
1

Virtual Adversarial Training:
A Regularization Method for Supervised and

Semi-Supervised Learning
Takeru Miyato∗,†,‡, Shin-ichi Maeda∗,†, Masanori Koyama§,† and Shin Ishii†,‡

Abstract—We propose a new regularization method based on virtual adversarial loss: a new measure of local smoothness of the
conditional label distribution given input. Virtual adversarial loss is defined as the robustness of the conditional label distribution around
each input data point against local perturbation. Unlike adversarial training, our method defines the adversarial direction without label
information and is hence applicable to semi-supervised learning. Because the directions in which we smooth the model are only
“virtually” adversarial, we call our method virtual adversarial training (VAT). The computational cost of VAT is relatively low. For neural
networks, the approximated gradient of virtual adversarial loss can be computed with no more than two pairs of forward- and
back-propagations. In our experiments, we applied VAT to supervised and semi-supervised learning tasks on multiple benchmark
datasets. With a simple enhancement of the algorithm based on the entropy minimization principle, our VAT achieves state-of-the-art
performance for semi-supervised learning tasks on SVHN and CIFAR-10.

F

1 INTRODUCTION

IN practical regression and classification problems, one
must face two problems on opposite ends; underfitting

and overfitting. On one end, poor design of model and
optimization process can result in large error for both
training and testing dataset (underfitting). On the other
end, the size of the sample that can be used to tune the
parameters of model is always finite, and the evaluation
of the objective function in practice will always be a mere
empirical approximation of the true expectation of the target
value over the sample space. Therefore, even with successful
optimization and low error rate on the training dataset
(training error), the true expected error (test error) can be
large [3], [47] (overfitting). The subject of our study is the
latter. Regularization is a process of introducing additional
information in order to manage this inevitable gap between
the training error and the test error. In this study, we
introduce a novel regularization method applicable to semi-
supervised learning that identifies the direction in which the
classifier’s behavior is most sensitive.

Regularization is often carried out by augmenting the
loss function with a so-called regularization term, which
prevents the model from overfitting to the loss function
evaluated on a finite set of sample points. From Bayesian
standpoint, regularization term can be interpreted as a prior
distribution that reflects our educated a priori knowledge
or belief regarding the model [7]. A popular a priori belief
based on widely observed facts is that the outputs of most
naturally occurring systems are smooth with respect to
spatial and/or temporal inputs [46]. What often underlie
this belief are the laws of physics governing the system

• Contact : takeru.miyato@gmail.com
• ∗ Preferred Networks, Inc., Tokyo, Japan, † Graduate school of Informatics,

Kyoto University, Kyoto, Japan, ‡ ATR Cognitive Mechanisms Laborato-
ries, Kyoto, Japan, § Department of Mathematical Science, Ritsumeikan
University, Kyoto, Japan

of interest, which in many cases are described by smooth
models based on differential equations [4]. When we are
constructing the probability model, this belief prompts us
to prefer conditional output distribution p(y|x) (or just
output distribution for short) that are smooth with respect
to conditional input x.

In fact, smoothing the output distribution often works to
our advantage in actual practice. For example, label propa-
gation [49] is an algorithm that improves the performance
of classifier by assigning class labels to unlabeled training
samples based on the belief that close input data points
tend to have similar class labels. Also, it is known that,
for neural networks (NNs), one can improve the general-
ization performance by applying random perturbations to
each input in order to generate artificial input points and
encouraging the model to assign similar outputs to the set
of artificial inputs derived from the same point [6]. Several
studies have also confirmed that this philosophy of making
the predictor robust against random and local perturbation is
effective in semi-supervised learning. For selected examples,
see [5], [24], [33], [35], [45].

However, [41] and [14] found a weakness in naive
application of this philosophy. They found that standard
isotropic smoothing via random noise and random data
augmentation often leaves the predictor particularly vulner-
able to a small perturbation in a specific direction, that is,
the adversarial direction, which is the direction in the input
space in which the label probability p(y = k|x) of the model
is most sensitive. [41] and [14] experimentally verified that
the predictors trained with the standard regularization tech-
nique such as L1 and L2 regularization are likely to make
mistakes when the signal is perturbed in the adversarial
direction, even when the norm of the perturbation is so
small that it cannot be perceived by human eyes.

Inspired by this finding, Goodfellow et al. [14] developed
adversarial training that trains the model to assign to each in-

ar
X

iv
:1

70
4.

03
97

6v
2

 [
st

at
.M

L
]

 2
7

Ju
n

20
18

2

put data a label that is similar to the labels to be assigned to
its neighbors in the adversarial direction. This attempt suc-
ceeded in improving generalization performance and made
the model robust against adversarial perturbation. Goodfel-
low et al.’s work suggests that the locally isotropic output
distribution cannot be achieved by making the model robust
against isotropic noise. In retrospect, this observation is in
fact quite intuitive. If the distribution around a given input
is anisotropic and the goal is to resolve this anisotropy,
it does not make much sense to exert equal smoothing
“pressure” into all directions.

Our proposed regularization technique is a method that
trains the output distribution to be isotropically smooth
around each input data point by selectively smoothing the
model in its most anisotropic direction. In order to quan-
tify this idea, we introduce a notion of virtual adversarial
direction, which is a direction of the perturbation that can
most greatly alter the output distribution in the sense of
distributional divergence. Virtual adversarial direction is
our very interpretation of the ‘most’ anisotropic direction.
In contrast, adversarial direction introduced by Goodfellow
et al. [14] at an input data point is a direction of the
perturbation that can most reduce the model’s probability of
correct classification, or the direction that can most greatly
“deviate” the prediction of the model from the correct label.
Unlike adversarial direction, virtual adversarial direction
can be defined on unlabeled data point, because it is the
direction that can most greatly deviate the current inferred
output distribution from the status quo. In other words, even
in the absence of label information, virtual adversarial di-
rection can be defined on an unlabeled data point as if there
is a “virtual” label; hence the name “virtual” adversarial
direction.

With the definition of virtual adversarial direction, we
can quantify the local anisotropy of the model at each input
point without using the supervisory signal. We define the
local distributional smoothness (LDS) to be the divergence-
based distributional robustness of the model against virtual
adversarial direction. We propose a novel training method
that uses an efficient approximation in order to maximize
the likelihood of the model while promoting the model’s
LDS on each training input data point. For brevity, we call
this method virtual adversarial training (VAT).

The following list summarizes the advantages of this
new method:
• applicability to semi-supervised learning tasks
• applicability to any parametric models for which we

can evaluate the gradient with respect to input and
parameter

• small number of hyperparameters
• parametrization invariant regularization

The second advantage is worth emphasizing. At first glance,
our algorithm may appear as if it needs to solve an internal
optimization problem in order to determine the virtual
adversarial direction. For models such as NNs for which
we can evaluate the gradient of the output with respect
to the input, however, virtual adversarial perturbation ad-
mits an approximation that can be computed efficiently
with the power method [11]. This property enables us to
implement VAT for NNs with no more than three times
the computational cost of the standard, regularization-free

training. This approximation step is an important part of the
VAT algorithm that makes it readily applicable for various
settings and model architectures.

Finally, the fourth advantage is not to be overlooked,
because this is the most essential point at which our VAT is
fundamentally different from popular regularization meth-
ods like Lp regularization. For linear models, Lp regu-
larization has an effect of mitigating the oversensitivity
of the output with respect to input, and one can control
the strength of its effect via the hyperparameters. When
the model in concern is highly nonlinear, as in the case
of neural networks, however, the user has little control
over the effect of Lp regularization. Manipulation of the
parameters in the first layer would have different effect on
the final output depending on the choice of the parameters
in the middle layers, and the same argument applies to
the effect of regularization. In the language of Bayesian
statistics with which we interpret the regularization term as
prior distribution, this is to say that the nature of the prior
distributions favored by the Lp regularization depends on
the current parameter-setting and is hence ambiguous and
difficult to assess. Parameterization invariant regularization,
on the other hand, does not suffer from such a problem.
In more precise terms, by parametrization invariant regular-
ization we mean the regularization based on an objective
function L(θ) with the property that the corresponding
optimal distribution p(X; θ∗) is invariant under the one-
to-one transformation ω = T (θ), θ = T−1(ω). That is,
p(X; θ∗) = p(X;ω∗) where ω∗ = arg minω L(T−1(ω);D).
VAT is a parameterization invariant regularization, because
it directly regularizes the output distribution by its local
sensitivity of the output with respect to input, which is,
by definition, independent from the way to parametrize the
model.

When we applied VAT to the supervised and semi-
supervised learning for the permutation invariant task on
the MNIST dataset, our method outperformed all contem-
porary methods other than some cutting-edge methods that
use sophisticated network architecture. We also applied our
method to semi-supervised learning on CIFAR-10 and Street
View House Numbers (SVHN) datasets, and confirmed that
our method achieves superior or comparable performance
in comparison to those of state-of-the-art methods.

