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Recursive nearest agglomeration (ReNA): fast
clustering for approximation of structured signals

Andrés HOYOS-IDROBO, Gaël VAROQUAUX, Jonas KAHN, and Bertrand THIRION

Abstract—In this work, we revisit fast dimension reduction approaches, as with random projections and random sampling. Our goal is
to summarize the data to decrease computational costs and memory footprint of subsequent analysis. Such dimension reduction can
be very efficient when the signals of interest have a strong structure, such as with images. We focus on this setting and investigate
feature clustering schemes for data reductions that capture this structure. An impediment to fast dimension reduction is then that good
clustering comes with large algorithmic costs. We address it by contributing a linear-time agglomerative clustering scheme, Recursive
Nearest Agglomeration (ReNA). Unlike existing fast agglomerative schemes, it avoids the creation of giant clusters. We empirically
validate that it approximates the data as well as traditional variance-minimizing clustering schemes that have a quadratic complexity. In
addition, we analyze signal approximation with feature clustering and show that it can remove noise, improving subsequent analysis
steps. As a consequence, data reduction by clustering features with ReNA yields very fast and accurate models, enabling to process
large datasets on budget. Our theoretical analysis is backed by extensive experiments on publicly-available data that illustrate the
computation efficiency and the denoising properties of the resulting dimension reduction scheme.

Index Terms—clustering, dimensionality reduction, matrix sketching, classification, neuroimaging, approximation
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1 INTRODUCTION

CHEAP and ubiquitous sensors lead to a rapid increase
of data sizes, not only in the sample direction –the

number of measurements– but also in the feature direction.
Features refer here to the dimensions of each observation:
pixels/voxels of images, time points of signals, loci of
genotypes etc. These “big data” put a lot of strain on data
management and analysis. Indeed, they entail large memory
and storage footprint, and the algorithmic cost of querying
or processing them is often super-linear in the data size.
Yet, such data often display a low-dimensional structure,
for instance originating from the physical process probed
by the sensor. Thus, the data can be well approximated
by a lower-dimension representation, dropping drastically
the cost of subsequent data management or analysis. The
present paper focuses on these fast signal approximations.

The deluge of huge sensor-based data is ubiquitous:
in imaging sciences –e.g. biological [1] or medical [2]–,
genomics [3], [4], and seismology [5], to name a few
applications. Taming the computational costs created by
the rapid increase in signal resolution is an active research
question. Many approaches integrate reduced signal
representations in statistical analysis [1], [6], [7], [8], [9].

In signal processing and machine learning, fast signal
approximation is central to speeding up algorithms: ap-
proximating kernels [10], fast approximate nearest neigh-
bors [11], or randomized linear algebra [12]. Note that for all
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these, the only requirement on the reduced representation is
that it preserves pairwise distances between signals. data
reduction makes processing huge data sets much easier as
it decreases both memory requirements and computation
time. Indeed, even for linear complexity algorithms, the
computation cost of growing data size is worse than linear
once data no longer fit in cache or memory.

There are a wide variety of standard data-compression
approaches. Typically, a data matrix is represented by a
sketch matrix that is significantly smaller than the orig-
inal, but approximates it well. Two sketching strategies
are commonly employed: i) approximating the matrix by
a small subset of its rows (or columns) (e.g. Nyström [13]
and CUR [14]); ii) randomly combining matrix rows, relying
on subspace embedding and strong concentration phenom-
ena, e.g. random projections [15]. Random projections are
appealing as they come with theoretical guaranties on the
expected distortion. For information retrieval, state-of-the-
art indexing of times series can be achieved with a symbolic
representation [16] that finds a regular piecewise constant
approximation of the signal.

Here, we are interested in representing structured signals,
and using this structure to improve the data approxima-
tion and speed up its computation. Such signals are often
modeled as generated from a random process acting on a
topology. Individual features of the data then form vertices
of a graph. Edges can be predefined by the specificity of the
acquisition process, such as the physics of the sensors. Thus,
the connectivity of the features is independent from the
data themselves. Henceforth, we refer to this connectivity as
structure1. Note that such a description is not limited to reg-
ular grids, such as time-series or images, and encompasses

1. We consider the structure as prior information, and assume it static
across time.
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for instance data on a folded surface [17].
Our contribution focuses on fast dimension reduction

that adapts to common statistics across the data, as with
the Nyström approximation, but unlike random projections.
Our goal is to speed up statistical analysis, e.g. machine
learning, benefiting from the structure of the data. For this,
we use feature grouping, approximating a signal by parti-
tioning its feature space into several subsets and replacing
the value of each subset with a constant value. We use
a clustering algorithm to adapt the partition to the data
statistics. Agglomerative clustering algorithms are amongst
the fastest approaches to extract many clusters with graph-
connectivity constraints. However, they fail to create clusters
of evenly-distributed size, favoring a few huge clusters2.

Contributions: our contributions are two-fold.
i) We analyze dimensionality reduction of structured

signals by feature grouping. We show that it has a denoising
effect on these signals, hence improves subsequent statistical
analysis. ii) We introduce a fast agglomerative clustering
that is well suited to perform the feature grouping. This
clustering algorithm finds clusters of roughly even size
in linear time, maintaining meaningful information on the
structure of the data. Our pipeline is very beneficial for
analysis of large-scale structured datasets, as the dimension
reduction is very fast, and it reduces the computational cost
of various statistical estimators without losing accuracy.

The paper is organized as follows. In section 2, we
give prior art on fast dimension reduction and analyze the
theoretical performance of feature grouping. In section 3, we
introduce ReNA, a new fast clustering algorithm. In section
4, we carry out extensive empirical studies comparing many
fast dimension-reduction approaches and show on real-life
data that feature grouping can have a denoising effect.

Notations: Column vectors are written using bold
lower-case, e.g., x. For a vector x, the i-th component of x is
denoted xi. Matrices are written using bold capital letters,
e.g., X. The jth column vector of X is denoted X∗,j , the ith
row vector of X is denoted Xi,∗, and [n] denotes {1, . . . , n}.
Letters in calligraphic, e.g. P denotes sets or graphs, and it
will be clarified by the context. Let {Ci}ki=1 be short for the
set {C1, . . . , Ck}. | · | denotes the cardinality of a set. The `p
norm of a vector x = [x1,x2, . . . ,xk] ∈ Rk is defined as

‖x‖p =
(∑k

i=1 |xi|p
) 1

p
, for p = [1,∞).

2 DIMENSION REDUCTION OF STRUCTURED SIG-
NALS

In this section, we review useful prior art on random
projections and random sampling. Then we analyze signal
approximation with feature grouping.

2.1 Background and related prior art
Signal approximation with random projections or random
sampling techniques is now central to many data analysis,
machine learning, or signal processing algorithms.

Let X ∈ Rp×n be a data matrix composed of n samples
and p features (i.e. pixels/voxels). We are interested in an
operator Φ ∈ Rk×p that reduces the dimension of the data

2. This phenomenon is known as percolation in random graphs [18].

in the feature direction, acting as a preprocessing step to
make further analysis more tractable. This operator should
maintain approximately the pairwise distance between pairs
of samples (X∗,i,X∗,j) ∈ X2 for (i, j) ∈ [n]2,

‖Φ X∗,i −Φ X∗,j‖22 ≈ ‖X∗,i −X∗,j‖22, ∀(i, j) ∈ [n]2. (1)

Note that this approximation needs to hold only on the data
submanifold, and not the entire Rp.

Random projections: A standard choice is to build Φ
with random projections, ΦRP [19]. It is particularly attrac-
tive due its algorithmic simplicity and theoretical guaranties
that make it ε-isometric (see Eq. 2).

