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Abstract

We present a novel convolutional neural network (CNN)
design for facial landmark coordinate regression. We exam-
ine the intermediate features of a standard CNN trained for
landmark detection and show that features extracted from
later, more specialized layers capture rough landmark loca-
tions. This provides a natural means of applying differential
treatment midway through the network, tweaking process-
ing based on facial alignment. The resulting Tweaked CNN
model (TCNN) harnesses the robustness of CNNs for land-
mark detection, in an appearance-sensitive manner with-
out training multi-part or multi-scale models. Our results
on the AFLW, AFW, and 300W benchmarks show improve-
ments over existing work. We further provide results on the
Janus benchmark, demonstrating the benefit of our better
alignment in face verification.

1. Introduction

Recent years brought increasing interest in facial land-
mark detection techniques. To great extent, this is triggered
by the many applications facial landmarks have in head
pose estimation [54], emotion classification 291,
face alignment in 2D [[10, 44] and 3D (e.g., frontaliza-
tion [19]) and, of course, face recognition (see, e.g., [39]
and many others).

This task is particularly daunting considering the real-
world, unconstrained imaging conditions typically as-
sumed: Images often portray faces in myriads of poses, ex-
pressions, occlusions and more, any one of which can affect
landmark appearances, locations or even presence.

Many effective methods were proposed to handle these
challenges. Several use classifiers and robust representa-
tions to search for specific facial parts, further disambiguat-
ing detections by constraining landmark arrangements [54}
14 [49]]. Others regress detections directly [10} [44} 8] [16] 21,
[42]]. These methods are known to be limited in the pose
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Figure 1: Average images for 64 face clusters. Top: clus-
ters computed using RBG values. These appear misaligned
(blurry) and strongly influenced by intensities. Bottom: Im-
ages clustered using features from an intermediate layer of
a network trained to regress facial landmarks. These are
clearly better aligned. We leverage on this to tweak network
processing based on intermediate representations. (Note:
Both results produced using the same images.)



variations they can account for, leading some to estimate
pose prior to detection [45]. Some are further motivated by
specific appearance variations (e.g., pose [54, 49] or occlu-
sions [8}[16[]); hence, their performance may not carry over
to appearance variations unaccounted for in their design.

In line with the recent success of deep learning meth-
ods, a number of such techniques were proposed for land-
mark coordinate regression [30, [38} 150, 51, I52]. These
methods regress landmark positions directly from image in-
tensities, naturally learning landmark appearance and lo-
cation variations from huge training sets. To do so, they
learn multiple part models [30, 38], hierarchical represen-
tations [30, 50| or infuse networks with additional labeled
attribute data [51. 152]].

We present a novel convolutional neural network (CNN)
for face landmark regression. Contrary to others, our design
does not involve multiple part models, it is naturally hierar-
chical and requires no auxiliary labels beyond landmarks.

We are motivated by recent reports that features from in-
termediate layers of deep networks become progressively
task-specific at deeper layers [3, 48]. As we later show,
when trained to detect facial landmarks these specialized
features actually reflect alignment quite well. Fig. [T]illus-
trates this, showing 64 cluster centers — averages of clus-
ter images — comparing clusters computed using input RGB
values (top) vs. input features from the first dense layer
of face landmark regression CNN (Sec. 2.1). RGB clusters
clearly reflect image intensities. By comparison, interme-
diate feature clusters appear to contain well-aligned faces
with similar poses, apparent by their sharp average faces.

We leverage on the fact that deep intermediate features
naturally capture alignment and introduce our Tweaked
CNN (TCNN). TCNN automatically diverts deep features to
separate, specialized (tweaked) processing. Tweaking im-
plies fine-tuning the final layers for particular head poses.
Thus, heavy processing at the early, convolutive layers is
shared amongst all images; differential, specialized treat-
ment is applied only in the final layers. We explain how
overfitting is avoided when fine-tuning the final layers, de-
spite limited training data. Finally, we show TCNN to out-
perform existing state of the art, with an efficient architec-
ture and fewer labels required for training.

