

Edinburgh Research Explorer

Learning Semantic Part-Based Models from Google Images

Citation for published version:
Modolo, D & Ferrari, V 2017, 'Learning Semantic Part-Based Models from Google Images', IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PP, no. 99, pp. 1-8.
https://doi.org/10.1109/TPAMI.2017.2724029

Digital Object Identifier (DOI):
10.1109/TPAMI.2017.2724029

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Pattern Analysis and Machine Intelligence

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Apr. 2024

https://doi.org/10.1109/TPAMI.2017.2724029
https://doi.org/10.1109/TPAMI.2017.2724029
https://www.research.ed.ac.uk/en/publications/990bfa3c-8c61-473f-800f-4c3e9bc017ba

1

Learning Semantic Part-Based Models
from Google Images

Davide Modolo and Vittorio Ferrari

Abstract—We propose a technique to train semantic part-based models of object classes from Google Images. Our models
encompass the appearance of parts and their spatial arrangement on the object, specific to each viewpoint. We learn these rich
models by collecting training instances for both parts and objects, and automatically connecting the two levels. Our framework works
incrementally, by learning from easy examples first, and then gradually adapting to harder ones. A key benefit of this approach is that it
requires no manual part location annotations. We evaluate our models on the challenging PASCAL-Part dataset [1] and show how their
performance increases at every step of the learning, with the final models more than doubling the performance of directly training from
images retrieved by querying for part names (from 12.9 to 27.2 AP). Moreover, we show that our part models can help object detection
performance by enriching the R-CNN detector with parts.

Index Terms—Part Detection, Web Learning, Curriculum Learning

F

1 INTRODUCTION

PART-based models have gained significant attention in
the last few years. The key advantages of exploiting part

representations is that parts have lower intra-class variabil-
ity than whole objects, they deal better with pose variation
and their configuration provides useful information about
the aspect of the object. Parts localization has therefore
been addressed in the context of several vision tasks, such
as object recognition [1], [2], [3], object segmentation [4],
[5], fine-grained classification [6], [7], [8], human pose-
estimation [9], [10], [11], attribute prediction [12], [13], action
classification [15] and scene classification [16], achieving
state-of-the-art results in many of them.

Part-based methods can be grouped into two sets. The
first set of works define an object part as any patch that
is discriminative for the object class [2], [3], [4], [5], [16].
These works typically discover parts in the training images
automatically, without human supervision. However, their
resulting parts do not have a meaning for humans (e.g. a
patch straddling between the wheel and the chassis of a
car [3]). The second set of works define parts semantically
(e.g. ‘wheel’) [1], [5], [6], [7], [9], [10], [11], [13]. These are
more interpretable for a human and are necessary to obtain
fine descriptions of objects and their interactions. For exam-
ple, “the headlights of the bus are turned on” and “the cat
is touching the TV with its tail”. Moreover, part localization
is necessary for a robot to correctly grasp an object (e.g.
grasp a mug by the handle). However, existing works on
semantic part detection require part location annotations in
the training images, which are very expensive to obtain.

In this paper we try to get the best of both worlds
by proposing a novel method to train semantic part mod-
els of object classes without manual location annotations.
We train these models on images automatically collected
from Google Images. We represent an object class as a
mixture over multiple viewpoints. We learn a collection of
semantic part appearance models, and models of their spa-
tial arrangement on the object, specific to each viewpoint.

• D. Modolo and V. Ferrari are with the IPAB institute at the University of
Edinburgh. E-mail for correspondence: davide.modolo@gmail.com

bicycle saddle

bicycle wheel

bicycle side

bicycle front

bicycle handlebar bicycle back

Fig. 1: Images returned from Google Images. On the left examples of
queries for object parts, while on the right queries for an object under
different viewpoints. Note how the instances are correct, clean and
they mostly appear under a uniform background.

Moreover, we also train models capable of predicting the
viewpoint of the object, which we then use to select an
appropriate location model to guide part localization on
novel instances. Learning from the web has been addressed
before [17], [18], [19], [20], [21], [22], [23], [24], [25], but
mostly at the level of object classes. Instead, here we learn
complex semantic part-based models from the web.

We learn these rich models fully automatically, entirely
from Google Images, by collecting training instances for
both parts and objects (fig. 1), and automatically connecting
the two levels. Our technique incrementally learns from
easy examples first, and then gradually adapts to harder
examples. This adaptation is done within Google Images,
where part images offer easy examples (fig. 1 left), and
then harder examples are mined from object instances (fig. 1
right). The move from part images to object images also
enables us to learn the spatial arrangement of parts on the
object (location models). In a final step, we further adapt our
models on an external, non-Google image domain to adapt
to even harder examples, e.g. on PASCAL VOC [26].

We demonstrate the effectiveness of our incremental
learning algorithm on the PASCAL-Part dataset [1]. Inter-
estingly, the performance of our part models increases at
every step of the learning, with the final models more
than doubling the initial performance (from 12.9 to 27.2
AP). Moreover, we compare to two other webly-supervised
works (LEVAN [23] and NEIL [22]) and show that our part
models perform better. Finally, we also show that our part
models can help object detection performance by enriching

2

the R-CNN detector [27] with parts.

2 RELATED WORK
Many works learn non-semantic part models, where the
parts are arbitrary patches that are discriminative for an
object class [2], [3], [4], [5], [16]. Our work is more related to
semantic part-based models, and to techniques for learning
object classes from image search engines.

