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Learning to Deblur Images with Exemplars
Jinshan Pan∗, Wenqi Ren∗, Zhe Hu∗, and Ming-Hsuan Yang

Abstract—Human faces are one interesting object class with numerous applications. While significant progress has been made
in the generic deblurring problem, existing methods are less effective for blurry face images. The success of the state-of-the-art
image deblurring algorithms stems mainly from implicit or explicit restoration of salient edges for kernel estimation. However,
existing methods are less effective as only few edges can be restored from blurry face images for kernel estimation. In this
paper, we address the problem of deblurring face images by exploiting facial structures. We propose a deblurring algorithm
based on an exemplar dataset without using coarse-to-fine strategies or heuristic edge selections. In addition, we develop a
convolutional neural network to restore sharp edges from blurry images for deblurring. Extensive experiments against the state-
of-the-art methods demonstrate the effectiveness of the proposed algorithms for deblurring face images. In addition, we show
the proposed algorithms can be applied to image deblurring for other object classes.

Index Terms—Image deblurring, face image, exemplar-based, edge prediction, deep edge.
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1 INTRODUCTION

THE goal of image deblurring is to recover the
sharp contents and corresponding blur kernel

from one blurry input. The image formation is usually
formulated as

B = I ∗ k + ε, (1)

where B is the blurred input image, I is the latent
sharp image, k is the blur kernel, ∗ is the convolution
operator, and ε is the noise term. The single image
deblurring problem has attracted much attention with
significant advances in recent years [1], [2], [3], [4], [5],
[6], [7], [8], [9]. As image deblurring is an ill-posed
problem, additional information is required to con-
strain the solutions. One common approach is to ex-
ploit statistical priors of natural images such as heavy-
tailed gradient distributions [1], [2], [3], [10], L1/L2

prior [7], and sparsity constraints [11]. While these
priors have been shown to be effective for deblurring
in general, they are not designed to capture image
properties for specific object classes. Recently, nu-
merous methods that exploit specific properties have
been developed for text and low-light images [12],
[13], [14], [15]. As human faces are one of the most
interesting objects that find numerous applications,
we mainly focus on face image deblurring in this
work.
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Fig. 1. A challenging example. (a) Blurred face image.
(b)-(d) Results of Cho and Lee [4], Krishnan et al. [7],
and Xu et al. [9]. (e)-(f) Intermediate results of Krish-
nan et al. [7] and Xu et al. [9]. (g) Restored salient
edges by our exemplar-based method visualized by
Poisson reconstruction. (h) Deblurred image by our
method (with the support size of 75× 75 pixels).

The success of the state-of-the-art image deblurring
methods hinges on implicit or explicit restoration of
salient edges for kernel estimation [4], [5], [6], [9].
Existing algorithms predict sharp edges, mainly based
on local image gradients without considering the
structural information of an object class. Ambiguity
inevitably arises in restoring salient edges when only
local appearance is considered due to the ill-posed
image deblurring problem. Furthermore, for blurred
images without much texture, the edge prediction
schemes require parameter tuning and do not usually
perform well. For example, face images have similar
components and skin complexion with less texture
than natural images, and existing deblurring methods
do not perform well on such inputs. Fig. 1(a) shows
a blurry face image which contains scarce texture
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as a result of large motion blur. For such images,
it is difficult to restore a sufficient number of sharp
edges for kernel estimation using the state-of-the-art
methods. Fig. 1(b) and (c) show that the state-of-the-
art methods based on sparsity prior [7] and explicit
edge prediction [4] do not deblur this image well.

In this work, we first propose an exemplar-based
method to address the above-mentioned issues for
deblurring face images. To exploit the structural infor-
mation from one specific class, we collect an exemplar
dataset and restore important visual information for
kernel estimation. For each test image, we use the
exemplar with most similar facial structure to restore
salient edges and guide the kernel estimation process.
Fig. 1(g) shows that the proposed method is able to
restore important facial structures for kernel estima-
tion, and deblur this blurred image (Fig. 1(h)).

Predicting salient edges based on exemplars entails
an effective similarity metric and search in a large ex-
emplar dataset, which is computationally expensive.
We further develop a deep convolutional neural net-
work (CNN) to restore salient edges from the blurred
input. The proposed CNN-based algorithm performs
favorably against with the exemplar-based method
and can be carried out in real-time. In addition, we
show that the proposed algorithm can be directly
applied to deblur images of other object classes.

2 RELATED WORK
Image deblurring has been studied extensively in
computer vision and machine learning. In this section
we discuss the most relevant algorithms and put this
work in proper context.
Statistical Priors. Since blind image deblurring is an
ill-posed problem, it requires certain assumptions or
prior knowledge to constrain the solution space. Early
approaches, e.g., [16], assume simple parametric blur
kernels to deblur images, which cannot deal with
complex motion blur. As image gradients of natural
images can be modeled well by a heavy-tailed distri-
bution, Fergus et al. [1] use a mixture of Gaussians
to learn the statistical prior for deblurring. Similarly,
Shan et al. [3] use a parametric model to approximate
the heavy-tailed prior for natural images. In [11],
Cai et al. assume that the latent images and kernels
can be sparsely represented by an over-complete dic-
tionary based on wavelets. On the other hand, it has
been shown that the most favorable solution for a
maximum a posteriori (MAP) deblurring method with
sparsity prior is usually a blurred image rather than
a sharp one [10]. As [10] is usually computationally
expensive, an efficient algorithm for approximation
of marginal likelihood is developed [2] for image
deblurring.
Image Priors in Favor of Clear Images. Different
image priors that favor clear images instead of blurred
images have been introduced for image deblurring.
Krishnan et al. [7] present a normalized sparsity prior,

