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Hyperspectral Light Field Stereo Matching

Kang Zhu, Yujia Xue, Qiang Fu, Sing Bing Kang, Xilin Chen, and Jingyi Yu

Abstract—In this paper, we describe how scene depth can be extracted using a hyperspectral light field capture (H-LF) system. Our
H-LF system consists of a 5 x 6 array of cameras, with each camera sampling a different narrow band in the visible spectrum. There
are two parts to extracting scene depth. The first part is our novel cross-spectral pairwise matching technique, which involves a new
spectral-invariant feature descriptor and its companion matching metric we call bidirectional weighted normalized cross correlation
(BWNCC). The second part, namely, H-LF stereo matching, uses a combination of spectral-dependent correspondence and defocus
cues that rely on BWNCC. These two new cost terms are integrated into a Markov Random Field (MRF) for disparity estimation.
Experiments on synthetic and real H-LF data show that our approach can produce high-quality disparity maps. We also show that
these results can be used to produce the complete plenoptic cube in addition to synthesizing all-focus and defocused color images

under different sensor spectral responses.

Index Terms—Hyperspectral Light Fields, Stereo Matching, Spectral-Invariant Feature Descriptor, Spectral-Aware Defocus Cues.

1 INTRODUCTION

HE availability of commodity light field (LF) cameras
T such as Lytro [1]] and Raytrix [2] makes it easy to capture
light fields. Dense stereo matching solutions have exploited
unique properties, e.g., spatial and angular coherence [3],
ray geometric constraints [4]], [5], [6], focal symmetry [7],
and defocus blurs [8]. In addition to 3D reconstruction, LF
stereo matching can also address traditionally challenging
problems, e.g., transparent object reconstruction [9], saliency
detection [10] and scene classification [11]].

Since an LF consists of densely sampled rays within a
specific range of location and angle, it can be thought of
as representing geometry and surface reflectance as well.
However, the original plenoptic function [12] includes an
additional dimension of spectra, which has been largely
ignored in most previous LF systems. What is required is
hyperspectral imaging, which refers to the dense spectral
sampling of a scene, as opposed to the regular RGB three-
band sampling for color cameras.

Holloway et al. [13] acquire a multispectraﬂ LF us-
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1. In hyperspectral imaging, narrow band-pass filters are used. In the
Holloway et al. work [13]], broadband filters are used instead.

ing generalized assorted camera arrays. More recently,
Xiong et al. [14] adopts a hybrid sensing technique that com-
bines an LF with a hyperspectral camera. These solutions
assume small camera baselines for reliable image registra-
tion. In contrast, we present a wide baseline hyperspectral
light field (H-LF) imaging technique based on novel cross-
spectral LF stereo matching.

Direct adoption of existing LF stereo matching solutions
(e.g., [4], 7], 18], [15], [16], [17]) for H-LF would be ineffec-
tive, since images at different spectral bands may be very
visually different. Instead, we introduce a new spectral-
invariant feature descriptor and its companion matching
metric (which we call bidirectional weighted normalized
cross correlation or BWNCC). BWNCC measures gradient
inconsistencies between cross-spectral images; it signifi-
cantly outperforms other state-of-the-art metrics (e.g., sum
of squared differences (SSD) [18], normalized cross correla-
tion (NCC) [19], histogram of oriented gradient (HOG) [20],
scale-invariant feature transform (SIFT) [21]), in both robust-
ness and accuracy.

Our spectral-dependent H-LF stereo matching technique
combines correspondence and defocus cues that are based
on BWNCC. For visual coherency, we calculate the corre-
spondence cost using local subsets of views, since views
that are farther away may be less reliable. The entire H-
LF is used to compute our new spectral-aware defocus
cost. Previous approaches use color or intensity variance to
measure focusness. However, for H-LF, the same 3D point
will map to different intensities; as a result, such variance
measures would be unreliable. We instead synthesize the
RGB color from H-LF samples, then use the CIE Color Space
to map the estimated hue of color to its spectral band.
Consistency is then measured using the actual captured
band as the focusness measure. Finally, we integrate the
new correspondence and defocus costs with occlusion and
smoothness terms in an energy function, and solve it as a
Markov Random Field (MRF).

We validate our approach on both synthetic and real H-
LFs. To capture real H-LFs, we construct an H-LF camera
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Fig. 1. System overview. Our hyperspectral light field (H-LF) imager (HLFI, top left) consists of a 5 x 6 array of cameras, each with a narrow bandpass
filter centered at a specific wavelength. The HLFI samples the visible spectrum from 410nm to 700nm with an 10nm interval. We propose a new
spectral-dependent H-LF stereo matching technique (middle), which involves novel correspondence cost (top) and spectral-aware defocus cost
(bottom). The correspondence cost is based on a new spectral-invariant feature descriptor called BWNCC with local view selection. The generated
disparity map (top right) can be used for complete plenoptic reconstruction (bottom right).

