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Abstract—In this work, fundamental analytic results in the form of error
bounds are presented that quantify the effect of feature omission and
selection for pattern classification in general, as well as the effect of
context reduction in string classification, like automatic speech recog-
nition, printed/handwritten character recognition, or statistical machine
translation. A general simulation framework is introduced that supports
discovery and proof of error bounds, which lead to the error bounds
presented here. Initially derived tight lower and upper bounds for feature
omission are generalized to feature selection, followed by another exten-
sion to context reduction of string class priors (aka language models)
in string classification. For string classification, the quantitative effect
of string class prior context reduction on symbol-level Bayes error is
presented. The tightness of the original feature omission bounds seems
lost in this case, as further simulations indicate. However, combining
both feature omission and context reduction, the tightness of the bounds
is retained. A central result of this work is the proof of the existence, and
the amount of a statistical threshold w.r.t. the introduction of additional
features in general pattern classification, or the increase of context in
string classification beyond which a decrease in Bayes error is guaran-
teed.

1 INTRODUCTION

Due to the discontinuity of the local Bayes error probabil-
ity, the computation of the Bayes error analytically often
remains intractable, even if the underlying distributions are
available. This motivates investigations into error bounds
that do not suffer from this problem. In information theory,
many bounds exist for the Bayes error with classification
error (zero/one) cost function. Examples for this are the
Chernoff bound [4], the Lainiotis bound [15], or the near-
est neighbor bound [8]. However, these general bounds
do not cover more specific modelling issues, like feature
omission/selection [21], or more complex problems like the
effect of context in sequence classification.

For statistical classification, it is well known that the
addition of further features potentially improves the clas-
sification accuracy. The partial motivation of this work is
to provide a better fundamental understanding of feature
omission/selection by quantifying the effect of the inclusion
of further features on the accuracy of the underlying sta-
tistical classifier by way of upper and lower error bounds.

Corresponding analyses usually are done empirically on
specific classification tasks. However, empirical findings
cannot readily be generalized to new tasks and domains, as
they usually are subject to specific conditions and modelling
choices. In contrast, error bounds provide a general means
to quantify the effect of systematic modelling decisions like
feature omission/selection, or the choice of symbol prior
context length.

In string classification applications like automatic speech
recognition [7|], statistical machine translation [13], or
printed or handwritten character recognition [22], classi-
fication refers to string classes, where each class repre-
sents a string (or sequence) of symbols (words, characters,
phonemes, etc.). Error bounds derived for single symbol
classification can be applied to symbol string classification,
also. However, this implies error measures based on the
symbol string error, instead of a symbol-wise error defini-
tion.

Traditionally, symbol string prior probabilities are mod-
elled using Markov-chains. The corresponding so-called lan-
quage models, providing symbol probability distributions in
symbol sequence context of varying length, are an important
aspect of many natural language processing tasks. Language
modelling paradigms may be based on smoothed n-gram
counts [12], or on multi-layer perceptrons [2]. Empirically,
using longer context improves perplexity and, up to some
extent, also the symbol-level accuracy [20] of string clas-
sifiers. For automatic speech recognition (ASR), perplex-
ity and symbol-level (e.g. word) error rate empirically are
expected to be connected by a power law [16, p. 186],
[11]]. Currently unpublished results obtained by the authors’
working group recently confirmed these findings for a large
variety of perplexities, language modelling approaches and
corresponding context lengths in ASR [19] pp. 47-48]. Nev-
ertheless, to the best of the authors” knowledge, currently
no formal relation is known between the order of the context
used in the language model and the accuracy of a resulting
classifier. The same applies for handwriting recognition, as
it differs from automatic speech recognition only in the form
of the input and its preprocessing. Also, other highly rele-
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vant string classification tasks like machine translation [[13]]
can be expected to benefit from a better understanding of
the context dependency involved. For example, even for
strong neural machine translation systems, the additional
use of language models still provides further improvements
in translation performance [9].

In [5], an upper bound on the Bayes error of a string
classifier using two classes is described. The bound is a
function of the class prior and requires a restriction on
the class conditional observation distribution. In [17]], two
bounds on the accuracy difference between a Bayes single
symbol classifier and a model classifier (e.g. one learned
from data) are presented. These bounds are based on the
squared distance and the Kullback-Leibler divergence [14].
The Kullback-Leibler based bound was later tightened and
extended to the general class of f-divergences [6] in [18].
The simulation techniques described here are an advance-
ment of the techniques applied in [18].

To find corresponding bounds, an empirical statistical
simulation approach was used, to judge, if a measure is a
potential candidate for an error bound. This approach has
the advantage that the most demanding task, i.e. finding
a formal proof, is attempted only if one can be reasonably
certain about the existence of a bound for a respective statis-
tical measure. It is also made easier by having a hypothesis
for the functional form of the bound. Furthermore, this gen-
eral approach can lead to tight bounds, as the simulations
may provide those distributions, for which the bounds are
satisfied with equality.

Using the proposed simulation approach, tight upper
and lower bounds on the accuracy difference for the case
of feature omission are presented in this work, together
with corresponding analytical proofs. It might be of interest
that the nearest-neighbor bound does resemble a part of the
lower bound presented here. Subsequently, these proofs are
extended to general feature selection, which is relevant for
any pattern classification task, like e.g. document classifi-
cation, detection of manufacturing errors in industrial au-
tomation, biometric recognition for access control, etc. [10].
Also, the bounds derived for feature omission/selection are
transferred to the seemingly unrelated problem of modeling
context dependence in string classification, for which also
upper and lower error bounds for the symbol-wise Bayes
error are derived.