This article also extends our earlier work [30] in five
aspects:
• clarification of the objective function
• comparison between VAT and random perturbation

training (RPT)1

• additional set of extensive experiments
• evaluation of the virtual adversarial examples
• enhancement of the algorithm with entropy minimiza-

tion

2 RELATED WORKS

Many classic regularization methods for NNs regularize
the models by applying random perturbations to input
and hidden layers [6], [12], [34], [39]. An early work by

1. a downgraded version of VAT introduced in this paper that
smooths the label distribution at each point with same force in all
directions. Please see the detail definition of RPT in Section 3.4.

3

Bishop [6] showed that adding Gaussian perturbation to
inputs during the training process is equivalent to adding
an extra regularization term to the objective function. For
small perturbations, the regularization term induced by
such perturbation behaves similarly to a class of Tikhonov
regularizers [43]. The application of random perturbations
to inputs has an effect of smoothing the input-output rela-
tion of the NNs. Another way to smooth the input-output
relation is to impose constraints on the derivatives. For
example, constraints may be imposed on the Frobenius
norm of the Jacobian matrix of the output with respect to
the input. This approach was taken by Gu and Rigazio [16]
in their deep contractive network. Instead of computing
the computationally expensive full Jacobian, however, they
approximated the Jacobian by the sum of the Frobenius
norms of the layer-wise Jacobians computed for all adjacent
pairs of hidden layers. Possibly because of their layer-wise
approximation, however, deep contractive network was not
successful in significantly decreasing the test error.

Dropout [39] is another popular method for regularizing
NNs with random noise. Dropout is a method that assigns
random masks on inputs/hidden layers in the network
during its training. From a Bayesian perspective, dropout is
a method to introduce prior distribution for the parameters
[9], [29]. In this interpretation, dropout is a method that
regularizes the model via Bayesian model ensembles, and is
complementary to our approach, which directly augments
the function with a regularization term.

Adversarial training was originally proposed by [41].
They discovered that some architectures of NNs, including
state-of-the-art NN models, are particularly vulnerable to a
perturbation applied to an input in the direction to which
the models’ label assignment to the input is most sensitive
(adversarial), even when the perturbation is so small that
human eyes cannot discern the difference. They also showed
that training the models to be robust against adversarial
perturbation is effective in reducing the test error. However,
the definition of adversarial perturbation in [41] required a
computationally expensive inner loop in order to evaluate
the adversarial direction. To overcome this problem, Good-
fellow et al. [14] proposed another definition of adversarial
perturbation that admits a form of approximation that is free
of the expensive inner loop (see the next section for details).

Bachman et al. [5] studied the effect of random pertur-
bation in the setting of semi-supervised learning. Pseudo
Ensemble Agreement introduced in [5] trains the model in a
way that the the output from each layer in the NN does not
vary too much by the introduction of random perturbations.
On the other hand, ladder networks [33] achieved high
performance for semi-supervised learning tasks by making
an effort so that one can reconstruct the original signal of
the lower layer from the signal of the uppermost layer and
the noise-perturbed outputs from the hidden layers.

Our method is similar in philosophy to [5], and we
use the virtual adversarial perturbation for their noise pro-
cess. As we show later, in our experiments, this choice
of perturbation was able to improve the generalization
performance. Random image augmentation is a variant of
random perturbation that simply augments the dataset with
images perturbed by regular deformation. For more theo-
retical overview of related methods of noise regularizations,

Jacobian regularizations and their extensions like PEA [5],
ladder networks [33] and VAT, we refer the readers to [2].

Several works [24], [35] succeeded in using the random
image augmentation to improve generalization performance
for semi-supervised tasks of image classification. These
methods can also be interpreted as types of techniques that
smooth the model around input data points and extrapolate
the labels of unlabeled examples. In the area of nonpara-
metric studies, this type of method is referred to as label
propagation [49].

Another family of methods for the semi-supervised
learning of NNs that are worth mentioning is the family
based on sophisticated generative models. The methods
belonging to this family are different from those that we
introduced above because they do not require an explicit
definition of smoothness. Kingma et al. [22] applied a
variational-autoencoder-based generative model to semi-
supervised learning. This work was followed by several
variants [27]. Generative adversarial networks (GANs) pro-
posed by [13] are a recently popular high-performance
framework that can also be applied to semi-supervised
learning [36], [37]. In practice, these methods often require
careful tuning of many hyperparameters in the generative
model, and are usually not easy to implement without high
expertise in its optimization process.

3 METHODS

We begin this section with a set of notations. Let x ∈ RI and
y ∈ Q respectively denote an input vector and an output
label, where I is the input dimension and Q is the space of
all labels. Additionally, we denote the output distribution
parameterized by θ as p(y|x, θ). We use θ̂ to denote the vec-
tor of the model parameters at a specific iteration step of the
training process. We use Dl = {x(n)l , y

(n)
l |n = 1, . . . , Nl} to

denote a labeled dataset, and Dul = {x(m)
ul |m = 1, . . . , Nul}

to denote an unlabeled dataset. We train the model p(y|x, θ)
using Dl and Dul.

3.1 Adversarial Training
Our method is closely related to the adversarial training
proposed by Goodfellow et al. [14]. We therefore formulate
adversarial training before introducing our method. The loss
function of adversarial training in [14] can be written as

Ladv(xl, θ) := D [q(y|xl), p(y|xl + radv, θ)] (1)
where radv := arg max

r;‖r‖≤ε
D [q(y|xl), p(y|xl + r, θ)] , (2)

where D[p, p′] is a non-negative function that measures the
divergence between two distributions p and p′. For example,
D can be the cross entropy D[p, p′] = −∑i pi log p′i, where
p and p′ are vectors whose i-th coordinate represents the
probability for the i-th class. The function q(y|xl) is the
true distribution of the output label, which is unknown.
The goal with this loss function is to approximate the true
distribution q(y|xl) by a parametric model p(y|xl, θ) that is
robust against adversarial attack to x. In [14], the function
q(y|xl) was approximated by one hot vector h(y; yl), whose
entries are all zero except for the index corresponding to
the true label (output) yl. Likewise, for regression tasks, we

4

can use the normal distribution centered at yl with constant
variance, or the delta function with the atom at y = yl.

Generally, we cannot obtain a closed form for the exact
adversarial perturbation radv. However, we can approxi-
mate radv with a linear approximation of D with respect to
r in Eq.(2). When the norm is L2, adversarial perturbation
can be approximated by

radv ≈ ε
g

‖g‖2
, where g = ∇xl

D [h(y; yl), p(y|xl, θ)] .(3)

When the norm is L∞, adversarial perturbation can be
approximated by

radv ≈ εsign(g), (4)

where g is the same function that appeared in Eq.(3). [14]
originally used (4) for their adversarial training. Note that,
for NNs, the gradient ∇xl

D [h(y; yl), p(y|xl, θ)] can be ef-
ficiently computed by backpropagation. By optimizing the
loss function of the adversarial training in Eq.(1) based on
the adversarial perturbation defined by Eq.(3) (or (4)), [14]
and [30] were able to train a model with better general-
ization performance than the model trained with random
perturbations.

3.2 Virtual Adversarial Training
Adversarial training is a successful method that works for
many supervised problems. However, full label information
is not available at all times. Let x∗ represent either xl or xul.
Our objective function is now given by

D [q(y|x∗), p(y|x∗ + rqadv, θ)]

where rqadv := arg max
r;‖r‖≤ε

D [q(y|x∗), p(y|x∗ + r, θ)] ,

Indeed, we have no direct information about q(y|xul). We
therefore take the strategy to replace q(y|x) with its current
approximation, p(y|x, θ). This approximation is not neces-
sarily naive, because p(y|x, θ) shall be close to q(y|x) when
the number of labeled training samples is large. This is also
the motivation behind our inclusion of the term “virtual”
in our work. Literally, we use “virtual” labels that are prob-
abilistically generated from p(y|x, θ) in place of labels that
are unknown to the user, and compute adversarial direction
based on the virtual labels.

Therefore, in this study, we use the current estimate
p(y|x, θ̂) in place of q(y|x). With this compromise, we arrive
at our rendition of Eq.(2) given by

LDS(x∗, θ) := D
[
p(y|x∗, θ̂), p(y|x∗ + rvadv, θ)

]
(5)

rvadv := arg max
r;‖r‖2≤ε

D
[
p(y|x∗, θ̂), p(y|x∗ + r)

]
, (6)

which defines our virtual adversarial perturbation. The loss
LDS(x, θ) can be considered as a negative measure of the
local smoothness of the current model at each input data
point x, and its reduction would make the model smooth
at each data point. The regularization term we propose in
this study is the average of LDS(x∗, θ) over all input data
points:

Rvadv(Dl,Dul, θ) :=
1

Nl +Nul

∑
x∗∈Dl,Dul

LDS(x∗, θ). (7)

The full objective function is thus given by

`(Dl, θ) + αRvadv(Dl,Dul, θ), (8)

where `(Dl, θ) is the negative log-likelihood for the labeled
dataset. VAT is a training method with the regularizer
Rvadv.

