we performed additional preprocessing to
remove missing values as follows: first we removed two
samples (both labeled “relapse”) from the training set
that have around 10 and 45 percent of missing gene
values; next we discarded any gene whose value was
missing in at least one sample, amounting to a total of
3.5 percent of all genes.

We compare the Kendall kernel to three standard ker-
nels, namely linear kernel, homogeneous 2nd-order polyno-
mial kernel and Gaussian RBF kernel with bandwidth set
with “median trick”, using SVM (with regularization
parameter C) and Kernel Fisher Discriminant (KFD, with-
out tuning parameter) as classifiers. In addition, we include
in the benchmark classifiers based on Top Scoring Pairs

(TSP) [7], namely (1-)TSP, k-TSP [8]1 and APMV (all-pairs
majority votes, i.e., n

2

� �
-TSP). Finally we also test SVM

with various kernels using as input only top features
selected by TSP [67].

In all experiments, each kernel is centered (on the train-
ing set) and scaled to unit norm in the feature space. For
KFD-based models, we add 10�3 on the diagonal of the cen-
tered and scaled kernel matrix, as suggested by [68]. The
Kendall kernel we use in practice is a soft version to (9) in
the sense that the extremes �1 can still be attained in the
presence of ties, specifically we use

Ktðx; x0Þ ¼ ncðx; x0Þ � ndðx; x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn0 � n1Þðn0 � n2Þ
p ;

where n0 ¼ n
2

� �
and n1; n2 are the number of tied pairs in

x; x0 respectively.
For the three datasets that are split into training and test

sets, we report the performance on the test set; otherwise
we perform a 5-fold cross-validation repeated 10 times and

Fig. 4. Clustering results of participating countries to the ESC according to their voting behavior illustrated by geographic map (Left) and silhouette
plot (Right).

1. While the original k-TSP algorithm selects only top k disjoint pairs
with the constraint that k is less than 10, we do not restrict ourselves to
any of these two conditions since we consider k-TSP in this study essen-
tially a feature pair scoring algorithm.
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report the mean performance over the 5� 10 ¼ 50 splits to
evaluate the performance of the different methods. In addi-
tion, on each training set, an internal 5-fold cross-validation
is performed to tune parameters, namely the C parameter
of SVM-based models (optimized over a grid ranging from
10�2 to 103 in log scale), and the number k of k-TSP in case
of feature selection (ranging from 1 to 5,000 in log scale).

Table 2 and Fig. 5 (Left) summarize the performance of
each model across the datasets. An SVM with the Kendall
kernel achieves the highest average prediction accuracy
overall (79.39 percent), followed by a linear SVM trained on
a subset of features selected from the top scoring pairs
(77.16 percent) and a standard linear SVM (76.09 percent).
The SVM with Kendall kernel outperforms all the other
methods at a P-value of 0.07 according to a Wilcoxon rank
test. We note that even though models based on KFD gener-
ally are less accurate than those based on SVMs, the relative
order of the different kernels is consistent between KFD and
SVM, adding evidence that the Kendall kernel provides an
interesting alternative to other kernels in this context. The
performance of TSP and k-TSP, based on majority vote
rules, are comparatively worse than SVMs using the same
features, as already observed by [67].

Fig. 5 further shows how the performance of different
kernels depends on the choice of the C parameter or the

SVM (Middle), and on the number of features used (Right),
on some representative datasets. We observe that compared
to other kernels, an SVM with the Kendall kernel is rela-
tively insensitive to hyper-parameter C especially when C
is large, which corresponds to a hard-margin SVM. This
may explain in part the success of SVMs in this setting, since
the risk of choosing a bad C during training is reduced.
Regarding the number of features used in case of feature
selection, we notice that it does not seem to be beneficial to
perform feature selection in this problem, explaining why
the Kendall kernel which uses all pairwise comparisons
between features outperforms other kernels restricted to a
subset of these pairs. In particular, the feature space of the
Kendall andMallows kernels is precisely the space of binary
pairwise comparisons defined by [7], and the results show
that instead of selecting a few features in this space as the
Top Scoring Pairs-family classifiers do [7], [8], [9], [10], one
can simply work with all pairs with the kernel trick.

