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for Video Classification
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Abstract—We address the problem of video classification for facial analysis and human action recognition. We propose a novel weakly
supervised learning method that models the video as a sequence of automatically mined, discriminative sub-events (e.g. onset and
offset phase for “smile”, running and jumping for “highjump”). The proposed model is inspired by the recent works on Multiple Instance
Learning and latent SVM/HCRF – it extends such frameworks to model the ordinal aspect in the videos, approximately. We obtain
consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis
datasets for prediction of expression, clinical pain and intent in dyadic conversations, and on three challenging human action datasets.
We also validate the method with qualitative results and show that they largely support the intuitions behind the method.

Index Terms—Weakly Supervised Leaning, Facial analysis, Human Actions, Latent Variable Model, Video Classification.
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1 INTRODUCTION

T HE world is exploding with large amounts of visual data and
videos are the major chunk of such data. Hundreds of hours

of videos are being added to YouTube per day, and millions of
surveillance cameras are recording continuous video streams day
in and day out. Most of these videos are human centric and the
huge scale demands systems capable of automatically processing
and understanding such data. Hence, researchers in computer
vision have been actively engaged in designing methods which
work with human centered video data, for tasks like recognizing
human actions in videos [1], [2], [3], [4], [5], [6], [7], [8] and
facial analysis in videos [9], [10], [11], [12], [13], [14].

We are interested in the challenging and relevant problem of
classifying videos, of faces and humans, based on the property the
face is exhibiting or the actions the human is performing. We work
in a weakly supervised setting where only labels for the videos are
given while all individual, or any selected subset of, frames do not
have any labels. The usual assumption in such weakly supervised
setting is that the positive ‘bag’ contains at least one positive
instance, while the negative ‘bag’ does not have any positive in-
stances. In weakly supervised settings, Multiple Instance Learning
(MIL) [15] based methods are one of the popular approaches and
have been applied to the task of facial video analysis [9], [16], [17]
with video level, and no frame level, annotations. However, the
main drawbacks of most of such (MIL based) approaches are that
(i) they use the maximum scoring vector to make the prediction
[15], and (ii) the temporal/ordinal information is lost completely.
While, in the recent work by Li and Vasconcelos [18], MIL
framework has been extended to consider multiple top scoring
vectors, the temporal order is still not incorporated. Intuitively,
the temporal order is definitely important; recent works exploit
it for related computer vision tasks, e.g. visual representation
learning [19], [20]. We propose a novel method that (i) works
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with weakly supervised data, (ii) mines out the prototypical and
discriminative set of vectors required for the task, and (iii) learns
constraints on the temporal order of such vectors. We show how
modeling multiple vectors instead of the maximum one, while
simultaneously considering their ordering, leads to improvements
in performance.

The proposed model belongs to the family of models with
structured latent variables e.g. Deformable Part Models (DPM)
[21] and Hidden Conditional Random Fields (HCRF) [22]. In
DPM, Felzenszwalb et al. [21] constrain the location of the parts
(latent variables) to be around fixed anchor points with penalty for
deviation while Wang and Mori [22] impose a tree structure on the
human parts (latent variables) in their HCRF based formulation. In
contrast, we are not interested in constraining our latent variables
based on fixed anchors [6], [21] or distance (or correlation) among
themselves [12], [22], but are only interested in modeling the order
in which they appear. Thus, the model is stronger than models
without any structure while being weaker than models with more
strict structure [6], [21], [22].

The proposed model is also reminiscent of Actom Sequence
Model (ASM) of Gaidon et al. [2], where a temporally ordered
sequence of sub-events are used to perform action recognition in
videos. However, while ASM requires annotation of such sub-
events in the videos; the proposed model aims to find such
sub-events automatically. While ASM places absolute temporal
localization constraints on the sub-events, the proposed model
only cares about the order in which such sub-events occur. One
advantage of doing so is the flexibility of sharing appearances for
two sub-events, especially when they are automatically mined. As
an example, the facial expression may start, as well as end, with a
neutral face. In such case, if the sub-event (neutral face) is tied to
a temporal location we will need two redundant (in appearance)
sub-events i.e. one at the beginning and one at the end. While, here
such sub-events will merge to a single appearance model, with the
symmetry encoded with similar cost for the two ordering of such
sub-event, keeping the rest same.

Informally, the proposed model is a collection of discrim-
inative templates, which capture the appearances of the sub-
events in the video, along with a cost vector corresponding to
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all possible permutations in which the events can occur in a video.
Scoring by the proposed model is done as follows. The multiple
discriminative events in the model are detected and scored in the
current video and they also incur a cost depending on the temporal
ordering in which they appear in the video. The mining of such
discriminative events and learning of the appropriate templates,
along with learning the costs associated with different orders of
occurrence of the events, happens fully automatically in a weakly
supervised setting with the event locations (in time) being latent
variables. We propose to learn the model with a max-margin
loss minimization objective, optimized with efficient stochastic
gradient descent. On the task of facial video analysis, we validate
the model on four challenging datasets of expression recognition
(CK+ [23] and Oulu-CASIA VIS [24] datasets), clinical pain
prediction (UNBC-McMaster Pain dataset [10]) and intent predic-
tion in dyadic conversations (LILiR dataset [25]). We show that
the method consistently outperforms temporal pooling and MIL
based competitive baselines. In combination with complementary
features, we report state-of-the-art results on these datasets with
the proposed model.

On the task of human video analysis, we follow previous work
and propose a second variant of the method which takes into
account the global temporal information as well. The model with
only local discriminative sub-events assumes that the video can
be factorized cleanly into such sub-events. However, for the more
challenging case of human action such factorization is not always
clean, in the sense that while some actions are easily factorizable,
e.g. running and jumping for high-jump, others are a complex
combination of local events and full global temporal information
and context, e.g. hitting. This interplay of local and global factors
for action recognition has been acknowledged either explicitly or
implicitly by experiments in previous works as well [6], [26].
We take inspiration from such works and extend the model to
incorporate global features, obtained by some pooling operation
over the features of the frames, of the video as well. We cast the
final objective as a weighted (convex) combination of the local
and global parts and learn the parameters jointly. We validate the
model, for human analysis, on challenging datasets of Olympic
Sports [6], Human Motion Database (HMDB) [5] and HighFive
dataset [27] of human interactions. On human analysis as well,
we show consistent improvements over challenging and relevant
baselines. The method achieves results that are competitive to
state-of-the-art on the three datasets. Further, qualitative analysis
of the results validate the hypothesis of the method i.e. we show
that the method is successful in mining out discriminative events
and also learns a consistent ordering over their occurrences.

A preliminary version of this work appeared in [28] with the
first variant of the model applied only to facial analysis tasks.

2 RELATED WORKS

We now describe closely related works in the following sections.
We compare and contrast our model with related models in the
literature while discussing works on the tasks of face and general
human action video classification.

2.1 Facial Analysis
Facial analysis is an important area of computer vision. The
representative problems include face (identity) recognition [29],
identity based face pair matching [30], age estimation [31], [32],
kinship verification [33], emotion prediction [34], [35], among

others. Facial analysis finds important and relevant real world ap-
plications such as human computer interaction, personal robotics,
and patient care in hospitals [9], [10], [11], [36]. When we work
with videos of faces, we assume that face detection has been
done reliably. We note that, despite reduction to just faces, the
problem is still quite challenging due to variations in human
faces, articulations, lighting conditions, poses, video artifacts such
as blur etc. Moreover, we work in a weakly supervised setting,
where only video level annotation is available and there are no
annotations for individual video frames.

Early approaches for facial expression recognition used apex
(maximum expression) frames [36], [37], [38] or pre-segmented
clips, and thus were strongly supervised. Also, they were often
evaluated on posed video datasets [23]. To encode the faces into
numerical vectors, many successful features were proposed e.g.
Gabor [39] and Local Binary Patterns (LBP) [38], fiducial points
based descriptors [40]. They handled videos by either aggregating
features over all frames, using average or max-pooling [1], [41],
or extending features to be spatio-temporal e.g. 3D Gabor [42]
and LBPTOP [43]. Facial Action Units, representing movement
of facial muscle(s) [36], were automatically detected and used as
high level features for video prediction [36], [44].