Lemma 2.1. By the Johnson-Lindenstrauss lemma [15], the
pairwise distances among a collection X of n-points in
Rp are approximately maintained when the points are
mapped randomly to an Euclidean space of dimension
k = O(ε−1 log n) up to a distortion at most ε. More
precisely, given ε, δ ∈ (0, 1) and k ≤ p, there exists a
random linear projection ΦRP : Rp → Rk such that for
every x,x′ in X , the following relations hold:

(1−ε)‖x−x′‖22 ≤ ‖ΦRP x−ΦRP x′‖22 ≤ (1+ε)‖x−x′‖22,
(2)

with probability at least 1− δ.

Johnson-Lindenstrauss embeddings have been widely used
in the last years. By providing a low-dimensional represen-
tation of the data, they can speed up algorithms dramati-
cally, in particular when runtime depends super-linearly on
the data dimensionality. In addition, as this representation
of the data is accurate in the sense of the `2 norm, it can be
used to approximate shift-invariant kernels [10], [20].

The ΦRP matrix can be generated by sampling from a
Gaussian distribution with rescaling. In practice, a simple
and efficient generation scheme can yield a very sparse
random matrix with good properties [21], [22].

This approach suffers from two important limitations: i)
inverting the random mapping from Rp to Rk is difficult,
requiring more constraints on the data (e.g. sparsity), which
entails another estimation problem. As a result, it yields less
meaningful or easily interpretable results, as the ensuing
inference steps cannot be made explicit in the original space.
ii) This approach is suboptimal for structured datasets, since
it ignores the properties of the data, such as a possible
spatial smoothness.

Random sampling: A related technique is random
sampling, and in particular the Nyström approximation
method. This method is mainly used to build a low-rank
approximation of a matrix. It is particularly useful with
kernel-based methods when the number n of samples is
large, given that the complexity of building a kernel matrix
is at least quadratic in n [23]. It has become a standard tool
when dealing with large-scale datasets [13].

The idea is to preserve the spectral structure of a kernel
matrix K using a subset of columns of this matrix, yielding a
low-rank approximation. This can be cast as building a data-
driven feature mapping ΦNys ∈ Rk×p. In a linear setting, the
kernel matrix is defined as K = XT X, which leads to the
following approximation:

Ki,j = 〈X∗,i,X∗,j〉 ≈ 〈ΦNys X∗,i,ΦNys X∗,j〉 . (3)
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Here, building a base ΦNys is achieved by randomly sam-
pling k � n points from X, and then normalizing them
–i.e. obtaining an orthogonal projector to the span of the
subsampled data– see algorithm 2 in supplementary ma-
terials. The cost of the SVD dominates the complexity of
this method O(pkmin{p, k}). This method is well suited for
signals with a common structure, for instance images that
share a common spatial organization captured by ΦNys. As
the Nyström approximation captures the structure of the
data, it can also act as a regularization [24].

2.2 Dimension reduction by feature grouping

Here we analyze feature grouping for signal approximation.

2.2.1 The feature-grouping matrix and approximation

Feature grouping defines a matrix Φ that extracts piece-
wise constant approximations of the data [25]. Let ΦFG

be a matrix composed with constant amplitude groups
(clusters). Formally, the set of k clusters is given by P =
{C1, C2, . . . , Ck}, where each cluster Cq ⊂ [p] contains a set of
indexes that does not overlap other clusters, Cq ∩ Cl = ∅, for
all q 6= l. Thus, (ΦFG x)q = αq

∑
j∈Cq xj yields a reduction

of a data sample x on the q-th cluster, where αq is a constant
for each cluster. With an appropriate permutation of the
indexes of the data x, the matrix ΦFG can be written as

ΦFG =




α1 α1 0 0 . . . 0 0

0 0 α2 α2 . . . 0 0
...

...
. . .

...
0 0 0 0 . . . αk αk



∈ Rk×p.

We choose αq = 1/
√
|Cq| to set the non-zero singular values

of ΦFG to 1, making it an orthogonal projection.

We call ΦFG x ∈ Rk the reduced version of x and
ΦT

FGΦFG x ∈ Rp the approximation of x. Note that having
an approximation of the data means that the ensuing infer-
ence steps can be made explicit in the original space. As
the matrix ΦFG is sparse, this approximation follows the
same principle as [26], speeding up computational time and
reducing memory storage.

Figure 1. Illustration of the approximation of a signal: Piece-wise
constant approximation of a 1D signal contaminated with additive Gaus-
sian noise, x ∈ R500. This signal is a sample of our statistical problem.
The approximation is built by clustering features (here time-points) with
a connectivity constraint (i.e. using a spatially-constrained Ward clus-
tering). Only 25 clusters can preserve the structure of the signal and
decrease the noise, as seen from the signal-to-noise-ratio (dB).

Let M(x) be the approximation error for a data x given
a feature grouping matrix ΦFG,

M(x) =
∥∥∥x−ΦT

FGΦFG x
∥∥∥
2

2
, (4)

this is often called inertia in the clustering literature. This
corresponds to the sum of all the local errors (the approx-
imation error for each cluster), M(x) =

∑k
q=1mq , where

mq(x) is the sum of squared differences between the values
in the q-th cluster and its representative center, as follows

mq(x) =

∥∥∥∥∥xCq −
(ΦFG x)q√
|Cq|

∥∥∥∥∥

2

2

, (5)

where xCq ∈ R|Cq| are the values xi such that i ∈ Cq . The
squared norm of the data x is then decomposed in two
terms: fidelity and inertia, taking the form (see section 2
in supplementary materials):

‖x‖22 = ‖ΦFG x‖22︸ ︷︷ ︸
Reduced norm

+
k∑

q=1

∥∥∥∥∥xCq −
(ΦFG x)q√
|Cq|

∥∥∥∥∥

2

2︸ ︷︷ ︸
M(x): Inertia

. (6)

Eq. 6 is key to understanding the desired properties of a
matrix ΦFG. In particular, it shows that it is beneficial to
work in a large k regime to reduce the inertia.

2.2.2 Capturing signal structure
We consider data with a specific structure, e.g. spatial
data. Well-suited dimensionality reduction can leverage this
structure to bound the approximation error. We assume
that the data x ∈ Rp are generated from a process acting
on a space with a neighborhood structure (topology). To
encode this structure, the data matrix X is associated with
an undirected graph G with p vertices V = {v1, v2, . . . , vp}.
Each vertex of the graph corresponds to column index in the
data matrix X and the presence of an edge means that these
features are connected. For instance, for 2D or 3D image
data, the graph is a 2D or 3D lattice connecting neighboring
pixels. The graph defines a graph distance between features
distG . In practice, we perform the calculations with the
adjacency matrix G of the graph G.
Definition 2.1. L-Smoothness of the signal: A signal x ∈ Rp

structured by a graph G, is pairwise Lipschitz smooth
with parameter L when it satisfies

|xi − xj | ≤ LdistG(vi, vj), ∀(i, j) ∈ [p]2. (7)

This definition means that the signal is smooth with re-
spect to the graph that encodes the underlying structure.
Note that distG has no unit since the scale is fixed by
having each edge have length 1.

Lemma 2.2. Let x ∈ Rp be a pairwise L-Lipschitz signal, and
ΦFG ∈ Rk×p be a fixed feature grouping matrix, formed
by {C1, . . . , Ck} clusters. Then the following holds:

‖x‖22−L2
k∑

q=1

|Cq|diamG(Cq)2 ≤ ‖ΦFG x‖22 ≤ ‖x‖22, (8)

where diamG(Cq) = sup
vi,vj∈Cq

distG(vi, vj).

See section 2 in supplementary materials for a proof.
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We see that the approximation is better if:
i) The cluster sizes are about the same. Even if the clusters

are balls of dimension d, the diamG(Cq) is of order |Cq|1/d.
We thus expect the clusters to be compact.

ii) The clusters have a small diameter. As the left-hand
side of Eq.8 is upper bounded by L2 diamG(Cq)2, and
diamG(Cq) ≤ |Cq|. We see that the clusters have to be small.

These arguments are based only on the assumption of
smoothness of the signal. Refining Eq. 8 gives an intuition
on how a partition could be adapted to the data:

Corollary 2.1. Let Lq be the smoothness index inside cluster
Cq , for all q ∈ [k]. This is the minimum Lq such that:

|xi − xj | ≤ Lq distG(vi, vj), ∀(i, j) ∈ C2
q .