Semantic part-based models. There is a considerable
amount of work on using semantic parts to help recognition
tasks. The largest part of this has focused on the fine-
grained recognition problem in several animal domains,
such as birds [8], [9], [13], [28] and pets [6], [7]. In these
works, an object is treated as a collection of parts that
models its shape and appearance. Semantic parts help cap-
turing subtle object appearance differences that could not
be captured by a monolithic object model. These differences
are crucial to discriminate between animal breeds. Other
applications where semantic part-based models have been
used are object detection [1], articulated human and animal
pose estimation [9], [10], [11] and attribute prediction [13],
[15]. In object detection, parts help dealing with deformed,
occluded and low resolution objects. In articulated pose
estimation, parts help identifying objects in special config-
uration (e.g. jumping and sitting) as opposed to canonical
ones. Finally, in attribute prediction, attributes are predicted
best by the part containing direct evidence about them.

All the above mentioned methods require accurate
part location annotations for training (either in terms of
keypoints [6], [9] or bounding boxes [1], [7], [8], [10], [11],
[13], [15], [28]). Our framework instead does not require
annotations of part positions nor extent, and automatically
learns from Google Images instead.

Learning from image search engines. Several works have
tried to learn visual models from training samples collected
automatically from image search engines [17], [18], [19], [20],
[21], [22], [23], [24], [25]. Most of them tackle image classi-
fication [17], [18], [19], [20], [21] and develop algorithms to
find good training samples and learn iteratively.

Some works try to learn object class detectors from the
web [22], [23], [24]. Chen et al. [24] considers only objects
and not parts. LEVAN [23] leverage Google Books Ngrams
to discover all appearance variations of an object class, then
trains an object detector with a separate component per vari-
ation. While some of the components happen to represent
parts (e.g. ‘horse head’), these are treated just like other
independent components (at the same level as ‘jumping
horse’ and ‘racing horse’). NEIL [22] mines web images to
discover common sense relationships between object classes
(e.g. ‘car is found in raceway’), including also some part-
of relations (e.g. ‘wheel is part of car’). Importantly, both
LEVAN and NEIL learn simple object class detectors, con-
sisting of ‘root filters’ only. Instead we learn more complex,
structured models of object classes, which include semantic
part appearance models and their spatial arrangements
within the object, conditioned on object viewpoint. Note
how [22], [23], [24] do not report quantitative localization
results for part detection. Finally, we believe our work is
complementary to [22], [23], [24]. The frameworks of [22],
[23] could provide a list of which parts belong to which

object class, which could be passed on to our technique
to learn more complex models. Moreover, our part models
could be used in combination with the strong R-CNN root
filters learned from the web by [24] (analog to sec. 5.4).

The concurrent work [25] is the only other one to learn
semantic part models from the web. It learns the structure
of objects in an embedding space where geometric relation-
ships are implicitly conveyed by non-semantic mid-level
parts. Instead, we learn explicit relationships on the seman-
tic parts themselves, based on object and parts instances
automatically mined from web images.

3 OVERVIEW OF OUR APPROACH
We present here an overview of our framework for au-
tomatically learning compositional semantic part models.
We learn these models for each object class separately. For
each class, we use Google Images to collect images of the
object under several pre-defined viewpoints, and images
of its parts. We use the part samples to train initial part
appearance models, which are later used to learn the con-
nection between the parts and the whole object. Learning
this association is the key to our compositional part models.

For each class, we learn part appearance models A, part
location models L, and object viewpoint classifiers V . Our
framework operates in four stages: T0−T3 (fig. 2). In the first
stage T0, we collect training samples from Google Images
(objects and parts, fig. 1). Then, we iteratively learn the
components of our part models, each time learning from
harder examples: (T1) images containing only parts from
Google, (T2) part examples mined from object images from
Google, and (T3) part examples mined from object images
from the PASCAL VOC 2010 dataset [26]. Every stage is
fully automatic and does not require human intervention.

For each object part, we learn one appearance model and
V location models, one for each viewpoint in our predefined
set. A single location model is not sufficient to capture the
position of a part with respect to the object, as this is strongly
affected by viewpoint changes. For example, the front view
of a bicycle has one wheel on the bottom-center of the
bicycle, while a bicycle from the side has two wheels on
the bottom left and right (fig. 1, right).

For simplicity, in the rest of the paper we use
superscripts to indicate the stage a model component
is trained at. For example, our part appearance model A2 is
trained at stage T 2, while A3 at stage T 3.

T 0: Collecting data. Our framework queries Google
Images for images of an object under canonical viewpoints
and images of each of its parts (sec. 4.1). These images
are biased towards simple representations, in a uniform
background and they reliably contain the wanted object (or
part). However, one image may contain multiple instances
or objects not appearing nicely in the centre (fig 3). It
would be better if each object/part instance would be
enclosed in a tight bounding-box. Bounding-boxes around
parts help learning accurate appearance models as they
exclude background pixels, and around objects they help
learning accurate part location models as they provide
a stable coordinate frame common to all instances. We
therefore devise a simple, yet effective algorithm to fit
a tight bounding-box around each part/object instance

3

Fig. 2: Schema of our framework for object class ‘horse’, simplified to just one part ‘head’ and two viewpoints ‘left’ and ’front’. At T 0 the
framework downloads horse instances (O1 and O2, for the two viewpoints) and head instances (P1) from Google Images. At T 1 it learns a first
head appearance model A1. At T 2 it then hunts for new head instances from the horse images in O1 and O2 to first train two head location
models L2

1,1 and L2
1,2, one for each horse viewpoint, and later to re-train a more accurate head appearance model A2. Finally, it also learns a

viewpoint classifier V2. At T 3 it then predicts the viewpoint of objects in Ovoc using V2 and hunts for more part instances from them. These
are then used to train our final part appearance model A3 and part location models L3

1,1 and L3
1,2. Note how at time T 1 the framework has

only seen part instances and has no information to learn neither L1 nor V1.