One notable advantage of VAT is that there are just
two scalar-valued hyperparameters: (1) the norm constraint
ε > 0 for the adversarial direction and (2) the regularization
coefficient α > 0 that controls the relative balance between
the negative log-likelihood and the regularizer Rvadv. In
fact, for all our experiments, our VAT achieved superior
performance by tuning only the hyperparameter ε, while
fixing α = 1. Theoretically, these two hyperparameters play
similar roles, as discussed later in Section 4.2. One advan-
tage of VAT is the number of hyperparameters. For many
generative model-based supervised and semi-supervised
learning methods aimed at learning p(y, x), a bottleneck of
training is the difficulty of the optimization of hyperparam-
eters for the generative model (i.e. p(x) or p(x|y)). Also, as
opposed to adversarial training [14], the definition of virtual
adversarial perturbation only requires input x and does not
require label y. This is the property that allows us to apply
VAT to semi-supervised learning. Fig. 1 shows how VAT
works on semi-supervised learning on a two-dimensional
synthetic dataset. We used an NN classifier with one hidden
layer with 50 hidden units. At the beginning of the training,
the classifier predicted different labels for input data points
in the same cluster, and LDS on the boundaries were very
high (see panel (2) in Fig. 1). The algorithm exerts high
pressure for the model to be smooth around the points with
large LDS values. As the training progressed, the model
evolved so that the label prediction on the points with large
LDS values are strongly influenced by the labeled inputs in
the vicinity. This encouraged the model to predict the same
label for the set of points that belong to the same cluster,
which is what we often desire in semi-supervised learning.
As we can see in Fig. 1, VAT on semi-supervised learning
can be given a similar interpretation as label propagation
[49], which is another branch of method for semi-supervised
learning.

3.3 Fast Approximation Method for rvadv and the
Derivative of the Objective Function

Once virtual adversarial perturbation rvadv is computed,
the evaluation of LDS(x∗, θ) simply becomes the compu-
tation of the divergence D between the output distributions
p(y|x∗, θ̂) and p(y|x∗ + rvadv, θ). However, the evaluation
of rvadv cannot be performed with the linear approximation
as in the original adversarial training (Eq.(3)) because the
gradient of D[p(y|x∗, θ̂), p(y|x∗ + r, θ̂)] with respect to r is
always 0 at r = 0. In the following, we propose an efficient
computation of rvadv, for which there is no evident closed
form.

For simplicity, we denote D[p(y|x∗, θ̂), p(y|x∗ + r, θ)]
by D(r, x∗, θ). We assume that p(y|x∗, θ) is twice differ-
entiable with respect to θ and x almost everywhere. Be-
cause D(r, x∗, θ̂) takes the minimal value at r = 0, the
differentiability assumption dictates that its first derivative

5

Fig. 1: Demonstration of how our VAT works on semi-supervised learning. We generated 8 labeled data points (y = 1
and y = 0 are green and purple, respectively), and 1,000 unlabeled data points in 2-D space. The panels in the first row (I)
show the prediction p(y = 1|x, θ) on the unlabeled input points at different stages of the algorithm. We used a continuous
colormap to designate the predicted values of p(y = 1|x, θ), with Green, gray, and purple respectively corresponding to the
values 1.0, 0.5, and 0.0. The panels in the second row (II) are heat maps of the regularization term LDS(x, θ̂) on the input
points. The values of LDS on blue-colored points are relatively high in comparison to the gray-colored points. We used KL
divergence for the choice of D in Eq.(5). Note that, at the onset of training, all the data points have similar influence on
the classifier. After 10 updates, the model boundary was still appearing over the inputs. As the training progressed, VAT
pushed the boundary away from the labeled input data points.

∇rD(r, x, θ̂)|r=0 is zero. Therefore, the second-order Taylor
approximation of D is

D(r, x, θ̂) ≈ 1

2
rTH(x, θ̂)r, (9)

where H(x, θ̂) is the Hessian matrix given by
H(x, θ̂) := ∇∇rD(r, x, θ̂)|r=0. Under this approximation,
rvadv emerges as the first dominant eigenvector u(x, θ̂) of
H(x, θ̂) with magnitude ε:

rvadv ≈ arg max
r
{rTH(x, θ̂)r; ‖r‖2 ≤ ε}

= εu(x, θ̂), (10)

where v̄ denotes the unit vector whose direction is the same
as its argument vector v; that is, v̄ ≡ v

‖v‖2 . Hereafter, we

denote H(x, θ̂) by H for simplicity.
Next, we need to address the O(I3) runtime required

for the computation of the eigenvectors of the Hessian H .
We resolve this issue with the approximation via the power
iteration method [11] and the finite difference method.
Let d be a randomly sampled unit vector. Provided that
d is not perpendicular to the dominant eigenvector u, the
iterative calculation of

d← Hd (11)

makes d converge to u. To reduce the computational time,
we perform this operation without the direct computation

of H . Note that Hd can be approximated using the finite
difference method:

Hd ≈ ∇rD(r, x, θ̂)|r=ξd −∇rD(r, x, θ̂)|r=0

ξ

=
∇rD(r, x, θ̂)|r=ξd

ξ
, (12)

with ξ 6= 0. In the computation above, we use the fact that
∇rD(r, x, θ̂)|r=0 = 0 again. To summarize, we can approx-
imate rvadv with the repeated application of the following
update:

d← ∇rD(r, x, θ̂)|r=ξd. (13)

The computation of ∇rD can be performed in a straightfor-
ward manner. For NNs, this can be performed with one set
of backpropagation. The approximation introduced here can
be improved monotonically by increasing the number of the
power iterationsK . Thus, for NNs, the computation of rvadv
can be performed with K sets of backpropagations. Sur-
prisingly, only one power iteration was sufficient for high
performance on various benchmark datasets. This approxi-
mation of rvadv with K = 1 results in an approximation that
is similar in form to Eq.(3):

rvadv ≈ ε
g

‖g‖2
(14)

where g = ∇rD
[
p(y|x, θ̂), p(y|x+ r, θ̂)

] ∣∣∣
r=ξd

. (15)

6

We further discuss the effects of the number of the power
iterations in Section 4. After computing rvadv, the derivative
of Rvadv can be easily computed with one set of forward-
and back-propagation on NNs. Meanwhile, the derivative
of rvadv with respect to θ is not only convoluted and
computationally costly, but also introduces another source
of variance to the gradient and negatively affect the per-
formance of the algorithm. Our VAT therefore ignores the
dependency of rvadv on θ. In total, the derivative of the full
objective function including the log-likelihood term (8) can
be computed withK+2 sets of backpropagation. Algorithm
1 summarizes the procedure for mini-batch SGD with the
approximation of ∇θRvadv carried out with one power
iteration. VAT is an algorithm that updates the model by
the weighted sum of the gradient of the likelihood and the
gradient ∇θRvadv computed with Algorithm 1.

Algorithm 1 Mini-batch SGD for ∇θRvadv(θ)|θ=θ̂ , with a
one-time power iteration method.

1) Choose M samples of x(i)(i = 1, . . . ,M) from dataset
D at random.

2) Generate a random unit vector d(i) ∈ RI using an iid
Gaussian distribution.

3) Calculate rvadv via taking the gradient ofD with respect
to r on r = ξd(i) on each input data point x(i):

g(i) ← ∇rD
[
p(y|x(i), θ̂), p(y|x(i) + r, θ̂)

] ∣∣∣
r=ξd(i)

,

r
(i)
vadv ← g(i)/‖g(i)‖2

4) Return

∇θ
(

1

M

M∑
i=1

D
[
p(y|x(i), θ̂), p(y|x(i) + r

(i)
vadv, θ)

]) ∣∣∣∣∣
θ=θ̂

3.4 Virtual Adversarial Training vs. Random Perturba-
tion Training

The regularization function we use for VAT can be generally
written as

R(K)(θ,Dl,Dul)
:=

1

Nl +Nul

∑
x∈Dl,Dul

ErK

[
D
[
p(y|x, θ̂), p(y|x+ rK , θ)

]]
,

(16)

where rK is obtained by applying the power iteration K-
times on a sample from the uniform distribution on the
sphere U(r|ε) with radius ε. In practice, for the computation
of (16) we use an empirical expectation about the random
perturbation rK . For the implementation of VAT, we use
this regularizer with K ≥ 1. Meanwhile, We refer to the
training with R(0) as Random Perturbation Training (RPT).
RPT is a downgraded version of VAT that does not perform
the power iteration. By definition, RPT only smooths the
function isotropically around each input data point.

As we discuss further in Section 4, RPT falls behind VAT
in its sheer ability to reduce the generalization error. There
could be two reasons for the superiority of VAT.