array, with each camera equipped with a different narrow
10nm-wide bandpass filter (Figure [[). The union of all the
cameras covers the visible spectrum from 410nm to 700nm.
The baseline is 36mm, which is large enough that parallax
for the scenes used would be significant. We show our H-LF
stereo matching technique can produce high-quality dispar-
ity maps for both synthetic and real datasets. The disparity
maps can be used to produce the complete plenoptic cube.
These maps can also be used for image warping, which
allows color image synthesis, hyperspectral refocusing, and
emulation of different color sensors.
The contributions of this paper are:

e We designed a snapshot hyperspectral light field
imager (HLFI) that samples only a subset of H-LFs,
avoiding demosaicking artifacts. In principle, our
HLFI can be expanded both in the spectral resolu-
tion (e.g., a 5nm interval or lower) and range (e.g.,
additional infrared and ultraviolet bands).

e We propose a new spectral-invariant feature de-
scriptor to effectively represent the visually-varying
spectral images. We also propose a matching met-
ric, BWNCC, to measure the similarity of multi-
dimensional features. This feature descriptor and
BWNCC are used in H-LF stereo matching.

e We propose a novel spectral-dependent H-LF stereo
matching technique that combines a local view selec-
tion strategy with spectral-aware defocus. We show
that our matching technique produces high-quality
disparity maps.

e We show three applications using our H-LF results:
reconstruction of the complete plenoptic cube, gen-
eration of all-focus H-LF, and synthesis of defocused
color images under different spectral profiles. We
expect these applications would be useful for 3D
reconstruction, object detection and identification,
and material analysis.

The rest of this paper is organized as follows. We review
related work in feature descriptors, LF stereo matching,
and multi-spectral imaging in Section 2| Our design of
HLFI is described in Section Bl Section [ details our feature
descriptor and matching metric; these are used in our H-LF
stereo matching technique (Section[p). The task of complete
plenoptic cube reconstruction is described in Section [
Section[7]presents the experimental results and applications,
with discussion of limitations in Section |8 and concluding
remarks in Section 0]

2 RELATED WORK

In this section, we review relevant approaches in the areas
of multispectral imaging, feature descriptors, and light field
stereo matching.

2.1

Spectral imaging has long been driven by the need of high
quality remote sensing [22]], with applications in agriculture,
military, astronomy, surveillance, etc. (e.g., [23]], [24], [25],
[26]). The commonly adopted techniques include coupling
bandpass filters with spatial and temporal multiplexing to
acquire both the spatial and spectral information. In satellite
imaging, spectral-coded pushbroom cameras is capable of
acquiring the full spectra [27]. Tunable filters (e.g., LCTE,
AOTF [28]) provide an alternative single camera solution.
Such solutions require the camera be fixed under different
shots and cannot provide scene parallax. More expensive
snapshot imaging spectrometry involving diffraction grat-
ing, dispersing prism, multi-aperture spectral filter, Lyot
filter or generalized Bayer filter (e.g., [29], [30]]), requires
extremely accurate calibration.

Alternative approaches mostly rely on hybrid sensing,
i.e., using sensors with different modalities. For example,
Xiong et al. [14] combine an LF camera with a hyperspectral
camera to obtain the angular and spectral dimensions for
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recovery of the hyperspectral LF. Ye and Imai [31] describe
a plenoptic multispectral camera whose microlens array has
a spectrally-coded mask. Using a sparse representation, the
spectral samples are used to reconstruct high resolution
multispectral images. Closely to related to our work is
that of generalized assorted cameras [13], where a camera
array is used for multispectral imaging. This system is a
custom-built camera array (ProFUSION from PTGrey) that
is modified by mounting broad band-pass filters. The cam-
era baseline is rather small, and the filter being broad band-
pass makes it easier to correspond images using existing
color features.

Our system uses a 2D array of monochrome cameras
with narrow band-pass filters to avoid the demosaicking ar-
tifacts caused by the de-mulplexing procedure used in [13].
More importantly, the camera baselines in our system are
significantly larger relative to scene depth; this allows more
reliable depth estimation and enables synthetic refocusing.
Finally, our system is extensible: in principle, more cameras
can be added to increase the synthetic aperture (with wider
extents) or spectral sampling resolution (with narrower
band-pass filters).

2.2 Feature Descriptors

Feature descriptors (e.g., [32], [13], [18], [19], [33], [34],
[35], [36]) play a critical role in stereo matching and image
registration. SSD (e.g., [32], [18]) is widely used in stereo
matching as a data cost (e.g., [33]). NCC [19] is a highly
popular as well for matching contrast-varying images. To
take into account local radiometric variabilities, adaptive
normalized cross correlation (ANCC) [34] is introduced
for matching. Hirschmuller [35] uses mutual information
(MI) with correlation-based method to resolve radiometric
inconsistencies in images matching. Other matching fea-
tures used include robust selective normalized cross cor-
relation (RSNCC) [36] for multi-modal and multispectral
image registration, and cross-channel normalized gradient
(CCNQG) [13] for multispectral image registration.

However, in cross-spectral stereo matching, the crucial
problem is the spectral difference. Techniques such as [18],
[19], [33] do not work well because of the intensity con-
sistency assumption. Although radiometric inconsistencies
that are handled in [34], [35] are related to spectral dif-
ference, they have very different properties. Radiometric
changes (e.g., caused by the varying exposure or lighting)
mostly preserve the relative ordering of local scene point
intensities. In contrast, in multispectral imaging, the relative
ordering of local intensities can change arbitrarily, including
order reversal. This is because different materials tend to
have different responses at different wavelengths. Both [13],
[36] are applied to multispectral imaging. Unfortunately,
in [36], errors occur in regions with uncorrelated textures.
Meanwhile, [13] describes a technique that operations on
broad band-pass RGB color channels; it is not expected to
handle the single narrow band-pass channel images in our
H-LF as well using [34].