Noting that temporal dynamics are important for expressions
[36], the recent focus has been more on algorithms capturing
dynamics e.g. Hidden Markov Model (HMM) [45] and Hidden
Conditional Random Fields (HCRF) [46], [47] have been used for
predicting expressions. Chang et al. [46] proposed a HCRF based
model that included a partially observed hidden state at the apex
frame, to learn a more interpretable model where hidden states had
specific meaning. The models based on HCRF are also similar to
latent structural SVMs [13], [22], where the structure is defined as
a linear chain over the video frames. Other discriminative methods
were proposed based on Dynamic Bayesian Networks [48] or
hybrids of HMM and SVM [49]. Lorincz et al. [50] explored time-
series kernels e.g. based on Dynamic Time Warping (DTW) for
comparing expressions. Another similar model used probabalistic
kernels for classifying exemplar HMM models [41].

Nguyen et al. [51] proposed a latent SVM based algorithm
for classifying and localizing events in a time-series. They later
proposed a fully supervised structured SVM for predicting Action
Unit segments in video sequences [13]. Our algorithm differs from
[51], while they use simple MIL, we detect multiple prototypical
segments and further learn their temporal ordering. MIL based
algorithm has also been used for predicting pain [9]. In recent
works, MIL has been used with HMM [17] and also to learn
embedding for multiple concepts [16] for predicting facial ex-
pressions. Rudovic et al. [12] proposed a CRF based model that
accounted for ordinal relationships between expression intensities.
Our work differs from this work in handling weakly labeled data
and modeling the ordinal sequence between sub-events.

2.2 Human Analysis

There have been many works related to understanding humans in
visual data. Methods have been proposed for human action and
attribute recognition from still images [52], [53], [54], [55], [56],
[57], [58], where typical appearances (e.g. sports clothes) or poses
(e.g. jumping, riding a bike) may be sufficient for recognition [59].
While many actions are highly correlated with typical poses and
clothes, many require some temporal information and using just
still images are thus not sufficient. Motion, being an important
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cue for the task of human action recognition, has been exploited
by many works [1], [2], [3], [4], [59], [60], [61], [62]. One of the
most popular approaches in the last decade relied on using local
methods that extracted descriptors such Histogram of Flow (HOG)
and Histograms of Gradients (HOF) over salient 3D regions such
as Space-Time Interest Points [1], [63], [64]. The final descriptors
were obtained by popular pooling methods such as the bag-of-
features [64], [65] and Fisher vector [66], [67] frameworks. Since
pixels are moving over time in videos, a fixed space-time voxel
may not be able to represent complete motion of such a pixel.
Therefore techniques were proposed to describe trajectories by
tracking pixel(s) over time instead of interest points [3], [68], [69],
[70], [71]. Wang et al. [68] showed that densely tracking motion
trajectories is superior to previous approaches and proposed to
describe them using Motion Boundary Histogram (MBH) for
handling camera motion. Several approaches improved upon the
Dense Trajectories approach by compensating for camera motion
by removing background motion using affine transformation [71],
clustering trajectories for identifying dominant camera motion
[72], using image-stitching methods to generate stabilized video
prior to computing trajectories [73]. Wang et al. proposed Im-
proved Dense Trajectories (iDT) [3] approach that estimated and
removed camera motion using homography and also removed
inconsistent feature matches by human detection. In combination
with using Histogram based features, Fisher Vector encoding and
Spatio-Temporal pyramids, they showed significant improvements
compared to previous methods. [74] improved upon these features
by proposing to stack features extracted at multiple temporal
frequencies.

Many works have also focussed on improving upon standard
pooling pipelines by explicitly modeling spatial and temporal
structure of human activities [6], [26], [73], [75], [76], [77], [78].
Niebles et al. [6] used a variant of DPM approach to model each
activity as composed of short temporal segments with anchored
locations, and penalized segments that drifted away from these
anchors during inference. Improving upon their approach, Tang et
al. [26] proposed a more flexible variable duration Hidden Markov
model that modeled an activity as composed of temporal segments
with variable durations and first order transitions. Some works
have used MIL based approaches for action classification [51],
[78], [79]. Li et al. [75] proposed to dynamically pool over relevant
segments in a video. A closely related work to ours modeled
videos as a set of sparse key-frames, that were learned weakly,
but assumed fixed ordering between the events [77]. Gaidon et al.
[2] used additional training data for learning the sub-events while
assuming fixed ordering. In constrast we not only model each
video as composed of sub-events but also learn them in a weakly
supervised setting along with a loose ordering between them.
Moving away from latent variable modeling, Gaidon et al. [73]
used a tree based kernel to compare hierarchical decomposition
of videos as cluster of dense trajectories. Other approaches have
used attribute dynamics [80], mid-level parts [81], spatio-temporal
graphs [76], higher level pooling methods such as rank pooling
[82] and distribution of classifier scores [83].

As deep learning showed excellent performance for image
classification problems [84], [85], [86], several approaches also
explored their use for human action recognition [4], [87], [88],
[89], [90], [91], [92]. Some earlier works relied on using 3D
convolutional networks [93] and their extensions such as early
and late fusion [94] for action recognition. Simonyan et al. [4]
proposed a two-stream convolutional network that learned both

spatial and temporal networks (over stacked optical flow frames).
A drawback of these networks was that they were learning features
over a few frames and thus were only marginally better than
networks that learned features over a single frame. Ng et al.
[95] proposed a network that allows training over longer periods
by either using feature pooling (similar to temporal pooling) or
Recurrent Neural Networks such as Long Short Term Memories
(LSTMs). Several other approaches have also explored the use of
LSTMs architectures [88], [96] for action classification and video
caption generation [97]. Some recent methods have also used
Attention based LSTMs that does classification while focussing on
discriminative parts of a video [89], [96]. Tran et al. [87] showed
that strong 3D and compact spatiotemporal features can be learned
for action recognition by using small 3D filters of 3×3×3 pixels.
Several of these works have also shown the advantages of fusing
deep models trained on spatial and temporal components with
non-deep features such as iDT [89].

3 APPROACH: LATENT ORDINAL MODEL (LOMO)
We denote a video as sequence of N frames1 represented as a
matrix

X = [x1, x2, . . . , xN ] (1)

with xf ∈ Rd being the feature vector for frame f . We work in
a weakly supervised binary classification setting, where we are
given a training set

X = {(X, y)} ⊂ Rd×N × {−1,+1} (2)

containing videos annotated with the presence (y = +1) or
absence (y = −1) of a class in X , without any annotations for
specific frames of the video X i.e. xf∀f ∈ [1, N ]. While we
confine ourselves to the task of video classification in this paper,
we note that our model is applicable to general vector sequence
classification in a weakly supervised setting.

The proposed model learns a set of events, as well as a cost
function associated with the order of occurrence of those events.
The events are defined by the associated, discriminatively learned,
templates. These templates capture the appearances of different
sub-events, e.g. neutral, onset or offset phase of an expression,
while the cost function captures the discriminative likelihood of
the different temporal orders in which the sub-events appear in
the videos. The model templates and the cost function are all
automatically and jointly learned, from the training data. Hence,
the sub-events are not constrained to be either similar or distinct
w.r.t. each other, and are not fixed according to certain expected
states [2]. They are mined from the data and could potentially be
a combination of the sub-events generally used by humans, e.g. to
describe expressions or human activities [2], [6].

Formally, the model is defined as

Θ =
(
{wi}Mi=1, {cj}M !

j=1

)
,wi ∈ Rd, cj ∈ R (3)

with i = 1, . . . ,M indexing over the M sub-event templates
and j = 1, . . . ,M ! indexing over the different temporal orders in
which these templates can occur. The wi are similar to the SVM
hyperplane parameter vectors, which have been often visualized
as templates [21]. While, the ordering function is implemented as
a look-up table i.e. c : {1, . . . ,M !} → R with c(i) = ci ∈ R,

1. We assume, for brevity, all videos have the same number of frames,
extension to different number of frames is immediate
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with size equal to the number of permutations of the sub-events.
In the following sections we make the model, and especially the
cost function, more concrete and give two variants of the proposed
model adapted to facial analysis and human action classification,
respectively. We first describe the model that takes into account the
contribution of only the local temporal information that includes
scores from the detected sub-events and the ordering cost function
(Sec. 3.1). This model works well for analyzing human facial
behavior sequences that have a strong local temporal structure.
However, this might not be the case with unconstrained human
activities where certain classes can be better analyzed by either
local or global motion components or their combinations. Thus,
we adapt the model to include both the local and global temporal
information, that are adaptively weighted and learned for different
classes (Sec. 3.2).