and Xu et al. [9] use the L0 constraint on image
gradients for kernel estimation. Non-parametric patch
priors that model edges and corners have also been
proposed [17] for blur kernel estimation. We note that
although the use of sparse priors facilitates kernel
estimation, it is likely to fail when the blurred images
do not contain rich texture. In [18], Michaeli and Irani
exploit internal patch recurrence for image deblur-
ring. This method performs well when images con-
tain repetitive patch patterns, but may fail otherwise.
Class-specific image prior [19] has been shown to be
effective for certain object categories and less effec-
tive for scenes with complex background. Recently,
Pan et al. [20] develop an image prior based on the
dark channel prior [21] for blur kernel estimation.
However, this method does not perform well when
clear images do not contain zero-intensity pixels or
the blurred images contain noise.
Edge Selection. In addition to statistical priors, nu-
merous blind image deblurring methods explicitly
exploit edges for kernel estimation [4], [5], [6], [22].
Joshi et al. [6] and Cho et al. [22] use the restored
sharp edges from a blurred image for kernel estima-
tion. In [4], Cho and Lee utilize bilateral and shock
filters to predict sharp edges. The blur kernel is deter-
mined by alternating between restoring sharp edges
and estimating blur kernels in a coarse-to-fine manner.
As strong edges restored from a blurred image are
not necessarily useful for kernel estimation, Xu and
Jia [5] develop a method to select informative ones
for deblurring. Despite demonstrated success, these
methods rely largely on image filtering methods (e.g.,
shock and bilateral filters) and heuristics for restoring
sharp edges, which are less effective for objects with
specific geometric structures.
Face Deblurring. A few algorithms have been devel-
oped to deblur face images for the recognition task.
Nishiyama et al. [23] learn subspaces from blurred
face images with known blur kernels for recognition.
As the set of blur kernels is pre-defined, the appli-
cation domain of this approach is limited. Zhang et
al. [24] propose a joint image restoration and recog-
nition method based on sparse representations. How-
ever, this method is most effective for well cropped
and aligned face images with simple motion blurs.
Example-based Deblurring. Recently, HaCohen et
al. [25] propose a deblurring method which uses sharp
reference examples for guidance. The method requires
a reference image with the same contents as the input
to obtain dense correspondence for reconstruction.
Although it has been shown to deblur specific im-
ages well, the assumption of using reference images
with same contents limit its application domain. In
contrast, the proposed methods do not require the
exemplar to have the same or closely similar contents
of the input. The blurred face image can be of different
identity and background when compared to exem-
plar images. The proposed methods only require the
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Fig. 2. Effect of salient edges in kernel estimation. (a) True image and kernel. (h) Blurred image. (b)-(f) Extracted
salient edges of facial components from the clear images visualized by Poisson reconstruction. (g) The ground-
truth edges of (a). (i)-(n) Deblurred results by using edges (b)-(g), respectively.

matched example to have similar structures (in terms
of image gradients) for kernel estimation instead of
using dense corresponding pixels. As such, the pro-
posed algorithms can be applied to class specific
image deblurring with fewer constraints.
Convolutional Neural Networks. Convolutional neu-
ral networks have been widely used in low-level
vision tasks including image denoising [26], super-
resolution [27], [28], non-blind deconvolution [29],
[30], blind image deblurring [31] and image filter-
ing [32], [33]. Schuler et al. [31] incorporate a sharp-
ening convolutional neural network into an iterative
blind deconvolution method to estimate the blur ker-
nel. However, this method needs to re-train different
networks for kernels of different sizes, which limits
the application domains. In [32], Xu et al. propose
a method to learn edge-aware filters using a deep
convolutional neural network. However, we note that
this method can only be applied to approximate edge-
aware filters for clear images. This method cannot be
directly applied to restore salient edges from blurry
images for kernel estimation.

3 PROPOSED ALGORITHMS

As the kernel estimation problem is non-convex [1],
[2], most state-of-the-art deblurring methods use
coarse-to-fine approaches to refine the results. Fur-
thermore, explicit or implicit edge selection schemes
are adopted to constrain and converge to feasible
solutions. Notwithstanding the demonstrated success
in deblurring images, these methods are less effective
for face images that contain fewer textured contents.
To address these issues, we first propose an exemplar-
based algorithm to estimate blur kernels for face im-
ages. The proposed method restores important struc-
tural information from exemplars to facilitate accurate
kernel estimation. To reduce the computational cost,
we further propose a CNN-based algorithm which
can predict sharp edges more effectively than the
exemplar-based method.

(a) (b) (c)

Fig. 3. Extracted salient edges (see Section 3.2.1 for
details). (a) Input image. (b) Initial contour. (c) Refined
contour.
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Fig. 4. Kernel estimation accuracy (KS stands for
kernel similarity) with respect to restored salient edges
from different facial components. The x-axis (b)-(g)
represent 6 facial components in Fig. 2(b)-(g).

3.1 Structure of Face Images
We first determine the types and number of salient
edges from exemplars for kernel estimation within
the context of face deblurring. For face images, the
salient edges that capture the object structure may be
the lower contour, mouth, eyes, nose, eyebrows and
hair. As eyebrows and hair have small edges with
large variations which may be less effective for kernel
estimation [5], [34], we do not consider them as useful
structures. Fig. 2 shows several components restored
from a clear face image as approximations of the latent
image for kernel estimation.
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To extract salient edges as shown in Fig. 2(b)-(g), we
manually locate the initial contours of the informative
components (Fig. 3(b)), and use the guided filter [35]
for refinement. The optimal threshold, computed by
the Otsu method [36], is applied to each filtered image
to obtain the refined binary contour mask M of the
facial components (Fig. 3(c)). As such, the salient edge
is defined by

∇S(x) =
{
∇T (x), if x ∈ {x|M(x) = 1},
0, otherwise, (2)

where T (x) is the clear image and ∇ is the gradient
operator. We use the horizontal [−1, 1] and vertical
[−1, 1]> derivatives to compute image gradients.