Contributions. (1) A first analysis of representations pro-
duced at intermediate layers of a deep CNN trained for
landmark detection, showing them to be surprisingly good
at representing different head poses and (some) facial at-
tributes (Sec. [2.2). (2) Our TCNN model which improves
CNN-based landmark detection by differently tweaking the
processing of different intermediate features (Sec. [3.1). To
our knowledge, we are the first to use intermediate features
in this way. (3) A novel data augmentation method which
inflates available training data for fine-tuning on different

head poses (Sec. [3.2). The benefits of these are demon-
strated by reporting facial landmark detection accuracies on
the AFLW, AFW, and 300W benchmarks and face verifica-
tion results on Janus CS2.

2. A CNN for facial landmark detection

We begin by studying a vanilla CNN trained to detect fa-
cial landmarks. Our goal is to “pop the hood” off the CNN
to better understand its internal representations and the na-
ture of the information they encode. This later guides us in
adjusting processing midway through the network.

2.1. Vanilla network design

Our vanilla CNN is loosely based on a state of the art net-
work for facial landmark coordinate regression [S1]]. This
model was selected to allow direct comparison with previ-
ous work as well as to emphasize the contributions of our
own TCNN model. Its design is illustrated in Fig. 2] (left)T]

Images are processed by a face detector [22], returning
bounding box coordinates for each face. Bounding boxes
are scaled to 40 x 40 pixels and represented using RGB val-
ues, normalized by subtracting the training set mean image
and dividing by its standard deviation.

The network consists of four convolutional layers (de-
noted C'L;...CL,) with intermittent max pooling lay-
ers (stride=2). These are followed by a fully connected
(dense) layer, F'Cs, which is then fully connected to an
output with 2 x m values for the m landmark coordinates:
P=(p1,.--sPm) = (1,¥1,- -, Tm, Ym).- In our exper-
iments, networks are trained to detect mm = 5 landmarks in
the bounding box coordinate frames.

Absolute hyperbolic tangent is used as an activation
function. Finally, unlike [S1], we use L2, normalized by
the inter-ocular distance as the network loss:
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where P; is the 2 x m vector of predicted coordinates
for training image I;, P; their ground truth locations, and
Di,1, Di,2 the reference eye positions. We chose this loss to
reflect the standard measure for detection accuracy (Sec. [3)).

Training used Adam optimization [23]] with the same im-
ages and landmarks from [38| [51]]. This set contains 5,590
images from the LFW collection [20] and 7,876 images
from throughout the web, all labeled for five facial land-
marks. Whenever the face detector of [22] failed to locate
a face, we discarded that image from the training/validation
set, further counting such test images as failures when re-
porting performance in Sec.[5] Remaining faces were ran-
domly partitioned, taking 90% (7,571 images) for training

!Trained networks and code available from the project page at www.
openu.ac.il/home/hassner/projects/tcnn_landmarks)
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Figure 2: CNN architectures. Left: The vanilla network described in Sec. for facial landmark regression. We show
that representations extracted from the input to F'Cs (marked in red) are highly specialized and reflect facial alignment.
Right: Our Tweaked CNN design, diverting intermediate features to K different subsequent, fine-tuned processes in the

same dimensions as the original layers.

and 1,972 for validation. As we later report, this network
performs comparably with the state of the art, despite its
straightforward design, possibly due our use of a loss func-
tion more suitable to facial landmark detection.

2.2. What is the network learning?

Once trained, we use the vanilla CNN to extract repre-
sentations from the input of each layer (including the first:
the input RGB values.) Analyzing these, we seek answers
to the following questions:

Q1 Do similar features reflect similar facial properties?
Q2 If so, what are these properties?

Q3 Finally, when (at what layer) are they captured?

A positive answer to Q1 suggests that prior to landmark
detection, the network aggregates particular facial attributes
together. This calls to question the effort to artificially in-
troduce this information by other systems (e.g., pose and
facial attributes in [45] [51), [52]). Answering Q2 would tell
us what attributes influence network processing. These at-
tributes may provide a means of improving our system’s
performance. Finally, Q3 seeks the layer at which the net-
work naturally represents these appearances. At this layer
we can assume some knowledge of the attributes of the face
in the input image and tweak the remaining stages of our
processing accordingly.