We learn the model Θ with a `2 regularized max-margin hinge
loss minimization, given by

min
Θ

L(Θ) =

λ1

2
‖w‖2 +

λ2

2

M !∑
j=1

c2j

+
1

|X|
∑
X∈X

[1− yisΘ(X)]+

}
, (4)

[a]+ = max(a, 0) ∀a ∈ R. (5)

sΘ(X) is the scoring function which uses the model templates
and the cost function to assign a confidence score to the example
X and w = [w1, . . . ,wM ] is the concatenation of the component
vectors. The decision boundary is given by sΘ(X) = 0. The
scoring function depends on the type of model we use and is
thus defined in the following sections along with the two model
variants.

3.1 Scoring Function with Local Events — LOMo
In the simplest case the model factorizes the sequence as ordered
set of local events, which are relatively few compared to the
number of elements in the sequence. The model consists of a set
of sub-event templates and a function which assigns weights to all
the different possible ordering of the events.

Deviating from a linear SVM classifier, which has a single
parameter vector, the model now has multiple such vectors which
act at different temporal positions. The scoring function for a video
X , with model Θ, is defined as

sΘ(X) = max
k

1

M

M∑
i=1

w>i xki + cσ(k) (6a)

s.t. Ov(k) ≤ β (6b)

where,

k = [k1, . . . , kM ] ∈ NM , 1 ≤ kj ≤ N (7)

are the M latent variables, and

σ : NM → N (8)

maps k = (k1, . . . , kM ) to an index, with lexicographical
ordering e.g. with M = 4 and without loss of generality
k1 < k2 < k3 < k4, σ(k1, k2, k3, k4) = 1, σ(k1, k2, k4, k3) =
2, σ(k1, k3, k2, k4) = 3 and so on. The latent variables take
the values of the frames on which the corresponding sub-event

templates in the model gives maximal response while being
penalized by the cost function for the sequence of occurrence
of the sub-events. Ov(k) is an overlap function, with β being
a threshold, to ensure that multiple wi’s do not select very close
by frames. We realize the overlap function by constraining the
temporal locations of different sub-events to occur at a certain
distance from each other (refer to Sec. 3.4).

3.2 Scoring Function with Local Events and Global In-
formation — Adaptive LOMo
The LOMo model works well for facial videos, e.g. of facial
expressions, as they are expected to be composed of tempo-
ral segments such as neutral, onset and apex states for facial
expressions. However, this is not always the case for human
activities which are more complex and are both spatially and
temporally unconstrained. These activities could span from simple
actions, that are composed of a single motion segment, to complex
or periodic activities such as “talk”, “longjump”, “hugging”,
“highjump” etc. In other words different activities have different
temporal structure. We adapt LOMo to wide range of activities
by extending the model to include global information. We obtain
global temporal information by using temporal pooling over all the
features of a video. This has been often done in works learning
decomposable temporal or spatial structure in videos [6], [26],
[98], [99]. Going a step further, compared to such works, we
optimize an objective which is a convex combination of scorings
based on local and global components, jointly over the parameters
corresponding to the two components. A similar idea was used by
authors in [73], who also did a weighted combination of local and
global components. However, (i) the issue of weakly labelled data
was not addressed and (ii) the locality was defined by clustering
local spatio-temporal features rather than being learned jointly
with the classifier, as in the present case.

The adapted scoring function includes weighted combination
of both, the local sub-events and their ordering cost and the global
temporal component. The scoring function we use is given as,

sΘ(X) = max
k

{
γgw>g xg + γ̄g

(∑M
i=1 w>i xki
M

+ cσ(k)

)}
(9a)

s.t. Ov(k) ≤ β (9b)

where, in addition to the notations introduced above in Sec. 3.1,
γ̄g = 1− γg and

xg = Pool(X) ∈ Rd (10)

is the global feature, obtained by pooling over all the vectors for
the different frames. wg ∈ Rd is the hyperplane for the global
template.

In addition to the change in the scoring function, the objective
function (Eq. 4) is also modified slightly by including `2 regu-
larization term for the global parameter wg , i.e. the w in Eq. 4
becomes w = [wg,w1, . . . ,wM ].

3.3 Discussion
Intuitively, in the proposed ordinal model, we capture the idea
that each video sequence is composed of a small number of
prototypical sub-events, e.g. onset followed by apex phase for
a smiling face and running followed by jumping for long jump.
The components in our model capture the appearance of the



5

Algorithm 1 SGD based learning for LOMo
1: Given: X,M, λ, η, k, γg
2: Initalize: wi ∼ U [0, 1e−4]∀i ∈ [1,M ], c← 0
3: for all t = 1, . . . , maxiter do
4: Randomly sample (X, y) ∈X

5: Obtain sΘ(X) and k using Eq. 6 or Eq. 9
6: if ysΘ(X) < 1 then
7: for all i = 1, . . . ,M do
8: wi ← wi(1− λ1η) + η(1− γg)yixki/M
9: end for

10: c← c(1− λ2η)
11: cσ(k) ← cσ(k) + η(1− γg)yi
12: wg ← wg(1− λ1η) + ηγgyixg
13: end if
14: end for
15: Return: Model Θ =

(
{wi}Mi=1, {cj}M !

j=1

)

prototypical sub-events of the class of interest. However, instead of
the sub-events being manually defined, (i) they are learned within
a discriminative framework and (ii) are, thus, mined automatically
with a discriminative objective. The cost function c(·) effectively
learns the order in which such appearances should occur. It is
expected to support the likely order of sub-events while penalizing
the unlikely ones. Even if a negative video gives reasonable sub-
event detections, the order of occurence of such false positive
detections is expected to be incorrect. Thus, the negative video is
expected to be penalized by the order dependent cost despite giv-
ing sub-event detections. We validate these intuitions empirically
with qualitative results in Sec. 4.4.

The second variant of the model, described in Sec. 3.2,
combines local events with the global information in the video
using a convex combination of the two respective terms as the
optimization objective. This formulation adapts LOMo to differ-
ent human action classes that could have either local or global
structure, or a combination of both. The relative importance of
the local versus global parts are learned using cross-validation
for each class. We later discuss and show qualitative examples,
in Sec. 4.4, of classes where either of the two components are
important compared to the other for human actions. The Adaptive
LOMo is an extension of LOMo, setting γ = 0 makes it same
as to LOMo while γ = 1 makes it same as the global temporal
pooling based methods.

3.4 Learning

We propose to learn the model using a stochastic gradient descent
(SGD) based algorithm with analytically calculable sub-gradients,
given as

∇wiL =

{
λ1wi − (1− γg)yxki/M if ysΘ(X) < 1
λ1wi otherwise.

(11)

The expression for gradient w.r.t. wg is also similar, with
xki/M, (1−γg) replaced by xg, γg respectively and∇ciL = 1 if
ysΘ(X) < 1 and 0 otherwise. The algorithm, summarized in Al-
gorithm 1, randomly samples the training set and does stochastic
updates based on the current example. Due to its stochastic nature,
the algorithm is quite fast and is usable in online settings where
the data is not entirely available in advance and arrives with time.

The scoring optimization can be solved exactly using Dynamic
Programming (DP). However, in practice we found the DP based
solver to be slow and we resorted to an approximate but much
faster algorithm. In the experimental results reported in this paper,
we solve the scoring optimization with the following approximate
algorithm. We obtain the best scoring frame xki for wi, sequen-
tially for i = 1, . . . ,M , and remove wi from the model and
xki−t

, . . . , xki+t
frames from the video; and repeat steps M times

so that every wi has a corresponding xki . t is a hyperparameter
to ensure temporal coverage by the model – it stops multiple wi’s
from choosing (temporally) close frames. Using such suppression
we approximately incorporate the overlap constraint in the scoring
function (Eq. 6 & Eq. 9); the hyperparameter β is replaced by t.
Once the k = k1, . . . , kM sub-event locations are chosen we add
cσ(k) to their average template score i.e.

∑M
i=1 w>i xki/M . We

refer the readers to appendix for discussion regarding using DP
based solution for inference.

4 EXPERIMENTAL RESULTS

We evaluate the proposed algorithms on two domains of facial
analysis and human actions. We now present the details of the
datasets and the experimental settings, and then discuss the results.