The error bounds presented in this work quantitatively
reveal a general property of the Bayes error. Considering the
maximum operation that is needed to compute the Bayes
error, it can be expected that small changes in the underlying
distributions do not necessarily have an impact on the
Bayes error, provided that the maxima of the class posterior
distribution are not affected. The error bounds presented
here do not only confirm a corresponding threshold on a
statistical measure of the underlying distributions in form
of the Gini difference introduced here. Also a generally ef-
fective threshold is quantified, beyond which changes in the
underlying distributions under feature omission/selection
and/or context reduction induce changes in Bayes error.

The remainder of this work is organized as follows. Sec.2]
gives an overview of the simulation approach applied here
to discover error bounds and support their proof. Sec. [f]
introduces feature omission, and Sec. |4 shows correspond-
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ing exemplary simulations. In Sec. 5} proofs of error bounds
for feature omission are presented, which are generalized to
feature selection in Secs. [f and [/} In Sec. [§] string classifica-
tion is introduced, and Sec. [0]extends the bounds derived in
Sec. |5| to context reduction in string classification, followed
by corresponding simulations in Sec. [10} Finally, in Sec.
error bounds for the combined case of feature omission and
context reduction are derived, including simulations for this
case. Sec. [I2] concludes this work with a final discussion
and outlook on further research in this direction. Parts of
this work, excluding proofs, and excluding both the more
general case of feature selection, and the combined case
of feature omission and context reduction were presented
earlier in [1]].

2 SIMULATION APPROACH TO ERROR BOUND
DISCOVERY

To find corresponding bounds, an empirical statistical sim-
ulation approach was used, as described in Fig. [1| To judge,
if a measure is a potential candidate for an error bound,
millions of distributions were simulated. The simulation
here does not require to sample from some distribution, but
aims at generating distributions, itself, without assuming
further statistical constraints. Rather, the aim is to generate
random walks through the space of all possible distributions
with the aim to fill the two dimensional space spanned by an
accuracy measure and a corresponding statistical measure
that is tested for its potential to bound the accuracy measure
in question. If an investigated statistical measure did not ex-
hibit a suitable bounding behavior on the accuracy measure,
it was discarded. If simulations indicated a potential bound,
those distributions which occurred on a (hypothesized)
bound were parametrized, which also helped to conjecture
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Fig. 1. Sketch of the simulation approach proposed here to support the
discovery of novel error bounds.
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the functional form of a bound. These in turn also were used
to verify conjectured bounds, i.e. to check, if by perturbing
distributions on the bound it is not violated, i.e. falsified. If
simulations clearly indicated bounds, the simulations were
followed by attempts to find formal proofs. This simulation
approach also contributed to the discovery of further error

bounds [[18].

3 FEATURE OMISSION: DEFINITIONS

Let C be the finite set of classes and X be the set of
observations. For simplicity X’ is assumed to be finite. Then
a classification task maps an observation x € X to a class
¢ € C. Let pr(c, ) be the probability mass function of the
true joint distribution. Then the accuracy of a Bayes classifier

' A" = Z max {pr(c)pr(x|c)}

In contrast to this, omission of feature = leads to the static,
prior-only classifier, whose accuracy is defined by:

A = max pr(c).

To measure the effect of feature omission, the accuracy
difference between these classifiers is considered:

AA=A"— A= Z max {pr(c)pr(zlc)} — mcaxpr(c) 1)

Now, the following statistical measure is defined, which
will be used in the following. The Gini difference is defined
as follows:

AG = Zpr(x) Zpr(c|a:)2 — Zpr(c)2
=Y pr(@) Y [pr(clz) — pr(o))? )

The term Gini difference is chosen here, as it is similar to
the Gini criterion, as, e.g. used in decision tree learning. In
[8]l, the minuend and subtrahend of the Gini difference are
known as Bayesian distance.

4 SIMULATIONS FOR FEATURE OMISSION

In order to determine the exact relation between the Gini dif-
ference and the accuracy difference, millions of distributions
were simulated to calculate their values of the Gini and the
accuracy difference. In Fig. [ the results of such a simulation
for C = |C| = 8 classes and a set of |X| = 16 different
discrete observations is presented. Note that the axes are
using normalized versions of the accuracy difference and
the Gini difference. An upper and a lower bound for the
accuracy difference as a function of the Gini difference is
visible. This type of simulation also was performed for other
combinations of C' = |C| and X = |X| and from these re-
sults the following upper/lower bounds were hypothesized
empirically by extensive analysis of the simulations:

C C
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A4z o—1AG — if ; < 75AG< 3

1—/1- F5AG if 2 < £HAGL]

0 0.2 0.4 0.6 0.8 1
HAG
Fig. 2. Simulation results for feature reduction with C = 8 classes
and | X| = 16 observations. Each gray dot represents one simulated

distribution. Also, the derived analytic tight upper and lower bounds are
shown as lines, respectively.