First, the learning process of VAT is inherently more
stable than that of RPT. At each step of the algorithm, the

power iteration generates a vector that has a large projection
to the virtual adversarial direction with high probability.
Note that, as K → ∞, under the sufficient regularity of the
model, the gradient of D in the expression (16) approaches
the deterministic vector 1/2ε2∇θλ1(x, θ), where λ1 is the
dominant eigenvalue of H(x, θ).

Thus, the direction to which VAT smooths the model is
more deterministic than the direction to which RPT smooths
the model, which is uniformly distributed over the sphere of
radius ε; the stability of the learning of RPT always suffers
from the variance of (16).

Second, the regularization function of RPT has an essen-
tially effect on the model. For each observed input point,
VAT trains the model to assign similar label distribution
only to the set of proximal points aligned in the virtual
adversarial direction. In contrast, RPT encourages the model
to assign the same label distribution to all input points in
the isotropic neighborhood of each observed input. From
spectral perspective, the difference between VAT and RPT
is that VAT penalizes the spectral norm (largest singular
value) of the Hessian matrix H (9), while RPT penalizes the
sum of the eigenvalues [2]. Therefore, so long that the true
output distribution is isotropically smooth around the input
data point, VAT tends to be more effective in improving the
generalization performance.

In Section 4.5, we investigate the variance of the gradi-
ents in more detail and compare RPT and VAT from this
perspective.

4 EXPERIMENTS

We conducted a set of numerical experiments to assess the
following aspects of VAT:
• the sheer efficacy of VAT in comparison to RPT and

to a collection of recent competitive algorithms for
supervised and semi-supervised learning,

• the effect of hyperparameters (the perturbation size ε,
the regularization coefficient α, and the number of the
power iterations K) on the performance of VAT,

• VAT’s effect on the robustness of the trained NNs
against virtual adversarial perturbations, and

• the mechanism behind the advantage of using virtual
adversarial perturbation as opposed to random pertur-
bation.

We would like to remind the readers that, by the term VAT
here, we mean the algorithm that uses the approximation
step we introduced in Section 3.3 and Algorithm 1. In the
following, we describe the experimental settings and out-
comes of the experiments. For the performance evaluation
of our method, we used standard benchmarks like MNIST,
CIFAR-10 and SVHN. For the methods to compare, we
used the methods that were state-of-the-art at the time of
this research. For more details on the dataset and model
architectures, please see the appendix sections. For all our
experiments, we used fully connected NNs or convolutional
neural networks (CNNs) as the architectures of the classi-
fiers, and used Theano [42] and TensorFlow [1] to train the
models2. We use p(y|x, θ) to denote the label distribution of

2. TensorFlow implementation for the experiments is available at
https://github.com/takerum/vat tf. Chainer [44] implementation is
also available at https://github.com/takerum/vat chainer.

https://github.com/takerum/vat_tf
https://github.com/takerum/vat_chainer

7

the classifier, where θ represents the vector of the parameters
of the NN. For the activation function, we used ReLU [10],
[20], [31]. We also used Batch Normalization [19]. For the
divergence D in Eq. (1), we chose the KL divergence

D [p(y|x), p(y|x+ r)] :=
∑
y∈Q

p(y|x) log
p(y|x)

p(y|x+ r)
, (17)

where Q is the domain of y. For classification problems, Q
is the set of all possible labels. We set ξ in Eq.(12) to be
1e-6 in all of our experiments. For each set of experiments,
we repeated the same procedure multiple times with differ-
ent random seeds for the weight initialization and for the
selection of labeled samples (for semi-supervised learning).
The values reported on the tables are the means and the
standard deviations of the results. Please see the appendix
sections for more details.

4.1 Testing the Efficacy of VAT on Benchmark Tasks
4.1.1 Supervised Learning on MNIST and CIFAR-10
We first applied our algorithm to supervised learning on
MNIST dataset. We used NNs with four hidden layers,
whose numbers of units were (1200, 600, 300, 150). We pro-
vide more details of the experiments in Appendix A.

For each regularization method, we used the set of
hyperparameters that achieved the best performance on the
validation dataset of size 10, 000, which was selected from
the pool of training samples of size 60, 000. Test datasets
were produced so that they have no intersection with the
training dataset. We fed the test dataset into the trained NNs
and recorded their test errors.

Fig. 2 shows the transition of Rvadv and the learning
curves for the baseline NN trained without VAT (denoted by
‘wo/ VAT’) and the NN trained with VAT (denoted by ‘w/
VAT’). As the training progressed, Rvadv of the NN trained
with VAT exceeded that of the baseline; that is, the model
trained with VAT grew smoother than the baseline in terms
of LDS.

(a) Performance (b) Smoothness

R
v
a
d
v

 E
rro

r r
at

e(
%

)

Update Update

Fig. 2: Transition of the (a) classification error and (b) Rvadv

for supervised learning on MNIST. We set ε = 2.0 for the
evaluation of Rvadv for both the baseline and VAT. This is
the value of ε with which the VAT-trained model achieved
the best performance on the validation dataset.

Table 1 summarizes the performance of our regulariza-
tion method (VAT) and the other regularization methods
for supervised learning on MNIST. VAT performed better
than all the contemporary methods except ladder networks,
which is a highly advanced method based on special net-
work structure.

We also tested VAT with K > 1 in order to study the
dependence of the number of the power iterations K on the

performance of VAT. As we will discuss in Section 4.3, how-
ever, we were not able to achieve substantial improvement
by increasing the value of K .

We also applied our algorithm to supervised learning
on CIFAR-10 [23]. For the baseline for this set of exper-
iments, we used a ‘Conv-Large’ with dropout (Table 7,
Appendix D). Table 2 summarizes the test performance of
supervised learning methods implemented with CNN on
CIFAR10. We also compared the performance of VAT to
advanced architectures like ResNet [17] and DenseNet [18]
in order to confirm that the baseline model of our algorithm
is “mediocre enough” so that we can rightly attribute the
effectiveness of our algorithm to its way of the regular-
ization itself, not to the network structure we used in the
experiments. For CIFAR-10, our VAT achieved satisfactory
performance relative to the standards.

TABLE 1: Test performance of supervised learning methods
on MNIST with 60,000 labeled examples in the permutation
invariant setting. The top part cites the results provided by
the original paper. The bottom part shows the performance
achieved by our implementation.

Method Test error rate(%)

SVM (Gaussian kernel) 1.40
Dropout [39] 1.05
Adversarial, L∞ norm constraint [14] 0.78
Ladder networks [33] 0.57 (±0.02)

Baseline (MLE) 1.11 (±0.06)
RPT 0.84 (±0.03)
Adversarial, L∞ norm constraint 0.79 (±0.03)
Adversarial, L2 norm constraint 0.71 (±0.03)
VAT 0.64 (±0.05)

TABLE 2: Test performance of supervised learning methods
implemented with CNN on CIFAR-10 with 50,000 labeled
examples. The top part cites the results provided by the
original paper. The bottom part shows the performance
achieved by our implementation.

Method Test error rate(%)

Network in Network [26] 8.81
All-CNN [38] 7.25
Deeply Supervised Net [25] 7.97
Highway Network [40] 7.72
ResNet (1001 layers) [17] 4.62 (±0.20)
DenseNet (190 layers) [18] 3.46

Baseline (only with dropout) 6.67 (±0.07)
RPT 6.30 (±0.04)
VAT 5.81 (±0.02)

4.1.2 Semi-Supervised Learning on MNIST, SVHN, and
CIFAR-10

Recall that our definition of LDS(x, θ) at any point x does
not require the supervisory signal for x. In particular, this
means that we can apply VAT to semi-supervised learning
tasks. We emphasize that this is a property not shared by
adversarial training. We applied VAT to semi-supervised
image classification tasks on three datasets: MNIST, SVHN
[32], and CIFAR-10 [23]. We provide the details of the
experimental settings in Appendix D.

8

For MNIST, we used the same architecture of NN as in
the previous section. We also used batch normalization in
our implementation. We used a mini-batch of size 64 for the
calculation of the negative log-likelihood term, and a mini-
batch of size 256 for the calculation of Rvadv in Eq. (8). As
mentioned in Section 3.2, we used both labeled and unla-
beled sets for the calculation of Rvadv. Table 3 summarizes
the results for the permutation invariant MNIST task. All
the methods listed in the table belong to the family of semi-
supervised learning methods. For the MNIST dataset, VAT
outperformed all the contemporary methods other than the
methods based on generative models, such as [27], [33], [36],
which are state-of-the-art methods.