(sec. 4.1). Finally, we consider each bounding-box as a
separate image, obtaining our initial training set. We denote
withOj ∈ O the set of images of the object under viewpoint
vj and with Pi ∈ P the set of images of part pi.

T 1: Learning from Google’s easy examples. For each part
pi, our framework learns an appearance model A1

i on the
part images Pi (sec. 4.2). These are the easiest samples, as in
these images the part often appears isolated from the object
and against a clean background (fig. 1 left).

T 2: Learning from Google’s harder examples. In this stage
our framework moves on to object images O. It learns part
location models L2 and updates all part appearance models
by using additional samples from O (sec. 4.2). Moreover, it
trains an object viewpoint classifier V2 on O (sec. 4.4).

For each viewpoint vj and part pi, it learns L2
i,j . The key

idea is to run A1
i on the object images Oj . The top-scored

part detections are likely to be correct and, importantly,
they are now localized within an object image. Therefore, they
provide valuable training samples for the location of the
part within the object (sec. 4.3). The intuition here is that
objects captured under the same viewpoint have parts in
similar spatial arrangements. For example, all horses from
the side have the head on the left side of the image, mostly
on top (fig. 2). Since all objects in Oj are in the same
viewpoint vj , correct detections of a part will be consistently
found at similar locations across different object instances.

Subsequently, the framework mines part samples au-
tomatically from each Oj ∈ O using A1

i and the corre-
sponding L2

i,j (sec. 4.5). The process looks for detections
that have a high score according to A1

i and are at the right
location according to L2

i,j . By combining these two source of
information, we consistently discover correct part samples.
Finally, the framework uses these samples to update part
appearance models to A2

i . Note how these new samples are

more difficult than the ones in T 1, since come from images
showing whole objects and against natural backgrounds.
Lastly, the framework trains an object viewpoint classifier
V2 on O, by using each set of images Oj ∈ O as training
set for viewpoint vj (sec. 4.4). Finally, note how at this
stage the framework has trained a complete, rich model
(part appearance A2, part location L2, object viewpoint V2)
entirely and automatically from Google Images (fig. 2, top).
T 3: Learning from PASCAL VOC. In this final stage the
framework refines all A2 and L2 using even more difficult
training samples from another domain (sec. 4.2, 4.3). These
samples are mined automatically from the PASCAL VOC
dataset, which contains photographs depicting challenging
objects in natural scenes, often occluded or truncated (fig. 2,
bottom). These are much harder than the ones in stage
T 2, where each image had a single whole object. The
framework mines positives as in step T 2, but using the
updated A2 instead of the initial A1 (sec. 4.5). Similarly
to other works [7], [28], we only search for parts inside
the ground-truth bounding-boxes of the object class (which
are provided with PASCAL VOC). We call this set Ovoc.
Furthermore, we call the set of mined positives Pvoc. In
order to use our viewpoint-specific location models, we
need to determine the viewpoint of the images in Ovoc.
We automatically predict vj for each image in Ovoc using
the object viewpoint classifier V2. Finally, after mining new
positives, the framework finally trains final location models
L3
i,j and part appearance models A3

i (sec. 4.5).

4 THE COMPONENTS OF OUR APPROACH

We detail below the components of our approach. In sec. 4.1
we describe our data collection mechanism. In sec. 4.2, 4.3
and 4.4 we describe how to train A, L and V , respectively.
In sec. 4.5 we then present our procedure to automatically
mine new part instances from objects.

4

4.1 Data collection and preprocessing
This section describes how we download part and object
images from Google and how we fit a tight bounding-box
around each part/object instance in them.
Querying Google Images. We collect images of an object
under multiple viewpoints and of its parts (fig. 1). We keep
the top 100 retrieved images for each object viewpoint and
the top 25 for each object part. We observed these numbers
to produce good, clean images. Collecting more than 25 part
images sometimes delivers spurious images without the
part, which would introduce noise in the learning process.

For each object class, we use the names of its parts as
listed in the PASCAL-Part Dataset [1] and the viewpoint
names specified by PASCAL VOC 2010 [26] (front, back, left,
right). As left and right is not a level of granularity satisfied
by Google Images yet, we query for a generic side viewpoint
(fig. 1 right-top) and then automatically split the retrieved
images into left and right subsets. In order to do this, we
first augment the image set by mirror flipping all images
horizontally, and then we cluster them by minimizing the
intra-cluster HOG compactness, similarly to [3].
Fitting bounding-boxes. As mentioned in sec. 3, we want to
fit a tight bounding-box around each object/part instance.
These bounding-boxes help learning accurate appearance
and location models for the parts. Fortunately, Google Im-
ages results are biased towards whole objects in a uniform
background (fig. 3a) and unoccluded. These are easy to
localize. We formulate this task as a pixel labelling problem,
where each pixel φi can take a label li ∈ {0, 1} (back-
ground or foreground). We aim at finding the best labelling
ψ∗ = argminLE(ψ). Similar to other segmentation works
[29], [30], [31], we define an energy function:

E(ψ) =
∑
i

Mi(li) +
∑
i

Gi(li) + α
∑
i,j

V (li, lj), (1)

where, the pairwise potential V encourages smoothness by
penalising neighbouring pixels taking different labels and
the unary potential Gi evaluates how likely a pixel i is
to take label li according to an appearance model which
consists of two GMMs [29] (foreground and background).
Inspired by [30], we produce an initial rough estimate M of
which pixels lie on the object, and use it both to estimate
the appearance models G, and as a unary potential of its
own. We do this in an unsupervised manner, based purely
on the spatial distribution of object proposals [32] in the
image (fig. 3b). We define the likelihood Mi(1) of a pixel i
to be foreground as the number of proposals that contain
it, divided by the total number of proposals in the image
(Mi(0) = 1−Mi(1)). The idea is that if a pixel is contained
in many proposals, then it is likely to belong to the object.