If similar representations capture similar properties, then
we expect to see this reflected in clusters of these represen-
tations. We thus proceed by standard, unsupervised cluster-
ing of the representations from each layer.

Clustering intermediate features. Let f;; = f(I;, L;),
and denote the feature vector extracted from the input
to layer L; of our vanilla CNN for training image I; as
L, € {CL4,...,CLy, FC5}. We partition the set {f; ;|i =
1,...,n}ie1. 5 into K clusters, C; ke1,... k. using EM to
compute Gaussian Mixture Models (GMM) and L2 as
the feature dissimilarity (corresponding with the normalized

Table 1: Cluster statistics. Reports median(.S;) £+ SD(.5)),
where S; = {|C x||k = 1..64} is the set of the numbers of
images in the clusters of layer .

CLy CLo CLs CLy FCs
9204983 11054551 116.0470.0 118.5+81.6 110.0 £ 583

L2 used in our cost function, Eq. E[) The vector f; ; is asso-
ciated with the cluster with the highest posterior probability:

fi1€ Gy iff k=arg m]?xp(C’l7k|fiyl) 2)

This analysis uses K = 64 clusters per layer. Some per-
layer statistics for these clusters are reported in Table [T}
Note that GMM provided better results than k-means and
was therefore used in all our tests.

Landmark positions. Do these clusters reflect landmark
positions?  Fig. [I] (bottom) already hints at the answer:
clusters of features extracted from F'C's appear to contain
aligned images, implying that this is indeed the case.

We analyze this empirically using the training set im-
ages, I;, and their ground truth landmarks P; jei.m =
(x:,5, i) Foreach layer L; and each cluster C ., we mea-
sure the variance ); y ; along the principle axis of each set
of 2D points, {p; ;|fi; € Cir}ik,;. These are then aver-
aged for all clusters in each layer:

1 K
uly = g 2 M 3
k=1

Fig. B] reports these values for the five landmarks, over the
layers L;, along with their standard errors. The average
intra-cluster location variances drop by half from the input
to F'C's. This is remarkable, as it can be interpreted to sug-
gest that the network naturally performs hierarchical, coarse
to fine feature localization, where deeper layers better rep-
resent landmark positions.

Facial attributes. Reexamining Fig. [I] (bottom), it is also
apparent that by aggregating similarly aligned images, clus-
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Figure 3: Landmark position variability at different lay-
ers. A r,; averaged (&= SE) over K clusters in each layer
(Eq. B). Scatter plots for the ground truth landmarks of
15 faces from the most variable clusters of RGB (left) and
FCs (right) layer features are shown, visualizing the re-
duced variability at the deeper layer.

ters capture more than just head pose: some cluster centers
clearly show expressions and gender. This is not surprising,
as landmark positions and facial attributes are, of course,
very much related. In the past, this connection was mainly
utilized going from landmark positions to attribute predic-
tion (some recent examples including [9, |13} 14} 28]]). To
our knowledge, the reverse direction of using attributes to
predict landmarks, was only recently proposed by [51.152].

We explore the relation between clusters and facial at-
tributes using the following binary attribute labels, pro-
vided for the training images by [38, I51]]: male/female,
smiling/Not-smiling and yes/no wearing eyeglasses. The
variance of 1/0 values for an attribute in cluster Cj 1, is de-
noted by O'l2’ ko (@ indexing the three attributes). A low value
of O’Z ko Teflects a label’s uniformity in a cluster. We aver-
age these variances over all clusters in each layer:

1 K
A
Hia = E Zazk,a' “4)
k=1

These values are reported in Fig.[d] Higher layer clusters
appear far less variable in smiling/not-smiling faces. Due to
the small number of positive eyeglass attributes in the data
(15.3%, compared with 57.2% for smiling), this attribute is
less varied to begin with, but becomes far less so in higher
layer clusters. These results are expected: landmark posi-
tions and appearances are heavily influenced by these two
attributes. Gender, however, seems to become more var-
ied in higher layers. This is surprising, as gender was very
beneficial to detection in [51]. A possible explanation is
that in the low resolution, 40 x 40 pixel images used here,
landmark position and appearance differences between gen-

x 107t

—— Male / Female
—— Smiling / Not-smiling
Yes / No eyeglasses

Mean per-cluster attribute variability

CLy CL, Cr3 CLy FCs
CNN Layer

Figure 4: Variance of attribute labels at different layers.
UZ k.o averaged (£ SE) over K clusters in each layer (Eq. EI)

ders are not substantial enough to aid the CNN in detec-
tion. Finally, these results also indicate that clustering im-
ages based solely on pose, without considering other facial
attributes, as in e.g., [45]], may not be optimal.

2.3. Discussion: What can we learn from all this?

These findings show that when trained to regress facial
landmark positions, a network internally learns representa-
tions which discriminate between differently aligned faces.
In particular, when reaching the input to the first fully con-
nected layer (represented by a red band in Fig [2] (left)) we
already know rough head pose. With this information we
can train pose specific landmark regressors. In the past, oth-
ers proposed similar two-step approaches: beginning with
rough localization and then using it to accurately detect
landmarks (e.g., [45) 130, 150, 51} 153} 146]]). Compared to
these and others, however, here, rough pose emerges nat-
urally from the network. As we next show, so do the final
landmark regressors.

3. The Tweaked CNN model

Our analysis in Sec. is consistent with previous re-
ports on the specialization of late layers in deep networks
(e.g., the recent work of [3} |48]]). To our knowledge, how-
ever, the nature of this effect was never previously explored
for face images or exploited to improve performance.

We propose to utilize this to improve accuracy by fine-
tuning multiple versions of the final network layers: each
one trained using only images represented by similar mid-
network features. Because similar features imply similar



landmark positions (Sec. @]), this can be considered teach-
ing the network to specialize in specific facial poses and
expressions. In order to avoid overfitting and improve the
effectiveness of this tweaking, Sec. [3.2] further presents an
alignment-sensitive data augmentation method.

3.1. Tweaking by fine-tuning

Our TCNN is illustrated in Fig. [2] (right). We begin
by training the vanilla CNN for facial landmark regression
(Sec. @ Once trained, it is used to extract features from
the input to F'C's and aggregate them into X' GMMs using
EM (Sec. [2.2). Next, we fine-tune the remaining weights,
from F'C5 to the output, separately for each cluster using
only its images. Here early stopping is used to fine-tune
each sub-network; that is, if validation loss does not im-
prove for 50 epochs, we cease fine-tuning that cluster.

We emphasize that fine-tuning only involves the weights
in final layers; previous layers are kept frozen. In addition,
fine-tuning the network for each cluster uses the same layer
dimensions (weight arrangements), commencing from the
vanilla network weights. Thus, TCNN training requires
little effort beyond training the initial vanilla CNN. This
should be compared with methods that train multiple CNN
models for multiple resolutions [50] or parts (e.g., [30]).

In practice, training the vanilla CNN on a dedicated ma-
chine required ~6.5 hours. By comparison, tweaking a sin-
gle cluster took ~2 minutes. Of course, tweaking different
clusters can be performed on separate machines in parallel.
Consequently, the added time for tweaking is very low.

Estimating landmark positions for a query photo I be-
gins by using the vanilla CNN to extract its F'Cy feature,
fos = f(Ig, FCs). 1t is then assigned to the cluster Cj
which maximizes the posterior probability (Eq. [2). From
this point onward, the network proceeds processing this fea-
ture vector using only the layers fine-tuned for C’ x, finally
returning the output from FCF.

This process treats horizontally flipped versions of the
same face differently — by different tweaked processes — and
one may be better than the other. To address this, we evalu-
ate test images twice, also processing images after horizon-
tal mirroring. Each two predictions are then averaged (after
mirroring the coordinates of the flipped image) to obtain fi-
nal results.