TABLE 3: Test performance of semi-supervised learning
methods on MNIST with the permutation invariant setting.
The value Nl stands for the number of labeled examples in
the training set. The top part cites the results provided by
the original paper. The bottom part shows the performance
achieved by our implementation. (PEA = Pseudo Ensembles
Agreement, DGM = Deep Generative Models, FM=feature
matching)

Method Test error rate(%)
Nl = 100 Nl = 1000

TSVM [8] 16.81 5.38
PEA [5] 5.21 2.87
DGM (M1+M2) [22] 3.33 (±0.14) 2.40 (±0.02)
CatGAN [37] 1.91 (±0.1) 1.73 (±0.18)
Skip DGM [27] 1.32 (±0.07)
Ladder networks [33] 1.06 (±0.37) 0.84 (±0.08)
Auxiliary DGM [27] 0.96 (±0.02)
GAN with FM [36] 0.93 (±0.07)

RPT 6.81 (±1.30) 1.58 (±0.54)
VAT 1.36 (±0.03) 1.27 (±0.11)

For the experiments on SVHN and CIFAR-10, we used
two types of CNNs (Conv-Small and Conv-Large) used in
recent state-of-the-art semi-supervised learning methods (
[24], [33], [36], [37]). ‘Conv-Small CNN’ has practically the
same structure as the CNN used in [36], and ‘Conv-Large
CNN’ has practically the same structure as the CNN used in
[24]. We provide more details of the architectures in Table 7
of Appendix D.

Also, in SVHN and CIFAR-10 experiments, we adopted
conditional entropy of p(y|x, θ) as an additional cost:

Rcent = H(Y |X)

= − 1

Nl +Nul

∑
x∈Dl,Dul

∑
y

p(y|x, θ) log p(y|x, θ).

(18)

This cost was introduced by [15], and similar idea has
been used in [35]. The conditional entropy minimization
has an effect of exaggerating the prediction of the model
p(y|x, θ) on each data point. For semi-supervised image
classification tasks, this additional cost is especially helpful.
In what follows, ‘VAT+EntMin’ indicates the training with
Rvadv +Rcent.

Table 4 summarizes the results of semi-supervised learn-
ing tasks on SVHN and CIFAR-10. Our method achieved the
test error rate of 14.82(%) with VAT, which outperformed
the state-of-the-art methods for semi-supervised learning on

CIFAR-10. ‘VAT+EntMin’ outperformed the state-of-the-art
methods for semi-supervised learning on both SVHN and
CIFAR-10.

TABLE 4: Test performance of semi-supervised learning
methods on SVHN and CIFAR-10 without image data aug-
mentation. The value Nl stands for the number of labeled
examples in the training set. The top part cites the results
provided by the original paper. The middle and bottom
parts show the performance achieved by our implementa-
tion. The asterisk(*) stands for the results on the permu-
tation invariant setting. (DGM=Deep Generative Models,
FM=feature matching)

Method
Test error rate(%)
SVHN CIFAR-10

Nl = 1000 Nl = 4000

SWWAE [48] 23.56
*Skip DGM [27] 16.61 (±0.24)
*Auxiliary DGM [27] 22.86
Ladder networks, Γ model [33] 20.40 (±0.47)
CatGAN [37] 19.58 (±0.58)
GAN with FM [36] 8.11 (±1.3) 18.63 (±2.32)∏

model [24] 5.43 (±0.25) 16.55 (±0.29)

(on Conv-Small used in [36])
RPT 8.41 (±0.24) 18.56 (±0.29)
VAT 6.83 (±0.24) 14.87 (±0.13)

(on Conv-Large used in [24])
VAT 5.77 (±0.32) 14.18 (±0.38)
VAT+EntMin 4.28 (±0.10) 13.15 (±0.21)

Table 5 shows the performance of VAT and contempo-
rary semi-supervised learning methods implemented with
moderate image data augmentation (translation and hori-
zontal flip). All methods other than VAT were implemented
with the strong standing assumption on the unlabeled train-
ing samples that the label of the image does not change
by the deformation. On CIFAR-10, VAT still outperformed
the listed methods with this handicap. ‘VAT+EntMin’ with
moderate data augmentation also outperformed the current
state-of-the-art methods for semi-supervised learning on
both SVHN and CIFAR-10. This result tells us that the
effect of VAT does not overlap so much with that of the
data augmentation methods, so that they can be used in
combination to boost the performance.

4.2 Effects of Perturbation Size ε and Regularization
Coefficient α

Generally, there is a high computational cost for optimizing
the hyperparameters of large NNs on a large dataset. One
advantage of VAT is that the algorithm involves only two
hyperparameters: α and ε. Even better, our experiments
suggest that, in an appropriate setting, VAT can be made
effective with the optimization of ε alone. In all our experi-
ments in Section 4.1, VAT achieved competitive results while
fixing α = 1.

This result is not too counter-intuitive. For small ε, the
hyperparameter α plays a similar role as ε. To see this,
consider the Taylor expansion of Eq.(5) for small ε, given

9

TABLE 5: Test performance of semi-supervised learning
methods on SVHN and CIFAR-10 with image data aug-
mentation. The value Nl stands for the number of labeled
examples in the training set. The performance of all methods
other than Sajjadi et al. [35] are based on experiments with
the moderate data augmentation of translation and flipping
(see Appendix D for more detail). Sajjadi et al. [35] used
extensive image augmentation, which included rotations,
stretching, and shearing operations. The top part cites the
results provided by the original paper. The bottom part
shows the performance achieved by our implementation.

Method
Test error rate(%)
SVHN CIFAR-10

Nl = 1000 Nl = 4000∏
model [24]. 4.82 (±0.17) 12.36 (±0.31)

Temporal ensembling [24] 4.42 (±0.16) 12.16 (±0.24)
Sajjadi et al. [35] 11.29 (±0.24)

(On Conv-Large used in [24])
VAT 5.42 (±0.22) 11.36 (±0.34)
VAT+EntMin 3.86 (±0.11) 10.55 (±0.05)

by

max
r
{D(r, x, θ); ‖r‖2 ≤ ε} ≈ max

r
{1

2
rTH(x, θ)r; ‖r‖2 ≤ ε}

=
1

2
ε2λ1(x, θ), (19)

where H(x, θ) and λ1(x, θ) are respectively the Hessian ma-
trix of D in Eq.(9) and its dominant eigenvalue. Substituting
this into the objective function (Eq.(8)), we obtain

`(θ,Dl) + αRvadv(θ,Dl,Dul,)

=`(θ,Dl) + α
1

Nl +Nul

∑
x∗∈Dl,Dul

max
r
{D(r, x∗, θ), ‖r‖2 ≤ ε}

≈`(θ,Dl) +
1

2
αε2

1

Nl +Nul

∑
x∗∈Dl,Dul

λ1(x∗, θ). (20)

Thus, at least for small ε, the strength of the regularization
in VAT is proportional to the product of the two hyper-
parameters, α and ε2; that is, in the region of small ε,
the hyperparameter search for only either ε or α suffices.
However, when we consider a relatively large value of ε,
the hyperparameters α and ε cannot be brought together.
In such a case, we shall strive to search for the best pair of
hyperparameters that attains optimal performance.

In our experiments on MNIST, tuning of ε alone suf-
ficed for achieving satisfactory performance. We therefore
recommend on empirical basis that the user prioritizes the
parameter search for ε over the search for α.

Fig. 3 shows the effects of ε and α on the validation
performance of supervised learning on MNIST. In Fig. 3a,
we show the effect of ε with fixed α = 1, and in Fig. 3b
we show the effects of α with different fixed values of ε in
the range {1.0, 2.0, 3.0}. During the parameter search for
supervised learning on MNIST, the algorithm performed
optimally when α = 1. Based on this result, we fixed α = 1
while searching for optimal ε in all benchmark experiments,
including both supervised learning on MNIST and CIFAR-
10, as well as unsupervised learning on MNIST, CIFAR-10,
and SVHN. As we showed in Section 4.1, this simple tuning

✏

Va
lid

at
io

n
er

ro
r r

at
e

(%
)

(a) Effect of ε (α = 1).

↵

Va
lid

at
io

n
er

ro
r r

at
e

(%
)

(b) Effect of α.

Fig. 3: Effect of ε and α on the validation performance for
supervised task on MNIST.

of ε was sufficient for good performance of VAT, and it even
achieved state-of-the-art performance for several tasks.

4.3 Effect of the Number of the Power Iterations K
Fig. 4 shows the Rvadv values of the models trained with
different K (the number of the power iterations) for su-
pervised learning on MNIST and semi-supervised learning
on CIFAR-10. We can observe a significant increase in the
value of Rvadv over the transition from K = 0 (random
perturbations) to K = 1 (virtual adversarial perturbations).
We can also observe that the value saturates at K = 1. The
fact that one power iteration sufficed for good performance
tells that the ratio λ1/λ2 for our experimental settings was
very large.

In fact, we could not achieve notable improvement in
performance by increasing the value of K . Table 6 shows
the test accuracies for the semi-supervised learning task on
CIFAR10 with different values of K . We however shall note
that there is no guarantee that the spectrum of Hessian is
always skew. Depending on the dataset and the model, K =
1 might not be sufficient.