As in GrabCut [29], we iteratively alternate between
minimizing the energy (eq. 1) to obtain a segmentation,
and updating the appearance models based on this
segmentation. After a few iterations this process converges
and we fit a tight bounding-box around each connected
component in the final segmentation (fig. 3d). We apply this
procedure to all images collected from Google, obtaining
the initial training set of object images O and part images P
(treating each bounding-box as a separate image).
Part proposals. We generate class-independent part pro-
posals inside each image in O using [32]. As observed

Fig. 3: Examples of the steps of our procedure to fit bounding-boxes to
object/part instances in web images (sec. 4.1). (a) is the input image;
(b) is the initial rough foreground estimate M ; (c) is the output of the
segmentation process; and (d) are the bounding-boxes fit to connected
components in the segmentation. Note how the two images ‘horse leg’
and ‘bicycle front’ have multiple part/object instances and our method
is able to fit a separate bounding-box around each of them.

by Zhang et al. [8], these proposals achieve low recall on
small semantic parts. In order to overcome this difficulty,
we changed the standard settings of [32] to return smaller
proposals and increase part recall. This results in about 2000
proposals per object image in O, likely to cover all parts. In
the rest of the paper we use W to refer to the set all part
proposals over all object images.

4.2 Training part appearance models A
Each stage of our learning framework updates the part
appearance models of the object class. We describe here how
these models are trained at each stage.
Stage T 1. We trainA1 on the image set P , containing simple
part images. As appearance model we use a convolutional
neural network (CNN) and train it to distinguish between
the P parts. More specifically, we start from AlexNet pre-
trained on the ImageNet 2012 classification challenge [33]
and replace its original 1000-way fc8 classification layer
with a P -way fc8 layer. We then finetune the whole net-
work for part classification on the images in P . Note how P
only contains 25 samples per part. In order to avoid overfit
we use a learning rate of 10−4 and apply early stopping
(1000 iterations, 5 epochs). Higher learning rates cause the
parameters to vary abruptly over iterations, whereas 10−4

results in a smooth learning curve. At test time we use the
softmax at layer fc8 to predict how likely a proposal is to
contain each of the parts. At all times we use the publicly
available CNN implementation [34].
Stage T 2. At this stage we learn A2 on a larger training set
of examples from both part images and part samples auto-
matically mined from object images using the appearance
model from stage T 1 and the location model from stage T 2

(sec. 4.5, fig. 2). As appearance model we train a similar
CNN to the one of stage T 1, but with a difference: we use a
richer (P +1)-way fc8 layer, where the additional output is
used to classify background patches. Note how by mining
for positive part instances in object images (sec. 4.5) we indi-
rectly discover negative proposals (those with intersection-
over-union (IoU) [26] ≤ 0.3 with mined positives).

5

Fig. 4: Examples of our location models L. We show a canonical
image of each object captured under one of our viewpoints and the
location models of their parts. These models nicely capture the average
position of each part within the object in that viewpoint. Note how
these are automatically learnt from Google Images. For visualization,
we show a 2D projection of the location models, which however live
in a 4D space defined not only by the (x, y) position of a proposal,
but also by its scale and aspect ratio.

Stage T 3. In the last stage we train A3 on the harder image
set Pvoc, using as training samples parts automatically
mined from Ovoc using the part detector from stage T 2

(sec. 4.5). As appearance model we train a CNN as in T 2.

4.3 Learning part location models L

The appearance model A scores part proposals in an image
based on their appearance only. We build location models to
capture complementary knowledge about likely positions
and scales of the object parts within the the coordinate
frame of the object. In stage T 2 we learn the location models
purely from Google Images and in stage T 3 we adapt them
to a different domain. In this subsection we useWj to refer
to the set of all part proposals in object images Oj .

Part training samples. For each viewpoint vj and part
pi, we learn a separate location model Li,j from a set of
training proposals Wj,i ∈ Wj likely to contain part pi. We
describe here how we acquire these part samples Wi,j at
stage T 2, i.e. from object images Oj . The key idea is to
run the part detector A1

i on these images and retain the
top-scored part detections. As these detections are localized
within an object image, they provide examples of the
location of the part within the object. More precisely, for
each image we score all part proposals with the appearance
model A1

i , perform non-maximum suppression, and pick
up to 3 detections per image (the top scored ones, if they
score above a minimum confidence threshold). These
detections formWi,j . This way of picking detections strikes
a good trade-off between keeping all correct locations,
but without including too many false-positives. At T 3,
we enrich the sample set Wj,i with the top detections
produced by running the appearance model A3

i on Ovoc.
More specifically, each of these detections gets assigned to
the Wj,i of viewpoint predicted by V2. These new samples
are used to train the refined location models L2

i,j .