2.3 Light Field Stereo Matching

Many stereo techniques have been proposed [37], including
local methods [19], semi-global methods [35], and global
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methods [33]. More recently, these techniques have been
adapted for LFs. For exmaple, Wanner and Goldlucke [15]
extract the direction field in the Epipolar Image to estimate
disparity. Yu et al. [4] use geometric structures of 3D lines in
ray space to improve depth with encoded line constraints.
Tao et al. [8]] introduce the defocus cue combined with cor-
respondence for depth estimation. Chen et al. [16] propose
a bilateral consistency metric to handle occluding and non-
occluding pixels, while Lin et al. [7] make use of the LF focal
stack to recover depth. Wang et al. [17] handle occlusion
through edge detection. Again, these solutions cannot be
directly applied for H-LF stereo matching; under spectral
variations, regular data consistency measures (such as fo-
cusness) are no longer effective. Our spectral-dependent H-
LF stereo matching technique addresses the cross-spectral
inconsistency problem by using a spectral-invariant feature
descriptor, applying local selection of views, and using
spectral-aware defocus cues. We also handle occlusion in
a manner similar to [17].

3 HYPERSPECTRAL LIGHT FIELD IMAGER (HLFI)

To simultaneously acquire spatial, angular, and spectral
samples of the plenoptic function, we build a hyperspectral
light field imager (HLFI). The left of Figure |1/ shows our
HLFI setup: we use an array of 5 x 6 monochrome cameras,
each equipped with a narrow band-pass filter centered at a
different wavelength. The spectral responses of the filters
are shown in Figure [2l These filters sample the visible
spectrum, centered from 410nm to 700nm with an 10nm
interval. The bandwidth of each filter is 10nm (i.e., £5nm)
with +2nm uncertainty. Due to the uncertainty, neighboring
filters have responses that overlap. Fortunately, the response
drop-off for each narrow band-pass filter is steep. As shown
in Figure @ the overlaps occur below 35% quantum effi-
ciency, where drop-off is rapid. We treat each filter response
as a Dirac delta function Fy,(\) = §(A — \;), where J; is the
center wavelength.

To accommodate the extra spectral dimension, we mod-
ify the two-plane LF representation [1], [38] to L(u, v, s,t, \)
for the sampled hyperspectral light field (H-LF). (u, v) and
(s,t) represent the ray intersection with the aperture and
sensor planes (respectively) at wavelength . The image
I(s,t,\;) on (s,t) corresponding to narrow band-pass spec-
tral profile F), () centered at wavelength X; is modeled as:

(5,6, \) = ///L(u,v, s,t, \)A(u,v)C(N) (1)

- Fy,(\) cos* d\dudv,

where A(u,v) is the aperture function, 6 is incident angle of
the ray, and C'(\) is the camera spectral response function.
We ignore cos? f using the paraxial assumption. Equation
simplifies to:

I(s,t, ;) // (u, v, s,t, \;)A(u, v)dudv @

= C(\)S(s,t, M),

where S()\;) is the latent radiance image at spectrum \;
while C()\;) is the spectral response function.
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Fig. 2. The spectral profile of narrow band-pass filters. In our setup, we
mount 30 filters on camera array (Figure [1). These filters sample the
visible spectrum, centered from 410nm to 700nm with an 10nm interval
as this figure shows. Each bandwidth is 10nm (i.e., =5nm about the
central wavelength) with +2nm uncertainty. The overlaps occur near
35% quantum efficiency with rapid drop-off.

4 Two-VIEW SPECTRAL-AWARE MATCHING

In this section, we describe our new approach to matching
two views £ and R corresponding to narrow band spectra
centered at two different wavelengths A;, and Ar (respec-
tively).

4.1 Spectral-Invariant Feature Descriptor

Traditional measures for correspondence assume either
brightness constancy or preservation of brightness order-
ing. As mentioned earlier, such measures (including direct
gradient-based measures) fail because cross-spectral images
violate these assumptions. Figure [3] shows an example
from the Middlebury dataset [37]. The red channel of £
(Figure B(a)) is markedly different from the blue channel
of R (Figure b)); for example, edge pixels around the
lamp exhibit significant inconsistencies across the image
pair. This demonstrates that we need to devise a new feature
descriptor for cross-spectral images.

We first eliminate the effect caused by the camera spec-
tral response. From Equation2} for two corresponding pixels
p and q (p,q € N?), we have I, (p) = C(A1)Sp(Az) and
Ir(q) = C(Ar)Sq(AR). We normalize them to yield:

T _ L(Iﬁ _ Sp(AL)
ot - 1) _ Salhe)
A T T S 0w

where I7, and Iy are the mean intensities, and S(\z) and
S(AR) are the average radiances in the corresponding views.
For the remainder of the paper, we use I (p) and Ir(q)
as inputs, eliminating the effect of the camera spectral
response while still depending on the spectrum. We exploit
the gradient of image as the feature descriptor. M (p) and

O(p) represent the magnitude and direction of the gradi-

ent at p, respectively: M(p) = \/VQCIN(p)2 +V,I(p)? and

O(p) = atan (Vyf(p)/vzf(p)) In Figure (c) and (d)
show the magnitudes of gradient for (a) and (b); (e) and (f)

< 0.0

Fig. 3. Cross-channel stereo imaging on the Tsukuba image pair.
(a) and (b): Red channel of £ and blue channel of R, respectively. (c)
and (d): respective gradient magnitudes. (e) and (f): respective gradient
directions. Section@describes how we match boundary (e.g., p1-q1)
and non-boundary (e.g., p2-q2) pixels. The pixels denoted with primes
(p}, etc.) are neighboring pixels.

shows the directions of gradient for (a) and (b) quantized
within [0, 7].