Then the following two inequalities hold:

‖x‖22 −
k∑

q=1

|Cq| sup
xi,xj∈xCq

|xi − xj |22 ≤

‖x‖22 −
k∑

q=1

L2
q |Cq|diamG(Cq)2 ≤‖ΦFG x‖22.

(9)

We can see that the approximation is better if: i) the signal in
a cluster is homogeneous (low Lq); ii) clusters in irregular
areas (high Lq) are smaller.

Clusters P of the graph G are defined as connected
components of a subgraph. In this context, the size of the
largest group, maxq∈[k] |Cq|, can be studied with percolation
theory, that characterizes the appearance of a giant connect
component as edges are added [18].

2.2.3 Approximating signals with unstructured noise
Noise hinders subsequent statistical estimation. Feature
grouping can reduce the noise under certain conditions.
To explore them, we consider an additive noise model: the
acquired data X is a spatially-structured signal of interest S
contaminated by unstructured noise N,

X∗,i = S∗,i + N∗,i, ∀i ∈ [n]. (10)

Applying the feature grouping matrix ΦFG to the acquired
signal reduces the noise via within-cluster averaging. In
particular, i.i.d. noise with zero-mean and variance σ2, leads
to the following relation between the Mean Squared Error
of the approximated data, MSEapprox, and the non-reduced
one MSEorig (see section 3 in supplementary materials):

MSEapprox ≤ L2
k∑

q=1

|Cq|diamG(Cq)2 +
k

p
MSEorig, (11)

where p denotes the number of features (i.e. pixels/voxels),
and k denotes the number of clusters. This gives a denoising
effect if the smoothness parameter satisfies

L2 ≤ (p− k)
∑k

q=1 |Cq|diamG(Cq)2
σ2. (12)

When the signal of interest is smooth enough and the cluster
sizes are roughly even, the feature grouping will reduce
the noise, preserving the information of the low-frequency
signal Si. Fig. 1 presents a graphical illustration of the
reduction and denoising capabilities of feature grouping.

The challenge is then to define a good ΦFG, given that
data-unaware feature partitions are sub-optimal, as they do
not respect the underlying structures and lead to signal loss.

3 RENA: A FAST STRUCTURED CLUSTERING AL-
GORITHM

Figure 2. Illustration of feature grouping: In images, feature-grouping
data approximation corresponds to a super-pixel approach. In a more
general setting, this approach consists in finding a data-driven reduction
ΦFG using clustering of features. Then, the data x are reduced to ΦFG x
and then used for further statistical analysis (e.g. classification).

In the feature-grouping setting above, we now consider
a data-driven approach to build the matrix ΦFG. We rely on
feature clustering: a clustering algorithm is used to define
the groups of features from the data. X ∈ Rp×n is repre-
sented by a reduced version ΦFG X, where p is potentially
very large (greater than 100 000), whereas k is smaller but
close enough to p (e.g. k = bp/20c). As illustrated in Fig. 2,
once the reduction operator ΦFG has been learned, it can
be applied to new data coming form the same generative
process.

3.1 Existing fast clustering algorithms
K-means clustering is a natural choice as it minimizes the
total inertia in Eq. 6. But it tends to be expensive in our set-
ting: The conventional k-means algorithm has a complexity
ofO(p k) per iterations [27]. However, the larger the number
of clusters, the more iterations are needed to converge, and
the worst case complexity is given3 by O(pk+2/n) [28]. This
complexity becomes prohibitive with many clusters.

Super-pixel approaches: In computer vision, feature
clustering can be related to the notion of super-pixels (super-
voxels for 3D images). The most common fast algorithm for
super-pixels is SLIC [27], which has a low computational
cost and produces super-pixels/super-voxels of roughly
even sizes. SLIC performs a local clustering of the image
values with a spatial constraint, using as a distance measure
the combination of two Euclidean distances: image values
and spatial positions. The SLIC algorithm is related to K-
means, but it performs a fixed small number of iterations,
resulting in a complexity of O(np). In the large-k regime, it
can be difficult to control precisely the number of clusters,
as some clusters often end up empty in the final assignment.

3. Note that here n and p are swapped compared to common cluster-
ing literature, as we are doing feature clustering.
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Agglomerative clustering: Agglomerative clustering
algorithms are fast in the setting of a large number k of
clusters. Unlike most clustering algorithms, adding a graph
structure constraint makes them even faster, as they can then
discard associations between non-connected nodes.

Agglomerative clustering schemes start off by placing
every data element in its own cluster, then they proceed by
merging repeatedly the closest pair of connected clusters
until finding the desired number of clusters [29]. Vari-
ous methods share the same approach, differing only in
the linkage criterion used to identify the clusters to be
merged. The most common linkages are single, average,
complete [29] and Ward [30]. Average-linkage, complete-
linkage, and Ward are generally preferable over single-
linkage, as they tend to yield more balanced clusters. Yet
single-linkage clustering is often used as it is markedly
faster; it can be obtained via a Minimum Spanning Tree and
has a complexity of O(np + p log p) [31]. Single linkage is
also related to finding connected components of a similarity
graph [32], an approach often used to group pixels on
images [33]. Average-linkage, complete-linkage and Ward
are more costly, as they have a worst case complexity of
O(np2) [31].

The approximation properties of feature grouping are
given by the distribution of cluster sizes and the smoothness
of the signal (Eq. 8). Balanced clusters are preferable for
low errors. Nevertheless, agglomerative clustering on noisy
data often leads to a “preferential attachment” behavior:
large clusters grow faster than smaller ones. In this case, the
largest cluster dominates the distortion, as in Lemma. 2.2.
By considering the clusters as connected components on a
similarity graph, this behavior can be linked to percolation
theory [18], that characterizes the appearance of a giant
connected component (i.e. a huge cluster). In this case, the
clustering algorithm is said to percolate, and thus cannot
yield balanced cluster sizes.

In brief, single-linkage clustering is fast but suffers form
percolation issues [34] and Ward’s algorithm performs often
well in terms of goodness of fit for large k [35].

More sophisticated agglomerative strategies have been
proposed in the framework of computer vision (e.g. [36]),
but they have not been designed to avoid percolation and
do not make it possible to control the number k of clusters.

3.2 Contributed clustering algorithm: ReNA
For feature clustering on structured signals, an algorithm
should take advantage of the generative nature of the data,
e.g. for images, work with local image statistics. Hence we
rely on neighborhood graphs [37].

Neighborhood graphs form an important class of geo-
metric graphs with many applications in signal process-
ing, pattern recognition, or data clustering. They are used
to model local relationships between data points, with ε-
neighborhood graphs or k-nearest neighbor graphs. The ε-
nearest neighbor graph is the core of clustering methods for
which the number k of clusters is implicitly set by the ε
neighborhood’s radius [38]. K-nearest neighbor graphs are
also used for clustering and theoretical results show that
they can identify high-density modes of the samples [39].
However, measurement noise on between-sample similari-
ties hinders their recovery of this structure as neighborhood

graphs tend to percolate 4 for k greater than or equal to 2. In
contrast, the 1-nearest neighbor graph (1-NN) is not likely
to percolate [40]. For this reason, we use the 1-NN graph.

In a nutshell, our algorithm relies on extracting the con-
nected components of a 1-NN graph. To reach the desired
number k of clusters, we apply it recursively. The algorithm
outline is as follows:
Initialization: We start by placing each of the p features of

the data X in its own cluster P = {C1, . . . , Cp}. We use
the binary adjacency matrix G ∈ {0, 1}p×p of the graph
G, that encodes the topological structure of the features
(i.e. one values denote connected vertices, whereas zero
represents non-connected vertices).