Training a location model. The location model Li,j scores
on an input part proposal w′ by the density of the training
setWj,i at w′

Li,j(w
′) =

1

|Wj,i| · h
∑

w∈Wj,i

K

(
D(w′, w)

h

)
(2)

where D(w′, w) is distance between two proposals:
D(w′, w) = 1 − w′∩w

w′∪w and K(u) is the uniform density
function K(u) = 1

21(|u| ≤ 1).
In this formulation Li,j(w

′) has an intuitive interpreta-
tion as the percentage of proposals in Wj,i which are close
to w′ (IoU < h). If many training proposals are near w′,
then Li,j(w

′) is large, indicating that w′ is likely to contain
the part. Conversely, if only a few proposal are near w′,
then Li,j(w

′) is small, indicating it is more likely to cover a
background patch. The bandwidth h controls the degree of
smoothing and in our experiments we set it to h = 0.5.

Note how D(w′, w) compares part proposals across
different images. For this to be meaningful, D operates
in a coordinate frame common to all images in Oj (by
normalizing it by the average width and height of all
images). This normalization is specific to a viewpoint vj , so
it preserves its aspect-ratio.

Model behaviour. Fig. 4 shows examples of some location
models learned at stage T 2. Thanks to the way we build
them, our location models are robust to errors in the training
set: correct training samples tend to cluster around the right
locations of a part, whereas incorrect ones tend to scatter
across the whole object. This results in strong peaks at the
correct locations in the model, with only lower values ev-
erywhere else (e.g. headlight for Bus Front). Moreover, note
how our location model is suitable for a variety of cases.
Unique parts of rigid objects form unimodal distributions
(Bicycle saddle, Car license plate), while Bicycle wheel and
Horse leg form bimodal ones. Even in the hard case of
highly movable parts of deformable object classes (e.g. Cat
tail), the model learns that they can appear over broader
regions and spreads the density accordingly.

4.4 Training the viewpoint classifier V2

During stage T 2 we train classifiers V2 on O for predicting
the viewpoint of the object in an image. We train a CNN
to distinguish between the four viewpoints (front, back, left,
right) for which we collected object images from Google
in sec. 4.1 (fig. 1 right). We used these images to train
V2 and, as for A (sec. 4.2), we took the CNN pre-trained
on the ImageNet classification challenge and replaced its
original 1000-way fc8 classification layer with a 4-way fc8.
During stage T 3, the viewpoint classifier is useful to select
an appropriate location model for object imagesOvoc. Given
an input image, we select the viewpoint with the highest
probability. Note that the PASCAL VOC 2010 dataset has
manual viewpoint annotations for some objects (∼ 60% for
the classes we consider). We use these annotations in sec. 5.2
to evaluate how well our viewpoint classifier V2 works.

4.5 Mining for new part instances

In stages T 2 and T 3 we mine for new part instances in
O and Ovoc, respectively. For simplicity, we describe the
process to mine from O. Given each set of images Oj ∈ O

6

TABLE 1: Viewpoint classification results (average precision).
Bicycle Bird Bus Car Cat Cow Dog Horse Sheep mean

V2 51.0 48.1 58.4 43.2 59.0 61.1 52.4 53.3 57.3 53.7
VFS 42.6 39.3 57.8 38.6 55.4 57.9 51.8 44.5 55.9 49.3

showing viewpoint vj , we mine positives for part pi using
the appearance model A1

i and the location model L2
i,j . For

each image, we score all its part proposals with A1
i and

L2
i,j , perform non-maximum suppression and keep only the

proposals with high score. We repeat this for allOj ∈ O and
obtain our final set of new samples. Importantly, we mine
for new part instances within object bounding boxes only.
Even though the initial appearance models A1 were trained
on 25 samples only, they still manage to localize new part
instances, as the search space is very limited. Moreover, this
process is able to mine new instances that look significantly
different than those in the initial set of easy examples P (e.g.
a frontoparallel wheel against a white background vs a out-
of-plane rotated wheel on an actual car, fig. 5), as new part
instances can be selected if at the right location according to
L , even when A is not confident about them.

Mining from Ovoc is analogous, but requires an extra
step, where we use the viewpoint classifier V2 (sec. 4.4) to
predict the otherwise unknown viewpoints of objects Ovoc.

5 EXPERIMENTS AND CONCLUSIONS

5.1 Datasets
We evaluate our framework and all its intermediate stages
on the recent PASCAL-Part dataset [1], which augments
PASCAL VOC 2010 [26] with pixelwise semantic part an-
notations. For evaluation we fit a bounding-box to each part
segmentation mask. Finally, the dataset contains a train
and a validation subsets. We mine new part instances
from train in stage T 3, and measure the performance of
our framework on validation. We verified by using a
near-duplicate detector that none of the images we collected
from Google Images are in Pascal Parts.

We evaluate on nine diverse object classes (bicycle, bird,
bus, car, cat, cow, dog, horse, sheep), three parts each (table 2).
We treat each leg as a separate instance, rather than group-
ing them into a ‘super-part’ (as done by [1]). Note how
previous works evaluating on PASCAL-Parts consider fewer
classes/parts [1], [5], [35] and operate in a fully supervised
scenario (training from manual part location annotations).

5.2 Viewpoint prediction
We evaluate here our viewpoint classifier V2 trained purely
from Google Images (sec. 4.4). We compare it against a
viewpoint classifier VFS trained using manual annotations
from PASCAL VOC 2010 train. In both cases we use the
same CNN model and training procedure (sec. 4.4). We eval-
uate both classifiers in terms of accuracy on validation
(table 1). Results show that our viewpoint classifier V2 con-
siderably outperforms the fully supervised classifier VFS .
Results are not surprising, as objects in the PASCAL VOC
dataset appear often truncated or occluded and sometimes
labelled with the wrong viewpoint. Instead, the images from
Google have clean objects with well defined viewpoints
(fig. 1). Moreover, objects appear as a whole, leading to
better prediction performance.