We consider two cases, based on proximity to edges.
Case 1: Suppose corresponding pixels p, q and their respec-
tive neighbors p’,q’ are all part of the same object (e.g.,
P2, q2 are adjacent to pj, gy, respectively, in FigureEl). Then,
[1o(p) = IL(P)] = [Ir(a) — Ir(d')|, implying that the
gradient magnitude and direction should be approximately
the same, i.e, M (p) ~ Mg(q) and Or(p) ~ Or(q).
Case 2: Suppose the pixels lie near an edge (e.g., p1,q; are
adjacent to pj, q}, respectively, in Figure EI) The foreground
and background correspond to objects with different spec-
tral responses and the magnitude measure is no longer con-
sistent. However, note that the gradient directions should
still be similar.

We design a feature descriptor that measures both edge
and non-edge points. The non-edge features couple the
gradient magnitude and direction histograms, whereas the
edge features are an extension of HOG we call Overlap-
ping HOG or O-HOG. Unlike traditional histograms, where
every bin represent a separate range of values, in O-HOG,
adjacent bins have overlapping values (i.e., they share some
range of values). This is to more robustly handle view and
spectral variations that exist in cross-spectral matching. By
comparison, even a slight change in perspective or spectrum
may lead to misalignment in regular HOG [20].

To find correspondence, we first calculate the gradient
magnitude and direction histograms (with K; and K> bins,
respectively). Given a local window U(p,w) € N *2
centered at p with size w x w for a stack of magnitude
and direction images, we count weighted votes for bins
in the magnitude histogram h;(p,w, K;) and direction
histogram hy(p, w, K3). Specifically, the k-th bin bgk)(p, w)
of h;(i=1,2;k € [0, K; — 1)) is aggregated as

> G(p,ut,og)f(ut)

u, €U(p,w)
Z b(-j)
J€[0,K;—1] '

(4)

) (p, w) =

where G(p,ut,04) = exp (—||p — w|[3/20,°) is a spatial
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Fig. 4. Our spectral-invariant feature descriptor H is based on weighted
histograms for 3-level pyramids of the gradient magnitude and direction
maps. hy and h are the histograms for gradient magnitude and direc-
tion, while h3 represents O-HOG.

weight kernel, and f(u,) is a truncation function defined as

f<ut>‘{1 £ Q(u) € [5(1 =)o, Kl ~e)a+o)

0 otherwise

©)

Here o is the overlapping portion between the neighboring
bins and s is the bin width. For h;, Q(u;) = M (u;); for
hy, Q(u;) = O(u;). Similarly, for the O-HOG histogram
hs(p, w, K3), the k-th bin bgk)(p, w) is computed as

> G(p,u,09)M(uy)f(uy)

u:€U(p,w)

b (p, w) = ©)

béj)
J€[0,K3—1]
Note that for hs, Q(u;) = ©(u;) in Equation 5| We set s =
1/64 and o0 = 1/16 for both h;, hy and hs. K7 = K» = K3,
all round up to 68.

. . T .

We define descriptor D, = [a1h{, azh], ashi]", with
a1, ag, and oz being weights. Recall that h; and hy repre-
sent non-edge points and hs represents edge points. Since
M (p) is the edge strength of p, we simply reuse M (p) to
get a1 = ag = Bexp(—M?(p)/oy) and a3 = 1 — o — as.
In our work, 8 = 1/2 and o, = 0.16.

For robustness, we build a 3-level pyramid structure
with different patch widths w = [wy, ws, w3]? to obtain
the final descriptor H, = [Dg(wl),Dg(wg),Dg(wg)}T
with K elements, where K = 3(K; + K3 + K3). In all our
experiments, w = [3,5,9]7. Figure [4{shows the structure of
our feature descriptor.

4.2 Spectral-Invariant Similarity Metric

A popular similarity metric for stereo matching is the nor-
malized cross correlation (NCC) [19]:

5 EZ; (Ip(w;) — I)(Ir(uy) — IR)
E(I) = =2t _ S
> Up(w)—1Ip)?* > (Ir(uy) —Ig)?
u;, €U u;€URr

where I, and Iy are the mean values of Uy (p,w) and
Ug(q,w), respectively, in domain I (e.g., intensity).
Unfortunately, NCC cannot be directly used to match
multi-dimensional features. Note that each element A(*) in
H is independent of any other element n9) (5 # i), and

represents a unique attribute of H (as shown in Figure [4).

5

K-1
> wik(h),

where w; is a similarity weight of 2(*). In principle, we can
simply use 2(¥) as w;. In practice, for robustness to noise, we
use the mean h(") 1nstead of h() as weights.