The last segment of the lower bound (case %AG > 3)
can also be written as:

¢
c—1

In Subsec.[5.3lwe will show that the proof of the tightness
requires certain relations between the cardinalities of the set
of classes and the set of discrete observations, C and | X | are
implied. For the tightness of the linear mid-section of the
lower bound, | X| > C'is required. On the other hand, for
the tightness of the upper bound and the right section of the
lower bound only |X| > C is required. A simulation shows
that for the simplest case of |X| = 2 and C = 3 indeed
both the upper bound, and the mid- and right section of the
lower bound are not tight, cf. Fig.[8] In contrast to this, Fig.[4]
shows a simulation of the case | X| = C' = 2, for which only
the mid-section of the lower bound is not tight, as suggested
by the analytic results presented in Sec. 5}

AG <2AA - AA?

AA

o
c-1

0 0.2 0.4 0.6 0.8 1
C
c7AG

Fig. 3. Simulation results for feature reduction with C = 3 classes
and |X| = 2 observations. Each gray dot represents one simulated
distribution. Also, the derived analytic tight upper and lower bounds are
shown as lines, respectively. Note that in this case we have | X| < C,
which does not fulfil the requirements for the tightness of the upper,
and mid- and right section of the lower bound. This is confirmed by the
simulation.
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Fig. 4. Simulation results for feature reduction with C = 2 classes
and |X| = 2 observations. Each gray dot represents one simulated
distribution. Also, the derived analytic tight upper and lower bounds are
shown as lines, respectively. Note that in this case we have | X| = C,
which does not fulfil the requirements for the tightness of the mid-section
of the lower bound. This is confirmed by the simulation.

5 FEATURE OMISSION: ERROR BOUNDS AND

PROOFS

In this section, sketches of the proofs for the conjectured
tight lower and upper bounds are presented. Where ap-
plicable, also a generalization to the case of a continuous
random variable x has been done. First, a number of lem-
mas are introduced. The bounds presented also are proven
to be tight. The proofs for the tightness for each respec-
tive bound mainly follow the equality conditions for each
derivation step. The proof of the tightness of the derived
bounds finally is given by providing a set of parametrized
distributions that fulfil equality for the upper bound and
each segment of the lower bound that cover the complete
domain.

Lemma 1. Let p(c|z) and p(c) be discrete probability distribu-
tions. Then for any index cq the following holds:

S lplela) — ple)* > = (pleols) — pleo))?

C

Equality here is obtained, iff p(c|x) —p(c) = const(z) V ¢ # ¢ .

Proof: Apply the Cauchy-Schwarz inequality to the
sum on the left-hand side of the inequality excluding index

Co-
2
1
E:@@M)—M@anij[ > Ip(ela) = p(e)]
c#co c#co
(using the Cauchy-Schwarz inequality)
2
1
-1 Z plclz) — Z p(c)
c#co c#co

L oleule) - plen)?

(using normalization)

O

4

Lemma 2. Let p(c) > 0,c€C C Cand . p(c) = m. Then it

cel
holds: )
m
p(e)* = —
2P 2
Proof:
2
s> (o) /(0
ceC ceC cel
(using Cauchy-Schwarz)
m2
:7 (using definition of m).
Equality is obtained, iff: p(c) = const(c) ¥V ¢ € C. O

Lemma 3. Let p(c) be a discrete probability distribution. Then it

holds: Lo
mCaX{P(C)} - ZP(C)Q <1 ¢

Proof: Define A := max{p(c)} and
¢, := arg max{p(c)}. Then we have:

max{p(e)} — 3 p(e)? =A— X — 3 ple)?

cH#cCy

1-))2
<)\ — 2_(7
A=A 1

(using Lemma [2} equality,
iff: p(c) = const(c) Ve # ¢y )

10-1 ¢ (., C+1\?
4 C-1 20
(quadratic complement)
1C-1
< -
4 C

0
Lemma 4. Let p(c) be a discrete probability distribution. Then it

holds:
> p(e)? < max{p(c)}

Equality is obtained, iff a non-empty subset Cy C C exists, for
which the prior is constant p(c) = ﬁ for ¢ € Cy and zero
otherwise: p(¢c) =0V ¢ ¢ Cp .

Proof:

> _p(0)® <D p(¢) max{p(c)} = max{p(c)}

using the ineq. p(¢) < max. p(c¢’). The bound is tight, iff, for
each ¢ € C, either p(c) = max. p(c¢’) = const(c) or p(c) = 0.
U