We evaluate these edges by considering them as the
predicted salient edges in the deblurring framework
and estimate the blur kernels according to [2] by

k∗ = argmin
k
‖∇S ∗ k −∇B‖22 + α‖k‖0.5, (3)

where ∇S is the gradient of the salient edges restored
from an exemplar image as shown in Fig. 2(b)-(g),
∇B is the gradient computed from the blurred input
(Fig. 2(h)), k is the blur kernel, and α is a weight
(e.g., 0.005 in this work) for the regularization term.
The sparse deconvolution method [2] with a hyper-
Laplacian prior L0.8 is employed to restore latent
images (Fig. 2(i)-(n)). The deblurred results using the
above-mentioned components (e.g., Fig. 2(l) and (m)),
are comparable to that using the ground-truth edges
(Fig. 2(n)), which provide the ideal case for salient
edge prediction of the input blurry image.

To support the above-mentioned observations, we
collect a set of 160 images generated from 20 images
(10 images from the CMU PIE dataset [37] and 10 im-
ages from the Internet) convolving with 8 blur kernels,
and restore the corresponding edges from different
combinations of components (i.e., Fig. 2(b)-(g)). We
conduct the same experiment as Fig. 2, and compute
the average accuracy of the estimated kernels in terms
of kernel similarity [34]. The red dashed curve in Fig. 4
shows the relationship between the edges of facial
components and accuracy of estimated kernels. As
shown in the figure, the metric converges when all the
mentioned components (e.g., Fig. 2(e)) are included,
and the set of edges is sufficient (kernel similarity
value of 0.9 in Fig. 4) for accurate kernel estimation.

For real-world applications, the ground-truth edges
are not available. Recent methods adopt threshold-
ing and similar techniques to select salient edges
for kernel estimation and this inevitably introduces
some incorrect edges from a blurred image. Further-
more, the edge selection strategies, either explicitly
or implicitly, consider only local edges rather than
structural information of a particular object class,
e.g., facial components and contour. In contrast, we
consider important geometric structures of a face im-
age for kernel estimation. From the experiments with
different facial components, we determine that the set

of lower face contour, mouth and eyes is sufficient
to achieve accurate kernel estimation and deblurred
results. More importantly, these components can also
be robustly restored [38] unlike the other parts (e.g.,
eyebrows or nose in Fig. 2(a)). Thus, we use these
three components as the informative structures for
face image deblurring.

3.2 Structure Prediction

Based on above discussions, we propose two structure
prediction methods for blur kernel estimation.

3.2.1 Structure Prediction by Exemplars

We use a set of 2, 435 face images from the CMU
PIE dataset [37] as our exemplars for deblurring.
The selected face images are from different identities
with varying facial expressions and poses. For each
exemplar, we restore the informative structures (i.e.,
lower face contour, eyes and mouth) as discussed in
Section 3.1. As such, a set of 2, 435 exemplar structures
are generated as the potential facial structure for
kernel estimation.

Given a blurred image B, we search for its best
matched exemplar structure. We use the maximum
response of normalized cross-correlation to find the
best candidate based on image gradients,

vi = max
t

{ ∑
x∇B(x)∇Ti(x+ t)

‖∇B(x)‖2‖∇Ti(x+ t)‖2

}
, (4)

where i is the index of the exemplar, Ti(x) is the
i-th exemplar, and t is the possible shift between
image gradients ∇B(x) and ∇Ti(x). The value of vi is
large if ∇B(x) is similar to ∇Ti(x). To deal with face
images of different scales, we resize each exemplar
with sampled scaling factors in the range [1/2, 2] at a
sampling step size of 0.5. before using (4). Similarly,
we rotate each exemplar with the rotation angle in
[-10, 10] degree before using (4) to deal with rotated
face images, where the sampling step size is 1.

The predicted salient edges ∇S for kernel estima-
tion is defined by

∇S = ∇Si∗ , (5)

where i∗ = argmaxi vi, and ∇Si∗(x) is computed by

∇Si∗(x) =
{
∇Ti∗(x), if x ∈ {x|Mi∗(x) = 1},
0, otherwise. (6)

Here Mi∗ is the contour mask for i∗-th exemplar. In
the experiments, we find that the method using the
edges of exemplars ∇Ti∗(x) as the predicted salient
edges performs similarly as that of the input image
∇B(x), (see Section 4). The reason is that ∇Ti∗(x) and
∇B(x) share similar structures due to the matching
step, and thus the results using either of them as the
guidance are similar.

We conduct experiments with the quantitative eval-
uations to demonstrate the effectiveness and robust-
ness of our matching criterion. We collect 100 clear
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(a) (b)

Fig. 5. Effect of noise on the proposed matching
criterion. TABLE 1

CNN architecture for structure prediction.

Layer 1 2 3 4 5 6

Filter size 15× 15 1× 1 1× 1 1× 1 1× 1 1× 1
Channel 64 64 64 64 64 1

images from 50 identities, with 2 images for each.
The images from the same person are different in
terms of facial expression and background. In the
test phase, we blur one image with random noise as
the test image, and use the others as exemplars. If
the matched exemplar is the image from the same
person, we consider that as a success. We evaluate
each images with 8 blur kernels and 11 noise levels
(0-10%) and show the matching accuracy in Fig. 5(b).
We note that although noise decreases the average
matching values (see Fig. 5(a)), it does not affect the
matching accuracy (Fig. 5(b)).
3.2.2 Structure Prediction by a Deep CNN
Although the above-mentioned structure prediction
method can effectively predict ∇S, searching for the
best matched exemplar in the large dataset is com-
putationally expensive. In this section, we propose
an approach to predict structure information from a
blurry face image based on a CNN, which has similar
effect for edge prediction but achieves 3,000 times
acceleration against the exemplar-based method (see
Section 4).
Proposed Network. Given a blurred face image, our
goal is to predict the salient structure by a CNN,
where each layer contains convolution operations fol-
lowed by non-linear activations. The network archi-
tecture and parameters are shown in Table 1. We
assume that the input blurred face image B is of size
p× q× 1 for 1 gray channel, where p× q is the spatial
resolution. In the structure prediction network, the
first convolution layer takes a large filter (15 × 15)
to capture large spatial information. The subsequent
layers take the output from the previous layer by
applying an 1 × 1 × k filter. The response of each
convolution layer is given by

f l+1
n = σ(

∑
m

(f lm ∗ kl+1
m,n) + bl+1

n ), (7)

where f ln and f l+1
m are the feature maps of layer l and

l + 1, respectively. In addition, k is the convolution
kernel, indices (m,n) denote the mapping from the m-
th feature map of one layer to the n-th feature map of