Since hg) and h play equally important roles in com-
puting {(H), the fmal metric we use incorporates both,
leading to the Bidirectional Weighted Normalized Cross
Correlatlon (BWNCCQC). The forward component weighted
by hp represents the similarity between p and q, while
the backward component weighted by hg) represents the
similarity between q and p. BWNCC is thus defined as

Z £(h))h 1

We define our similarity metric as {(H) =

—1
£<h<f>>ﬁéf). ®)

7=0

fbwncc (H) -

5 H-LF STEREO MATCHING SCHEME

Our new feature descriptor and metric enable more reliable
feature selection and matching. Compared with binocular
stereo, LF stereo matching has two different properties: use
of many views and refocusing. When modeled as a disparity
labeling problem, the correspondence cost makes use of the
multiple views while defocus cost is based on refocusing
(e.g., [4], [7], [8], [17]). We denote 2 as all LF views (s, ) and
estimate the disparity map for the central view (s,, t,). For
simplicity, we use Iy (s,t) to represent I(up,vp,s,t, As1))
in Equation 3}
The correspondence cost is typically cast as ( [4], [7], [8],
[17)):
1
C(p’f(p)) x m(stz);ﬂllp(svt) _Ip(SOato)@' 9)

For H-LF, we find a proper subset * (2* C 2) and use
that in conjunction with our feature descriptor and metric
to maximize spectral consistency. The defocus cost in [17]
is based on the depth-from-defocus formulation for non-
occlusion regions:

D(p7 f(p)) X v(ac,y)I_P (10)
For occlusion regions the defocus cost is
1 _
D(p. f(p) o = > Ip(s,t) = Ipl3, (11

‘Q| (s,t)EQ

where I, = 1/|Q] - > (s.tyeq Ip(s, t). However, direct use
of the defocus measure in H-LF would fail due to spectral
variance. We instead propose a new defocus cost based on
hue-spectrum matching. After extracting two initial dispar-
ity maps f (based on correspondence cost) and f;; (based
on defocus cost), we then impose regularization to generate
the refined result f1.

5.1 Correspondence Cost

Recall that the correspondence cost measures similarity of
corresponding pixels. For a hypothesized disparity f(p),
we compute this cost using our spectral-invariant feature
descriptor and BWNCC metric:

C(p, /() = ‘Q—ﬂ 3

(s,t)eQ*

- 10g(§bw7Lcc(H))~ (12)



Instead of matching p in (s,,t,) with pixel q across all
LF views, we use only a subset of views ()* that share a
coherent appearance (response). To do so, we first compute
the arithmetic mean gradient magnitude over all q. Next,
we determine if the gradient magnitude of p is above or
below the mean value. If it is above, then it is likely that p is
an edge pixel; we use only pixels q in the H-LF views with
a higher gradient magnitude. Similarly, if it is below, it is
likely that p is a non-edge point, and we use only the ones
with lower gradient magnitudes.

In addition, we treat occluding and non-occluding pixels
differently using the technique described in [17] to extract
an initial disparity map f} based on correspondence cost. If
p is non-occluding, f¥(p) = ming{C}. If p is occluding,
we partition 2* into occluder and occluded regions )}
and Q3 (analogous to [17])), then compute C; and C» using
Equation [12] This yields 7 (p) = mins{C1, C2}.

5.2 Defocus Cost

A unique property in LF stereo matching is the availability
of a synthetic focal stack, synthesized via LF rendering.
Conceptually, if the disparity hypothesis is correct, the color
variance over correspondences in all (non-occluding) views
should be very small. If it is incorrect, the variance would
be large, causing aliasing. In [17], the defocus cost measures
the occlusion and non-occlusion regions separately in terms
of color consistency. However, the traditional defocus cost
cannot be used in our work because we cannot measure
color consistency under different spectral responses. We
adapted this cost to be spectral-aware.

As Figure|5|shows, given a hypothesized disparity f(p),
we estimate RGB color of p for a reference camera. To
do this, we first form a spectral profile of p as Py(\) by
indexing A(s 4 using I(s,t) into respective views. Next,
we use the spectral profile to synthesize its RGB value. In
our experiments, we use the spectral response function of
the PTGrey FL3-U3-20E4C-C camera (reference camera) as
P.(\) = [P:(\), Py()\), P,(A)]T and compute RGB values
V = [R,G, B]" by summing Pp(A(s,¢))Pc(A(s,)) over the
respective bandwidths:

> s.nen Pp (M) Pe(Asn)
P.(As,1)

Finally, we map the RGB color back to spectra A, by first
converting it to hue before using a table to map hue to A,
based on CIE 1931 Color Space [39].

If the disparity hypothesis is correct, P, () and the final
RGB values estimation should be accurate. The captured
spectra should then approximately form a Gaussian distri-
bution centered at A, with the probability density function

In our implementation, we use the special case of A\, =
550nm (middle of [410nm, 700nm)) to set o4 = 96.5. This
is to ensure that Py(\) have at least 30% response in over-
lapping the visible spectrum throughout (especially in the
corner cases of A = 400nm and A\ = 700nm).

V =

. 13)

(14)

CIE 1931 Color Space
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Fig. 5. Spectral-aware defocus cue. Given a disparity hypothesis, we
combine corresponding pixels from H-LF to form its spectral profile
P,(\). Next, we use the camera (PTGrey FL3-U3-20E4C-C) spectral
response curves P.(\) to map this profile to RGB color. We then
convert the RGB color to its hypothesized wavelength A, using the
CIE 1931 Color Space. Finally, we match the observed profile with a
Gaussian profile P4 () centered at A\, via K-L divergence.