R
v
a
d
v

(a) MNIST

R
v
a
d
v

(b) CIFAR-10

Fig. 4: Effect of the number of the power iterations onRvadv

for (a) supervised task on MNIST and (b) semi-supervised
task on CIFAR-10.

4.4 Visualization of Virtual Adversarial Examples
4.4.1 Virtual Adversarial Examples Produced by the Model
Trained with Different Choices of ε
One might be interested in the actual visual appearance of
the virtual adversarial examples with an appropriate size of
ε that improves the regularization performance. In Fig. 5,

10

TABLE 6: The test accuracies of VAT for the semi-supervised
learning task on CIFAR10 with different values of K (the
number of the power iterations).

Test error rate(%)
CIFAR-10
Nl = 4000

(On Conv-Large)
VAT, K = 1 14.18 (±0.38)
VAT, K = 2 14.19 (±0.16)
VAT, K = 4 14.25 (±0.18)

we aligned (I) the transition of the performance of VAT on
SVHN and CIFAR-10 with respect to ε along (II) the actual
virtual adversarial examples that the models trained with
corresponding ε generated at the end of its training. For
small ε (designated as (1) in the figure), it is difficult for
human eyes to distinguish the virtual adversarial examples
from the clean images. The size of ε that achieved the best
validation performance is designated by (2). Especially for
CIFAR-10, the virtual adversarial examples with ε of size (2)
are on the verge of total corruption. For a larger value of ε
(designated by (3) in the figure), we can clearly observe the
effect of over-regularization. In fact, the virtual adversarial
examples generated by the models trained with this range
of ε are very far from the clean image, and we observe
that the algorithm implemented with this large an ε did the
unnecessary work of smoothing the output distribution over
the set of images that are “unnatural.”

4.4.2 Robustness against Virtual Adversarial Examples af-
ter Training
We studied the nature of the robustness that can be attained
by VAT. We trained CNNs on CIFAR-10 with and without
VAT and prepared a set of pairs of virtual adversarial ex-
amples generated from the same picture, each consisting of
(1) the virtual adversarial example generated by the model
trained with VAT (w/ VAT) and (2) the virtual adversarial
example generated by the model trained without VAT (wo/
VAT). We studied the rates of misidentification by the clas-
sifiers (w/VAT and wo/VAT) on these pairs of adversarial
examples.

Fig. 6 shows the rates at which the two models (w/VAT
and wo/VAT) misidentified the images corrupted by virtual
adversarial perturbations of different magnitudes. The fig-
ure (A) in the middle panel shows the rates of misidentifica-
tion made on the virtual adversarial examples generated by
the model trained with VAT. The figure (B) shows the rates
on the virtual adversarial examples generated by the model
trained without VAT. The example pictures shown beneath
the figures (A) and (B) are the adversarial examples gener-
ated from the set of images that were correctly identified
by both the model trained with VAT and the model trained
without VAT when fed without perturbation. As expected,
the error rates increased monotonically with the intensity
of corruption for both models. Overall, we recognize that
the adversarial examples generated by both models are
almost identical to the original image for human eyes when
ε ∼ 10−1. The adversarial examples around ε ∼ 100 are
almost identifiable, but are so corrupted that any further
corruption would make the image unidentifiable by human

eyes. The virtual adversarial examples with this range of ε
are therefore the examples on which we wish the classifier
to make no mistakes. We can clearly observe that the rate
of misidentification made by the VAT-trained model for this
range of ε is much lower than that of the model trained
without VAT. Also note in the bottom panel that the model
trained with VAT correctly identifies both the adversarial
examples generated by itself and the adversarial examples
generated by the model trained without VAT for this range
of ε. Simultaneously, note that the model trained with VAT
alters its decision on the images when the perturbation is too
large. In contrast, the model trained without VAT is assign-
ing the original labels to the over-perturbed images at much
higher rate than the VAT-trained model, which is completely
unnecessary, and is possibly even harmful in practice. Thus,
we observe that the VAT-trained model behaves much more
‘naturally’ than the model trained without VAT.

4.5 Experimental Assessment of the Difference be-
tween VAT and RPT
As we showed in the previous section, VAT outperforms
RPT in many aspects. There are two possible reasons for
the difference in performance. First, as mentioned in Section
3.4, the power iteration in VAT promotes a faster learning
process by decreasing the variance of the derivative of the
objective function. Second, smoothing the function in the
direction in which the model is most sensitive seems to be
much more effective in improving the generalization perfor-
mance than smoothing the output distribution isotropically
around the input. We discuss the extent to which these
claims might be true. Let DM be the mini-batch of size M
randomly extracted from D, and let R̂(K)(θ;DM , rK) be the
approximation ofR(K)(θ,D) computed with the mini-batch
DM and random perturbations rK generated by K-times
power iterations. To quantify the magnitude of the variance
of the stochastic gradient, we define the normalized standard
deviation (SD) norm for the gradient ∇θR̂(K)(θ;DM , rK) of
the regularization term R̂(K)(θ;DM , rK), which is given as
the square root of the trace of its variance normalized by the
L2 norm of its expectation:

normalized SD norm

≡

√
trace

(
VarDM ,rK

[
∇θR̂(K)(θ;DM , rK)

])
∥∥∥EDM ,rK

[
∇θR̂(K)(θ;DM , rK)

]∥∥∥
2

, (21)

where VarDM ,rK [·] and EDM ,rK [·] respectively represent
the variance and expectation with respect to the randomly
selected mini-batch DM and perturbation rK . Fig. 7 shows
the transition of the normalized SD norm during the VAT
process of NNs for the supervised learning task on MNIST
(Fig. 7a) and the semi-supervised learning task on CIFAR-10
(Fig. 7b) with K = 0 and K = 1 (i.e., RPT and VAT). We set
M to be 100 and 128 on MNIST and CIFAR-10 respectively.
From the figure, we can observe that the normalized SD
norm for K = 1 is lower than that for K = 0 in most of the
early stages of the training for both MNIST and CIFAR-10.
Meanwhile, for the instances on which the normalized SD
norm of the gradient of RPT falls below that of VAT, the
difference is subtle.

11

(1) ε=0.1

(2)

(2) ε=3.0

(3)

(3)ε=12.0

(1)

(I) Validation errors

(II) Virtual adversarial examples

(a) SVHN

(1) ε=2.0

(2)

(2) ε=8.0

(3)

(3)ε=30.0

(1)

(I) Validation errors

(II) Virtual adversarial examples

(b) CIFAR-10

Fig. 5: Performance of VAT with different values of ε. The effect of ε on the performance of semi-supervised
learning(I), together with the set of typical virtual adversarial examples generated by the model trained with VAT with the
corresponding value of ε (II).

For MNIST, the normalized SD norm of RPT becomes
as large as 3 times that of VAT. To understand how much
the normalized SD norm affects the performance, we com-
pared (1) VAT with α = 1 against (2) RPT implemented
with optimal α and an additional procedure of sampling
9 = 32 random perturbations and using the average of
the 9 gradients for each update. Note that the normalized
SD norm of the gradient does not depend on α. With this
setting, the normalized SD norm of RPT is not greater
than that of VAT at the beginning of the training (Fig. 8).
Remarkably, even with optimal α and increased S, the
performance of RPT still falls behind that of VAT with α = 1.
Even with similar SD norm, the model trained with VAT is
more robust against virtual adversarial perturbation than
the model trained with RPT. This, in particular, means that
we cannot explain the superiority of VAT over RPT by the
reduction in the variance alone. All these results suggest

that the superior performance of VAT owes much to the
unique nature of its objective function. Intuition tells us that
the “max” component in the objective function as opposed
to “expectation” is working in favor of the performance. At
any phase in the training, the model might lack isotropic
smoothness around some sample input points; it is natural
that, to fix this, we must endeavor to smooth the model in
the direction in which the model is most sensitive; that is,
we need to take the maximum.

5 CONCLUSIONS

The results of our experiments on the three benchmark
datasets, MNIST, SVHN, and CIFAR-10 indicate that VAT
is an effective method for both supervised and semi-
supervised learning. For the MNIST dataset, VAT outper-
formed recent popular methods other than ladder networks,

12

(Step 1) Generatevirtual adversarial examples (VAEs)

(Step 2) Classify the VAEs

Model trained w/ VAT (Mv) Model trained wo/ VAT (M0)

(Mv, Exv) (M0, Exv) (Mv Ex0) (M0, Ex0)

Adv. examples
to the model with VAT

Adv. examples
to the model without VAT

wo/ VAT
w/ VAT

wo/ VAT
w/ VAT

wo/ VAT
w/ VAT

wo/ VAT
w/ VAT

wo/ VAT
w/ VAT

wo/ VAT
w/ VAT

wo/ VAT
w/ VAT

wo/ VAT
w/ VAT

wo/ VAT
w/ VAT

wo/ VAT
w/ VAT

ε

ra
te

 o
f m

is
-id

en
tif

ic
at

io
n

ra
te

 o
f m

is
-id

en
tif

ic
at

io
n

ε

wo/ VAT (M0,Exv)

w/ VAT (Mv,Exv)

Did the label
change from
the original?

wo/ VAT (M0,Ex0)
w/ VAT (Mv,Ex0)

10

(A) (B)

Mv M0

Exv Ex0

M0M0Mv Mv

Ex0Ex0Exv Exv

ε -1 10
0

10
1

10
2

10
3 10

-1 10
0

10
1

10
2

10
3

Did the label
change from
the original?