(a) Inputs (b) Feature maps (c) Using [32] (d) Our results

Fig. 6. Extracted salient edges by [32] and our method.
(a) Input blurred images. (b) Some intermediate feature
maps generated by proposed network. (c) Restored
edges by [32]. (d) Restored edges by the proposed
CNN.
the next layer. The function σ(·) denotes the Rectified
Linear Unit (ReLU) [39] and b is the bias.

The proposed network is motivated by the state-
of-the-art edge prediction approaches [4], [5] which
rely on heuristic filtering methods to select sharp
edges. These edge prediction methods usually contain
two main steps: 1) suppression of minor details by a
smoothing filter and 2) enhancement of strong struc-
tures by the shock filter. In this work, we propose
a deep CNN to restore sharp edges from blurred
images, where the first few layers are designed to
remove details (see Fig. 6(b)) and the following layers
are used to restore sharp edges (see Fig. 6(d)).

We note that Xu et al. [32] propose a CNN to
approximate various image filters. However, this net-
work architecture cannot learn sharp structure in-
formation when the input image is blurred as the
mapping function between the blurred images and
sharp structures are more complex. Fig. 6 shows the
structure prediction results by the CNN [32] and our
network. As the method by Xu et al. [32] is designed
to restore edges from clear images, it does perform
well on blurry inputs as shown in Fig. 6(c). In contrast,
the proposed network restores sharp edges (Fig. 6(d))
from the blurred input images, especially at face
contour, nose and eyes regions.
Training. Learning the mapping function between a
blurred face image B and the corresponding structure
S is achieved by minimizing the loss between the
gradient of the reconstructed structure Si and the
corresponding gradient of the ground-truth structure
S∗i ,
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Fig. 7. Examples of synthetic blur kernels.

L(∇Si) =
1

D

D∑
i=1

{1
2
||∇Si −∇S∗i ||1 + ηφ(∇Si)}, (8)

where D is the number of blurred face images in train-
ing set, φ(z) =

√
(z2 + ε2) is the sparse regularization

to enforce sparsity on gradients and η is the parameter
for the regularization. For the ground-truth structure
S∗i , we use the L0 smoothing filter [40] to remove
extraneous details in the clear face image Ii. Then
the L0 smoothed result L(Ii) can be considered as the
desired sharp edges S∗i .

To generate blurred face images, we synthesize
blur kernels that appear realistic to real scenarios by
sampling random 3D trajectories used in [41], the
obtained trajectories are projected and rasterized to
random square kernel sizes in the range from 13× 13
up to 27× 27 pixels. Some examples of the generated
blur kernels are shown in Fig. 7. We synthetically
generate blurred face images by convolving each
clean image with 50 generated blur kernels. With the
blurred face images and corresponding clear images,
the network parameters are learned by minimizing
the energy function (8) using the stochastic gradient
descent (SGD) scheme. In the test stage, we apply the
trained network to a blurred face image to generate
the salient edges contained in ∇S.

3.3 Kernel Estimation from Exemplar Structure
After obtaining salient edges by the exemplar-based
or CNN-based method, we estimate the blur kernel
by alternately solving

min
I
‖I ∗ k −B‖22 + λ‖∇I‖0 + θ‖∇I −∇S‖22, (9)

and
min
k
‖∇S ∗ k −∇B‖22 + γ‖k‖22, (10)

where λ, θ and γ are parameters for the regularization
terms. Here the L0-norm is employed to restore I
and remove ringing artifacts in I as shown by [40],
and the last term in (9) enforces the gradient of I
is similar to the predicted ∇S. In (10), the L2-norm
based regularization is employed to stabilize the blur
kernel estimation with a fast solver.

We use the half-quadratic splitting L0 minimization
method [40] to solve (9). By introducing the auxiliary
variable w = (wx, wy)

> corresponding to ∇I , we
rewrite (9) as

min
I,w
‖I ∗k−B‖22+β‖w−∇I‖22+λ‖w‖0+θ‖∇I−∇S‖22,

(11)
where β is a scalar weight and increased by a factor
of 2 over iterations. When β is close to infinity, the
solution of (11) approaches that of (9).

Algorithm 1 Solving (9)
Input: Blurred image B and estimated kernel k.
I ← B, β ← 2λ.
repeat

solve w using (14).
solve I using (13).
β ← 2β.

until β > 105

Output: Latent image I .

Algorithm 2 Blur kernel estimation algorithm
Input: Blurred image B and predicted salient edges
∇S0 by the exemplar or CNN-based method.
for l = 1→ n do

solve k using (10).
solve I using Algorithm 1.
∇S ← ∇I . // Update the salient edges

end for
Output: Blur kernel k.