Why FC5? Fig. [3|suggests that input features to C'Ly are
as capable as F'Cj in representing different alignments. In
addition, its position further from the output leaves two lay-
ers to fine-tune, potentially allowing for better specializa-
tion to the appearances in each cluster. We tested TCNNs
with both layers and found that the performance gained by
using C'L, is comparable to using F'Cs, yet requires more
time to tweak. Our design therefore uses F'Cj.

3.2. Alignment-sensitive data augmentation

The numbers of training images in each cluster, reported
in Table |1} are clearly nowhere near enough to train even
the last layers of the network without risking overfitting.
One means of overcoming this is by augmenting the train-
ing data. Popular methods for doing so include oversam-
pling [26] — essentially producing multiple, slightly trans-
lated versions of the input image by cropping it at different
offsets — and mirroring the images [46].

Applying these here, however, proved unsuccessful.
This is not entirely surprising: Each tweaked, fine-tuned
network trains on representations from the same cluster.
These, as we showed earlier, should all be well aligned.
Oversampling and mirroring both introduce misaligned im-
ages into each cluster, increase landmark position variabil-
ity and so undermine the goal of our fine-tuning.

Ostensibly, we could add data to each cluster by sam-
pling from the GMM components (see, Eq.[2)). These, how-
ever, are defined on intermediate features and cannot pro-
duce landmark coordinates required for training.

Instead, we propose augmenting the image set used to
fine-tune tweaked layers in an alignment-sensitive manner.
Let I;, I;» be two training images, randomly selected as be-
ing associated to the same cluster, Cs i, and P; j, Pi7 j,J €
1...,m their m respective ground truth landmarks. We es-
timate the non-reflective similarity transform, H mapping
Di’,j to P; ; using standard least squares [18] and use it to
backwards warp I; to the coordinate frame of I, i.e.,

I(z,y) £ LH(z,y)). )

The new image, I is verified to belong to Cj j by extract-
ing its feature representation from the input to F'Cs and as-
sociating it with a cluster Cs ;- using Eq. If k& £ K,
then the generated image does not belong in the same clus-
ter with the two images used to produce it and is therefore
rejected. In practice, <40% of the generated images failed
this test, typically due to artifacts introduced by warping.
This should be compared with over 96% rejected when us-
ing images from other clusters. Accepted images I] are
added to the training along with the landmark labels of I;/.

This data augmentation approach can presumably be
used with any number of clusters, particularly, when there
is only one: to augment the data used to train the vanilla
CNN. In such cases, however, the rejection step mentioned
above is meaningless and all generated images are used for
training. In practice, training the CNN with this data aug-
mentation technique failed to show improved results and so
we do not apply it for the single cluster, vanilla CNN results
reported in Sec. [5]

Fig. | provides a few examples of images added by this
process to our training. These are slightly, but noticeably
misaligned with their sources. They therefore introduce



Figure 5: Alignment-sensitive data augmentation. Top:
Training images from the same F'C’s cluster. Bottom: Im-
ages added to the cluster to increase training set size. Bot-
tom images are noticeably different from their origins in the

top, yet remain in their original cluster. Ground truth land-
mark positions used to align these images appear in cyan.

variation to each tweaking training set, yet still belong to
their original clusters. We use this process to artificially
raise the number of training images in each cluster to 5, 000
images. We empirically found smaller numbers of aug-
mented images to result in overfitting and larger numbers
to provide no meaningful performance gain.

4. Comparison with existing work

We next compare our TCNN design with relevant exist-
ing models and detectors.

Several previous methods proposed fine-tuning late lay-
ers to specific data (see [48] for recent exam-
ples). These, however, focus on domain transfer applica-
tions where fine-tuned layers are trained with new super-
vised data from different problem domains. We, by con-
trast, improve network performance on augmented subsets
of the original data, determined in an unsupervised manner.

Our alignment sensitive method for data augmentation
(Sec. 3.2) may be viewed as a particular instance of sam-
pling from CNN feature space (e.g., [17]]). Our approach is
very different from those methods. Furthermore, they did
not use their sampling to generate additional training data.