Nearest neighbor grouping: We build the similarity graph
which encodes the affinity between features. We then
find the nearest neighbor graph of this similarity graph,
and extract the connected components of this subgraph
to reduce the data matrix X and the topological struc-
ture G. Hence, we use the 1-nearest neighbor of each
vertex (i.e. feature) of the similarity graph as linkage
criterion. These operations are summarized in the next
steps:

1) Graph representation: We build the similarity graph
D of the data X, represented by the adjacency matrix
D ∈ Rp×p. The weights in D are only assigned for
edges in G 5.

2) Finding 1-NN: Creating a 1-nearest neighbor graph
Q, represented by the matrix Q ∈ {0, 1}p×p, where
each vertex of D is associated with its nearest neigh-
bor in the sense of the dissimilarity measure (e.g. Eu-
clidean distance, although a distance is not needed).

3) Getting the clusters: We use [41]6 to extract the set of
connected components of Q and assign them to the
new set of clusters P .

4) Reduction step: The clusters are used to reduce the
graph G and the data X. This boils down to averaging
features and grouping edges.

Stopping condition: Nearest neighbor grouping can be
performed repeatedly on the reduced versions of the
graph G and the data X until the desired number k of
clusters is reached.

The algorithm is iterated until the desired number of
clusters k is reached. At each iteration, a connected compo-
nents routine extracts them from Q and returns them as a set
of clusters P . In the last iteration of the algorithm, if there
are less than k connected components, Q is pruned of its
edges with largest edge values to keep only the q−k shortest
edges, so that no less than k components are formed.

The number of iterations is at most O{log(p/k)} as the
number of vertices is divided by 2 (at least) at each step;
in practice, we never have to go beyond 5 iterations. The
cost of computing similarities is linear in n and, as all the
operations involved are also linear in the number of vertices
p, the total procedure is O(np).

4. [39] explicitly used structured random graphs in their analysis
and exclude Erdös-Rényi graphs, i.e. random connections, as created
by unstructured noise.

5. This corresponds to an element-wise condition, where a similarity
weight is assigned only if the edges are connected according to G.

6. This algorithm is implemented in the SciPy package. However,
other variants of [42] can be used.
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Algorithm 1 Recursive nearest neighbor (ReNA) clustering

Require: Data X ∈ Rp×n, sparse matrix G ∈ Rp×p repre-
senting the associated connectivity graph structure, nearest-
neighbor subgraph extraction function NN, connected com-
ponents extraction function ConnectComp [41], desired
number k of clusters.

Ensure: Clustering of the features P = {C1, C2, . . . , Ck}
1: q = p {Initializing the number of clusters to p}
2: t = 0
3: X(t) = X
4: G(t) = G
5: while q > k do

6: D
(t)
i,j ←

{
‖X(t)

i,∗ −X
(t)
j,∗‖22 if G(t)

i,j 6= 0

∞ otherwise
, (i, j) ∈ [q]× [|P|]

{Create a similarity weighted graph.}
7: Q← NN(D(t)) {1-nearest neighbor graph.}
8: P ← ConnectComp(Q),

{Sets of connected components of 1-nearest neighbor
graph.}

9: Ui,j ←
{
1 if i ∈ Cj
0 otherwise

, (i, j) ∈ [q]× [|P|]

{Assignment matrix}
10: X(t+1) ← (UTU)−1UTX(t), X(t+1) ∈ R|P|×n

{Reduced data matrix. Note that the computation boils
down to averaging grouped features.}

11: G(t+1) ← support(UTG(t)U), G(t+1) ∈ R|P|×|P|
{Reduced between-cluster topological model; the non-
zero values are then replaced by ones.}

12: q = |P|{Update the number of clusters}
13: t = t+ 1
14: end while
15: return P

Even in presence of noise, the cluster diameter does not
grow fast thanks to the small number of iterations, hence
there is a denoising behavior from Eq. 11.

Note that the NN are calculated on the non-zero values
encoded by G (structure). Additionally, the connected com-
ponents are not symmetric (see Fig. 3). Thus, we simply take
Q = (Q + QT)7 to symmetrize them. We also use sparse
matrices to perform all calculations hence we avoid forming
p× p matrices.

Fig. 3 presents one iteration of the nearest neighbor
grouping on a regular square lattice. The pseudo-code of
ReNA is given in algorithm 1 and an illustration on a 2D
brain image in Fig. 4.

4 EXPERIMENTAL STUDY

In this section, we conduct a series of experiments to assess
the quality of the dimensionality reduction scheme and
its viability as a preprocessing step for several statistical
analyses. Table. 1 gives a summary of the datasets used.

We investigate feature grouping with a variety of cluster-
ing algorithms: single-linkage, average-linkage, complete-
linkage, Ward, SLIC, and ReNA. We use the Euclidean
distance for all algorithms and for all hierarchical clustering
methods we use the spatial structure as constraints on the
agglomeration steps (as in [36]). We compare them to other
fast dimensionality reductions: random projections, random
sampling, as well as image downsampling. We measure

7. This corresponds to a logical or operation.

Figure 3. The nearest neighbor grouping: The algorithm receives a
data matrix X represented on a regular square lattice G. left) The
nodes correspond to the feature values and the edges are the encoded
topological structure. 1) Graph representation: We calculate the simi-
larity matrix D. 2) Finding 1-NN: We proceed by finding the 1-nearest
neighbors subgraph Q according to the similarity measure. 3) Getting
the clusters and reduction step: We extract the connected components
of Q and merge the connected nodes.

Table 1
Summary of the datasets and the tasks performed with them.

Dataset Description n p Task
10 {8, 16, 64, 128}3 Time complexity (supp mat)

Synthetic Cube
1 000 240 000 Distortion

Grayscale Recognition of
Faces [43]

face images
2 414 32 256

38 subjects
Anatomical Gender discrimination

OASIS [44]
brain images

403 140 398
Age prediction

Functional Predict 17 cognitive tasks
HCP [2]

brain images
8 294 254 000

Spatial ICA

their ability to represent the data and characterize their
percolation behavior when it is relevant. We use prediction
to evaluate their denoising properties. To characterize be-
yond `2 approximation, we also consider methods relying
on higher moments of the data distribution: `1 penaliza-
tion and independent component analysis (ICA). Note that
downsampling images with linear interpolation can be seen
as using data-independent clusters, all of the same size.

We present results as a function of the fraction of the
signal, the ratio between the number k of components and
its largest possible value. We have two cases: i) for random
projections and feature grouping the ratio is k/p× 100%; ii)
for random sampling the ratio corresponds to k/n× 100%.

4.1 Datasets

4.1.1 Synthetic data

We generate a synthetic data set composed of 1 000 3D
images with and without noise. Each one is a cube of
p = 503 voxels containing a spatially smooth random signal
(FWHM=8 voxels), our signal of interest S. The acquired
signal X is S contaminated by zero-mean additive Gaussian
noise, with a Signal-to-Noise Ratio (SNR) of 2.06dB.

4.1.2 The extended Yale B face recognition dataset

This dataset was designed to study illumination effects on
face recognition [43] and consists of n = 2414 images of
38 identified individuals under 64 lighting conditions. Each
image was converted to grayscale, cropped, and normalized
to 192 × 168 pixels, leaving p = 32 256 features. There are
38 classes for the face recognition task, one per subject.
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Figure 4. Illustration of the working prin-
ciple of the Recursive Nearest Neighbor,
ReNA: The white lines represent the edges
of the connectivity graph. The algorithm
receives the original sequence of images,
considering each feature (i.e. pixel or voxel
in the image) as a cluster. From now on,
for each iteration, the nearest clusters are
merged (i.e. removing edges from the con-
nectivity graph), yielding a reduced graph,
until the desired number of clusters is found.

Original First 
 iteration

Second 
 iteration

Third 
 iteration

Compressed

(a) downsampling (b) single-linkage (c) average-linkage (d) complete-linkage (e) Ward (f) SLIC (g) ReNA

Figure 5. Clusters obtained for the extended Yale B face dataset using various feature grouping schemes: (k = 120). Single, average and
complete linkage clustering fail to represent the spatial structure of the data, finding a huge cluster leaving only small islands apart. Downsampling
fails to capture the global appearance. In contrast, methods yielding balanced clusters maintain this structure. Colors are random.