In the following, upper and lower tight bounds are given
for the Bayes accuracy difference in terms of the Gini differ-
ence. The true distributions needed to define the Bayes accu-
racy (Bayes error) will be denoted by pr. Tightness is proven
by providing corresponding exemplary distributions. These
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exemplary distributions will be given in terms of matrices  Equality is obtained for the following set of distributions:
P and vectors b, such that
pr(c|e € X;) = Py
pr(ci|x€Xj):Pij pr(xer):bj
p’l‘(l‘ S Xj) = bj
with a C' x C matrix P and a C-dimensional vector b:
for proper choice of disjoint observation subsets X; C X, i.e. 1— N A AT
J =Y roi)
S . 1
XN X; =0V i#j, with jLJlXj C X, and classes c¢; with ﬁ 12\ i
= . . c
{¢;]i = 1,...,C} C C. Therefore, P is a C' x .J probability P = | 2 : N ob=
matrix, and b a J-dimensional probability vector. Cases for . ) \ 1
given C' and J also are valid for larger set sizes, assuming : : col=A g C
that the probabilities of elements of potential additional i ﬁ & & 11— )\_
subsets of classes and/or observations are zero. 3)
Using this set of distributions parametrized by A € |0, %] we
5.1 Upper Bound for Feature Omission obtain:
Theorem 1. Given a discrete random variable c and a continuous C—-1
random wvariable x, let pr(c,x) be their true joint probability AA(N) = - A
density function. Then the following tight bound holds for the 22 1
accuracy difference defined in Eq. (1) and the Gini difference AG(N) = (1-X)?*+ c-1 ©C
defined in Eq. @):
with
Cc-1 C-1
AAL - AG = go(AG) with  ge(y) oY AA(N) = T'AG(/\)~
Proof:
f As we also have AG(\ = €=1) = 0and AG(X = 0) = <52,
AA — /pr(ac) [max{pr(c|x)} _ max{pr(c)}] da AG(/\) covers the Fomplete domain of.the Gini Idiﬁ‘erence, as it is
c c a continuous function w.r.t. A\, and the intermediate value theorem
* applies. Therefore, this proves the tightness of the bound for the
< /pr(:z:) max{pr(c|z) — pr(c)}dx complete domain AG € |0, %]
¢ O
(equality for pr(c) =1/CV c€C)
) 5.2 Lower Bound for Feature Omission
< / pr(x) [mgx{pr(dx ) —pr(c) }] dx As discussed in Sec. @ the lower bound of the Gini difference
z consists of three different segments. The proofs for each
(using Jensen’s inequality, equality iff segment are presented individually.
max|pr(c|z) — pr(c)] = const(z) 5.2.1 First Segment of the Lower Bound
Vx e {x|pr(z’) #0}) Theorem 2. Assume a discrete random variable ¢ and a con-
tinuous random variable x, and let pr(c,x) be their true joint
< / pr(z) [ max{|pr(clz) — pr(c)|}] *da probability density function. Then the accuracy difference is non-
J N negative in general:
(absolute value of max argument) AA=A*—A>0, 4)
Furthermore, this bound is tight for
= /pr(a;) mgmx{[pr(dx) — pr(c)]?}dz ght f o1
@ 0<AG < —+.

(square function is monotonous increasing for positive
Proof:

A* :/pr(x) mgx{pr(c\x)}dx

x

arguments and can be drawn into maximization)

< Ta [rr@ Slorte) —prepas

(using Lemma with co = argmax(pr(clx) — pr(c)) z mé:mx{/pr(:c)pr(c\x)dx}
equality, iff: pr(c|z) — pr(c) = const(x) V ¢ # ¢ ) _ max{;r(c)} i
Cc-1 c
= TAG (equality, if: arg max pr(c|z) = const(x) )
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A necessary condition for equality, i.e. AA = 0 can be derived as
follows:

Cc-1 .
AG <AA+ el (using Theorem [3)
Cc-1 )
=i (using AA = 0).
Equality is obtained for the following set of distributions:
pr(cilz € X;) = Py
pr(z € &;) = b

with
1 L
0 L Ly
P ro=liTs] e
Do 2 2
1
0 %
Using this set of distributions parametrized by A € [0,1] we
obtain:
AAN) =
Cc-1 9
AG\) = —— pTe, (1-X%),
with AG(A = 1) = 0 and AG(A = 0) = SZL. Thus, the

domain AG € [0, el L] is completely covered, which can be
concluded using the intermediate value theorem. Therefore, the
bound for the first segment defined by this interval is tight. [

5.2.2 Second Segment of the Lower Bound

Theorem 3. Given a discrete random variable c and a continuous
random wvariable x, let pr(c,x) be their true joint probability
density function. Then the following holds:

Cc-1
> S
AA > AG 10
This bound is tight for % L<AG< %%

Proof:

AG — AA = (maxpr(c) — ZPT'(C)Z)

c

cf. Lemma

_ /pr(g;) (maxpr clz) — ZPT clz) )

>0 of Lemmafd]

1C-1
<=
4 C

Equality is obtained for the following set of distributions:

pr(cilz € X;) = Py
pr(z € Xj) =b;

6
with
j=1 2 m  m41 m 42
-1 [1 0 0 0 =]
2 0 1 0
0
P= 1o ¢ "~ 1 o0 0 (®)
1 1
m + 1 O 0 C—m m
1 1
c —O 0 C—m C—m+1 -
[ C+A 1
i=1 2C
1
2 2C
A b= :
1
m 2C
m41 )\CQ_CW
m+2_(1_)\>70727g+1_

withm € {1,2,...,C — 1}. Using this set of distributions
parametrized by X € [0, 1] we obtain:

m—1+A
AA(N,m) = o0
m—-—1+X 1C-1 1C-1
i.e., the distributions of this form are on the bound. Also:
1C0-1
3C—-1
AG(A_l,m_C—l)_ZT ®)
AG(A =0, m)=AGA=1m-1). (9
Hence, for m € {1,2,...,C — 1} and X € [0,1], the
1 3C-1

domain AG € [LE=L, 3C=1] is completely covered, which can
be concluded using the intermediate value theorem w.r.t. A and
continuity w.r.t. m as shown in Eqs. (79). Therefore, the bound

for the second segment defined by this interval is tight. O

5.2.3 Third Segment of the Lower Bound

Theorem 4. Let ¢ and x be discrete random wvariables and
pr(x, c) the associated true joint probability density function, and
require