4.1 Facial Analysis Datasets and Settings
We empirically evaluate the proposed approach on four chal-
lenging, publicly available, facial behavior datasets, of emotions,
clinical pain and non-verbal behavior, in a weakly supervised
setting i.e. without frame level annotations. The four datasets
range from both posed (recorded in lab setting) to spontaneous
expressions (recorded in realistic settings).

4.1.1 Datasets
CK+ [23] is a benchmark dataset for expression recognition, with
327 videos from 118 participants posing for seven basic emotions
– anger, sadness, disgust, contempt, happy, surprise and fear. We
use a standard subject independent 10 fold cross-validation and
report mean of average class accuracies over the 10 folds. It
has annotations for the apex frame and thus also allows fully
supervised training and testing.

Oulu-CASIA VIS [24] is another challenging benchmark for
basic emotion classification. We use the subset of expressions that
were recorded under the visible light condition. There are 480
sequences (from 80 subjects) and six classes (as CK+ except
contempt). It has a higher intra-class variability as compared
to CK+ due to differences among subjects. We report average
multiclass accuracy and use subject independent folds provided
by the dataset creators.

UNBC McMaster Shoulder Pain [10] is used to evaluate clinical
pain prediction. It consists of real world videos of subjects with
pain while performing guided movements of their affected and
unaffected arm in a clinical interview. The videos are rated for
pain intensity (0 to 5) by trained experts. Following [17], we
label videos as “pain” for intensity above three and “no pain” for
intensity zero, and discard the rest. This results in 149 videos from
25 subjects with 57 positive and 92 negative samples. Following
[17] we do a standard leave-one-subject out cross-validation and
report classification rate at ROC-EER.

LILiR [25] is a dataset of non-verbal behavior such as agreeing,
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thinking, in natural social conversations. It contains 527 videos
of 8 subjects involved in dyadic conversations. The videos are
annotated for 4 displayed non-verbal behavior signals- agreeing,
questioning, thinking and understanding, by multiple annotators.
We generate positive and negative examples by thresholding the
scores with a lower and higher value and discarding those in
between. We then generate ten folds at random and report average
Area under ROC – we will make our cross-validation folds public.
This differs from Sheerman et al. [25], who used a very small
subset of only 50 video samples that were annotated with the
highest and the lowest scores.

4.1.2 Features

We compute four types of facial descriptors. We extract 49 fa-
cial landmark points and head-pose information using supervised
gradient descent [100] and use them for aligning faces. The first
set of descriptors are SIFT-based features, which we compute by
extracting SIFT features around facial landmarks and thereafter
concatenating them [36], [100]. We align the faces into 128×128
pixel and extract SIFT features (using open source vlfeat
library [101] ) in a fixed window of size 12 pixels. The SIFT
features are normalized to unit `2 norm. We chose location of
16 landmark points around eyes (4), brows (4), nose (2) and
mouth (6) for extracting the features. Since SIFT features are
known to contain redundant information [102], we use Principal
Component Analysis to reduce their dimensionality to 24. To each
of these frame-level features, we add coarse temporal information
by appending the descriptors from next 5 consecutive frames,
leading to a dimensionality of 1920. The second features that we
use are geometric features [36], [40], that are known to contain
shape or location information of permanent facial features (e.g.
eyes, nose). We extract them from each frame by subtracting x
and y coordinates of the landmark points of that frame from the
first frame (assumed to be neutral) of the video and concatenating
them into a single vector (98 dimensions). We also compute LBP
features (with radius 1 and neighbourhood 8) that represent texture
information in an image as a histogram. We add spatial informa-
tion to the LBP features by dividing the aligned faces into a 9× 9
regular grid and concatenating the histograms (4779 dimensions)
[37], [103]. We also consider Convolution Neural Network (CNN)
features by using publicly available models of Parkhi et al. [29]
that was trained on a large dataset for face recognition. We use the
network output from the last fully connected layer. However, we
found that these performed lower than other features e.g. on Oulu
and CK+ datasets they performed about 10% absolute lower than
LBP features. We suspect that they are not adapted to tasks other
than identity discrimination and did not use them further.

4.1.3 Baselines

For our experiments on human facial behavior analysis we report
results with 4 baseline approaches. For first two baselines we use
average (or mean) (MnP) and max temporal pooling (MxP) [41]
over per-frame facial features along with SVM. Temporal pooling
is often used along with spatio-temporal features such as Bag of
Words [1], [9], LBP [43] in video event classification, as it yields
vectorial representation for each video by summarizing variable
length frame features. We select Multiple Instance Learning based
on latent SVM [15] as the third baseline algorithm. We also
compute the performance of the fully supervised (FS) algorithms
for cases with known location of the frame that contains the

apex expression. For making a fair comparison, we use the same
implementation for SVM, MIL and LOMo.

4.1.4 Parameters
We fix M = 1 and cσ = 0 in the current implementation, for
obtaining SVM baseline results with a single vector input (mean
and max pooling), and report best results across both learning rate
and number of iterations. For both MIL (M = 1) and LOMo,
which take a sequence of vectors as input, we set the learning rate
to η = 0.05 and for MIL we set cσ = 0. We fix the regularization
parameters λ1 = 10−5 and λ2 = 0 for all experiments, based
on initial validation experiments. We do multiclass classification
using one-vs-all strategy. For ensuring temporal coverage (see
Sec. 3.4), we set the search space for finding the next sub-event
to exclude t = 5 and 50 neighboring frames from the previously
detected sub-events’ locations for datasets with fewer frames per
video (i.e. CK+, Oulu-CASIA VIS and LILiR datasets) and UNBC
McMaster dataset, respectively. We did not do (dataset specific)
cross-validation for these hyperparameters as we found the results
to be stable across different choice of hyperparameters owing to
similar domain of the datasets. We set M = 3 for all datasets
except CK+ where we set M = 2 since it consists of posed
expressions containing only onset and apex phase spanning a few
frames. For our final implementation, we combine LOMo models,
learned independently on different features, using late fusion i.e.
we averaged the prediction scores with equal weights.

4.2 Human Actions Datasets and Settings

We also evaluate our approach on 3 challenging publicly available
human action classification datasets. Their videos has only video-
level labels and cover wide range of activities such as sports,
grooming, human interactions, that showed wide variability in
appearance, temporal structure, duration, viewpoints etc.

Olympic Sports [6] is a dataset of sports activities e.g. snatch,
clean and jerk, high jump etc. It contains 783 video samples from
16 sports classes with most videos collected from YouTube. Most
of these the activity classes are complex activities [6], [104] in that
they are composed of simpler actions, e.g. long jump activity is
composed of standing, running and jumping. In addition to simple
limb movements this dataset also involves interactions between
humans and objects, e.g. javelin in javelin throw class. We use
the train and test splits provided by the authors and report Mean
Average Precision (mAP) across all classes.

High Five [27] dataset consists of videos of interactions between
humans which were collected from TV shows. The datasets
contains 200 clips from 4 classes, i.e. hug, kiss, handshake,
highfive and 100 clips from a negative class. This dataset was
introduced to study two person interactions as opposed to single
person interaction. We use the train and test folds provided by the
authors and report mAP across two fixed cross-validation folds.

HMDB [5] dataset contains wide range of human actions
including facial actions (e.g. smile, laugh), facial actions with
object manipulation (e.g. smoke, drink), general body movements
(e.g. cartwheel, clap hands, climb, jump), body movements with
object interactions (e.g. catch, brush hair, shoot bow), and body
movements for human interactions (e.g. fencing, hug, kiss). It
has around 6800 clips from 51 classes, collected from YouTube,
Prelinger archive etc. The dataset is very challenging; it has videos
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with significant camera motion (59.9%), poor quality (only 17%
high quality clips), and non frontal camera viewpoints (40% clips
have frontal viewpoint). We report both mAP and mean multiclass
accuracy across 3 cross-validation folds provided by the authors.