5.3 Part localization
In this section we evaluate how good our part models are
at localizing parts in novel images. We evaluate part local-
ization in terms of average precision (AP) on the PASCAL-
Part validation set (which was never seen by our learning
procedure). As in [1], a part is considered correctly localized
if is has an IoU ≥ 0.4 with a ground-truth bounding-box.

Our location models are conditioned on the object
viewpoint, which is however unknown for the objects in
validation. We apply our viewpoint classifier V2 on all
objects in validation to select what location model to use.
When detecting parts we use a linear combination of the
score given by the appearance and location models (A+L).

We evaluate each component of our system at each stage
of the learning, from T 0 to T 3. For comparison, we trained
additional part appearance models A0 directly on images
retrieved by Google, before fitting a bounding-box around
each training instance (sec. 4.1). Results are presented in
table 2 and fig. 5. Naively using images as returned by
Google Images (A0) leads to an AP of only 12.9. This reveals
how challenging is the task of localizing object parts on a
dataset like PASCAL VOC. Our refined models A1 perform
already better and improve A0 by +2.8, showing that our
polishing process is useful and provides cleaner examples
that lead to better performance. The really interesting leap
however is achieved in stage T 2 when our framework
associates the object to its parts and learns the connection.
More precisely, learning the location of the parts under the
different viewpoints increases AP to 18.3 (A1 + L2). Using
this information to mine for more part instances and update
the appearance model improves performance even further
to 22.0 (A2). Ultimately, the combination of these two mod-
els (A2 + L2) brings the performance to 23.5. This is almost
double the initial AP of naively training detectors directly
from part images (A0). Importantly, at this point we have
a complete class model (appearance, location, viewpoint)
trained entirely and automatically from Google Images.
Finally, if we additionally migrate to the PASCAL VOC
domain (T 3) and adapt appearance and location models to
it, the performance further improves to a final AP of 27.2
(A3+L3). The steady improvement exhibited from stage T 0

to T 3 by our incremental learning framework demonstrates
its potential in learning complex part models automatically.

For reference, we train two fully supervised models:
AFS1 and AFS2. The former uses manual part bounding-
boxes from PASCAL-Part train, while the latter also uses
the part instances from T 0 collected from the web. Simi-
larly to sec. 4.2, for each class we took AlexNet CNN and
replaced its last layer with a (P + 1)-way fc8 (P parts
an one background class). These models provide an upper-
bound on what can be achieved by any weakly supervised
procedure on this dataset. Our final part detector achieves
27.2 AP, which is 62% of the performance of AFS1. This is
very encouraging, given that we train without part location
annotations, whereas AFS1 trains from 15K part bounding-
boxes on PASCAL-Part train (covering our 9 classes with 3
parts each). These take a lot of time as the parts are small and
difficult to annotate. Interestingly, AFS2 performs a little
worse thanAFS1, despite being trained from more data. We
attribute this to the difference between the type of images in
PASCAL-Part and on the web.

7

TABLE 2: Part detection results (average precision) on the validation set of PASCAL-Part dataset.
T 0 T 1 T 2 T 3

AFS1 AFS2 LEVAN NEIL
A0 A1 A1 + L2 A2 A2 + L2 A3 A3 + L2 A3 + L3 [23] [22]

Bicycle
Wheel 37.2 39.6 50.5 53.9 58.7 56.6 64.0 63.9 75.7 74.2 24.7 43.1
Saddle 4.2 9.8 14.3 14.0 14.5 17.2 20.6 20.7 35.5 31.7 - -
Handlebar 2.2 5.9 3.5 5.9 5.9 8.5 8.7 9.9 25.6 21.1 - -

Bird
Head 16.4 16.4 13.5 22.4 21.0 22.7 22.6 22.7 55.3 52.0 - -
Torso 2.6 5.2 10.1 38.0 48.4 48.9 53.7 55.5 60.8 56.3 - -
Tail 0.2 0.8 2.0 0.5 0.5 1.4 2.1 2.0 8.7 5.1 - -

Bus
Frontside 40.6 43.1 59.5 60.5 68.2 65.2 69.1 69.3 82.2 80.0 - -
Headlight 0.8 1.8 2.1 2.6 2.9 3.5 3.8 4.0 25.5 21.2 - -
Wheel 15.1 19.8 18.2 23.1 22.9 27.1 27.0 27.5 50.6 47.3 5.3 4.9

Car
Backside 13.8 14.7 20.0 18.6 28.4 23.2 28.5 28.4 43.7 42.2 - -
Licence Plate 15.3 15.3 12.6 15.5 15.0 20.5 20.2 21.5 41.0 38.4 5.2 -
Wheel 20.2 22.2 19.2 26.5 26.5 30.4 30.4 31.0 59.3 59.2 5.5 16.4

Cat
Head 25.4 36.9 36.6 48.8 48.2 54.7 54.1 54.6 82.2 80.5 10.9 -
Eye 10.0 10.0 10.5 16.7 16.7 21.2 21.2 21.4 45.6 43.9 1.4 -
Tail 0.1 0.4 1.1 1.5 1.6 2.3 2.2 2.4 15.5 9.8 - -

Cow
Head 29.2 31.8 31.8 39.2 39.3 47.1 47.3 47.9 64.9 64.9 35.3 -
Horn 3.9 6.1 7.2 10.2 10.8 14.5 14.9 15.1 23.1 22.0 - -
Muzzle 7.8 9.9 12.1 17.1 17.4 20.4 20.8 21.1 41.6 40.7 - -