We note that (11) can be efficiently solved by al-
ternately minimizing I and w. At each iteration, the
solution of I can be obtained by

min
I
‖I ∗ k−B‖22 + β‖w−∇I‖22 + θ‖∇I −∇S‖22, (12)

which has a closed-form solution computed in the
frequency domain by

I = F−1

(
F(k)F(B) + βF(∇)F(w) + θFs

F(k)F(k) + (β + θ)(F(∇)F(∇)

)
. (13)

Here F(·) and F−1(·) denote the Discrete Fourier
Transform (DFT) and inverse DFT, respectively; F(·)
is the complex conjugate operator; and Fs =
F(∂x)F(∂xS)+F(∂y)F(∂yS) where ∂x and ∂y denote
the vertical and horizontal derivative operators.

Given I , the solution of w in (11) can be obtained
by

w =

{
∇I, |∇I|2 > λ

β ,

0, otherwise.
(14)

The main steps for solving (9) are shown in Algo-
rithm 1.

Based on the above analysis, the main steps for
the proposed kernel estimation algorithm are summa-
rized in Algorithm 2. We use the conjugate gradient
method to solve the least squares problem (10).

In Algorithm 2, we update the initial predicted
∇S to remove extraneous weak edges generated by
inaccurate estimation of the CNN-based or exemplar-
based method (see Section 4.6 for more analysis).

3.4 Recovering Latent Images
Once the blur kernel is determined, the latent image
can be estimated by a number of non-blind deconvo-
lution methods. In this work, we use the method with
a hyper-Laplacian prior L0.8 [42] to recover the latent
image.
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4 EXPERIMENTAL RESULTS
We evaluate the proposed algorithm against the state-
of-the-art image deblurring methods on face images.
In addition, we show that the proposed algorithm
can be applied to other deblurring tasks by using ex-
emplars of specific classes with categorical structures.
Implemented in MATLAB, it takes about 27 seconds
for the exemplar-based method to process a blurred
image of 320× 240 pixels on an Intel Xeon CPU with
12 GB RAM. The code and dataset are available on
the authors’ websites and more results can be found
in the supplementary document, available online. As
the method [25] requires a reference image with same
contents as the blurred image, this is not included in
performance evaluation. However, for completeness
we provide some comparisons in the supplementary
material.
Parameter setting. In all the experiments, the pa-
rameters λ, θ, γ and n are set to be 0.002, 0.001, 1
and 50, respectively. The sensitivity analysis on these
parameters is presented in Section 4.6.
Dataset. For the exemplar-based method, we use a set
of 2, 435 face images from the CMU PIE dataset [37]
(which contains face images in different poses and
expressions) as our dataset. To train the proposed
network, we use 2, 435 exemplar images and 50 blur
kernels as the training dataset. That is, a set of 121, 750
blurred images is used in the training process. The
identities of exemplar and test sets are not overlapped
in all the experiments.

4.1 Synthetic Dataset using Frontal Faces
For quantitative evaluations, we collect a dataset of
60 clear face images and 8 ground-truth kernels in a
way similar to [10] to generate a test set of 480 blurred
inputs. We evaluate the proposed algorithms against
state-of-the-art methods based on edge selection [4],
[5] and sparsity priors [3], [7], [2], [9]. We use the
non-blind deconvolution method [43] and adopt the
error metric proposed by Levin et al. [10] for fair
comparison. Fig. 8 shows the cumulative error ratio
where higher curves indicate more accurate results.
The proposed algorithms generate better results than
state-of-the-art methods for face image deblurring.
The results show the advantages of using facial struc-
tures as the guidance over those using local edge
selection methods [4], [5], [9].

We evaluate different schemes to predict edges
∇S: 1) using the edges of exemplars ∇Ti∗(x) as ∇S
(original); 2) using the edges predicted by the CNN;
3) using the edges of the input image ∇B(x) as ∇S
(i.e., using ∇B(x) instead of ∇Ti∗(x) to compute ∇S
in (6)); 4) not using ∇S at all. Fig. 8(a) shows the first
three approaches perform similarly as the matched
∇Ti∗(x), predicted edges ∇S by the CNN, and ∇B(x)
share similar structures, which also demonstrates the
effectiveness of the proposed exemplar-based and
CNN-based methods. On the other hand, the schemes
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(a) Results on noise-free images (b) Results on noisy images

Fig. 8. Quantitative comparisons with several state-of-
the-art single-image blind deblurring methods: Shan et
al. [3], Cho and Lee [4], Xu and Jia [5], Krishnan et
al. [7], Levin et al. [2], Zhong et al. [44], Xu et al. [9],
Sun et al. [17], and Michaeli and Irani [18].

TABLE 2
Average run time (/s) on the 480 test images.

Time Prediction step Deblurring step Total

Exemplar-based 4260 27 4287
Deep CNN-based 0.95 27 27.95

using the predicted edges perform significantly better
than the one without using predicted edges.

We note the proposed method without predicted
∇S does not use coarse-to-fine strategies and gen-
erates similar results to [9], which indicates that the
coarse-to-fine strategy does not help kernel estimation
on blurry face images with less texture. In addition,
we note that the results generated by the exemplar-
based method are slightly better than those by the
CNN-based one as shown in Fig. 8(a). One of the main
reasons is that the exemplar-based method directly
uses the structures of the clear exemplars, while the
CNN-based algorithm uses the structures predicted
from blurred inputs via regression. Thus, edges from
exemplars are much sharper than those of the CNN-
based method, which accordingly lead to better kernel
estimates. However, the run time of the prediction
step by the CNN-based algorithm is significantly less
than that of the exemplar-based method as shown in
Table 2. The average run time of the prediction step
by the exemplar-based method is 4260 seconds. In
contrast, the average run time of the prediction step
by the CNN-based method is only 0.95 seconds.