4.2.1 Features
We use both Improved Dense Trajectory (iDT) [3] and CNN based
features [85], [86], [87] for our experiments on classifying human
actions. We extract the iDT features using the tool provided by
the authors and also use the available human bounding boxes for
HMDB and Olympic dataset [3]. For highFive dataset we use
the bounding boxes provided by the dataset creators [27]. We
extract iDT features with trajectory length of 15 for HMDB and
highFive dataset, while for Olympic dataset we use trajectories of
length 5 as used in [105], as trajectories for fast moving motions
(especially sports) are usually unable to describe salient objects for
more than a few frames. The trajectories are described using four
features, i.e. HOG, HOF and MBH along X-axis and Y-axis. We
use PCA to reduce the dimensionality of these features by half and
encoded them separately using Fisher Vector (FV) encoding with
dictionaries of 64 elements. We then perform power normalization
(α = 1/2) and L2 normalization for the FVs [66] and concatenate
the FVs for different low-level features as the final representation
(dimensionality is 25344). We refer to these features as iDT-64-
FV denoting the different components used. For both clustering
via Gaussian Mixture Modeling and extracting FV we use the
vlfeat library [101]. We construct segment-level local features
by using a temporal window of size of W around each frame and
then compute the above FVs on features lying in the temporal
window. This averaging results in adding temporal context to each
individual feature. The length of W determines the duration of
local sub-events and we set it based on the average duration of
each clip and an estimate of the duration of corresponding local
temporal events in each dataset. We set W = 11 for Olympic
dataset, W = 5 for highFive dataset and W = 3 for HMDB
dataset. The Olympic dataset in general include longer videos
with average duration of ∼ 230 frames compared to ∼ 90 in
HighFive and HMDB. Also, the local temporal events in general
are longer in Olympic dataset compared to HighFive and HMDB.
We use the above procedure to obtain global temporal features
for the Adaptive LOMo algorithm by using a temporal window
that includes the entire duration of a videos. We extract CNN
features from 16 layer VGG network [85] and 152 layer ResNet
[86], both trained for image classification on ImageNet dataset.
For each frame, we resize it such that the smallest dimension is
of size 256 and then crop a central 224 × 224 region. We then
compute outputs from fc-6 layer for VGG network (dimensionality
is 4096) and pool-5 layer of ResNet (dimensionality is 2048).
We also extract spatio-temporal C3D features as described in [87]
by using a network that was pretrained on Sports dataset. We
use Caffe implementation provided by Tran et al. and extract
features from fc-6 later over a 16 frame window. We use the
same procedure as outlined for FVs for obtaining local and global
temporal features except we use mean temporal pooling and only
perform L2 normalization in the end.

4.2.2 Baselines
We report results with five baselines for evaluation of Adaptive
LOMo (A-LOMo) on human activity classification. The first
baseline is global temporal pooling (GTP) which is obtained by
using global temporal features. The second baseline is LOMo that

was obtained with local temporal features only. We also compare
with MIL algorithm as done for facial analysis. The fourth baseline
is with LOMo with the ordinal component removed and the final
baseline is Adaptive LOMo with M = 1 (MIL+GTP), which is
essentially combining MIL with GTP.

4.2.3 Parameters
Since the human activity datasets varied in the number and type of
classes, viewpoints, camera motion, duration of clips and number
of samples, we opt for using 5 fold cross validation for setting λ
parameter. Further, since different actions have events that span
different durations, we also set the temporal coverage parameter
t by the same cross-validation. We sweep t from 5 to 50 and
during inference we set t to minimum of the cross-validated value
and number of frames divided by the number of events. This
is done to handle clips whose duration are smaller than the t
parameters. In order to reduce the number of cross validation
steps we first set λ and t using cross-validation for LOMo and
then fix these values for cross-validating the γg parameter in
Adaptive LOMo. We observed during our experiments that the
results were not very sensitive to these parameters. The second
regularization parameter λ2 is set to 10−3 in our experiments. We
set M = 3 across all experiments based on our initial validation
experiments where we observed that in general the results were
stable across different classes for M = 3 and then begin to drop.
The GTP based baseline is obtained by setting γg = 1 in Adaptive
LOMo algorithm, while the LOMo baseline is obtained by setting
γg = 0. We report the results for MIL baseline by setting M = 1
and cσ = 0. For our final implementation we combine Adaptive
LOMo models, learned independently on different features, by
weighted averaging of z-score normalized prediction scores (late
fusion). We obtained the weights by doing a coarse grid search
over the set [0, 0.5, 1]. The weights obtained for the three datasets
were 0.5 for ResNet based features, 0.5 for C3D (except for 0 in
HighFive dataset), 0.5 for Objects (used in HMDB dataset), and 1
for for iDT.

4.3 Quantitative Results
4.3.1 Facial Behavior Analysis
The performances of the proposed approach, along with those of
the baseline methods, are shown in Tab. 1. In this comparison,
we use SIFT-based facial features for all datasets. Since head nod
information is important for identifying non-verbal behavior such
as agreeing, we also append head-pose information (yaw, pitch
and roll) to the SIFT-based features for the LILiR dataset.

We see performance improvements with proposed LOMo, in
comparison to baseline methods, on 6 out of 7 prediction tasks.
In comparison to MIL, we observe that LOMo outperforms the
former method on all tasks. The improvements are 1.2%, 4.2%
and 1.1% absolute, on CK+, Oulu-CASIA VIS and UNBC Mc-
Master datasets, respectively. This improvement can be explained
by the modeling advantages of LOMo, where it not only discovers
multiple discriminative sub-events but also learns their ordinal
arrangement. For the LILiR dataset, we see improvements in
particular on the ‘Questioning’ (5.9% absolute) and ‘Agreeing’
(1.7% absolute), where temporal information is useful for recogni-
tion. In comparison to temporal pooling based approaches, LOMo
outperforms both variants of temporal pooling- MnP and MxP, on
6 out of 7 tasks. This is not surprising since temporal pooling
operations are known to add noise to discriminative segments
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Dataset Task FS MnP MxP MIL LOMo
CK+ Emot. 91.9 86.0 87.5 90.8 92.0

O-C VIS Emot. 75.0 68.3 69.0 69.8 74.0
BC-McM Pain − 67.4 81.5 85.9 87.0

LILiR

Agree − 84.7 85.5 77.7 79.4
Ques. − 86.2 84.3 80.7 86.6

Think. − 93.6 88.9 93.8 94.8
Under. − 79.4 79.2 78.9 80.3

TABLE 1: Comparison of LOMo with baselines on the facial
analysis datasets using SIFT based features (see Sec. 4.3.1).

of a video by adding information from non-informative segments
[41]. Moreover, they discard any temporal ordering, which is often
important for analyzing facial activity [9].

On both facial expression tasks, i.e. emotion (CK+ and Oulu-
CASIA VIS) and pain prediction (UNBC McMaster), methods can
be arranged in increasing order of performance as MnP, MxP, MIL,
LOMo. A similar trend between temporal pooling and weakly
supervised methods has also been reported by previous studies on
video classification [2], [9]. We again stress that LOMo performs
better than the existing weakly supervised methods, which are
the preferred choice for these tasks. In particular, we observe
the difference to be higher between temporal pooling and weakly
supervised methods on the UNBC McMaster dataset, i.e. 67.4%
for MnP, 81.5% for MxP, 85.9% for MIL and 87.0% for LOMo.
This is because the subjects exhibit both head movements and
non-verbal behavior unrelated to pain, and thus focusing on the
discriminative segment, cf. using a global description, leads to
performance gain. However, we do not notice a similar trend on
the LILiR dataset – the differences are smaller or reversed, e.g.
for ‘Understanding’ mean-pooling is marginally better than MIL
(79.4% vs. 78.9%), while LOMo is modestly better than both
(80.3%). This could be because most conversation videos are pre-
segmented and predicting non-verbal behavior relying on a single
prototypical segment might be difficult, e.g. ‘Understanding’ in-
cludes both upward and downward head nod, which cannot be
captured well by detecting a single event. In such cases we see
LOMo beats MIL by temporal modeling of multiple events. We
also performed t-test between the results on MIL and LOMo and
observed the p-values were low (≤ 5%) for Oulu and LiLiR-
questioning task. The p-values were moderately low (≤ 15%) for
CK+ and LiLiR-think. We account higher p-values in other cases
to a small number of samples in most datasets e.g. 149 in UBC-
McMaster. We also observed the results of LOMo to be higher or
equal to MIL in most test folds on all the datasets e.g. 21/25 for
UNBC McMaster.