We subsequently normalize F,(A\) to Py(A\) =
Po(N)/ X (s,ea Pp(As,1), and measure the Kullback-
Leibler divergence [40], [41] from Pg()\) to Py(A). This
results in our defocus cost

Py(As
D(p,f(p))= Pg()\(syt))logw.

(15)
(o 5en (Asn)

Finally, we have f;(p) = min;{D}.

5.3 Regularization

The energy function for disparity hypothesis f that is typi-
cally used in an MRF is ( [8]], [17]])

E(f) = Eunary(f) + Ebinary(f)‘

We adopt the binary term similar to Wang et al. [17] for
smoothness and to handle occlusion. The major difference
is that we use spectral-aware defocus cues (described in
Section 5.2).

Our unary term is defined as

Eunary(f) = Y_71elC(£(0)) = C(f(p))]
+|D(f(p)) = D(fa(p))l,

where . adjusts the weight between defocus and corre-
spondence cost. (Its value is 0.45 for synthetic data and 0.6
for real data.) Minimizing this function yields the desired
disparity map f.

(16)

17)

6 PLENOPTIC CUBE COMPLETION

The results of our H-LF stereo matching technique can be
used to complete the missing dimensions. The direct ap-
proach would be to use the disparity map of the central view
to warp images to propagate the missing information. The
problem, however, is that the warped images will contain
holes due to occlusion. While it is possible to perform
independent pairwise stereo matching between all views,
this approach does not fully exploit the properties of LFs. We
instead present a technique for cross-spectral joint binocular
stereo.



6.1 Disparity Initialization
We first warp the disparity map of the central view, f(TSO to)

(using the technique described in Section5) to individual LF
views as their initial disparities:

fg;w (u + d(S — SQ), v+ d(t — to)) = d,

where d f(TSO,tU)(u,v). At this point, at each view,
f(*s,t)(“’ v) is an incomplete disparity map. There are pixels
with invalid depth due to occlusion, being outside the field-
of-view of the central view, and mismatches. However,
regions that are valid can be used to guide and refine
correspondences between cross-spectral image pairs.

(18)

6.2 Disparity Estimate

Using our BWNCC metric described in Section [} we extract
the disparity map for an image pair using Graph Cuts [33].
The energy function in [33] is

E(f) - Edata(f) + Eocclu (.f) + Esmooth(f) + Eunique(é)g-)
Eiata(f) is the data term that calculates similarity between
corresponding pixels:

Egata(f) = Z [C(f(p)) — C(f*(P))I, (20)

p

where C(f(p)) is defined in Equation [12 but applied to
two views (i.e., left and right or top and bottom). E,cciy, (f)
is the occlusion term to minimize the number of occluded
pixels while Egpo0th(f) is the smoothness term that favors
piecewise constant maps. Fynique enforces uniqueness of
disparities between image pairs. The last three terms are
same as those in [33].

The disparity maps for all image pairs (with vertical or
horizontal neighbors) are computed using Graph Cuts [33].
These disparity maps are then merged to produce a single
one denoted as f(s ;).

6.3 Disparity Refinement

As mentioned in Section f(*s} £ has regions of invalid
depth. Furthermore, f, ;) 1sTikely to have unreliable depths
due to occlusion in neighboring views.

Park et al. [42] propose an optimization technique using
RGB-D images to acquire a high-quality depth map. This
technique uses confidence weighting in terms of color sim-
ilarities, segmentation, and edge saliency. We use a similar
approach to refine f(, ;), with the difference being the con-
fidence weighting is adapted to our single channel spectral
images. This results in the improved disparity map f , for
each view.

6.4 Image Registration

We use f(T& 1) to warp images. First, all pixels p on left (or
top) view are mapped to q on right (or bottom) view. We
then register all images currently on right (or bottom) to left
(or top) view. This is iterated for all neighboring pairs until
the plenoptic cube is completed, i.e., when all the missing
spectra are propagated across all the views. For an H-LF
imager with M x N views, the number of hyperspectral
images in the completed plenoptic cube is M x N x M N,
with each view having M N images corresponding to M N
different spectra.

7 EXPERIMENTS AND APPLICATIONS

In this section, we report the results of our technique and
how they compare with competing state-of-the-art. We also
describe two applications (namely, color sensor emulation
and H-LF refocusing) that are made possible using the depth
information generated using our technique.

7.1 Experimental Setup

Our prototype HLFI consists of a 5 x 6 monochrome camera
array (Figure [I). The cameras are MER-132-30GM from
Daheng ImaVision, with a resolution of 1292 x 964; they
are synchronized via GenLock. The lens are M0814-MP2
from Computar, with a focal length of 8mm. We mount
30 narrow bandpass filters (from Rayan Technology) on
cameras centered wavelengths between 410nm to 700nm at
a 10nm interval. Data collection and processing are done on
a Lenovo ThinkStation P500 with a Intel(R) Xeon(R) 4-core
CPU E5-1630 running at 3.70GHz.