ε
No No No No No
No No Yes Yes Yes

No No No No Yes
No No No Yes Yes

No No No No No
No No No Yes Yes

No No Yes No No
No No Yes Yes Yes

No No No Yes Yes
No Yes No Yes Yes

No Yes No Yes No
No No Yes Yes Yes

No Yes Yes Yes Yes
No No Yes Yes Yes

No No No No Yes
No No No Yes Yes

No No Yes Yes Yes
No No No Yes Yes

No No No No No
No No No Yes Yes

Fig. 6: Robustness of the VAT-trained model against perturbed images. The upper panel shows the procedure for the
evaluation of robustness. In step 1, we prepared two classifiers – one trained with VAT (Mv) and another trained without
VAT (M0) – and generated a virtual adversarial example from each classifier (Exv and Ex0). In step 2, we classified Exv
and Ex0 by these two models, thereby yielding the total of four classification results. The middle panel (graph A and B)
plots the rate of misidentification in these four classification tasks against the size of the perturbation (ε) used to generate
the virtual adversarial examples (VAEs) in step 1. The left half of the bottom panel aligned with the graph (A) shows a
set of Exv generated with different values of ε, together with the classification results of Mv and M0 on the images. All
Exv listed here are images generated from a set of clean examples that were correctly identified by Mv and M0. The right
half of the bottom panel aligned with graph (B) shows the set of Ex0 generated from the same clean images as Exv with
different values of ε. The label ‘Yes’ indicates that the model changed the label assignment when the perturbation was
applied to the image (e.g. the model was deceived by the perturbation) The label ’No’ indicates that the model maintained
the label assignment on the perturbed image. Note that the model Mv dominates the model M0 in terms of classification
performance on the images that appear almost indistinguishable from the clean image.

13

Update

N
or

m
al

iz
ed

 S
D

 n
or

m

(a) MNIST

Update

N
or

m
al

iz
ed

 S
D

 n
or

m

(b) CIFAR-10

Fig. 7: Transition of the normalized SD norm of R(0) and
R(1) during VAT training of NNs for supervised learning
on MNIST and semi-supervised learning on CIFAR-10.

Te
st

 e
rro

r r
at

e(
%

)

Update

(a) Test error rate

Fig. 8: Learning curves of VAT implemented with α = 1
and S = 1 and RPT implemented with optimal α(= 7) and
S = 9. The hyperparameter ε was set to 2.0 for both VAT
and RPT.

which are the current state-of-the-art method that uses spe-
cial network structure. VAT also greatly outperformed the
current state-of-the-art semi-supervised learning methods
for SVHN and CIFAR-10.

The simplicity of our method is also worth re-
emphasizing. With our approximation of Rvadv, VAT can
avoid the internal optimization when choosing the adversar-
ial direction and can be implemented with small computa-
tional cost. Additionally, VAT has only two hyperparameters
(ε and α) and works sufficiently well on the benchmark
dataset with the optimization of ε alone. To add even more,
VAT is applicable to wide variety of models regardless of its
architecture. Also, unlike generative model-based methods,
VAT does not require the training of additional models
other than the discriminative model (output distribution)
itself. At the same time, in our comparative studies, we
reconfirmed the effectiveness of generative model-based
semi-supervised learning methods on several experimen-
tal settings [22], [36], [37]. Essentially, most generative
model-based methods promote generalization performance
by making the model robust against perturbations in the
region of high p(x) values, the region over which we are
likely to receive new input data points in the future. In
principle, this is complementary to our method, which aims
to isotropically smooth the output distribution p(y|x) over
each observed input point without any explicit assumption
on the input distribution p(x). Combination of these two
ideas is a future work.

ACKNOWLEDGMENTS

This study was supported by the New Energy and Industrial
Technology Development Organization (NEDO), Japan.

REFERENCES

[1] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey
Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[2] Mudassar Abbas, Jyri Kivinen, and Tapani Raiko. Understanding
regularization by virtual adversarial training, ladder networks and
others. In Workshop on ICLR, 2016.

[3] Hirotugu Akaike. Information theory and an extension of the
maximum likelihood principle. In Selected Papers of Hirotugu
Akaike, pages 199–213. Springer, 1998.

[4] Vladimir Igorevich Arnol’d. Mathematical methods of classical me-
chanics, volume 60. Springer Science & Business Media, 2013.

[5] Philip Bachman, Ouais Alsharif, and Doina Precup. Learning with
pseudo-ensembles. In NIPS, 2014.

[6] Christopher M Bishop. Training with noise is equivalent to
Tikhonov regularization. Neural computation, 7(1):108–116, 1995.

[7] Christopher M Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[8] Ronan Collobert, Fabian Sinz, Jason Weston, and Léon Bottou.
Large scale transductive SVMs. Journal of Machine Learning Re-
search, 7(Aug):1687–1712, 2006.

[9] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian
approximation: Representing model uncertainty in deep learning.
In ICML, 2016.

[10] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse
rectifier neural networks. In AISTATS, 2011.

[11] Gene H Golub and Henk A van der Vorst. Eigenvalue compu-
tation in the 20th century. Journal of Computational and Applied
Mathematics, 123(1):35–65, 2000.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing. MIT Press, 2016. http://www.deeplearningbook.org.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative adversarial nets. In NIPS, 2014.

[14] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explain-
ing and harnessing adversarial examples. In ICLR, 2015.

[15] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by
entropy minimization. In NIPS, 2004.

[16] Shixiang Gu and Luca Rigazio. Towards deep neural network
architectures robust to adversarial examples. In Workshop on ICLR,
2015.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity
mappings in deep residual networks. In ECCV, 2016.

[18] Gao Huang, Zhuang Liu, and Kilian Q Weinberger. Densely
connected convolutional networks. In CVPR, 2017.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Acceler-
ating deep network training by reducing internal covariate shift.
In ICML, 2015.

[20] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and
Yann LeCun. What is the best multi-stage architecture for object
recognition? In ICCV, 2009.

[21] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In ICLR, 2015.

[22] Diederik Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and
Max Welling. Semi-supervised learning with deep generative
models. In NIPS, 2014.

[23] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers
of features from tiny images. Technical Report, University of Toronto,
2009.

[24] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. In ICLR, 2017.

[25] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang,
and Zhuowen Tu. Deeply-supervised nets. In AISTATS, 2015.

[26] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network.
In ICLR, 2014.

[27] Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and
Ole Winther. Auxiliary deep generative models. In ICML, 2016.

http://www.deeplearningbook.org

14

[28] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier
nonlinearities improve neural network acoustic models. In ICML,
2013.

[29] Shin-ichi Maeda. A Bayesian encourages dropout. arXiv preprint
arXiv:1412.7003, 2014.

[30] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae,
and Shin Ishii. Distributional smoothing with virtual adversarial
training. In ICLR, 2016.

[31] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve
restricted Boltzmann machines. In ICML, 2010.

[32] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,
Bo Wu, and Andrew Y Ng. Reading digits in natural images with
unsupervised feature learning. In Workshop on deep learning and
unsupervised feature learning on NIPS, 2011.

[33] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola,
and Tapani Raiko. Semi-supervised learning with ladder net-
works. In NIPS, 2015.

[34] Russell Reed, Seho Oh, and RJ Marks. Regularization using jittered
training data. In IJCNN. IEEE, 1992.

[35] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regular-
ization with stochastic transformations and perturbations for deep
semi-supervised learning. In NIPS, 2016.

[36] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung,
Alec Radford, and Xi Chen. Improved techniques for training
GANs. In NIPS, 2016.

[37] Jost Tobias Springenberg. Unsupervised and semi-supervised
learning with categorical generative adversarial networks. In
ICLR, 2015.

[38] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and
Martin Riedmiller. Striving for simplicity: The all convolutional
net. In Workshop on ICLR, 2015.

[39] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way
to prevent neural networks from overfitting. JMLR, 15(1), 2014.

[40] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber.
Highway networks. arXiv preprint arXiv:1505.00387, 2015.

[41] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing
properties of neural networks. In ICLR, 2014.

[42] Theano Development Team. Theano: A Python framework for
fast computation of mathematical expressions. arXiv preprint
arXiv:1605.02688, 2016.

[43] Andrej N Tikhonov and Vasiliy Y Arsenin. Solutions of ill-posed
problems. Winston, 1977.

[44] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton.
Chainer: a next-generation open source framework for deep learn-
ing. In Workshop on machine learning systems (LearningSys) on NIPS,
2015.