Finally, as a proof of concept we empirically compare on
one dataset the smooth alternative (12) and its Monte Carlo
approximate (14) with the original Kendall kernel. Fig. 6
shows how the performance varies with the amount of noise
added to the samples (Left), and how the performance
varies with the number of samples in the Monte Carlo
scheme for a given amount of noise (Right). It confirms that

TABLE 1
Summary of Biomedial Datasets

Dataset No. of features No. of samples (training/test) Reference

C1 C2

Breast Cancer 1 23,624 44/7 (Non-relapse) 32/12 (Relapse) [56]
Breast Cancer 2 22,283 142 (Non-relapse) 56 (Relapse) [57]
Breast Cancer 3 22,283 71 (Poor Prognosis) 138 (Good Prognosis) [58]
Colon Tumor 2,000 40 (Tumor) 22 (Normal) [59]
Lung Adenocarcinoma 1 7,129 24 (Poor Prognosis) 62 (Good Prognosis) [60]
Lung Cancer 2 12,533 16/134 (ADCA) 16/15 (MPM) [61]
Medulloblastoma 7,129 39 (Failure) 21 (Survivor) [62]
Ovarian Cancer 15,154 162 (Cancer) 91 (Normal) [63]
Prostate Cancer 1 12,600 50/9 (Normal) 52/25 (Tumor) [64]
Prostate Cancer 2 12,600 13 (Non-relapse) 8 (Relapse) [64]

TABLE 2
Prediction Accuracy (%) of Different Methods Across Biomedical Datasets

Average BC1 BC2 BC3 CT LA1 LC2 MB OC PC1 PC2

SVMkdtALL 79.39 78.95 71.31 67.34 85.78 70.98 97.99 63.67 99.48 100 58.4
SVMlinearTOP 77.16 84.21 69.29 67.11 84.19 63.92 97.32 65.17 99.41 85.29 55.7
SVMlinearALL 76.09 78.95 71.67 64.27 86.73 70.23 97.99 62.67 99.64 73.53 55.17
SVMkdtTOP 75.5 52.63 70.61 65.81 85.46 67.7 97.99 58.33 99.92 97.06 59.47
SVMpolyALL 74.54 68.42 71.62 63.66 78.43 70.53 98.66 61.17 99.28 79.41 54.23
KFDkdtALL 74.33 63.16 59.41 67.22 85.46 59.08 99.33 59.33 98.73 97.06 54.57
kTSP 74.03 57.89 58.22 64.47 87.23 61.7 97.99 56 99.92 100 56.83
SVMpolyTOP 73.99 63.16 69.44 66.26 79.14 65.98 99.33 60 99.21 88.24 49.1
KFDlinearALL 71.81 63.16 60.43 67.52 77.26 57.24 97.99 59.5 100 73.53 61.43
KFDpolyALL 71.39 63.16 60.48 67.38 75.1 58.52 97.99 60.33 100 73.53 57.43
TSP 69.71 68.42 49.58 57.8 85.61 58.96 95.97 52.67 99.8 76.47 51.83
SVMrbfALL 69.31 63.16 71.41 65.87 81.18 70.84 93.96 63.83 98.85 26.47 57.5
KFDrbfALL 66.5 63.16 60.38 66.17 84.33 58.62 97.32 60.17 98.34 26.47 50
APMV 61.91 84.21 65.98 33.96 64.49 33.6 89.93 42.17 85.19 73.53 46

Models are named after candiate methods (SVM or KFD) and candiate kernels, namely linear kernel (linear), 2nd-order homogeneous polynomial kernel (poly),
Gaussian RBF kernel (rbf) or Kendall kernel (kdt), and whether feature selection is combined (TOP) or not (ALL).
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the smooth alternative (12) can improve the performance of
the Kendall kernel, and that the amount of noise (window
size) should be considered as a parameter of the kernel to
be optimized. Although the D2-sample Monte Carlo appro-
ximate kernel (14) mainly serves as a fast estimate to the
exact evaluation of (12), it shows that the idea of jittered
input with specific noise can also bring a tempting benefit
for data analysis with Kendall kernel, even when D is small.
This also justifies the motivation of our proposed smooth
alternative (12). Last but not least, despite the fact that the
convergence rate of D2-sample Monte Carlo approximate to
the exact kernel evaluation is guaranteed by Theorem 3,
experiments show that the convergence in practice is typi-
cally faster than the theoretical bound, and even faster in
case that the window size a is small. This is due to the fact
that the convergence rate is also dependent of the observed
data distribution in the input space, for which we have not
made any specific assumption in our analysis.