TCNN can be considered to operate in a multi-scale
manner, where coarse landmark positions are reflected
by intermediate representations and then localized by the
tweaked, final layers. Multi-scale network designs were
proposed in the past and we refer to for a very recent
survey. None of these, however, uses internal representa-
tions to guide multi-scale processing as we do. As we men-
tion in Sec. though some landmark detection methods
also take a course to fine approach, these are very different
from the one proposed here.

Finally, the recent work of [52]] detects facial land-
marks with a network trained using multi-task learning of
both landmarks and attributes. To do so, they manually
specify facial attributes and label the training images ac-
cordingly. We use no such auxiliary labels, we show in
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Figure 6: Effect of tweaking. Validation set, per cluster
mean error rate for vanilla CNN (in red) vs. TCNN (blue)
(Sec. ED K = 64 clusters were produced from FC5 fea-
tures, sorted here by TCNN performance. Lower values are
better.
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Figure 7: Number of clusters vs. mean error. Results on
AFW [54] (blue) and AFLW [23]] (red) for TCNN models
with different numbers of tweaked processes, K. Lower
numbers are better.

Sec. 2.2] that the network naturally learns to discriminate
between some of these attributes, and next show our TCNN
to exceed their performance, with a simpler network design.

5. Experiments

5.1. Landmark detection

Evaluation criteria. In our tests we use the detector error
rate to report accuracy (see [12]] and many others since).
It is computed by normalizing the mean distance between
predicted to ground truth landmark locations to a percent of
the inter-ocular distance.

The effect of tweaking by fine-tuning. Fig. [6] demon-
strates the effect of tweaking by fine-tuning (Sec, [3.1) with
alignment-sensitive data augmentation (Sec. [3.2) on land-
mark detection accuracy. It reports the per-cluster detection
error rate on validation set images, comparing vanilla CNN
performance with TCNN. For convenience, cluster labels
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Figure 8: AFLW and AFW results. Left: Error rates on the AFLW [25] and AFW [54]] benchmarks for ESR [10], CDM [49]],
RCPR [8]], SDM [44], TCDCN’14 [31] and BB-FCN [30], vs. our vanilla CNN (Sec. [2.1) and TNCC. Lower values are
better. Right: Accumulative error curves reported for CFAN [50], Cascaded CNN [38]] and TCDCN’15 [52] vs. our TCNN,
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Figure 9: Example detection results. Qualitative detections on AFLW [23]] (Ieft) and AFW [34] (right). Showing ground truth
landmark locations in white and our TCNN detections in cyan. Typical mistakes highlighted in red.

are sorted by ascending TCNN errors. Apparently, in nearly
all clusters, TCNN manages to improve accuracy, in some
cases, by several percents.

We note that the cluster centers presented in Fig. [T] (bot-
tom) are also sorted (left-to-right, top-to-bottom) by the
TCNN errors of Fig. [6] Evidently, the worst performing
clusters are those where poses were non-frontal, with the
worst performing cluster in Fig. [T] (bottom) containing near
profile views. These poses are underrepresented in the train-
ing set and so it is not surprising that detection accuracy is
lower in those clusters. Importantly, these are also the clus-
ters where TCNN was most effective, providing the biggest
performance improvements.

Benchmarks. We evaluate our TCNN on two standard
benchmarks for landmark detection: the Annotated Face
in-the-Wild (AFW) of [54], containing 468 faces, and the
Annotated Facial Landmarks in the Wild (AFLW) [23] with
its 24,386 faces, using the same test subsets from [51]]. Both
sets include faces from Flickr albums, manually annotating
with five facial landmarks. Both therefore represent uncon-
strained settings with many of the appearance variations our
method is expected to handle.

Effect of K. We evaluate how the number of clusters, K,
affects overall accuracy. Fig.[7]reports error rates for both
the AFW and AFLW benchmarks with varying cluster num-

bers. Using more tweaked final layers appears to improve
performance. This, however, is only up to a point: Split-
ting the training data into too many clusters produces clus-
ters which do not have enough examples for effective fine-
tuning. In fact, beyond K = 64 clusters, fine-tuning the fi-
nal network layers often resulted in overfitting. The results
reported next use 48 clusters for our TCNN implementation.
Also interesting is the tweaking effort (not shown). Mea-
sured in epoch numbers, the effort (== SD) required to fine-
tune each tweaked process for the different values of K is
79.63 + 2.9. Hence, this effort grows linearly with K.