We calibrate our cameras using Zhang's algorithm [43] to
extract the intrinsic and extrinsic parameters. Since we use a
black-and-white checkerboard and all the filters are within
the visible spectra, the calibration images have sufficient
contrast for corner detection. Once the cameras are cali-
brated, the views are rectified to simplify stereo matching.
As mentioned in Section throughout all our experi-
ments, we set s = 1/64, 0 = 1/16, and w = [3,5,9]7 to
generate our hierarchical feature descriptor H.

7.2 Validation for Feature Descriptor with BWNCC

We compared results of pairwise stereo matching using
Graph Cuts [33] with SSD [18], NCC [19], and the re-
cent RSNCC [36] measures against those for our spectral-
invariant descriptor with BWNCC measure.

We first ran experiments involving synthetic data
adapted from the Middlebury stereo vision datasets [37]. To
emulate spectrum inconsistency, we treat the red channel of
L and the blue channel of R as the pseudo cross-spectral
pair. Figure [6] compares the visual quality of the results
using different methods and Table [I| shows the quantitative
comparisons in terms of bad5.0 (percentage of “bad” pixels
whose error is greater than 5 pixels [37]). Our approach
significantly reduces error in stereo matching.

We also ran experiments on datasets captured using our
HLFI on real scenes, again comparing our method with
other competing techniques. Figure [/| shows results for
two scenes. Visually, our approach outperforms the other
techniques; for example, as can be seen at the bottom row,
our technique is able to recover the guitar edge where other
techniques fail due to spectral inconsistencies.

TABLE 1
Comparison of bad5.0 error metric (smaller values are better).

Tsukuba | Art | Teddy
Ours 3.14 10.27 7.01
RSNCC 527 16.64 | 11.02
NCC 6.09 18.31 | 15.68
SSD 11.18 28.19 | 43.53
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Fig. 6. Cross-channel stereo matching results for three Middlebury datasets. From left to right: red channel of the left image, blue channel of right
image, ground truth disparity map, estimated disparity map by SSD, NCC, RSNCC methods with graph cuts, and our proposed feature descriptor
with BWNCC metric. Our method can estimate much better disparity maps compared with these state-of-the-art methods.
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Fig. 7. Cross-spectral stereo matching results on real scenes captured using our HLFI. The first and second columns are left and right images
captured by two adjacent cameras at different spectra. The other columns show extracted disparity maps using SSD, NCC, RSNCC and our

technique. Qualitatively, our results outperform the other competing techniques.

7.3 H-LF Stereo Matching Results

In one set of experiments, we generate synthetic H-LF scenes
from regular LFs used in Wanner et al. [15]. For each scene,
we choose 5 x 6 views with uniform baseline. For each view,
we add a synthetic tunable filter. Finally, we render 5 x 6
spectral images from original images by adjusting the filter
transmittance in the RGB channels and converting them
to gray scale. Because this synthesized spectral profile is
different from that for our HLFI, we choose different values
of 7, in Equation[17](0.45 for synthetic data and 0.6 for real
data).

In another set of experiments, we compare our H-LF
stereo matching results with techniques by Tao et al. [8],
Lin et al. [7] and Wang et al. [17], on synthetic and real
data. Figure [§] compares the disparity maps on the synthetic
dataset. The close-up regions (red and green boxes) show
how well our technique works compared to the others. As
TableEI shows, our technique has the lowest RMSE.

Figure [9] shows H-LF stereo matching results for three
real scenes. The overall visual quality of our results is better
than that for the other competing techniques. In particular,
our technique is better able to handle scene detail; see, for
example, the mug in the top scene and guitar’s neck in the

bottom scene.

These results show our approach outperforms the state-
of-the art in visual quality, accuracy, and robustness on both
synthetic and real data. They validate our design decisions
on handling cross-spectral variation.

TABLE 2
Comparison of RMSE (smaller values are better) for H-LF stereo
matching on synthetic data shown in Figure

Taoetal. | Wangetal. | Linetal. | Ours
Top scene 0.2052 0.2970 0.4285 0.1958
Bottom scene 0.4393 0.3690 0.2785 0.2266

7.4 H-LF Reconstruction Results

In another experiment, we use our HLFI to capture a room
scene, processed the data using our technique, and com-
pleted its plenoptic cube representation. Results are shown
in Figure The raw data are shown in Figure [10{(a);
the scene has colorful objects made with different mate-
rials and placed at different depths. Figure [I0[b) shows
the completed plenoptic cube. Reconstructed hyperspectral
datacubes at viewpoints (2, 2), (3, 4), and (5, 6) are shown in
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Fig. 8. H-LF results for two synthetic scenes from Wanner et al. [15], with each view having a different spectral response. We show our result as
well as those of previous LF stereo matching methods (Tao et al. [8], Lin et al. [7], and Wang et al. [17]). The two close-ups show the relative quality
of our result.



10

Linatal.

Fig. 9. H-LF stereo matching results for three real scenes captured by our HLFI. We show our results as well as those of previous LF stereo
matching methods (Tao et al. [8], Lin et al. [7], and Wang et al. [17]). The two close-ups show how well our technique can recover scene detail.
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Fig. 10. H-LF reconstruction results for a real scene. (a) Raw data
acquired by our HLFI, (b) completed plenoptic cube, (c) reconstructed
hyperspectral datacubes at viewpoints (2, 2), (3, 4), and (5, 6), (d) close-
ups of representative boundary and textured areas, (e) spectral profiles
of three scene points: a point on the guitar, a cyan point surrounded by
white letters, and a depth boundary.