4.1.3 The Open Access Series of Imaging Studies (OASIS)
The OASIS dataset8 [44] consists of anatomical brain images
(Voxel Based Morphometry) of 403 subjects. These images
were processed with the SPM8 software to obtain modu-
lated grey matter density maps realigned to the Montreal
Neurological Institute (MNI) template [45] with a 2mm reso-
lution. Masking with a gray-matter mask yields p = 140 398
voxels and 1 GB of dense data. We perform two prediction
tasks: i) Gender classification and ii) age regression.

4.1.4 Human Connectome Project (HCP)
We use functional Magnetic Resonance Imaging (fMRI)
data from the Human Connectome Project (HCP) [2]: 500
participants (13 removed for quality reasons), scanned at
rest –typically analyzed via ICA– and during tasks [46] –
typically analyzed with linear models. We use the minimally
preprocessed data [47], resampled at 2mm resolution.

Task data: We use tasks relating to different cognitive
labels on working memory and cognitive control.

Resting-state data: We use the two resting-state sessions
from 93 subjects. Each session represents data with p ≈
220 000 and n = 1200, totaling 200GB of dense data for
all subjects and sessions.

4.2 Technical Aspects

We use scikit-learn for logistic and Ridge regression, fast-
ICA, clustering, and random projections [48]. We rely on
scikit-image for SLIC [49], on Nilearn to handle neuroimag-
ing data, and on Scipy [50] to extract graph connected
components. Code for ReNA and experiments is available9.

8. OASIS was supported by grants P50 AG05681, P01
AG03991, R01 AG021910, P50 MH071616, U24 RR021382, R01
MH56584.

9. https://github.com/ahoyosid/ReNA

4.3 Quality assessment experiments
We vary the number of clusters k and evaluate the perfor-
mance of Φ with three measures: i) the computation time;
ii) the signal distortion; iii) the size of the largest cluster. As
a dimension reduction learned from data may capture noise
in addition to signal, we test the learned Φ on left-out data,
in a cross-validation scheme splitting the data randomly 50
times. Each time, we learn Φ on half of the noisy data and
apply it to the other half to measure distortion with regards
to the non-noisy signal. We vary the number of clusters
k ∈ [0.01p, p]. For Nyström approximation, we vary the
dimensionality k ∈ [0.01n, n].

Fig. 5 shows the clusters found by the various algorithms
on the faces dataset. Single, average, and complete linkage
have percolated, failing to retain the spatial structure of
the faces. Downsampling also fails to capture this structure,
while Ward, SLIC and ReNA perform well in this task.

Distortion: We want to test whether the reduction
Φ X of the noisy data is true to the uncorrupted signal S,

‖Φ X∗,i −Φ X∗,j‖2 ≈ ‖S∗,i − S∗,j‖2, ∀(i, j) ∈ [n]2. (13)

To do so, we split the uncorrupted signal matrix S and
the measured noisy data matrix X into train and test sets,
(Strain,Stest) and (Xtrain,Xtest). We learn a matrix Φ on the
noisy training data, Xtrain. Then, we compare the pairwise
distance between test samples of uncorrupted signal, Stest

to the pairwise distance between corresponding samples of
noisy data after dimensionality reduction, Φ Xtest. Finally,
we report the relative distortion between these two dis-
tances (for a full description see section 4, supplementary
materials). We carry out this experiment on two datasets: i)
synthetic data, and ii) brain activation images (motor tasks)
from the HCP dataset.

Fig. 6 (top) presents the results on the distortion. Note
that SLIC stops early in the range of the number of clusters.
In synthetic data, the clustering methods based on first-
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Figure 6. Assessment of various approximation techniques on syn-
thetic and brain imaging data: Evaluation of the performance varying
the number k of clusters. (top) Empirical measure of the distortion of the
approximated distance. For a fraction of the signal between 5% and 30%
Ward, SLIC and ReNA present a denoising effect, improving the approx-
imation of the distances. In contrast, traditional agglomerative clustering
fails to preserve distances in the reduced space. Downsampling displays
an intermediate performance. (center) Regarding computation time,
downsampling and random sampling outperform all the alternatives, fol-
lowed by random projections and single-linkage. The proposed method
is almost as fast as single-linkage. (bottom) Percolation behavior, mea-
sured via the size of the largest cluster. Ward, SLIC and ReNA are the
best avoiding huge clusters. The vertical dashed lines indicate the useful
value range for practical applications (k ∈ [bp/20c, bp/10c]).

order linkage criteria (single, average, complete linkage) fail
to represent the data accurately. By contrast, SLIC, Ward
and ReNA achieve the best representation performance.
These methods also show an expected denoising effect for
bp/20c < k < bp/10c). In such range, the learned approx-
imation matches approximately the smoothing kernel that
characterizes the input signal. Downsampling also exhibits
a denoising effect, needing more components than the non-
percolating methods. For the HCP dataset, the denoising
effect is subtle, given that we do not have access to noise-
less signals. Downsampling and random projections find a
plateau in the relative distortion curve, meaning that the
signal has a low entropy that is captured with only few
components. In both datasets, dimensionality reduction by
random projections and Nyström fail to decrease the noise.
This is because they guarantee good approximate distances,
and hence represent also the noise.

Computation time: Fig. 6 (center) gives computation
time for the different methods. Dimension reduction by
downsampling is the fastest, as it does not require any train-
ing and the computational time lies in the linear interpola-

tion. It is followed by the Nyström approximation. While
computation time of Nyström approximation and random
projections increases with the reduction fraction of signal,
agglomerative clustering approaches become faster, as they
require less merges. Random projections are faster than clus-
tering approaches to reduce signals to a size smaller than
30% of their original size. Among the clustering approaches,
single-linkage and ReNA are the fastest, as expected. Note
that the cost of the clustering methods scales linearly with
the number of samples, hence can be reduced by subsam-
pling: using less data to build the feature grouping.

Percolation behavior: As percolation is character-
ized by the occurrence of a huge cluster when k decreases,
we report the size of the largest cluster varying the number
k of clusters on Fig. 6 (bottom). Among the traditional
agglomerative methods, single and average linkage display
the worst behavior and quickly percolate. Complete-linkage
exhibits a more progressive behavior, with large clusters
that grow slowly in the small k regime. On the other hand,
Ward and SLIC are most resilient to percolation. Indeed,
they are both known to create clusters of balanced size.
Finally, ReNA achieves a slightly worse performance, but
mostly avoids huge clusters.

4.4 Use in prediction tasks
To evaluate the denoising properties of dimension reduc-
tion, we now consider their use in prediction tasks. We use
linear estimators as they are standard in high dimensional
problems. We consider `2 and `1 penalties. For the `2 case,
the operator ΦT

FGΦFG acts like a kernel. For such estimators,
dimension reductions that preserve pairwise distance are
thus well theoretically motivated [10].

For each estimation problem, we use the relevant met-
ric (explained variance10 for regression and accuracy11 for
classification). We measure the performance of the pipeline:
dimension reduction + estimator. Results are compared to
those obtained without dimension reduction (raw data).

4.4.1 Spatial approximation on a faces recognition task
A classic pipeline to tackle face recognition consists of first
dimensionality reduction of the data followed by classifier
training. Pipelines may include random projections, PCA,
downsampling [43], or dictionary learning [51]. Dimension
reduction is motivated because varying illumination on a
subject with a fixed pose creates a low-dimensional sub-
space [52].

We follow a study on reduced face representations [43],
computing prediction accuracy for various feature-space
dimensions k ∈ {30, 56, 120, 504}, corresponding to down-
sampling ratios of {1/32, 1/24, 1/16, 1/8}. For the classifier,
we use an `2 or `1 logistic regression with a multi class one-
vs-rest strategy and set the regularization parameter λ by 10-
fold nested cross-validation. We measure prediction error
with 50 iterations of cross-validation, randomly splitting
half of each subject’s images into train and test set.