3C —
A >77.
G_4 C

Then the following inequality holds:

(10)

(C-1)—/(C-1)(C-1-C-AG)

AA>

< AG < 2AA — C%AA2
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Proof: First define: which can be substituted into Ineq. (T4):
> pr(x,c) ,
Ipr =) = C 1 1
- s ol
Apr :Zmaxpr(c,x), Epr(xo, c)?
x ¢ _gq Zpr Zo, C Zp'f"(l‘ )
A :=max pr(c) 0,¢
C
_ Cl( ag — Zpr(xo, ¢) + max pr(zo, ¢)
such that accuracy difference AA and Gini difference AG can be N c ¢
represented as 1\%2 1
CAA- =) — =
C c
AA =ap, — A, (11) C 1\2 1
2 =9~ 7 |- AA-Z ] -5
AG =gy — Y _pri(c) (12) c-1 c C
c Zpr(xo, o)
- ZPT Zo, € Z (%o, )
Using Theorem [3|and Condition then results in: priFo, €
- < )
_ - maxpr Zo, C pr(zo, ¢
AA > lg (13) C-1 Z
2 C
<0
) gy o . 20 1
First, a lower bound on the Gini-term of the prior is provided: + e —AA— o
1—)\)2 <1 o Ineq. (T3)
Zpr(c)2 > A%+ (6’71) (using Lemma|2) STo 9
z (ZPT(%,C) — max pr(zo, c>)
_ ¢ A l2—?—l (quadr. compl.) . :
“c-1\" ¢) T¢ ememn =0
C 1\ 1
o . <gg—=———|ag—AA— =] — =
Substituting this into the definition of the Gini difference and c-1 C C
using Eq. the following inequality is obtained: S pr(wo, ¢)?
- pr(zg,¢) + ———
N 2 S i)
sozar- (-8 -4 |
P C -1 C C , + Zpr(xo, c) — mgxpr(:vo, c)
C 1 1 c
=0pr— 5 |Gpr —DAA— =] — = 14
Ip C—l(ap C) C ( ) <g_L " _AA_l 2_l
= c—-1\'? C C
Now, the distribution pr(z, ) is modified by redistributing prob- > pr(zo, ¢) maxe pr(zo, ')
ability mass for a specific x = xq from all classes to a single class + = — max pr(zo, ¢
e = i > pr(ao. ) aepraonc)
1\* 1
pr(z,c) x # x zgq—i “AA— =) — =
p Cc-1 C C
q(x,c) == Zpr(xo, d) z=z0Nc=cop (15)
0 otherwise Note that the form of the inequality remains unchanged by
replacing distribution pr by the modified distribution q. In the
This allows to rewrite gy and apy: following, this process is repeated by successively performing

the modification presented in Eq. again on each modified
distribution q with different pivot observations x,, until finally

EC:q(x,c)2 chpr(xo,c)Q
GRS e D DULLE RS sl

pr(z,c) c=colz
Apr = Z max q(z,c) — Zpr(xo, c) + mgxpr(:co, c), d(z,c) = %: (,¢) o()
z c 0 else
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is obtained. The values of gg and ag then become: 5.3 Tightness of the Derived Error Bounds
2 The existence of the distributions on the bound provides a
S q(z, c)? (Z pr(z, c)) sufficient condition for the tightness of the derived bounds.
g7 = Z <L = Z e /7 For the linear mid-section of the lower bound, this requires
= 2 q(x,0) >_pr(z,c) |X| > C, cf. Eq. (§). On the other hand, for the upper bound
¢ ¢ and the right section of the lower bound only |X| > C' is
= Zpr(x o) =1 required, cf. Eqs. (3) and (16). The left section of the lower
e bound does introduce non-trivial requirements other than
ag = Z maxg(z, c) = Z Zpr(x7 ¢)=1. |X| > 2, cf. Eq. (5), which needs to be fulfilled for a non-
P > o trivial classification problem. However, it can be expected

. ) o o ) that the cardinality of the observation set usually far exceeds
This results in the final inequality intended for the third segment:  the number of classes of a classification problem for realistic
) tasks, therefore these exceptions from the derived bounds’
c 1 1 tightness are not considered further here
AG<1———(1-AA—=) — & :
- Cc-1 ( C ) C

___C Ap +2AA

C-1 6 CONDITIONAL TO GLOBAL BOUND

Equality is cbtained for the following set of distributions: Assume that all distributions used to define accuracy and
pricilz € &) = 6 (16) 511611 Zdlffeelfence are conditioned on some random variable
pr(z € X;) =b; T

AA(z) = chax {pr(clz)pr(z|c,2)} — mcaxpr(c|z)

with the Kronecker delta function §;; = L fori —J , and Aé(z) = ZPT(x\Z) Z [pr(clz, z) — pT(C|Z)]2
0  otherwise " -
1-A The additional condition z does not change the proofs for
% the feature omission error bounds derived in Subsecs. 5.1
b= : . and These upper and lower bounds therefore remain
: valid for this case, i.e.:
A
c—1
AG(z)) > AA(2) > fo(AG(2 17
Using this set of distributions parametrized by N € 90(AG()) = () 2 Jo(AG(2)) 1)
1C-1 C-1 -
(355", <G we obtain: Note that the upper bounding function gc and the lower
bounding function fc are concave and convex, respectively.
AAQ) =X Then Jensen’s inequality [3, p. 182] can be applied to obtain
AGON) = — C A2 19N = C AAN)? + 2AA(N) the same bounds for the global case, where condition z is
Cc-1 c-1 marginalized:

i.e., the distributions of this form are on the bound. Also, with AA — Zpr (2)A i (2)