4.3.2 Human Action Classification
The comparison of Adaptive LOMo with several baseline methods
on 3 datasets and two different features is shown in Tab. 2. When
using iDT features we see that Adaptive LOMo outperforms the
baseline methods on all the datasets except HMDB. The mAP
score for Adaptive LOMo is 88.3% on the Olympic dataset as
compared to 84.6% with LOMo, 79.6% with MIL, 85.4% with
GTP, 75.8 with LOMo without ordinal component, and 86.5 with
MIL+GTP. We also see that on HMDB dataset, both Adaptive
LOMo (52.2%) and LOMo (48.2%) outperforms MIL (44.8%)
by a significant margin showing the benefits of using the pro-
posed local structure instead of a single discriminative segment.
These results clearly demonstrate that, by learning to adapt to
different classes, Adaptive LOMo combines the strength of both
local and global temporal structure and results in performance

Dataset Feats GTP MIL LOMo LOMo
(ord=0)

MIL+
GTP

A-
LOMo

Olympic iDT-64-FV 85.4 79.6 84.6 75.8 86.5 88.3
CNN 69.8 63.7 69.8 70.0 68.7 71.3

HighFive iDT-64-FV 61.1 59.0 58.1 54.4 62.1 64.8
CNN 31.8 35.3 35.0 34.5 34.8 35.0

HMDB iDT-64-FV 50.5 44.8 48.2 45.1 54.1 52.2
CNN 34.4 34.4 34.5 33.1 35.9 35.4

TABLE 2: Comparison of LOMo with baselines on three human
activity datasets. The performance reported is mean average pre-
cision (mAP) (see Sec. 4.3.2).

Fig. 1: The relative improvements for different action classes
for Adaptive LOMo vs. global temporal pooling, both with iDT
features. Color codes indicate the type of action and the respective
datasets are in brackets.

improvements. The baseline with MIL+GTP is also outperformed
by Adaptive LOMo in majority of the cases, further demonstrating
that the local ordinal structure is important in the combination of
local and global information as well.

In terms of features, the improvements relative to GTP are
higher for iDT features as compared to CNN features. For ex-
ample, the relative improvement between Adaptive LOMo and
global temporal pooling is 3.4% for iDT features and 2.1% for
CNN features on the Olympic dataset. This trend for performance
improvement is similar for the HMDB dataset (3.4% for iDT
vs. 2.9% of CNN). We explain this observation by the presence
of motion information in the iDT features, that results in more
meaningful local temporal segments and benefits our algorithm.
This is particularly true for classes where motion cues seem to be
more important for discrimination compared to appearance cues
[5]. For example, we observed the relative improvement between
Adaptive LOMo and GTP across iDT and CNN features to be
high for classes such as “chew” (4.7% for iDT vs. none for CNN),
“shootbal” (14.9% for iDT vs. none for CNN), “handstand’ (26%
for iDT vs 14.4% for CNN), “highjump” (43.4% for iDT vs
13.6% for CNN).

The HMDB dataset was collected by asking students to an-
notate parts of a clip that represented a single non-ambiguous
human action [5]. Thus it is mostly composed of pre-segmented
clips where for certain classes the appearance information may not
vary much in comparison to the motion information. For example,
in the class “shootball” appearance features such as CNN may
always encode a person, basketball net and a basketball, and this
representation may not vary much across frames. On the other
hand, motion information can effectively encode the movement
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of the person and the ball. This information can then effectively
represent sub-events, such as standing, jumping and shooting the
ball, that describe this class. This is the reason for our method, that
combines GTP with local sub-events, to gain higher performance
improvements over GTP while using iDT features. On HMDB
dataset we observed that Adaptive LOMo outperforms GTP on
34 out of 51 classes when using iDT features. On the other
hand, with CNN features it outperformed only in 12 classes. We
saw a similar trend for HighFive dataset where Adaptive LOMo
outperformed GTP on all classes with iDT features, and on 3
out of 4 classes with CNN features. On the Olympic dataset,
Adaptive LOMo trained with iDT features showed improvement
on 12 of 16 classes, while with CNN features it showed an
improvement on 5 out of 16 classes. We also see that LOMo
outperforms its counterpart without ordinal information, while
using iDT features, on all datasets. These trends clearly highlight
that motion information is critical for learning local sub-events and
their ordinal relationship is important as well. For the remaining
classes we observed that the results were either similar to GTP
or lower when cross-validation was unable to estimate the correct
weighting factor.

We have also shown some classes with the best relative
improvement between Adaptive LOMo and GTP in Fig. 1. These
classes show improvement over baseline due to the addition of
LOMo that models each video as a collection of local sub-
events with loose ordering. We observe that the classes with
most improvements can either be decomposed into short temporal
segments, e.g. “hug”, “highjump”, “pick”, or involve repetitions
of simpler motion segments, e.g. “talk”, “walk”, “climb”. We
conclude from from this observation that our method generalizes
to not only activities composed of simple motion segments but
also to categories that involve repetitions of these simpler actions.
Motion information is crucial for discriminating between fine-
grained classes such as sword drawing vs. sword fighting, and our
method is able to learn and yield performance improvement from
this information. Other example of such classes are “cleanandjerk”
and “poleactivity” that seem similar to the class “snatch” in
appearance but differ in composition of the temporal segments. We
observed during our experiments that for some classes Adaptive
LOMo selected either mostly local or mostly GTP. Example of
classes where mostly one of the two components was selected
are: (i) local (γg ≤ 0.2) – “cleanandjerk”, “hug”, “handstand”,
“talk”, “highjump”, “shootball”, “pullup”, “pushup” and (ii) global
(γg ≥ 0.8) – “turn”, “drawsword”, “kiss”, “shakehands”, “catch”,
“kickball”, “eat”, “wave”. Notice, that in the later classes the
action is expected to be spread out in the whole duration of the
video. We believe that being able to adapt the classifier to different
classes not only results in improvement, as seen with Adaptive
LOMo, but also explain the underlying temporal structure.

4.4 Qualitative Results

We now give some qualitative results in this section by showing
detections on some test samples. The frames are overlaid with
detections from the discovered sub-events with Event 1 in red
color, Event 2 in green color and Event 3 in blue color. Since the
LOMo model starts with random initialization the events can vary
across classes in terms of both the most probable ordering and
their semantics.

Event 1

6 31 50 68

Event 3 Event 2

100

Event 1

7 23 53 69

Event 3 Event 2

100

Fig. 2: Detections made by LOMo trained (M = 3) for classifying
‘happy’ expression on two expression sequences from Oulu-
CASIA VIS dataset (ground-truth for top is ‘happy’ and bottom is
‘sad’). The number below the timeline shows the relative location
(in percentile of total number of frames).

4.4.1 Facial Behavior Analysis

Fig. 2 shows the detections of our approach, with model trained
for “happy” expression, on two sequences from the Oulu-CASIA
VIS dataset. The model is trained with three sub-events. As seen
in Fig. 2, the three events seem to correspond to the expected
semantic events, i.e. neutral, low-intensity (onset) and apex, in
that order, for the positive example (left), while for the negative
example (right) the events are incorrectly detected and are in
the wrong order as well. To further illustrate the importance of
learning the ordering, we observed that the ordering cost learned
by the model for the ordering (1, 3, 2) was −0.6 which is much
lower than 0.9 for the correct order of (3, 2, 1), as observed in
the positive happy example. This result highlights the modeling
strength of LOMo, where it learns both multiple sub-events and a
prior on their temporal order.

4.4.2 Human Action Classification

We have shown detections on test samples in Fig. 3 from class
“hug” in HighFive dataset, class “cleanandjerk” in Olympic
dataset and classes “golf” and “shootball” from HMDB dataset.
We see the consistency between sub-events detected for these
classes. For example for “golf” class the three events seem to
focus on backward motion with club, beginning of forward motion
and hitting the ball with the club respectively. We also see that
since our model is learning to focus only on (discriminative)
frames that correspond to underlying activity, it can effectively
filter out noisy or irrelevant frames. For example, it is filtering out
the last few frames in example “hug-1” and first few frames in
example “shootball-1” and “Shootball-2” where the person seems
to be receiving the ball instead of shooting it. Similar to human
facial behavior, we found that the ordering cost learns to penalize
some orderings more than others. For example, in the case of
class ”cleanandjerk” the model allows for swaps between Event 2
and Event 3, which seems to correspond to lifting up motion, but
penalizes if Event 3 or Event 2 comes before Event 1 (where the
person is beginning to lift).