Comparison. The following facial landmark detectors
are compared with our approach: ESR [10], CDM [49],
RCPR [8], SDM [44], TCDCN’ 14 [Iilﬂand BB-FCN [30].
Fig. [8] (left) shows our results vs. previously reported per-
formances from [30], on the same benchmark protocols.
The only exception, BB-FCN, was trained on twice the im-
ages. Fig.[8] (right) provides also accumulative error curves
for methods which reported this information. Lastly, Fig.[9]
illustrates some TCNN detections.

The vanilla CNN is on-par with the state of the art.
TCNN improves this, surpassing all other results in both
benchmarks, cutting down 8% of the error on AFLW

2Differrent results were reported for TCDN in the original conference
paper from 2014 and its journal version from 2015 [52]. We compare
with both, and, when relevant, denote the year in the method’s name.



Table 2: Janus CS2 verification. Comparing performance obtained on faces aligned with four landmark detectors. Higher

values are better.

Baseline / reference methods
TAR @ COTS1 [24]

Same method, different alignments

FV [36] DCNN [L1] | CLNF [4] ERT [21] LBF [32] TCNN
FAR=le-2 581 £ .05 411 +£.08  .649 £ .01 677+ .01  .689 £ .01 .643+.02 .718+.01
FAR=le-1 767 £ .01 704 £.02 855+ .01 897+ .00 .894+.00 .888£.00 .903+.00

and 17% on AFW. To emphasize the significance of this,
we note that the performance gaps between us and the best
published result [51]] is 1.4% on AFW and 0.62% on AFLW,
whereas their reported gaps were 0.6% and 0.5%, resp.
Furthermore, the combined benefit of more data and
larger networks was previously noted by, e.g., [37]], and can
at least partially explain the performance of BB-FCN [30].
Our results show that better performance can be achieved
by careful processing using a simpler model and less data.

5.2. Face recognition

A popular reason for detecting facial landmarks is align-
ment for face recognition (e.g., [19]). We therefore also
provide face verification results using faces aligned by dif-
ferent landmark detection methods. This also allows for
comparisons of methods trained to detect different features
or feature numbers.

The Janus Benchmark. We use the Janus CS2 face veri-
fication benchmark [24]. This benchmark is selected here
not only because it is newer (and hence less saturated) than
other benchmarks, but also due to the high pose variations
exhibited by its faces: as part of its design methodology,
images were collected for this set with an emphasis on in-
creasing pose range, including near profile views, almost
nonexistent in previous benchmarks (e.g, LFW [20]).

The Janus collection includes 5, 712 images and 2,042
videos (represented by 20,412 frames) of 500 subjects.
Subjects are represented not by single images, but by tem-
plates containing one or more images. The CS2 protocol
provides a training set with 333 subject templates and ten
test splits of template pairs. The objective is to determine if
two test templates belong to the same person (i.e., same/not-
same classification). Verification accuracy is measured us-
ing the true accept rate (TAR) at false accept rates (FAR)
le — 1 and le — 2.

Recognition pipeline. To focus on the contribution of our
TCNN detector, we use the same recognition pipeline, com-
paring verification accuracy on images aligned with TCNN
landmarks vs. CLNF [4], ERT [21] and LBF [32]]. These
were selected due to their publicly available implementa-
tions and to complement the ones in Sec. In all cases,
we use the face bounding boxes from [22]]. Detected fea-
tures were then used for non-reflective similarity transform
alignment [[18]].

Aligned images are processed using the standard
AlexNet [26]], fine-tuned on CASIA WebFace images [47].
No additional fine-tuning was performed on Janus training
data. We extract the output values of the CNN’s penulti-
mate layer (F'Cg), as raw features. These are power nor-
malized [35] and projected down from 4,096D to 4,000D
using PCA computed on the Janus training set images.