1C-1, 3C-1

Ch=se )i <Y (e (AG()  E)
Cc-1 Cc-1 z
AG(\ = = , A
( C ) C < gc( Zpr(z)AG(z)) (Jensen’s ineq., concave case)
the proposed domain of the third segment of the lower bound, i.e. < AZG*
AG € [3E21, €21 is completely covered, which follows from = 9c(AG) A
the intermediate value theorem. 0O AA= Z pr(z)AA(z)
Overall, combining the three segments, the lower bound - A
can then be represented as: > pr(2)fe(AG(z) (B
AA > fo(AG) > fc(Zpr(z)Aé(z)) (Jensen’s ineq., convex case)
with > fe(AG)
c-1
0 o1 for OC_Sly < 4C, o, Nevertheless, it should be mentioned that these global
fely) = T ic for 55 =¥ =375 bounds are not necessarily tight, depending on the defini-
(C—1)—+/ (CEI)(C—l—C-y) fory > %%1 tion of 2.
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7 FEATURE SELECTION

The general derivation from the previous Sec.[6|can directly
be applied to generalize feature omission to feature selec-
tion, i.e. the case when classification is based on a set of
D features ¥ = z1,...,xp, of which a subset 2{ with

d < D is selected. The accuracy difference for this case then

is defined by:
AA = max {pr(c)pr(z|c)} — Y max {pr(c)pr(z{lc)}
zb af
= pr(ad) - AA(),
f

with the local accuracy difference:

AA(zf) = Y max {pr()pr(zdyyfe.af)} —maxpr(cla]).

D
Tat+1

Similarly, the Gini difference for this case is defined by:

AG =Y pra?) Y [pr(cla?) — pr(clad)]?

= _pr(af) - AG(af)
o

with the local Gini difference:

AG@d) =Y pr(al) S [pr(claRsy. 2f) — pr(cla$))’

C
Tyl

Identifying =2, ; with z, and «{ with z in Sec. @ we conclude
the corresponding bounds:

9c(AG) > AA > fo(AG)

from the proofs given in Secs. [5|and

Also this derived bound for feature selection has been
confirmed by simulations. Fig. [5| shows a simulation of a
classification problem with C' = 3 classes which is reduced
from two observations x1,x2 € X with |X| = 4 down to

08 i
- 06 ~ ]
4
ofT
04 |
02 |
0
0 02 0.4 0.6 0.8 1

£ AG

Fig. 5. Simulation results for feature selection with C = 3 classes and
a selection of one out of two features 1 € X; and z2 € Xz with
|X1,2] = 4 observations each. Each gray dot represents one simulated
distribution. Also, the derived analytic tight upper and lower bounds are
shown as lines, respectively.
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the single observation z;. Clearly, the derived bounds are
fulfilled and tightness is obtained.

For the tightness to be fulfilled, also the local bounds on
the accuracy and Gini difference for the unselected feature
r9 € Ay should be tight, which is not fulfilled for e.g. the
case C = 3 and |X3| = 2, as shown in the simulation in
Fig. @ However, this is not relevant for the cases of (quasi-
Jcontinuous features with |Xy4| > C V d = 1,...,D. The
case of discrete features taking only a limited number of
observations is not further investigated here, but might be
treated in further work.

0 0.2 0.4 0.6 0.8 1

AG

Fig. 6. Simulation results for feature selection with C = 3 classes and
a selection of a feature 1 € X; with | X1| = 6 observations out of
two features, with the second, not selected feature zo € X being
binary, i.e. |X2| = 2 < C observations. Each gray dot represents
one simulated distribution. Also, the derived analytic tight upper and
lower bounds are shown as lines, respectively. Note that this case is
not tight. The simulations only fill the convex hull of the area reached by
the simulations of the local case, which is eqgivalent to feature omission
with C = 3 and |X| = 2, as shown in Fig. [3] To illustrate this, the
simulation of this case from Fig.[3]is plotted on top here using a brighter
gray. The narrow darkened sections show how the convex hull confines
the simulations for the feature selection case when dropping the single
binary feature xs.

8 CONTEXT REDUCTION: DEFINITIONS

The task of string classification is to map a sequence of
observations 2z € X to a sequence of classes ¢ € CV.
Note that here the sequence of classes and observations have
the same length and no alignment problem is assumed,
like in automatic speech recognition. An exemplary task,
which would be represented by this model is part-of-speech
tagging. Let pr(c),z)) be the probability mass function
of the true joint distribution. Then the accuracy of a Bayes
classifier at position 7 in the string of classes is:

Y pr(epr(el)

A7 = Z max
x{v cf] ic;=c
For the observation model pr(z{'|c}), only local depen-
dence is assumed:
N
N|.N
pr(ay|eY) = T[] prizalen).
n=1
At this point, no specific assumption as to the structure of
the class sequence prior distribution (language model) is
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applied. From this general class sequence prior, a position
dependent class unigram can be derived:

Yo o)=Y pr(ed)

civzci:c ciici=c

pri(e) =

Note that all positions higher than 7 can be marginalized.
This derived unigram can be used to define a reduced
context classifier, whose accuracy is defined by:

A, = E max pr; (e, z),
(&
xT

with
pri(c,z) = pr(z|c) - pri(c)

To measure the effect of the prior context, the accuracy
difference between the full, bigram-based classifier A}, and
the reduced context classifier A; that is based on the derived
unigram prior, is considered.