Thus, we conclude that qualitatively our model supports our
intuition, that not only the correct sub-events but their correct
temporal order is critical for high performance in such tasks.
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Event 1

1 15 32 43 57 70 83 100

Event 3 Event 2Hug-1

Event 1

1 15 23 30 44 58 79 86

Event 3 Event 2

100

Hug-2

Event 1

1 15 28 39 57 64 70 77

Event 3 Event 2

100

CleanandJerk-1

Event 1

1 14 30 40 57 71 80 90

Event 3 Event 2

100

CleanandJerk-2

Event 1

2 31 40 48 56 67 71 87

Event 3Event 2

100

Golf-1

Event 1

3 26 33 41 51 64 72 87

Event 3Event 2

100

Golf-2

Event 1

12 29 39 49 54 68 76

Event 3Event 2

100

Shootball-1

Event 1

3 15 49 59 64 72 79

Event 3Event 2

10031

Shootball-2

Fig. 3: Detection of multiple discriminative sub-events, discovered by LOMo, on the three different human action analysis datasets.
The number below the timeline shows the relative location (in percentile of total number of frames).

4.5 Parameter Study

We now study the effect of some parameters on the proposed
algorithms. Fig. 4 (left) shows a plot of parameter λ1 (regularizer
parameter for weights of the hyperplanes) for LOMo and our
implementation of SVM and MIL on two facial behavior datasets.
We clearly see that the results are not sensitive to λ1 and LOMo
also shows clear improvements over the baseline algorithms. In
order to show the advantages of using ordinal information inside
the model, we selected the same 4 classes (“hug”, “cleanandjerk”,
“golf” and “shootball”) as used in the qualitative results in Fig. 3.
These classes seem to have a distinct temporal structure and are

composed of fine-grained sub-events that differ in their motion
patterns. Fig. 4 (right) shows relative improvements for 4 classes
by switching off the learned ordinal component in the scoring
function of LOMo during testing. We observe improvements, for
these classes (2% on average), while using the ordinal cost in the
scoring function. We also show a plot of mAP scores versus the
number of events (M ) used to train the model in Fig. 5. We see
that for most classes the performance goes up from M = 1 to
M = 3 and then goes down for higher vales of M . The only
exception is the class “shootball” where results for M = 2 are
higher as compared to M = 3, and this is the case since two sub-
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CK+ dataset [23]
3DSIFT [7] 81.4

LBPTOP [43] 89.0
HOG3D [106] 91.4

Ex-HMMs [41] 93.9
STM-ExpLet [107] 94.2
LOMo (proposed) 95.1

Oulu-CASIA VIS dataset [24]
HOG3D [106] 70.6
LBPTOP [43] 72.1

STM-ExpLet [107] 74.6
Atlases [108] 75.5

Ex-HMMs [41] 75.6
LOMo (proposed) 82.1

UNBC McMaster dataset [10]
Ashraf et al. [109] 68.3
Lucey et al. [109] 81.0

MS-MIL [9] 83.7
MIL-HMM [17] 85.2
RMC-MIL [16] 85.7

LOMo (proposed) 87.0

TABLE 3: Comparison of the proposed approach with several state-of-the-art methods on three facial analysis datasets.

HighFive dataset [27]
Hoai et al. [110] 56.3

Gaidon et al. [105] 62.4
Ma et al. [81] 64.4

Wang et al. [3] 69.4
Hoai et al. [83] 71.1

A-LOMo (proposed) 70.0

Olympic dataset [6]
Jain et al. [111] 83.2

Li et al. [75] 84.5
Gaidon et al. [105] 85.5

Wang et al. [3] 90.4
Lan et al. [74] 91.4

A-LOMo (proposed) 91.2

HMDB dataset [5]
Sharma et al. [96] LSTM + Soft-attention model (end-to-end) 41.3

Gaidon et al. [105] Tree Kernel + Clustered Trajectories 41.3
Jain et al. [111] Compensated Trajectories + VLAD 52.1

Simonyan et al. [4] RGB(VGG)-CNN + Flow(VGG)-CNN (end-to-end) 59.4
Wang et al. [3] iDT-256-FV (pyramid) 60.1
Hoai et al. [83] iDT-256-FV (pyramid) + Relative Class Scores 60.8
Zhu et al. [92] Key-volume mine w/ RGB(VGG) + Flow(VGG) (end-to-end) 63.3

Fernando et al. [82] Rank Pooling (iDT-256-FV) 63.7
Li et al. [89] iDT-256-FV + Video-LSTM (end-to-end) + Objects 64.9

Lan et al. [74] iDT-256-FV + Multi-skip Feature Stacking 65.1
Bilen et al. [112] AlexNet + Dynamic Network + IDT 65.2

Feichtenhofer et al. [113] iDT-256-FV + RGB(VGG) + Flow(VGG) 69.2
A-LOMo (proposed) Trained on ResNet, C3D, iDT-64-FV 66.0

A-LOMo (proposed) + Objects Adaptive LOMo + Objects 67.1

TABLE 4: Comparison of the proposed approach with several state-of-the-art methods on three human action recognition datasets.

Fig. 4: (Left) The effect of varying the regularization parameter
λ1 and (right) the relative gain in performance by using ordinal
cost in the scoring function.

events could be better at representing the class. Also with M = 2
for the “shooball” class, we found that using the ordinal part of
the scoring function yields a relative improvement of 2.5%.

4.6 Comparison with State-of-the-Art

4.6.1 Human Facial Analysis

In this section we compare our approach with several existing
approaches on the three facial expression datasets (CK+, Oulu-
CASIA VIS and UNBC McMaster). Tab. 2 shows our results
along with many competing methods on these datasets. To obtain
the best performance from the model, we exploited the comple-
mentarity of different facial features by combining LOMo models
learned on three facial descriptors – SIFT based, geometric and
LBP. We combined the models with late fusion by averaging the
outputs of all the models. With this setup, we achieve state-of-the-
art results on the three datasets.

Several initial methods pooled the spatio-temporal information
in the videos, e.g. (i) LBPTOP [43] – Local Binary Patterns in
three planes (XY and time), (ii) HOG3D [106] – spatio-temporal
gradients, and (iii) 3D SIFT [7]. We report results from Liu et
al. [107], who used a similar experimental protocol. These were
initial works and we see that their performances are far from
current methods, e.g. compared to 81.2% for the proposed LOMo,
HOG3D obtains 70.6% and LBPTOP obtains 72.1% on the Oulu-
CASIA VIS dataset.

Fig. 5: The effect of varying the number of sub-events M .

Approaches modeling temporal information include Exemplar-
HMMs [41], STM-ExpLet [107], MS-MIL [11]. While Sikka et
al. (Exemplar-HMM) [41] computed distances between exemplar
HMM models, Liu et al. (STM-ExpLet) [107] learned a flexible
spatio-temporal model by aligning local spatio-temporal features
in an expression video with a universal Gaussian Mixture Model.
LOMo outperforms such methods on both the emotion classifi-
cation tasks, e.g. on Oulu-CASIA VIS dataset, LOMo achieves
a performance improvement of 7.5% and 6.5% absolute relative
to STM-ExpLet and Exemplar-HMMs respectively. Sikka et al.
[9] first extracted multiple temporal segments and then used MIL
based on boosting MIL [11]. Chongliang et al. [17] extended this
approach to include temporal information by adapting HMM to
MIL. We also note the performance in comparison to both MIL
based approaches (MS-MIL [9] and MIL-HMM [17]) on the pain
dataset. Both the methods reported very competitive performances
of 83.7% and 85.2% on UNBC McMaster dataset compared to
87.0% obtained by the proposed LOMo. Since having a large
amount of data is difficult for many facial analysis tasks, e.g.
clinical pain prediction, our results also show that combining,
simple but complementary, features with a competitive model
leads to higher results.

4.6.2 Human Analysis

In this section, we compare our approach with several existing
approaches for human activity classification on three benchmark
datasets (Olympic, HighFive and HMDB). Tab. 4 shows our results
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on other competing methods on these datasets. In order to obtain
the best performance from the model, we exploit the complemen-
tarity of different features by combining LOMo models learned
on three different descriptors – iDT and deep features from C3D
and ResNet-1522. As the standard performance metric for HMDB
dataset is mean multiclass accuracy, we fix λ1 = 10−4 to calibrate
scores from different one-vs-all classifiers. We use late fusion
for combining these features by doing weighted averaging over
their normalized prediction scores. Since different methods report
results by combining multiple approaches, for HMDB dataset we
also give brief description of the corresponding methods.