Fig. 8(b) shows the quantitative comparisons when
1% random noise is added to the test images for
examples. For the CNN-based algorithm, we train the
proposed network using noise-free images (denoted
as ∇S from CNN w/o noise in Fig. 8(b)) and images
with random noise (denoted as ∇S from CNN w/
noise in Fig. 8(b)) to evaluate the deblurring perfor-
mance under noise. Compared to other state-of-the-
art methods, the proposed algorithms perform well
on blurry images with noise. We note that the results
on noisy images show higher curves than those with
noise-free images. The reason is that a noisy input
increases the denominator value of the measure [10].
Thus the error ratios from noisy images are usually
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(a) Input and kernel (b) ∇S from exemplar (c) CNN-based ∇S (d) Sun et al. [17] (e) Xu and Jia [5]

(f) Xu et al. [9] (g) Michaeli and Irani [18] (h) Ours without ∇S (i) Our exemplar-based (j) Our CNN-based

Fig. 9. An example from the synthesized frontal face test dataset.

(a) Input and kernel (b) Predicted ∇S (c) Shan et al. [3] (d) Cho and Lee [4]

(f) Krishnan et al. [7] (h) Xu et al. [9] (i) Ours without ∇S (j) Our CNN-based

Fig. 10. An example from the synthesized profile face test dataset.

smaller than those from noise-free inputs, under the
same blur kernel.

We show one example from the test set in Fig. 9. The
method based on the patch recurrence prior [18] gen-
erates deblurred images with significant blur residual
as the statistical models are designed for generic
objects without exploiting categorical structures. The
edge based methods [5], [17] do not perform well for
face deblurring as the assumption that there exist a
sufficient number of sharp edges in the latent images
does not hold. Compared to the method based on
an L0-regularization [9], the results by the proposed
algorithms contain significantly fewer artifacts.

In Fig. 9(b), although the best matched exemplars
are from different identities with different facial ex-
pressions, the main structures of (a) and (b) are

similar, e.g., the lower face contours and upper eye
contours. In addition, the learned sharp edges capture
the main structures of the blurred inputs as shown
in Fig. 9(c). The deblurred results also indicate that
our search approach (4) is able to find the image with
similar structure, and the learning scheme (8) is able
to restore the sharp latent edge from an input. The
results shown in Fig. 9(i) and (j) demonstrate that the
predicted salient edges significantly improve the ac-
curacy of kernel estimation, while the results without
predicted salient edges are similar to delta functions.
Although our method is also developed within the
MAP framework, the predicted salient edges based
on the matched exemplar or CNN provide good
initialization for kernel estimation such that the issue
with delta kernel solution (e.g., Fig. 9(h)) is addressed
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Fig. 11. Quantitative comparisons on profile faces with
several state-of-the-art single-image blind deblurring
methods: Shan et al. [3], Cho and Lee [4], Krishnan et
al. [7], Levin et al. [2], Xu et al. [9], and Sun et al. [17].
effectively.

4.2 Synthetic Dataset using Profile Faces
We collect a dataset of 50 clear profile face images
from the PICS dataset (http://pics.psych.stir.ac.uk/)
and 8 ground-truth kernels from [10] to generate a test
set of 400 blurred face images. As the proposed algo-
rithms perform similarly as discussed in Section 4.1,
we only compare the CNN-based method with the
state-of-the-arts [2], [4], [5], [7], [9], [17]. One example
from this profile face dataset and the deblurred results
are shown in Fig. 10.

Fig. 10(b) show the predicted structures by the
proposed CNN method for the blurry profile face
images. Note that most blurred edges are not included
in the predicted salient structures. Similar to the re-
sults presented in Section 4.1, the estimated kernels
and restored images by Cho and Lee [4] contain a
significant amount of noise as shown in Fig. 10(d). The
deblurred results by the method based on the sparsity
priors [3], [7] contain ringing artifacts as shown in
Fig. 10(c) and (f).

Quantitatively, Fig. 11 shows that the proposed
algorithm based on the CNN performs well against
the state-of-the-art methods on this dataset of profile
face images based on the cumulative error ratio [10].

4.3 Real Images
We evaluate the proposed algorithms with compar-
isons to the state-of-the-art deblurring methods using
real blurred images. The input image in Fig. 12(a)
contains some noise and saturated pixels. The de-
blurred results by the state-of-the-art methods [4], [5],
[17], [18], [44] contain noticeable noise and ringing
artifacts. In contrast, the proposed exemplar-based
method is able to deblur this image with fewer visual
artifacts and finer details (Fig. 12(i)) despite the best
matched exemplar (Fig. 12(b)) is significantly different
from the input. Furthermore, the deblurred result by
the proposed CNN-based method also contains fewer
ringing artifacts as shown in Fig. 12(j).

Fig. 13(a) shows another example of a real captured
image. The deblurring methods based on edge selec-
tion [4], [5], [17] do not perform well as ambiguous
edges are selected for kernel estimation. Similarly, the
deblurred images by the methods based on natural
priors [9], [18] contain artifacts, while the exemplar-
based and CNN-based methods generate sharper con-
tents as shown in Fig. 13(i) and (j).

4.4 Object Deblurring
In this work, we focus on face image deblurring,
as it is of great interest with numerous applications.
However, the proposed methods can be applied to
other deblurring tasks by using exemplars of specific
classes with categorical structures. We use one exam-
ple in Fig. 14 to show the proposed methods can be
extended to object deblurring.

Similar to face deblurring, we first collect a set of
exemplar images and restore categorical structures
(e.g., car body, windows and wheels for car images)
using the method described in Section 3.2.1. For each
test image, we use (4) to find the best exemplar image
as shown in Fig. 14(b) and compute salient edges
according to (5). Finally, we use the same algorithm
(Algorithm 2) for object deblurring. For the CNN-
based method, we first use the exemplars to generate
blurred images and sharp edges using the method in
Section 3.2.2, and then train a network based on the
synthetic data.