Z max pri(e, x)

To see the connection to single symbols, the last equation is
rewritten as follows:

> pri(w)
— Zpri (z;) mcaxpri(dxi)

D pri(w) Ady (),

with the local accuracy difference:

AA; = AF — A; = Zmax{prl c, )

zfy

AAZ — Z p’r’l(y|.’L‘z) mCaX{pTi (C|$i7 y)}

y=s\a;

AA(x;) = ) pri(yle:) max{pri(clzi, y)} — maxpri(clz;),
y=ol\a:

and the marginals in symbol position i, with y = 2V \ z;:

prife) = > preV)pre))
cf’,zf"zi:m
= ZPTZ - pr x| )
T (T
pri(c|x) — p Z( )p ( | ),
pri(z)
pri(cay) = > pr(@e) - pr(e))
cVici=c
N
N pri(c, x1")
pri\c\x;,Yy) = pri;\C|T - =, N
elaios) = priClel) = S
C/
pri(e, 7))

= pri(c,a] \ @iz =
an (¢, yla:),

This is very similar to the case of a single symbol classifier
that maps a single (compound) observation y € Y to a single
class ¢ € C compared with a classifier that only uses the
prior (mapping every observation to the same class). This
relation is derived formally in the following section.

P
pri(c,y = x7 \ @i|z;) pri(a;)

pri(ylz;)
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9 EXTENSION TO CONTEXT REDUCTION IN
STRING CLASSIFICATION
For the case of symbol string classification, the Gini differ-

ence for a specific symbol position ¢ can be rewritten as
follows:

G; = ZPH(%)AGK%)

with the local Gini difference:

= an ylx;) Zprz c|y7xl

= prilelw)?
y=zV\z; c
Apart from the additional condition on z;, both the local
accuracy difference AA;(z;), and the local Gini difference
AG;(x;) effectively can be identified as single symbol cases
(conditioned by z;), such that the same upper and lower
bounds apply, as derived for the feature omission case in

Subsecs.[5.1] and .2}
AAi(z;) < go(AGi(x))
AAi(z;) > fo(AG;(x))

(18)
(19)

Further identifying y = a:{v \ z; with z, and z; with z in
Sec. [p] we conclude the corresponding bounds:

9(AG;) = AA; > f(AG)).

from the proofs given in Secs. [f| and [f] Nevertheless, it
should be mentioned that these global bounds for the sym-
bol string case are not necessarily tight anymore, as also
pointed out for the general case covered in Sec. [6| This
is confirmed by the simulations shown in the following
section.

Note that this derivation can be generalized to context
reduction to n-grams higher than a unigram, by assuming
the classes c in the corresponding position to cover more
than a single word.

10 SIMULATIONS FOR CONTEXT REDUCTION

Simulation experiments similar to the case of feature omis-
sion were performed for symbol string classification. The
upper and lower bounds from the symbol case (feature
omission) do hold for the string case as shown in Section [0}
but the simulations suggest that in this case the bounds are
not tight any more, i.e. the simulations do not reach the
bound in general, as shown in Fig.[7] Note that the accuracy
difference and Gini difference is normalized in the plots
shown in this section, cf. axis labels.

Although this does not present a formal proof, it should
be noted that the simulations were designed expressly to
concentrate on areas not yet filled or with low density of
points in the corresponding plot. We therefore safely assume
that the simulations cover the complete area which can be
reached.

In the following Fig. [8] the number of classes C' and
observations | X | were proportionally reduced, upon which
the space between the analytical bounds is much less filled.
This might be due to the dependency between the individ-
ual position’s distributions, which might be stronger for a
lower number of classes and observations.
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C
c—

0 02 0.4 0.6 038 1
C
1462

Fig. 7. Simulation results for a string classifier and context reduction with
C = 5 classes, | X| = 10 observations, and sequence length N = 3.
The accuracy and Gini difference was calculated at position : = 2. Each
gray dot represents one simulated distribution. Also, the derived analytic
tight upper and lower bounds are shown as lines, respectively.

1

504,

0 0.2 0.4 0.6 0.8 1
C
=7 AG

Fig. 8. Simulation results for a string classifier and context reduction with
C = 3 classes, | X| = 6 observations, and sequence length N = 3. The
accuracy and Gini difference was calculated at position ¢ = 2. Each gray
dot represents one simulated distribution. Also, the derived analytic tight
upper and lower bounds are shown as lines, respectively.

A

C
c—

0 02 0.4 0.6 0.8 1
C
o-1AGs

Fig. 9. Simulation results for a string classifier and context reduction with
C = 8 classes, | X| = 9 observations, and sequence length N = 5. The
accuracy and Gini difference was calculated at position ¢ = 3. Each gray
dot represents one simulated distribution. Also, the derived analytic tight
upper and lower bounds are shown as lines, respectively.
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When (slightly) increasing the length IV, apparently no
strong difference can be observed, as shown in Fig. [9
The number of observations here was reduced somewhat
relative to the number of classes, as the complexity of the
simulations apparently is exponential and the number of
simulations required to obtain good filling of the space
between the bounds increases strongly with the sequence
length N.