Fig. 7 reports the prediction accuracies. For high reduc-
tion factors, Ward, Nyström, and ReNA perform up to 10%

10. The explained variance is defined as R2 = 1− Var(model−signal)
Var(signal)

11. Accuracy is defined by: 1− number of miss-classifications
total number of samples
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Figure 7. Face prediction accuracy for various approximation
schemes: Prediction accuracy as function of the feature space dimen-
sion obtained for various approximation schemes and classifiers for face
recognition on the extended Yale B dataset. The clustering methods
finding balanced clusters need less features to have a fair performance,
and they obtain significantly higher scores than the percolating methods.

better than random projections or downsampling: represen-
tations adjusted on the data outperform data-independent
reduction operators. For raw data, without reduction, pre-
diction accuracy is around 95.3% and 94.1% for the `1
and `2 penalization respectively. Similar performance is
obtained after reducing the signal by a factor of 64 with
random projections, Nyström, downsampling, Ward, SLIC
or ReNA. In contrast, single, average and complete linkage
clustering fail to achieve the same performance. This shows
the importance of finding balanced clusters.

Regarding computation time, data reduction speeds up
the convergence of the logistic regression. Nyström and
downsampling are the fastest methods. Random projections,
single-linkage, and ReNA follow, all with similar perfor-
mances. Average, complete linkage, Ward, and SLIC are
slightly slower on this dataset.

4.4.2 Trade-offs: prediction accuracy on a time budget

Here, we examine the impact of the signal approximation
on prediction accuracy and prediction time. We use several
datasets: in addition to faces, anatomical and functional
brain images. Supervised learning on brain images [53], [54]
is a typical setting that faces a rapid increase in dimen-
sionality. Indeed, with progresses in MRI, brain images are
becoming bigger, leading to computational bottlenecks. The
Human Connectome Project (HCP) is prototypical of these
challenges, scanning 1 200 subjects with high-resolution pro-
tocols. We consider both anatomical brain images (OASIS
dataset, n = 403 and p = 140 000) and functional brain
images (HCP dataset, n = 8294 and p = 250 000), with
3 different prediction problems: age and gender prediction
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Figure 8. Computation time taken to reach a solution: Quality of the
fit of a `2 penalized logistic regression as function of the computation
time for a fixed number of clusters. In both datasets, Ward, SLIC and
ReNA obtain significantly higher scores than estimation on non-reduced
data with less computation time to reach a stable solution. Note that the
time displayed does include cluster computation.

from anatomy, and discriminating 17 cognitive tasks from
functional imaging.

We use the dimension reduction approaches to speed up
predictor training. We are interested in the total computa-
tion time needed to learn a model: the cost of computing
the compressed representation and of training the classifier.
Based on prior experiments, we set k = bp/20c for random
projections, downsampling and clustering methods, and
k = bn/10c for Nyström, except for the faces dataset, where
we use the k = 504 for all the methods. For classification,
we use a multinomial logistic regression with an `2 penalty
and an l-BFGS solver and for regression we use a ridge.

First, for a better understanding, we show on Fig. 8
convergence of the logistic-regression solver as a function
of time on the two brain classification tasks. Time is spent
in learning the data reduction and iterations of the solver.
Interestingly, for some dimension reduction approaches,
the prediction reaches quickly a good accuracy regime, in
particular for Ward clustering and ReNA. As with previous
experiments, feature clustering with single, average, and
complete linkage lead to poor prediction. On the opposite,
SLIC, Ward, and ReNA give better prediction that non re-
duced data, due to the denoising effect of feature clustering.

We then review systematically across datasets the impact
of the various data reductions on prediction accuracy, the
time taken to compute the reductions, and the total time to
convergence (Fig. 9). We find that dimension reduction with
clustering algorithms that yield balanced clusters (Ward,
SLIC, and ReNA) achieves similar or better accuracy than
raw data while bringing drastic time savings. Random
projections and the percolating methods give consistently
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Figure 9. Impact of reduction methods on prediction for various datasets: (Top) Each bar represents the impact of the corresponding option
on the prediction accuracy, relatively to the mean prediction with non-reduced data. Downsampling has the same performance as raw data. On the
other hand, random projections, Nyström, single, average and complete linkage algorithms are consistently the worst ones across datasets. Ward,
SLIC and ReNA perform at least as good as non-reduced data. (middle) Regarding the computation time to find a reduction, single-linkage and
ReNA are consistently the best among the clustering algorithms. Random projections perform better than Nyström when the number of samples
is large. Downsampling is the fastest across datasets. (Bottom) The time to converge for single-linkage and ReNA is almost the same. Average,
complete-linkage and Ward are consistently the slowest. SLIC performs well on large datasets. Nyström and random projections are the fastest
across datasets. Single-linkage and ReNA are the fastest clustering methods. ReNA strikes a good trade off between time and prediction accuracy.

worse prediction accuracy than raw data. On the OASIS
dataset, downsampling, SLIC, and Ward achieve the same
prediction accuracy as raw, and perform better than raw on
other datasets. Nyström only performs as good as raw data
on the faces dataset with an `2 penalized logistic regression.
ReNA has a slightly worse performance than raw only in
this dataset, and displays a better performance than raw on
the remaining datasets (p-value < 10−4). This illustrates the
reduction of the spatial noise afforded by non-percolating
clustering methods.

4.5 Use in a spatial ICA task

Aside from the `1-penalized estimator, the data processing
steps studied above depend only on pairwise distances
between samples. We now investigate dimension reduction
before an Independent Component Analysis (ICA), which
probes higher moments of the data distribution. ICA is used
routinely on resting-state fMRI to separate signal from noise
or obtain functional networks [55]. We use 93 subjects of

the HCP data, with two rest fMRI sessions, each containing
1200 brain images.

We compare ICA on the raw data and after dimension re-
duction to 5% of the number of voxels (k =

⌊ p
20

⌋
). For Nys-

tröm, the dimension is set to 10% of the number n of samples
(k =

⌊
n
10

⌋
). In each subject, we extract 40 independent

components, a standard choice in the literature. We investi-
gate i) how similar the components obtained are before and
after reduction; ii) how similar the components of session 1
and session 2 are with different reduction approaches. This
second experiment gives a measure of the variability due
to noise. In both cases, we measure components similarity
with the absolute value of their correlation, and match them
across sessions with the Hungarian algorithm.

Fig. 10 summarizes the use of dimension reduction in
ICA of rest fMRI. We find that the 40 components are highly
similar before and after data reduction with downsampling
and Ward: the average absolute correlation greater than 0.8.
SLIC and ReNA have a slightly worse performance, with
an average correlation greater than 0.74. On the other hand,
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Figure 10. Spatial ICA reproducibility after dimension reduction: Reproducibility of 40 spatial independent components on fMRI for 93 subjects,
with a fixed reduced dimension (see section 4.5). (Left) the similarity of downsampling, Ward, SLIC and ReNA with respect to the non-compressed
components is high. (Middle) across two sessions, donwsampling yields components more consistent than raw data. Ward, SLIC and ReNA perform
as well as raw data, while other approaches fail to do so. (Right) regarding computational time, ReNA outperforms downsampling, Ward and SLIC,
and performs as well as single-linkage and random projections. It is 16 time faster than working on raw data.

single-linkage, average-linkage, complete-linkage, Nystöm,
and random projections do not recover the components
(average correlation < 0.4). As expected, the components
between sessions obtained by non-percolating clustering
(Ward, SLIC, and ReNA) are similar to the original ones.
Donwsampling improves the similarity with respect to raw:
the estimation problem is simpler and less noisy. On the
opposite, single, average, and complete linkage degrade the
similarity: they lose signal due to the large cluster created
by percolation. Random projections and Nyström perform
poorly. Indeed, they average data across the images, de-
stroying the high-order moments of the data by creating
signals more Gaussian than the originals. As a consequence,
ICA cannot recover the sources derived from the original
data. By contrast, the non-percolating clustering algorithms
extract local averages of the data, that preserve its non-
Gaussianity, as it has a spatial structure. Hence the spatial
ICA is successful even though it has access to less samples.
Finally, dimensionality reduction using ReNA speeds up the
total analysis by a factor of 15.