The results generated by [4], [7], [17] contain sig-
nificant ringing artifacts as shown in Fig. 14(c)-(e)
and (g). In addition, the deblurred results by the
state-of-the-art methods [44], [9], [18] contain blurry
regions as shown in Fig. 14(f) and (h). In contrast, the
results generated by our exemplar-based (Fig. 14(i))
and CNN-based (Fig. 14(j)) methods are sharper with
significantly fewer artifacts.

4.5 Natural Image Deblurring
In contrast to the exemplar-based method, the pro-
posed CNN-based algorithm is not limited to the
structures of specific scenarios (e.g., poses). Thus, it
can be applied to deblur other images of object classes,
e.g., natural scenes. Fig. 15 shows that the proposed
CNN-based method is able to deblur natural images
effectively. Overall, the proposed method performs
comparably against the state-of-the-art natural deblur-
ring algorithms [17], [18].

4.6 Analysis and Discussion
In this section, we analyze the effect of the proposed
edge prediction algorithms. We show that proposed
algorithms are not sensitive to variation of dataset
size, image noise, and parameters. In addition, we
discuss the limitations of the proposed algorithms.
Effect of predicted salient edges ∇S. The initial pre-
dicted salient edges ∇S play a critical role in kernel
estimation. We use an example to demonstrate the

http://pics.psych.stir.ac.uk/
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(a) Input (b) Exemplar-based ∇S (c) Sun et al. [17] (d) Cho and Lee [4] (e) Xu and Jia [5]

(f) Zhong et al. [44] (g) Xu et al. [9] (h) Michaeli and Irani [18] (i) Our exemplar-based (j) Our CNN-based

Fig. 12. Real captured example with some noise and saturated pixels. The estimated kernel is of 35× 35 pixels.

(a) Input (b) Exemplar-based ∇S (c) Sun et al. [17] (d) Cho and Lee [4] (e) Xu and Jia [5]

(f) Zhong et al. [44] (g) Xu et al. [9] (h) Michaeli and Irani [18] (i) Our exemplar-based (j) Our CNN-based

Fig. 13. Example of real captured image. The estimated kernel is of 25× 25 pixels.

effectiveness of the proposed algorithm for predicting
initial salient edges ∇S. Fig. 16(a)-(e) show that the
deblurred results using the edge selection method [4]
contain artifacts as ambiguous edges are selected.
However, the proposed methods using the predicted
facial structure by exemplars (Fig. 16(f)-(j)) and the
CNN (Fig. 16(k)-(o)) do not include ambiguous edges
and thus estimate kernels better. Fig. 16(f)-(i) and
(k)-(n) also demonstrate that the predicted salient
edges ∇S by the proposed algorithms lead to fast
convergence than the edge selection method [4].

We note that the proposed algorithm does not
require coarse-to-fine kernel estimation strategies or
heuristic edge selections. The coarse-to-fine strategy
can be viewed as the initialization for the finer levels,
which constrains the solution space and reduces the
computational load. Recent results of several state-of-
the-art methods [4], [7], [9] show that effective salient
edges at the initial stage are important for kernel
estimation. If salient edges can be obtained effectively,
it is not necessary to use coarse-to-fine strategies or
specific edge selection, thereby simplifying the kernel
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(a) Input (b) Exemplar-based ∇S (c) Sun et al. [17] (d) Cho and Lee [4] (e) Krishnan et al. [7]

(f) Zhong et al. [44] (g) Xu et al. [9] (h) Michaeli and Irani [18] (i) Our exemplar-based (j) Our CNN-based

Fig. 14. Object deblurring. Our method generates the deblurred result with fewer ringing artifacts.

(a) Input (b) Predicted ∇S (c) Xu and Jia [5] (d) Sun et al. [17] (e) Michaeli and Irani [18] (f) Ours

Fig. 15. Natural image deblurring. Our CNN-based method can be applied to natural image deblurring and
generates the image with few ringing artifacts and much clearer characters.

estimation process significantly. Our exemplar-based
and CNN-based methods operate on the input im-
age of the original scale only and exploit the sharp
structure information to constrain the solution space.
By exploiting salient edges from the facial structures,
the proposed methods perform well without using
coarse-to-fine strategies and achieve fast convergence.
In the method by Cho and Lee [4], blur kernels
are estimated in a coarse-to-fine manner based on
an heuristic edge selection strategy. However, it is
difficult to select salient edges from heavily blurred
images without exploiting any structural information
(Fig. 16(a)). Compared to the intermediate results
using the L0 prior (Fig. 1(f)), our methods based
on exemplars and CNN restore the important facial
components effectively (Fig. 16(i) and (n)), thereby
facilitating kernel estimation and image restoration.
Robustness of exemplar structures. In the exemplar-
based method, we use (4) to find the best matched ex-
emplar in the gradient space. The matched exemplar
should share similar, although not perfect, structural
information with the input image (e.g., Fig. 1(g)).
Furthermore, the shared structures should not contain
numerous false salient edges caused by blur. We also
note that most mismatched contours caused by facial
expressions correspond to the small gradients in the
blurred images. In such cases, these extraneous weak
edges are not expected to help estimate kernels ac-
cording to the edge based methods [4], [5]. To alleviate
this problem, we update exemplar edges iteratively
(see Algorithm 2) to increase its reliability as shown
in Fig. 16(f)-(i). Consequently, the matched exemplars
help estimate blur kernels and restore latent face
images.
Robustness to dataset size. Although a larger dataset

is likely to contain more diverse exemplars that facil-
itates finding the matching process by the proposed
method, the linear search time can be computation-
ally expensive. Empirically we show that blurry face
images can be deblurred well when coarse matches
are available in a small exemplar set. We apply the k-
means clustering method to a set of face images, and
choose 40, 80, 100, and 200 centers as the exemplar
datasets, respectively. Similar to [10], we generate 40
blurred images consisting of 5 images (of different
identities as the exemplars) with 8 blur kernels for
experiments. The cumulative error ratio [10] is used
to evaluate the method. Fig. 17(a) shows that the
proposed exemplar-based method performs well with
a small set of exemplars (e.g., 40). With the increasing
exemplar dataset size, the estimated results do not
change significantly, which demonstrates the robust-
ness of the proposed method to exemplar dataset size.