Figure [10|c). Selected close-ups in Figure [I0(d) demonstrate
that our technique can robustly align occlusion and texture
boundaries under spectral variation. Figure [10[(e) shows
the spectral profiles of three scene points: a point on the
guitar, a cyan point surrounded by white letters, and a
depth boundary. These results show that our reconstruction
scheme can robustly align occlusion and texture boundaries
under spectral variations and recover high fidelity H-LFs.

7.5 Applications: Color Sensor Emulation and H-LF Re-
focusing

We can use the recovered H-LF data to emulate a synthetic
camera with a specific spectral profile. This allows us to
reproduce color images unique to that camera.
Figure[TT|shows two pairs of real images captured by PT-
Grey FL3-U3-20E4C-C alongside our synthesized color im-
ages (whose original spectral profile is shown in Figure ).
The top pair includes original images (without cropping and
alignment) of one scene. The red boxes show the incorrect
color of the table cloth in the synthesized one (right), which
is caused by missing spectra due to limited field of view.
Notice that the top rows of Figure [I0[b) do not include
most of the table cloth; as a result, no information on a
specific range of the spectrum is available for propagation,
causing incorrect color synthesis. After removing the region
of red box and aligning images, we get PSNR of right
image is 22.6, given the left image as reference. The bottom
pair includes cropped and aligned images of another scene,
and PSNR of right image is 23.1. Both the images and

Fig. 11. Comparison of real and synthetic color images. Left: real images
captured by a PTGrey FL3-U3-20E4C-C camera (the profile is same as
that shown in Figure [5). Right: synthesized images using our acquired
H-LF and the camera profile. Given left images as references, PSNR of
right image on top pair is 22.6 after removing the region of red box and
alignment, whereas PSNR is 23.1 on bottom pair.

PSNR values show that our synthesized color images are
reasonable reproductions of the actual versions.

Figure (12| shows results of synthetic refocusing for dif-
ferent spectral profiles. These results demonstrate that our
dynamic H-LF refocusing is different from regular LF re-
focusing; it can focus at any depth layer at any sampled
spectrum. Note that the banding artifacts are due to the
discrete view sampling of our HLFL

8 DiscussIiON

Because our HLFI is fundamentally a multi-view camera
system, it has the same issues associated with length of base-
line versus accuracy and ease of correspondence. Our HLFI
has two main problems that are specific to multi-spectral
matching. The first is the computational complexity of our
feature descriptor and metric. In order to acquire accurate
depth, we need to consider both edge and non-edge regions
hierarchically, and compute the distance using descriptors
over local patches at different levels. These operations are
more computationally expensive compared to traditional
methods. Our GPU implementation produces depth results
in about 2 minutes for datasets shown in Figure El (each
dataset has a 5 x 6 array of images, with each image having
a resolution of 1200 x 900).

Another problem is the incomplete spectral reconstruc-
tion due to missing views. Each camera samples a narrow
band of the visible spectrum and a different view of the
scene. As a result, different parts of the scene would visible
to a different subset of cameras in the HLFI. This results
in incomplete propagation of the missing spectra, as can be
seen in Figures [10|and [11} More specifically, the table cloth
has incorrect colors because cameras at the top few rows are
not able to capture its appearance, resulting in absence of
certain spectral bands.

There is also the interesting issue of filter arrangement.
Currently, the filter wavelengths in our HLFI are arranged in
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Fig. 12. H-LF refocusing results. Top: spectral profiles of three cameras.
Bottom: synthetic refocusing results at different depths for the three
profiles. Results in different rows are at different depths (near, middle
and far). Results in different columns are synthesized from different
profiles respectively.

raster order. As a result, as can be seen on the left of Figure
horizontal neighbors are much more similar in appearance
than vertical neighbors. This arrangement has implications
on the H-LF stereo matching and reconstruction. There may
be a better way of arranging these filters so as to reduce
appearance changes in both vertical and horizontal direc-
tions. While it is possible to redesign with different cameras
having the same filters, this reduces the spectral sampling
density (for the same number of cameras and overall visible
spectral extent).

9 CONCLUDING REMARKS

We have presented a hyperspectral light field (H-LF) stereo
matching technique. Our approach is based on a new
robust spectral-invariant feature descriptor to address in-
tensity inconsistency across different spectra and a novel
cross-spectral multi-view stereo matching algorithm. For
increased robustness in matching, we show how to perform
view selection in addition to measuring focusness in an
H-LE. We have conducted comprehensive experiments by
constructing an H-LF camera array to validate our claims.
Finally, we show how our results can be used for plenoptic
cube completion, emulation of cameras with known spectral
profiles, and spectral refocusing.

An immediate future direction is to capture and process
H-LF video. This will require temporal regularization tech-
niques, in addition to requiring efficient compression to save
bandwidth. In our current setup, the band-pass filters were
sequentially assigned to the cameras, i.e., the neighboring
cameras will have close spectral responses. The advantage

12

of this setup is that we can more reliably conduct stereo
matching and hence warping between adjacent images.
Despite this, the baseline of the cameras cannot be too large,
because we still require good visual overlap between images
for effective spectral propagation. It would be interesting
to investigate other camera designs with different spectral
distributions to handle current limitations.
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