5 SUMMARY AND DISCUSSION

Fast dimension reduction is a crucial tool to tackle the
rapid growth in datasets size, sample-wise and feature-wise.
In particular, grouping features is natural when there is
an underlying regularity in the observed signal, such as
spatial structure in images or a more general neighborhood
structure connecting features. We studied here a data-driven
approach to perform feature grouping, where groups are
first learned from a fraction of the data using a clustering
algorithm, then used to build a compressed representation
for further analysis.

We showed that feature grouping can preserve well
the pairwise Euclidean distances between images. This
property makes it well suited for `2-based algorithms,
like shift-invariant kernel-based methods, or to approx-
imate queries in information-retrieval settings. We also
clarified under which hypotheses this scheme leads to a

beneficial bias/variance compromise: as clustering adapts
to the data, it reaches more optimal regimes than simple
downsampling-based compression.

Additionally, we proposed a linear-time graph-
structured clustering algorithm, ReNA, that is efficient with
many clusters. This algorithm iteratively performs 1-nearest
neighbor grouping, reduces the graph at each iteration, then
averages the input features and repeats the process until
it reaches the desired number of clusters. We have shown
empirically that it is fast, does not percolate, and provides
excellent performance in feature grouping for dimension
reduction of structured data.

Our experiments have shown that on moderate-to-
large datasets, non-percolating feature-grouping schemes
(i.e. Ward, SLIC, and ReNA) most often outperform state-
of-the-art fast data-approximation approaches for machine
learning, namely random projection and random sampling.
Using these methods in a predictive pipeline increases the
quality of statistical estimations: they yield more accurate
predictions than with all features. This indicates that feature
grouping leads to a good approximation of the data, captur-
ing structure and reducing noise. This denoising is due to
the smoothness of the signal of interest: unlike the noise, the
signal displays structure captured by feature grouping.

A key benefit of the ReNA clustering algorithm is that
it is very fast while avoiding percolation. As a result, it
gives impressive speed-ups for real-world multivariate sta-
tistical problems: often more than one order of magnitude.
Note that the computational cost of ReNA is linear in the
number of samples, hence additional computation gains
can be obtained by sub-sampling its training data, as in
Nyström approaches. In this work, we did not investigate
the optimal choice of the number k of clusters, because we
do not view compressed representations as a meaningful
model per se, but as an approximation to reduce data
dimension without discarding too much information. The
range k ∈

[⌊ p
20

⌋
,
⌊ p
10

⌋]
is a useful regime as it gives a good

trade-off between computational efficiency and data fidelity.
In our experiments, k =

⌊ p
20

⌋
gave enough data fidelity
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for statistical analysis to perform at least as well as on raw
data. In this regime, Ward clustering gives slightly better
approximations of the original data, however it is slower,
often by several orders of magnitude, hence it is impractical.

We have shown that feature grouping is useful beyond
`2-distance-based methods: it also gives good performance
on estimators relying on higher order moments (e.g. ICA)
or sparsity (`1-based regression or classification)12. As future
work, it would be interesting to investigate the use of ReNA-
based feature grouping in expensive sparse algorithms,
for instance with sparse dictionary learning, where feature
sub-sampling can give large speed ups [56]. Similarly, the
combination of clustering, randomization, and sparsity has
also been shown to be an effective regularization for some
ill-posed inverse problems [25], [57]. This is all the more
important that computation cost is a major roadblock to the
adoption of such estimators.

An important aspect of feature grouping compared to
other fast dimension reductions, such as random projec-
tions, is that the features of the reduced representation
make sense for the application. Consequently, the dimension
reduction step can be inverted, and any statistical analysis
performed after reduction can be reported with regard to
the original signal.

Given that ReNA clustering is very fast, the proposed
featuring-grouping is an extremely promising avenue to
speed up any statistical analysis of large datasets where
the information is in the large-scale structure of the signal.
Such approach is crucial for domains where the resolution
of the sensors is rapidly increasing, in medical or biological
imaging, genomics, spectroscopy, or geospatial data.
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1 NYSTRÖM FEATURE MAPPING

Here, we present the standard implementation of the Nys-
tröm approximation for linear kernels. Algorithm 2 allows
to build a data-driven feature mapping that is used to
reduce the dimensionality of the data matrix. The algorithm
is summarized as follows: first, we select images uniformly
at random1, then we calculate the kernel of these samples
and use it to normalize the selected images.

Algorithm 2 Nyström: Learning the feature mapping

Require: The training data matrix X ∈ Rp×n, number k of
components, where k < n.

Ensure: The feature mapping ΦNys ∈ Rk×p

1: r← Generate uniform sampling of k components
2: X∗,r ∈ Rp×k {Subsample of k columns}
3: K̃ = XT

∗,rX∗,r {Kernel matrix of the subsampled data}
4: ΦNys = K̃−1/2XT

∗,r {Normalization: via SVD}
5: return ΦNys

2 PROOF OF LEMMA 2.2

In this appendix, we present the arithmetic manipulation
necessary to prove the first part of the Lemma 2.2. As
ΦT

FGΦFG is an orthogonal operator, Eq. 6 corresponds to an
orthogonal decomposition. But, for the sake of clarity we
include it in this appendix.

Corollary 2.1. Let x ∈ Rp be a signal, and ΦFG be a feature-
grouping matrix, the following holds

‖x‖22 −
k∑

q=1

∥∥∥∥∥xCq −
(ΦFG x)q√
|Cq|

∥∥∥∥∥

2

2

= ‖ΦFG x‖22 ≤ ‖x‖22.

(14)

1. We can use other sampling probabilities (e.g. the leverage score
[1]), but by sampling uniformly we are assuming a regular structure

Proof 2.1. We start by writing down the `2 norm of the data
vector x for every point inside all the clusters {Cq}kq=1.
Then, we perform simple manipulations, as follows

‖x‖22 =
k∑

q=1

∑

i∈Cq
x2
i

=
k∑

q=1

∑

i∈Cq

(
x2
i +

(ΦFG x)2q
|Cq|

− (ΦFG x)2q
|Cq|

)

=
k∑

q=1

(ΦFG x)2q +
k∑

q=1

∑

i∈Cq

(
x2
i −

(ΦFG x)2q
|Cq|

)

= ‖ΦFG x‖22 +
k∑

q=1

∥∥∥∥∥xCq −
(ΦFG x)q√
|Cq|

∥∥∥∥∥

2

2

.

(15)

Finally, the right hand inequality of Eq.14 comes nat-
urally after scaling each cluster (the non-zero singular
values are set to 1). �

Proof 2.2. The corollary 2.1 shows that the lower bound of
the representation is only affected by the inertia (see left
hand side of Eq.14). So, the worst case corresponds to the
upper bound of the inertia M(x) =

∑k
q=1mq(x). Then,

the inertia of each cluster can be bounded as follows

mq(x) =

∥∥∥∥∥xCq −
(ΦFG x)q√
|Cq|

∥∥∥∥∥

2

2

=
∑

j∈Cq


xj −

1

|Cq|
∑

i∈Cq
xi




2

≤ |Cq|max
j∈Cq

∣∣∣∣∣∣
xj −

1

|Cq|
∑

i∈Cq
xi

∣∣∣∣∣∣

2

(16)

The last inequality corresponds to the worst case for the
sum inside the cluster.