Given templates T' and T’ we compute the Pearson cor-
relation coefficients for matching PCA projected features of
all image pairs (I,1'),I € T,I' € T'. A final template-to-
template similarity score is obtained by the SoftMax [26] of
these scores.

Results. Performances are reported in Table 2] As ref-
erence, we provide previously published results for the
COTSI1, off-the-shelf method [24], as well as FV [36] and
DCNN [[L1] (without fine-tuning on Janus training data, not
performed by us either). Apparently, all other system com-
ponents being equal, images aligned using TCNN are eas-
ier to recognize than those of other detectors. In fact, by
using TCNN aligned images, our recognition pipeline out-
performs the larger, dedicated DCNN network, along with
its landmark detector of [2]].

5.3. Beyond five landmarks

Our results in Sec.[5.2]suggest that to align faces for face
recognition, five points may be enough (or better) than the
larger landmark sets detected by other methods. For some
applications, however, more landmarks may be necessary.
Though our system is not specifically tailored to particular
landmark numbers or arrangements, rather than retraining
it for these tasks, we instead simply use its five landmarks
to initialize an existing, publicly available 49 or 68 point
landmark detector, here CLNF of [5]].

We evaluate performance on the 300W data set [33]. It
is the largest, most challenging benchmark of its kind, con-
taining images from the LFPW [[6], HELEN [27], AFW [34]
and iBUG [34] collections. Since we did not use AFW for
training our method, as others have done in the past, we
can use the entire 300W collection for testing. Once again
we use the face detector from [22] to find face bounding
boxes. Whenever it failed to detect a face, we defaulted
to the ground truth bounding boxes provided in 300W and
used by the other baselines. The five points detected by our
method are then used to initialize the response maps for the
corresponding local patches in [5].
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Figure 10: 300W results. (a) Accumulative error curves for 49 point detections; (b) 68 point detections; (c) % images with
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Figure 11: Example detection results on the 300W benchmark. Qualitative detections of our system for 49 landmarks (left)
and 68 landmarks (right). Each pair of columns presents images from one of the four subsets of the 300W benchmark, from

left to right: AFW, HELEN, iBUG and LFPW.

We compare our approach (Us+CLNF) to the Tree-based
method of [54], DRMF [1], GN-DPM [41]], SDM [44]],
CFSS [53] and CLNF with its original initialization [3].
Note that previous reports for the performance of the Tree-
based method, DRMF and SDM reflect accuracy only on
true positive detected faces (generally considered easier).
Moreover, CFSS was not tested on the AFW subset of
300W. Tree-based, DRMF and SDM results were taken
from [3]], reporting accumulative error curves for both 49
and 68 points. Also, GN-DPM and SDM provide only 49
point detections. Fig.[T0|reports these numbers. Evidently,
the better initialization offered by our method allows accu-
rately localizing landmarks for a larger number of faces.

6. Conclusions

The pursuit of better landmark detection accuracy led
many to propose progressively more elaborate models and
representations, and use increasing amounts of data to train
them. Contrary to these, we show how hierarchical, dis-
criminative processing can naturally be introduced to an ex-
isting CNN design for facial landmark regression. This, by
careful analysis and processing of the values produced at in-
termediate CNN layers. In so doing, we boost performance
beyond those of more involved, state-of-the-art systems.

We conclude by noting that the same analysis may con-
ceivably be used to improve networks trained for other
tasks, as an alternative to growing larger networks or us-

ing more data. Fig. [I2] hints of these potentials for face
recognition. It shows average faces of clusters formed from
the same images of Fig.[T] but using F'C7 features extracted
from our face recognition CNN (Sec. [5.2). These clearly

Deep intermediate FR features

Figure 12: Average images for 64 face clusters. Clusters
computed using features from an intermediate layer of a
network trained for face recognition (Sec.[5.2). Comparing
these with Fig. [I|demonstrates the far greater emphasis in
these clusters on identity related features. (Note: Produced
using the same images as Fig. El)



capture identity related attributes (e.g., facial hair, ethnic-
ity; note “baby cluster” in the top left) far better than those
in Fig. |1} suggesting that tweaking, here for identity related
appearances, can be likewise effective for this task.
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