To assess the sensitivity of the CNN-based structure
prediction method, we evaluate the proposed method
with different numbers of exemplars. We use 200,
500, 1000, and 1500 training images for the datasets,
respectively. For each clear image in these datasets,
we synthesize the blurred images using the generated
kernels in Section 3.2.2. We use the same 40 test
images in the exemplar-based method to evaluate
the sensitivity of dataset size for the CNN-based
method. Fig. 17(b) shows that the proposed CNN-
based method performs well with a small set of ex-
emplars (e.g., 200). As the number of training images
is increased, the performance of the proposed method
does not change significantly, especially when 1500 or
all images are used. The results show the proposed
CNN-based method performs robustly against differ-
ent dataset size.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 16. Results without and with predicted salient edges ∇S. (a)-(d) The 1st, 2nd, 5th, and 9th iteration
intermediate results, respectively, using the edge selection method [4] to predict salient edges∇S in Algorithm 2.
(e) Deblurred result with the edge selection method [4] to predict salient edges ∇S in Algorithm 2. (f)-(i) The 1st,
2nd, 5th, and 9th iteration intermediate results, respectively, using the proposed exemplar-based method to
predict salient edges ∇S in Algorithm 2. (j) The deblurred result based on exemplars. (k)-(n) The 1st, 2nd, 5th,
and 9th iteration intermediate results, respectively, using the proposed CNN-based method to predict salient
edges ∇S in Algorithm 2. (o) The deblurred result based on the proposed CNN. The blurred image in this figure
is the same as that of Fig. 1.
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Fig. 17. Sensitivity analysis of dataset size.

Robustness to noise. If the blurred image contains
large noise, edge selection [4], [5] and other state-of-
the-art methods (e.g., [2], [7], [9]) may not perform
well for kernel estimation. However, the proposed
methods perform well in such cases due to the robust
matching criterion (see analysis in Section 3.2.1). We
show some examples in Section 4.
Parameter analysis. The proposed deblurring model
involves three main parameters λ, γ, and θ. We
evaluate the effects of these parameters on image
deblurring using the dataset with 32 blurred images.
For each parameter, we carry out experiments with
different settings by varying one and fixing the others
using the kernel similarity metric to measure accuracy
of estimated kernels. Fig. 18 shows the proposed de-
blurring algorithm is insensitive to parameter settings.
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Fig. 18. Sensitivity analysis with respect to parameters λ, γ, and θ.
TABLE 3

Effect of the filter size in the first layer on image deblurring.
hhhhhhhhhhhFilter size

Kernel size
9× 9 13× 13 15× 15 17× 17 19× 19 21× 21 27× 27

9× 9 32.84 29.99 33.33 32.58 22.03 26.60 22.84
13× 13 32.58 29.21 33.60 32.60 22.19 26.00 22.93
15× 15 33.11 29.56 32.99 32.49 22.01 26.48 24.09
17× 17 33.51 29.14 33.01 32.16 21.78 25.92 23.58
19× 19 33.11 29.72 33.48 33.01 22.16 25.75 23.89
21× 21 32.83 29.06 32.98 32.14 21.51 25.83 23.58

(a) (b) (c) (d) (e)
Fig. 19. The proposed CNN-based method is not able
to handle the image with large blur. (a) Blurred image.
(b)∇S by CNN. (c) Exemplar-based∇S. (d) Results by
the CNN-based method. (e) Results by the exemplar-
based method.

TABLE 4
Effect of the different filter size settings in the

convolution layer of the proposed network. The results
are generated by networks whose the receptive fields

are the same.
Filter size settings Proposed setting Filter size with 3× 3

Avg. PSNR 35.33 35.55

In the proposed network, we note that the filter size
of the first layer plays an important role for predicting
sharp edges from blurred images. We evaluate the
effect of this parameter on the proposed test dataset
and use the PSNR as the metric in Table 3 . Table 3
demonstrates that the proposed model is insensitive
to filter size change within a certain range.

Note that we use a large filter size in the first layer
of the proposed network. It is interesting to analyze
when the filter sizes of all the convolution layer are
the same, e.g., the widely used setting, 3 × 3 pixels.
For fair comparisons, we use the the same receptive
field in the network and train it on the same training
dataset. Table 4 demonstrates that the network with
this setting generates similar results to the proposed
method using the frontal face dataset.
Limitations. As mentioned in Section 4.1, the

exemplar-based edge prediction method is time-
consuming (see Table 2) and does not deblur face
images well when the main components cannot be
extracted, e.g., profile faces. Furthermore, it is not
able to deblur generic images where the salient struc-
tures cannot be extracted. Although the CNN-based
method is more efficient and able to handle profile
faces, it is not able to handle the blurred images with
large blur. Fig. 19 shows an example where the main
structures are severely blurred. It is difficult for the
CNN-based method to predict salient edges from such
blurred images (see Fig. 19(b)), while the exemplar-
based method performs better in such cases with the
help of exemplars (with the same pose).

5 CONCLUSIONS

We propose an exemplar-based deblurring algorithm
for face images that exploits the structural informa-
tion. The proposed method uses facial structures and
reliable edges from exemplars for kernel estimation
without resorting to complex edge predictions. Our
method generates good initialization without using
coarse-to-fine optimization strategies to enforce con-
vergence, and performs well when the blurred images
do not contain rich texture. In addition, we further
propose a CNN-based deblurring method which can
effectively predict the sharp structure from a blurred
input in real time. Extensive evaluations with state-of-
the-art deblurring methods show that the proposed
algorithms are effective for deblurring face images.
We also show that that proposed methods can be
applied to other object deblurring.
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