Dog
Head 30.1 32.7 32.8 42.3 42.9 56.1 56.5 56.4 79.1 79.9 20.9 -
Eye 6.5 6.5 7.1 8.1 8.9 10.6 10.6 10.9 17.8 16.4 - -
Tail 0.1 0.2 0.8 1.2 1.1 1.4 1.5 1.7 9.4 6.4 - -

Horse
Head 30.7 33.8 33.5 35.7 34.9 37.9 37.2 37.4 64.4 63.9 22.2 -
Torso 8.1 16.0 46.1 47.2 53.2 48.4 55.7 59.4 71.9 68.9 - -
Leg 0.6 12.0 14.7 4.6 5.3 4.6 6.9 7.1 14.3 11.5 - -

Sheep
Head 25.4 28.2 28.6 33.1 33.5 35.2 35.7 35.6 49.2 49.0 18.4 -
Horn 1.9 2.9 3.3 2.7 3.2 3.1 3.5 3.6 27.3 23.1 - -
Leg 0.4 1.1 2.4 3.1 3.5 3.2 3.6 3.8 13.3 11.6 - -

mAP 12.9 15.7 18.3 22.0 23.5 25.4 26.8 27.2 43.9 41.5 - -

Fig. 5: Detections obtained by running A1 + L2 on object images from Google (top) and A3 + L3 on objects from PASCAL-Parts (bottom).

Comparison to LEVAN [23] and NEIL [22]. LEVAN and
NEIL learn detectors from the web and their original papers
do not present quantitative evaluation on part detection.
Nonetheless, a few of their models represent semantic
parts. We evaluate them in this section, using their DPM
models [3] they released online [22], [23]. LEVAN learns
multi-component object class detectors. The components
within each object model are labelled with a name, like
’horse jumping’ or ’horse head’. We downloaded the de-
tectors for our nine object classes and selected all com-
ponents matching our parts. For example, to detect car
licence plate we run the models labelled as ’plate car super3’
and ’plate car super6’. NEIL, instead, learns a collection
of separate models, some representing object classes and
others part classes, as well as part-of relation between them.
We downloaded all NEIL’s models and selected those in a
part-of relation with any of the object classes we consider.
This only matches one part wheel. Only one generic wheel
model is available, not associated to a specific object class.

We run all these part models on PASCAL-Part

validation and show results in table 2 (rightmost two
columns). Note how most of the parts we consider are
missing from the components learned by NEIL and LEVAN.
On the few parts that they learned, our part detectors
outperform LEVAN and NEIL by a large margin. The main
reason is that their models are trained from part instances
downloaded from the web with no (or minimal) refinement:
LEVAN uses instances similar to our T 0, and NEIL uses
something in between our T 1 and T 2. A second reason is
that LEVAN and NEIL’s components are based on simple
HOG features, which are weaker than CNNs.

5.4 Object detection
In this section we augment the R-CNN object class detec-
tor [27] with our part models. The standard R-CNN detector
scores each object proposal w in an image with a root filter
R covering the whole object. Inspired by [3] we add a
collection of parts arranged in a deformable configuration:

score(w) = R(w) +
N∑
i

max
w′∈Υ

(αi · Ai(w
′) + βi · Li,V(w)(w

′)) (3)

8

TABLE 3: Object detection results (average precision).

Model Test Bicycle Bird Bus Car Cat Cow Dog Horse Sheep meanVOC

R-CNN1 2010 64.6 46.8 63.5 56.3 69.0 45.4 62.4 55.1 54.8 57.4
R-CNN2 2010 64.1 43.7 62.5 56.1 67.3 45.1 61.2 55.0 54.2 56.6
R-CNN1 + parts 2010 66.9 49.3 65.6 58.4 70.8 46.8 64.3 58.0 55.9 59.6
R-CNN1 2012 63.5 44.4 62.2 55.5 68.1 44.6 61.0 53.5 55.4 56.5
R-CNN1 + parts 2012 66.1 47.2 64.1 58.0 69.6 45.9 62.8 56.7 56.4 58.5

where Υ is the set of part proposals inside w. For each
part i, the max operation looks for the best fitting proposal
w′ ∈ Υ according to the part appearance model (Ai) and
location model (Li), measuring how likely part i is to appear
at the location w′. As we have a separate location model
per viewpoint, we use our classifier V to select which one
to use on w. We use the same set of proposals for both
objects and parts (sec. 4.1). We set the weights α and β by
cross-validation on train. This overall object class model
is similar to [3], but instead of using Gaussian part location
models, we have a full probability distributions given by
kernel density estimators (eq. 2).

We train the root filer on PASCAL-Parts train as in [27].
The other elements of the model are learned from the web
and PASCAL-Parts using our technique (sec. 4), i.e. A3 as
part filters, L3 as location models and V2 as viewpoint
classifiers. No manual part location annotations is used for
training. We report object detection results on validation
of PASCAL VOC 2010 and 2012, in terms of AP (table 3).
Compared to using the R-CNN root filter alone (R-CNN1),
adding parts increases its performance by 2-3% on all
classes, and on both test sets (R-CNN1+ parts). This shows
that our part models can help object class detection, even
when added to an already strong fully supervised detector
like R-CNN. This is an interesting result, especially consid-
ering that our parts are designed to be semantic, as opposed
to discriminative arbitrary patches [2], [3].