9 CONCLUSION AND DISCUSSION

Based on the observation that the popular Kendall tau corre-
lation between total rankings is a positive definite kernel,

we presented some extensions and applications pertaining
to learning with the Kendall kernel and the related Mallows
kernel. We showed that both kernels can be evaluated effi-
ciently in Oðn lognÞ time, and that the Kendall kernel can
be extended to partial rankings containing k items out of n
in Oðk log kÞ time as well as to multivariate rankings. When
permutations are obtained by sorting real-valued vectors,
we proposed an extension of the Kendall kernel based on
random perturbations of the input vector to increase its
robustness to small variations, and discussed two possible
algorithms to compute it. We further highlighted a connec-
tion between the fast Mallow kernel and the diffusion kernel
of [24]. We also reported promising experimental results
on clustering of heterogeneous rank data and classifying
biomedical data demonstrating that for highly noisy data,
the Kendall kernel is competitive or even outperforms other
state-of-the-art kernels.

We believe that computationally efficient kernels over
the symmetric group pave the way to numerous applica-
tions beyond the ones we pursued in this paper. In unsuper-
vised data mining, kernel density estimation for example
can be applied to modeling the distribution over a collection
of rankings, and by the representer theorem the resulting

Fig. 5. Left: Model performance comparison (ordered by decreasing average accuracy across datasets). Middle: Sensitivity of kernel SVMs to C
parameter on the Breast Cancer 1 dataset. Right: Impact of TSP feature selection on the Prostate Cancer 1 dataset. (Special marks on SVM lines
denote the parameter returned by cross-validation.)

Fig. 6. Left: Empirical performance of smoothed alternative to Kendall kernel on theMedulloblastoma dataset. Right: Empirical convergence of Monte
Carlo approximate at the fixed window size attaining maximum underlying accuracy from the left plot.
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distribution depends solely on the observed data points cir-
cumventing the exponentially large cardinality of the sym-
metric group, from which a consensus ranking that best
represents the data is the one with the highest probability.
As more complicated cases, there is much interest beyond
finding a single consensus ranking typically in the context
of political votes or social choices: groups of homogeneous
sub-populations in data can be clustered by algorithms
such as kernel k-means or spectral clustering [69]; depen-
dencies or principle structural factors in data can be found
by kernel canonical correlation analysis [70] or kernel prin-
ciple component analysis [71]; outliers in a collection of
rank data can be detected with one-class SVMs [72], [73]. In
a more predictive setting, Support Vector Machines and
kernel ridge regression are representative delegates for solv-
ing classification and regression problems amongst many
other kernel algorithms [16]. Notably, the input/output ker-
nels formalism allows us to predict rankings as well as learn
from rankings where a wealth of algorithms such as multi-
class SVMs or structural SVMs [74], [75], [76] are ready to
suit the problem at hand.

Deeper understanding of the Kendall and Mallows ker-
nels calls for more theoretical work of the proposed kernels.
In particular, a detailed analysis of the Fourier spectra of
the Kendall and Mallows kernels is provided in [77]. Those
authors also introduced a tractable family of normalized
polynomial kernels of degree p that interpolates between
Kendall (degree one) and Mallows (infinite degree) kernels.

There are many interesting extensions of the current
work. One direction would be to include high-order com-
parisons in measuring the similarity between permutations.
Since the fast computation of the Kendall and Mallows
kernels is balanced by the fact that they only rely on pair-
wise statistics between the ranks, computationally tractable
extension to higher-order statistics, such as three-way com-
parisons, could potentially enhance the discriminative
power of the proposed kernels. Another interesting direc-
tion would be to extend the proposed kernels to rankings
on partially ordered set. In fact, the current work lies on the
assumption that a (strict) total order can be associated with
the (finite) set of items given to rank fx1; . . . ; xng, which is
implicitly presumed when we label the items by the sub-
scripts ½1; n� and then define the Kendall and Mallows ker-
nels by comparing all item pairs ði; jÞ for i < j (Section 2).
However, there are cases when the item set is intrinsically
associated with a (strict) partial order such that some item
pairs are conceptually incomparable. In that case, we can
collect all comparable item pairs into a set denoted by E
and define the kernels by comparing only those item pairs
ði; jÞ in E. Notably evaluating the extended kernels is still
fast as we can simply replace the Merge Sort algorithm for
total orders (Section 2) by a topological sort algorithm for
partial orders [78, Section 22.4]. We leave further investiga-
tions of this generalization to future work.
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