We first consider methods that relied on encoding motion
and appearance information using low-level features, followed
by pooling operation to obtain a fixed length vector. These
approaches generally extracted variants of motion trajectories to
encode motion, e.g. Wang et al. [3] extracted improved trajec-
tories with motion stabilization, Jain et al. [111] compensated
for camera motion by removing background motion, Jiang et al.
[72] clustered trajectories to model high level motion patterns.
We show consistent performance improvements compared to these
methods e.g. on HMDB dataset we achieve 66.0% versus 60.1%
of Wang et al. , 52.1% of Jain et al. and 40.7% of Jiang et al. .
We also see similar improvements on the Olympic dataset (90.4%
of Wang et al. vs 91.2% by Adaptive LOMo). When compared
with a recently proposed method to improve pre-existing features
by stacking them at multiple scales [74], we achieve similar
results on Olympic (91.2% versus 91.2%) and better results on
HMDB (66.0% versus 65.1%) datasets. Since our method uses the
standard iDT we believe that further improvements are possible by
using such methods.

We also compare with approaches that additionally encoded
temporal or ordering information inside the classification model
while training on the above features. On the Olympic dataset we
achieve 91.4% mAP compared to (i) 85.5% by Gaidon et al. [105]
using kernels to compare motion hierarchies in videos, (ii) 84.5%
by Li et al. [75] using dynamic pooling, and (iii) 82.0% by Liu
et al [114] who modeled complex activities as composed of de-
composable actions. In comparison to a recent method by Hoai et
al. [83], that used distribution of classifier scores and relative class
scores for classification, we achieve 66.0% mAP versus 60.8% on
HMDB dataset. On HighFive dataset our performance was lower
in comparison to Hoai et al. [83] by a small margin (70.0% for
LOMo versus 71.1% of Hoai et al. ). On HMDB dataset we also
show improvement in comparison to a recent method that used
rank pooling [82] (instead of mean pooling) over iDT-256-FV
features for classification (3.6% relative improvement).

Several recent approaches have relied on using deep archi-
tectures for action recognition. Simonyan et al. [4] proposed a
two-stream convolutional network for action recognition that made
predictions by late fusion over RGB and optical flow based net-
works. On HMDB dataset we achieve 66.4% mAP as compared to
59.4% by this two-stream network. We also outperform methods
relying on end-to-end learning of deep features with recurrent
neural networks such as soft-attention based LSTMs [96] (66.0%
versus 41.3%). We also compare our method with a recent method
utilizing fully convolutional LSTM architecture that was build
upon both motion and RGB information and can both classify and
localize an action [89]. For a fair comparison with their method,

2. We tried both VGG-16 and ResNet-152 feautures and decided to opt for
the later due to higher performance for these experiments.

we also fuse the classification scores of a model that used softmax
scores from a CNN trained on 15000 objects as descriptors, by
Jain et al. [115]. In comparison to their performance of 64.9%
on HMDB, we achieve 66.0% without object score fusion and
67.1% with object score fusion. This is interesting since their
method learned an end-to-end architecture from both motion
and appearance information and also fuses the score with iDT.
Feichtenhofer et al. [113] report a slightly higher performance of
69.2% with the fusion of an improved two-stream network with
iDT features. Recently Carreira and Zisserman [116] showed the
advantages of pre-training deep models with much bigger datasets
(400 classes with 400 or more videos for each class), and reported
large performance improvements, e.g. 80.7% on HMDB dataset.
We would expect to see such improvements with the proposed
models as well, by using better pre-trained features. In this section
we showed that our model yields results that are competitive to
existing methods which use similar amounts of traning data.

5 CONCLUSION

We presented a (loosely) structured latent variable model that
discovers prototypical and discriminative sub-events and learn a
prior on the order in which they occur in the video. We learned
the model with a regularized max-margin hinge loss minimization
which we optimize with an efficient stochastic gradient descent
based solver. We evaluated our model on four challenging datasets
of expression recognition, clinical pain prediction and intent
prediction in dyadic conversations as well as three challenging
datasets for human analysis in video which contain variety of
actions, e.g. sports actions, human-human interactions and human-
object interactions. We demonstrated with experimental results
that the proposed model consistently improves over other com-
petitive baselines based on spatio-temporal pooling and Multiple
Instance Learning, while working with one type of state-of-the-
art feature. Further, in combination with complementary features,
we showed that the model achieves state-of-the-art results on
all the facial analysis datasets while being competitive to the
state-of-the-art on the human action recognition datasets. We also
showed qualitative results demonstrating the improved modeling
capabilities of the proposed method for both, facial and human
analysis, tasks. The model is a general ordered sequence prediction
model and we aim to extend it to other sequence prediction tasks.
Further, the classifier learning is decoupled from the features and
given the recent success of representation learning methods, we
would explore end-to-end learning of the features and classifier as
another future direction.
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Fig. 6: Confusion matrices for LOMo (left) and MIL (right)

6 APPENDIX

6.1 Dynamic Programming for Inference
The scoring optimization can be solved exactly using Dynamic Programming (DP). However, in practice we found the DP based solver
to be slow and resorted to an approximate but much faster algorithm (see Sec. 3.4). The time complexity of the greedy solution is
O(NDK+NK) while that of exact DP solution is O(NDK+N2KK!), where N is the number of frames, K is number of events,
and D is dimensionality of the features. While the greedy solution is clearly a very coarse approximation of the true scoring objective,
we found it to be very fast and well performing in the experiments and hence preferred it over the exact dynamic programming based
solver. We compared the performance of the greedy and DP based solution on the Olympic dataset and found the running time of the
DP based solution to be ∼ 5× of greedy solution, while giving comparable final classification performance.

6.2 Effect of Initialization on LOMo
We studied the effect of initialization on LOMo by evaluating it on the Olympic dataset with iDT features with 10 different random
seeds. The mean and standard deviation the performance was 84.7 and 0.7 respectively. This mean performance is comparable to the
performance of 84.6 reported in Tab. 2 and the standard deviation does not change any comments on the comparison with any baseline
method.

6.3 Visual Examples from Facial Analysis Task
In order to support our arguments regarding the results in Sec. 4.3.1 we first show the confusion matrices for MIL and LOMo on Oulu
dataset in Fig. 6. Based on the individual class performances we observe that LOMo shows substantial improvements in comparison to
MIL on classes such as ‘disgust’, ‘happy’, and ’fear’. In particular the improvement on ‘disgust’ class (which is also the most confusing
class) is significant (∼ 9% absolute). We believe this improvement results from the ability of LOMo to capture discriminative sub-
events specific to the ‘disgust’ class, which makes it easy to discriminate samples from this class from visually similar classes (‘sad’
and ‘fear’). We have shown an example from the ‘disgust’ class in Fig. 7 along with detections for individual sub-events with LOMo
and MIL. The score obtained by LOMo (1.18) is higher compared to the score obtained by MIL (-0.08). We attribute this to the ability
of LOMo to both detect multiple sub-events and to model prior on their ordering (see Sec. 4.4).

Fig. 9 shows detections on an example sequence from the UNBC McMaster dataset where subjects show multiple expressions of
pain. The results show that our approach is able to detect such multiple expressions of pain as sub-events.

For better understanding the model, we show the frames corresponding to each latent sub-event as identified by LOMo across
different subjects. Ideally each sub-event should correspond to a facial state and thus have a common structure across different subjects.
As shown in Fig. 8, we see a common semantic pattern across detected events, with ‘happy’ classifier, where Event 1 seems to be
similar to neutral, Event 2 to onset and Event 3 to apex phases of facial expression formation. We observed similar qualitative results
across other expression classes.
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Fig. 7: Example showing detection for individual sub-events with LOMo (top) and MIL (bottom) for an example from ‘disgust’
class. The classification score obtained by LOMo and MIL are shown on the bottom of each figure. LOMo is able to learn a better
classification model by learning sub-events and a prior on their ordering for the ‘disgust’ class.

Fig. 8: Frames corresponding to latent sub-events as identified by our algorithm on different subjects. This figure shows results for
LOMo trained for classifying ‘happy’ expression and tested on unseen test samples belonging to the ‘happy’ class.
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Fig. 9: Detection of multiple discriminative sub-events, discovered by LOMo, on a video sequence from the UNBC McMaster Pain
dataset. The number below the timeline shows the relative location (in percentile of total number of frames).