For a fully fair comparison, we also train another R-CNN
model on object instances from both PASCAL-Part and the
images we downloaded from the web (T 0). Interestingly,
training using this additional data decreases performance
by 0.8% (R-CNN2). Again, we attribute this to the difference
between the type of images in PASCAL-Part and on the web.

6 CONCLUSIONS
We presented a technique for learning part-based models
from the web. It operates by collecting object and part
instances and by automatically connecting them in an in-
cremental learning procedure. Our models encompass the
appearance of parts and their spatial arrangement on the
object, specific to each viewpoint. We reported results on the
challenging PASCAL-Parts which show that our technique
is able to learn good part detectors from the web. Finally,
we demonstrated the value of our part models by enriching
the R-CNN object detector with parts.
Acknowledgments. Support by ERC Starting Grant VisCul.

REFERENCES

[1] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille,
“Detect what you can: Detecting and representing objects using
holistic models and body parts,” in CVPR, 2014.

[2] I. Endres, K. Shih, J. Jiaa, and D. Hoiem, “Learning collections of
part models for object recognition,” in CVPR, 2013.

[3] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Ob-
ject detection with discriminatively trained part based models,”
IEEE Trans. on PAMI, vol. 32, no. 9, 2010.

[4] P. Arbeláez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and
J. Malik, “Semantic segmentation using regions and parts,” in
CVPR, 2012.

[5] J. Wang and A. Yuille, “Semantic part segmentation using compo-
sitional model combining shape and appearance,” in CVPR, 2015.

[6] J. Liu, A. Kanazawa, D. Jacobs, and P. Belhumeur, “Dog breed
classification using part localization,” in ECCV, 2012.

[7] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar, “Cats and
dogs,” in CVPR, 2012.

[8] N. Zhang, J. Donahue, R. Girshick, and T. Darrell, “Part-based r-
cnns for fine-grained category detection,” in ECCV, 2014.

[9] J. Liu, Y. Li, and P. N. Belhumeur, “Part-pair representation for
part localization,” in ECCV, 2014.

[10] M. Sun and S. Savarese, “Articulated part-based model for joint
object detection and pose estimation,” in ICCV, 2011.

[11] N. Ukita, “Articulated pose estimation with parts connectivity
using discriminative local oriented contours,” in CVPR, 2012.

[12] L. Bourdev and J. Malik, “Poselets: Body part detectors trained
using 3d human pose annotations,” in ICCV, 2009.

[13] N. Zhang, R. Farrell, F. Iandola, and T. Darrell, “Deformable part
descriptors for fine-grained recognition and attribute prediction,”
in ICCV, 2013.

[14] G. Gkioxari, R. Girshick, and J. Malik, “Actions and attributes from
wholes and parts,” in ICCV, 2015.

[15] M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman, “Blocks that
shout: Distinctive parts for scene classification,” in CVPR, 2013.

[16] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman, “Learning object
categories from google’s image search,” in ICCV, 2005.

[17] S. Vijayanarasimhan and K. Grauman, “Keywords to visual cat-
egories: Multiple-instance learning for weakly supervised object
categorization,” in CVPR, 2008.

[18] L.-J. Li and L. Fei-Fei, “Optimol: automatic online picture collec-
tion via incremental model learning,” IJCV, vol. 88, no. 2, pp. 147–
168, 2010.

[19] F. Schroff, A. Criminisi, and A. Zisserman, “Harvesting image
databases from the web,” IEEE Trans. on PAMI, vol. 33, no. 4, pp.
754–766, 2011.

[20] Q. Li, J. Wu, and Z. Tu, “Harvesting mid-level visual concepts
from large-scale internet images,” in CVPR, 2013.

[21] X. Chen, A. Shrivastava, and A. Gupta, “Neil: Extracting visual
knowledge from web data,” in ICCV, 2013. [Online]. Available:
www.neil-kb.com

[22] S. Divvala, A. Farhadi, and C. Guestrin, “Learning everything
about anything: Webly-supervised visual concept learning,” in
CVPR, 2014. [Online]. Available: levan.cs.washington.edu

[23] X. Chen and A. Gupta, “Webly supervised learning of convolu-
tional networks,” in CVPR, 2015.

[24] D. Novotny, D. Larlus, and A. Vedaldi, “Learning the semantic
structure of objects from web supervision,” in ECCV workshop on
Geometry Meets Deep Learning, 2016.

[25] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman, “The PASCAL Visual Object Classes (VOC) Challenge,”
IJCV, 2010.

[26] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hier-
archies for accurate object detection and semantic segmentation,”
in CVPR, 2014.

[27] D. Lin, X. Shen, C. Lu, and J. Jia, “Deep lac: Deep localiza-
tion, alignment and classification for fine-grained recognition,” in
CVPR, 2015.

[28] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: interactive
foreground extraction using iterated graph cuts,” SIGGRAPH,
vol. 23, no. 3, pp. 309–314, 2004.

[29] D. Kuettel and V. Ferrari, “Figure-ground segmentation by trans-
ferring window masks,” in CVPR, 2012.

[30] A. Rosenfeld and D. Weinshall, “Extracting foreground masks
towards object recognition,” in ICCV, 2011.

[31] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M.
Smeulders, “Selective search for object recognition,” IJCV, 2013.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in NIPS, 2012.

[33] Y. Jia, “Caffe: An open source convolutional architecture for fast
feature embedding,” http://caffe.berkeleyvision.org/, 2013.

[34] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Hyper-
columns for object segmentation and fine-grained localization,”

in CVPR, 2015.

www.neil-kb.com
levan.cs.washington.edu
http://caffe.berkeleyvision.org/