Let constrain our analysis to L-smooth signals x ∈ Rp

structured by graph G (see Definition 2.1). Under this
assumption, we can bound the inertia of each cluster as
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follows:

mq(x) ≤ |Cq|max
j∈Cq

∣∣∣∣∣∣
xj −

1

|Cq|
∑

i∈Cq
xi

∣∣∣∣∣∣

2

≤ |Cq|L2 sup
i,j∈Cq

distG(vi, vj)2

= L2 |Cq|diamG(Cq)2,

(17)

where the second inequality follows from the pairwise
L-Lipschitz condition. Finally, plugging Eq.17 into Eq.15
we have:

‖x‖2 − L2
k∑

q=1

|Cq|diamG(Cq)2 ≤ ‖ΦFG x‖2 ≤ ‖x‖22.

(18)
�

Corollary 2.2. Let Lq be the smoothness index inside cluster
Cq , for all q ∈ [k]. This is the minimum Lq such that:

|xi − xj | ≤ Lq distG(vi, vj), ∀(i, j) ∈ C2
q .

Then the following two inequalities hold:

‖x‖22 −
k∑

q=1

|Cq| sup
xi,xj∈xCq

|xi − xj |22 ≤

‖x‖22 −
k∑

q=1

L2
q |Cq|diamG(Cq)2 ≤‖ΦFG x‖22.

(19)

Proof 2.3. As in Eq.17, the second inequality is consequence
of adding the local L-smoothness condition. �

3 DENOISING PROPERTIES

In this section, we analyze the regularity condition of the
signal of interest s, its relation with the noise and maximum
cluster size. Let x be the acquired signal, which is a fixed
signal of interest s contaminated with an i.i.d. zero-mean
Gaussian noise n with variance σ2, x = s + n.

With the purpose of ensuring clarity, we define A =

ΦT
FGΦFG. Let MSEappox = En

[
‖s−A x‖22

]
and MSEorig =

En

[
‖n‖22

]
be the mean squared error with and without ap-

proximation, receptively. As we are dealing with Gaussian
noise, the risk of the raw data is MSEorig = p σ2.

Given that ‖s‖22 is fixed, it is enough to show
MSEapprox ≤ MSEorig to ensure an increase in the SNR.

Proposition 3.1. Let x = s + n ∈ Rp be an acquired signal,
where s is a fixed smooth L-Lipschitz signal and n an
i.i.d. zero-mean Gaussian noise with variance σ2. Then,
for a given grouping matrix ΦFG ∈ Rk×p the mean
squared error of the approximation (MSEapprox) is upper-
bounded by

MSEapprox ≤ L2
k∑

q=1

|Cq|diamG(Cq)2 +
k

p
MSEorig. (20)

Proof 3.1. We start by writing down the MSEapprox, then we
separate the components thanks to the i.i.d assumption
and plug the upper-bound of the inertia, as follows

MSEapprox = En

[
‖s−A x‖22

]

= ‖(I−A) s‖22 + En

[
‖A n‖22

]

= ‖(I−A) s‖22 + k σ2

≤ L2
k∑

q=1

|Cq|diamG(Cq)2 + k σ2.

�
Corollary 3.1. Let x = s + n ∈ Rp be an acquired signal,

where s is a fixed a pairwise smooth L-Lipschitz signal
and n is an i.i.d. zero-mean Gaussian noise with variance
σ2. For a given grouping matrix ΦFG ∈ Rk×p, the noise
after approximation is reduced, MSEapprox ≤ MSEorig,
only if the L2 smoothness parameter satisfy

L2 ≤ (p− k)
∑k

q=1 |Cq|diamG(Cq)2
σ2. (21)

Proof 3.2. This is a direct result of the proposition3.1 after
some arithmetic manipulations,

MSEapprox ≤ L2
k∑

q=1

|Cq|diamG(Cq)2 + p σ2 − (p− k)σ2

≤ L2
k∑

q=1

|Cq|diamG(Cq)2 + MSEorig − (p− k)σ2.

Then, to satisfy MSEapprox ≤ MSEorig, we must have:

L2
k∑

q=1

|Cq|diamG(Cq)2 ≤ (p− k)σ2,

which lead us to the upper-bound of the Lipschitz con-
stant. �

Cluster of the same size: This is a particular case,
where we assume that the clusters P = {Cq}kq=1 have the
same size, p

k . Under this assumption, the following holds:

MSEapprox ≤ p
(
L

k

)2

+
k

p
MSEorig = O

(
max

{
p

k2
,
k

p

})
.

(22)
The right-hand side of Eq. 22 corresponds to the bias-

variance tradeoff. Then, we need to balance these terms to
maximize the rate of decay. Such balance can be achieved
with k ∼ p2/3 and hence MSEapprox ∼ O(k−1/2). Such choice
for k is consistent with values that we have found to work
well empirically.

4 EXPERIMENT DESCRIPTION: DISTORTION

To assess the quality of this approximation (see Eq.2 and
Eq.8, we randomly split half of the data to form a train and
test clean signals (Strain,Stest) and a train corrupted data
matrix Xtrain. We learn Φ on the train corrupted data Xtrain.
On the test data, we fit a proportionality constant η that
relates the distances in reductions of the corrupted data with
the corresponding distances in the clean signals.
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We denote δ
orig
(i,j) the norm of the difference of the i and j

uncorrupted signals, ‖Stest
∗,i − Stest

∗,j‖2, and δ
noisy
(i,j) the norm of

the difference of the i and j scaled noisy signals, η‖Φ Xtest
∗,i −

Φ Xtest
∗,j‖2, for all (i, j) ∈

[⌊
n
2

⌋]2 (note that δ ∈ Rn(n−1)/8).
We then use the relative distortion (RD) between δorig and
δnoisy to quantity the denoising effect of each method:

RD(δorig, δnoisy)(dB) = −10 log10
‖δnoisy − δorig‖22
‖δorig‖22

. (23)

This measure gives us an insight on the distortion and
possibly denoising effect. In particular, it shows us for which
fraction of the signal the condition of Eq.7 is satisfied.

5 EXPERIMENTS

5.1 Empirical computational complexity
We empirically assess the scalability of the algorithms as
function of the input size. The test is carried out for a
synthetic dataset composed of 10 cubes. We varied their
dimension p ∈ {8, 16, 64, 128}3 and fix the number of
clusters to k =

⌊ p
20

⌋
. We repeat 10 times, and report the

average computation time.

Fig. 1 reports the computation time to estimate Φ for the
different approximation schemes. Nyström, single-linkage,
complete-linkage, SLIC and ReNA have a cost linear in the
number p of features. Random projections, average-linkage
and Ward display a sub-quadratic time complexity, while
downsampling has a sub-linear behavior. Single-linkage and
ReNA outperform other agglomerative methods, reducing
computation time by a factor of 10. Profiling reveals that
random projections’ run time is dominated by the random
number generation. The scikit-learn implementation uses a
Mersenne Twister algorithm, with good entropic properties
at the cost of increased computations [2].
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Figure 1. Complexity of the computation time on a synthetic
dataset: Evaluation of the time complexity to find Φ per algorithm
on a synthetic data cube, for various feature space dimensions p ∈
{8, 16, 64, 128}3 and fixing the number of clusters to k =

⌊ p
20

⌋
.

Downsampling displays a sub-linear time complexity, whereas Nyström,
single-linkage, complete-linkage, SLIC and ReNA present a linear be-
havior. Complete-linkage, Ward and random projections have a sub-
quadratic time behavior.

5.2 Approximation of brain images with clustering-
based dimension reduction
Fig. 2 shows the approximations of brain images using
clustering methods. It shows that traditional agglomerative

clustering methods exhibit giant clusters and lose mean-
ingful information. By contrast, Ward, SLIC and ReNA
algorithms find balanced clusters, and yield better approxi-
mations of the input.
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(a) Original (b) single-linkage (c) average-linkage (d) complete-linkage (e) Ward (f) SLIC (g) ReNA

Figure 2. Approximation of an MRI image obtained with various feature grouping algorithms: A compressed representation of an MRI image
(slice) using various clustering methods for a number of clusters k = 1000. Traditional agglomerative clustering methods exhibit giant clusters,
losing meaningful information. By contrast, Ward, SLIC and ReNA algorithms present a better performance, finding balanced clusters.