11 COMBINED CONTEXT & FEATURE REDUCTION

The simulations for the case of context reduction in Sec. [I0]
show that the bound holds in case of sequences, but the
tightness of the bounds seems lost. To further analyze this,
we also check the case of both feature and context reduction.
When both context dependency and feature dependence are
dropped, then the corresponding classifier for a symbol in
position 7 is reduced to optimizing the position dependent
unigram distribution (cf. Eq. (8)), only. The accuracy for
classifying a symbol in position ¢ ignoring context and
feature dependence then reduces to

AA; = max pr;(c).
c
The accuracy difference for this case then reduces to:

AA; = Zpr(w{v) max pr(c|zl) — max pr;(c).

N
Ty

Similarly, we define the corresponding reduced Gini differ-
ence:

AG; = Zpr(a:{v) Zpri(c\x{V)Q — Zpri(c)z.

Similar to the local accuracy and Gini difference defined for
context reduction only in Sec. |8} in this case the accuracy
difference AA;(x;), and the Gini difference AG;(z;) effec-
tively can be identified as single symbol cases (conditioned
on symbol position ¢), such that the upper and lower bounds
derived for feature omission in Subsecs. and [5.2] also
apply in this case. In contrast to context reduction alone,
here even the tightness of the derived bounds is retained,
which can be observed in the simulation results presented in
Figs. The remaining empty area between the derived
tight bounds and the simulations for context reduction
and feature omission in Fig. can be attributed to the
combinatorial complexity of the corresponding simulation
using 8 classes, 9 observations, and sequences length 5.

In the simplest case, tightness is obtained for the case of
the bigram distribution degenerating to a unigram. This in
turn results in statistical independence of the symbol posi-
tions, and the problem falls back to feature reduction in each
symbol position independently. Consequently, tightness de-
rives from feature reduction, as proven in Sec. [ i.e. the
bounding cases from feature reduction can be substituted
here per symbol position to obtain the bounding cases for
applying feature reduction and feature omission.

The loss of tightness in case of context reduction only in
Sec. [Pl might be attributed to an interaction of the averaging
steps bounded by applying Jensen’s inequality in Inegs.
and , and constraints introduced by the language model,
which occurs in each symbol position.
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Fig. 10. Simulation results for a string classifier and both feature and
context reduction with C' = 5 classes, |X| = 10 observations, and se-
quence length N = 3. The accuracy and Gini difference was calculated
at position ¢ = 2. Each gray dot represents one simulated distribution.
Also, the derived analytic tight upper and lower bounds are shown as
lines, respectively.

0.8 :
w06 i
<
4
ol
© o4t /
y.
02 |
//
0
0 02 04 0.6 038 1
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Fig. 11. Simulation results for a string classifier and both feature and
context reduction with C' = 3 classes, |X| = 6 observations, and se-
quence length N = 3. The accuracy and Gini difference was calculated
at position ¢ = 2. Each gray dot represents one simulated distribution.
Also, the derived analytic tight upper and lower bounds are shown as
lines, respectively.

08 1
e 06 1
<
4
ol
04t /
02 [/
J/""
0 I
0 02 04 06 08 1

%Ag;;

Fig. 12. Simulation results for a string classifier and both feature and
context reduction with C' = 8 classes, |X| = 9 observations, and se-
quence length N = 5. The accuracy and Gini difference was calculated
at position ¢ = 3. Each gray dot represents one simulated distribution.
Also, the derived analytic tight upper and lower bounds are shown as
lines, respectively.
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12 CONCLUSIONS & OUTLOOK

In this work, novel upper and lower tight bounds for the
case of feature omission and feature selection in single
symbol classification were derived. Analytical proofs for
the corresponding bounds and their tightness are presented.
Statistical simulations played an important role in the dis-
covery, as well as in finding formal proofs of these bounds.
Furthermore, the bounds derived for the case of feature
omission were extended to the case of context-reduction
of symbol string priors in symbol string classification. As
further simulations suggest, the derived bounds, although
being tight for the single symbol case, do not seem to
be tight in general for the symbol string case. Although
only a limited margin remains if the number of classes C
is large enough, the simulations hint at the existence of
tighter bounds for the string case, which will be investigated
in further work. However, in the combined case of both
feature omission and context reduction, the tightness of the
bound is retained. When considering the normalized accu-
racy difference and normalized Gini difference, the derived
bounds have the same shape for all cases. Specifically, the
lower bound becomes non-zero, once the normalized Gini
difference exceeds 0.25, i.e. a normalized Gini difference
greater than 0.25 induces a non-zero accuracy difference.
In other words, exceeding this statistical threshold of 0.25
in (normalized) Gini difference guarantees a reduction in the
Bayes error for adding further features, or context. Even
though this result might be expected qualitatively from the
maximum operation in the computation of the Bayes error,
to the best of the knowledge of the authors, the explicit
threshold generally implied by the error bounds derived
here for feature omission/selection in pattern classification
and context reduction in string classification has not been
reported before.
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