[45] Stefan Wager, Sida Wang, and Percy S Liang. Dropout training as
adaptive regularization. In NIPS, 2013.

[46] Grace Wahba. Spline models for observational data. Siam, 1990.
[47] Sumio Watanabe. Algebraic geometry and statistical learning

theory. Cambridge University Press, 2009.
[48] Junbo Zhao, Michael Mathieu, Ross Goroshin, and Yann Lecun.

Stacked what-where auto-encoders. In Workshop on ICLR, 2016.
[49] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and

unlabeled data with label propagation. Technical report, Citeseer,
2002.

15

APPENDIX A
SUPERVISED CLASSIFICATION FOR THE MNIST DATASET

The MNIST dataset consists of 28 × 28 pixel images of handwritten digits and their corresponding labels. The input
dimension is therefore 28× 28 = 784, and each label is one of the numerals from 0 to 9. The following list summarizes the
ranges our hyper parameter search:
• RPT: ε = [1.0, 50.0],
• adversarial training (with L∞ norm constraint): ε = [0.05, 0.1],
• adversarial training (with L2 norm constraint): ε = [0.05, 5.0], and
• VAT: ε = [0.05, 5.0].

All experiments were conducted with α = 1 except when checking the effects of α in Section 4.2. Training was conducted
using mini-batch SGD based on ADAM [21]. We chose the mini-batch size of 100 and used the default values of [21] for the
tunable parameters of ADAM. We trained the NNs with 60,000 parameter updates. For the base learning rate in validation,
we selected the initial value of 0.002, and adopted the schedule of exponential decay with rate 0.9 per 600 updates. We
repeated the experiments 10 times with different random seeds for the weight initialization and reported the mean and
standard deviation of the results.

APPENDIX B
SUPERVISED CLASSIFICATION FOR CIFAR-10 DATASET

The CIFAR-10 dataset consists of 32 × 32 × 3 pixel RGB images of categorized objects (cars, trucks, planes, animals, and
humans). The number of training examples and test examples in the dataset are 50,000 and 10,000, respectively. We used
10,000 out of 50,000 training examples for validation and we applied ZCA whitening prior to the experiment. We also
augmented the training dataset by applying random 2 × 2 translation and random horizontal flip. We trained the Conv-
Large model (See Table7) over 300 epochs with batch size 100. For training, we used ADAM with essentially the same
learning rate schedule as the one used in [36]. In particular, we set the initial learning rate of ADAM to be 0.003 and
linearly decayed the rate over the last half of training. We repeated the experiments 3 times with different random seeds
for the weight initialization and reported the mean and standard deviation of the results.

APPENDIX C
SEMI-SUPERVISED CLASSIFICATION FOR THE MNIST DATASET

For semi-supervised learning of MNIST, we used the same network as the network used for supervised learning; however,
we added zero-mean Gaussian random noise with 0.5 standard deviation to the hidden variables during the training. This
modification stabilized the training on semi-supervised learning with VAT. We experimented with two sizes of labeled
training samples, Nl ∈ {100, 1000}, and observed the effect of Nl on the test error. We used the validation set of fixed
size(1,000), and used all the training samples, excluding the validation set and labeled training samples, to train the NNs;
that is, when Nl = 100, the unlabeled training set Nul had the size of 60, 000− 100− 1, 000 = 58, 900.

We searched for the best hyperparameter ε from [0.05, 10.0]. All experiments were conducted with α = 1 and K = 1.
For the optimization method, we again used ADAM-based mini-batch SGD with the same hyperparameter values that we
used in supervised setting. We note that the likelihood term can be computed from labeled data only.

We used two separate mini-batches at each step: one mini-batch of size 64 from labeled samples to compute the
likelihood term, and another mini-batch of size 256 from both labeled and unlabeled samples to compute the regularization
term. We trained the NNs over 100,000 parameter updates, and started to decay the learning rate of ADAM linearly after
we 50,000-th update. We repeated the experiments 3 times with different random seeds for the weight initialization and for
the selection of labeled samples. We reported the mean and standard deviation of the results.

APPENDIX D
SEMI-SUPERVISED CLASSIFICATION FOR THE SVHN AND CIFAR-10 DATASETS

The SVHN dataset consists of 32 × 32 × 3 pixel RGB images of house numbers and their corresponding labels (0–9). The
number of training samples and test samples within the dataset are 73,257 and 26,032, respectively. We reserved a sample
dataset of size 1,000 for validation. From the remainder, we selected sample dataset of size 1,000 as a labeled dataset in semi-
supervised training. Likewise in the supervised learning, we conducted ZCA preprocessing prior to the semi-supervised
learning of CIFAR-10. We also augmented the training datasets with a random 2× 2 translation. For CIFAR-10 exclusively,
we also applied random horizontal flip as well. For the labeled dataset, we used 4,000 samples randomly selected from
the training dataset, from which we selected 1,000 samples for validation. We repeated the experiment three times with
different choices of labeled and unlabeled datasets on both SVHN and CIFAR-10.

For each benchmark dataset, we decided on the value of the hyperparameter ε based on the validation set. We also
used a mini-batch of size 32 for the calculation of the negative log-likelihood term and used a mini-batch of size 128 for
the calculation of Rvadv in Eq. (8). We trained each model with 48,000 updates. This corresponds to 84 epochs for SVHN

16

TABLE 7: CNN models used in our experiments on CIFAR-10 and SVHN, based on [24], [36], [38]. All the convolutional
layers and fully connected layers are followed by batch normalization [19] except the fully connected layer on CIFAR-10.
The slopes of all lReLU [28] functions in the networks are set to 0.1.

Conv-Small on SVHN Conv-Small on CIFAR-10 Conv-Large

32×32 RGB image

3×3 conv. 64 lReLU 3×3 conv. 96 lReLU 3×3 conv. 128 lReLU
3×3 conv. 64 lReLU 3×3 conv. 96 lReLU 3×3 conv. 128 lReLU
3×3 conv. 64 lReLU 3×3 conv. 96 lReLU 3×3 conv. 128 lReLU

2×2 max-pool, stride 2
dropout, p = 0.5

3×3 conv. 128 lReLU 3×3 conv. 192 lReLU 3×3 conv. 256 lReLU
3×3 conv. 128 lReLU 3×3 conv. 192 lReLU 3×3 conv. 256 lReLU
3×3 conv. 128 lReLU 3×3 conv. 192 lReLU 3×3 conv. 256 lReLU

2×2 max-pool, stride 2
dropout, p = 0.5

3×3 conv. 128 lReLU 3×3 conv. 192 lReLU 3×3 conv. 512 lReLU
1×1 conv. 128 lReLU 1×1 conv. 192 lReLU 1×1 conv. 256 lReLU
1×1 conv. 128 lReLU 1×1 conv. 192 lReLU 1×1 conv. 128 lReLU

global average pool, 6×6→ 1×1

dense 128→ 10 dense 192→ 10 dense 128→ 10

10-way softmax

and 123 epochs for CIFAR-10. We used ADAM for the training. We set the initial learning rate of ADAM to 0.001 and
linearly decayed the rate over the last 16,000 updates. The performance of CNN-Small and CNN-Large that we reported
in Section 4.1.2 are all based on the trainings with data augmentation and the choices of ε that we described above.

On SVHN, we tested the performance of the algorithm with and without data augmentation, and used the same setting
that we used in the validation experiments for both Conv-Small and Conv-Large. For CIFAR-10, however, the models did
not seem to converge with 48,000 updates; so we reported the results with 200,000 updates. We repeated the experiments
3 times with different random seeds for the weight initialization and for the selection of labeled samples. We reported the
mean and standard deviation of the results.

	1 Introduction
	2 Related Works
	3 Methods
	3.1 Adversarial Training
	3.2 Virtual Adversarial Training
	3.3 Fast Approximation Method for rvadv and the Derivative of the Objective Function
	3.4 Virtual Adversarial Training vs. Random Perturbation Training

	4 Experiments
	4.1 Testing the Efficacy of VAT on Benchmark Tasks
	4.1.1 Supervised Learning on MNIST and CIFAR-10
	4.1.2 Semi-Supervised Learning on MNIST, SVHN, and CIFAR-10

	4.2 Effects of Perturbation Size and Regularization Coefficient
	4.3 Effect of the Number of the Power Iterations K
	4.4 Visualization of Virtual Adversarial Examples
	4.4.1 Virtual Adversarial Examples Produced by the Model Trained with Different Choices of
	4.4.2 Robustness against Virtual Adversarial Examples after Training

	4.5 Experimental Assessment of the Difference between VAT and RPT

	5 Conclusions
	References
	Appendix A: Supervised Classification for the MNIST Dataset
	Appendix B: Supervised Classification for CIFAR-10 Dataset
	Appendix C: Semi-Supervised Classification for the MNIST Dataset
	Appendix D: Semi-Supervised Classification for the SVHN and CIFAR-10 Datasets

