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Robust Visual Tracking
via Hierarchical Convolutional Features

Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang

Abstract—Visual tracking is challenging as target objects often undergo significant appearance changes caused by deformation,
abrupt motion, background clutter and occlusion. In this paper, we propose to exploit the rich hierarchical features of deep
convolutional neural networks to improve the accuracy and robustness of visual tracking. Deep neural networks trained on object
recognition datasets consist of multiple convolutional layers. These layers encode target appearance with different levels of abstraction.
For example, the outputs of the last convolutional layers encode the semantic information of targets and such representations are
invariant to significant appearance variations. However, their spatial resolutions are too coarse to precisely localize the target. In
contrast, features from earlier convolutional layers provide more precise localization but are less invariant to appearance changes. We
interpret the hierarchical features of convolutional layers as a nonlinear counterpart of an image pyramid representation and explicitly
exploit these multiple levels of abstraction to represent target objects. Specifically, we learn adaptive correlation filters on the outputs
from each convolutional layer to encode the target appearance. We infer the maximum response of each layer to locate targets in a
coarse-to-fine manner. To further handle the issues with scale estimation and re-detecting target objects from tracking failures caused
by heavy occlusion or out-of-the-view movement, we conservatively learn another correlation filter, that maintains a long-term memory
of target appearance, as a discriminative classifier. We apply the classifier to two types of object proposals: (1) proposals with a small
step size and tightly around the estimated location for scale estimation; and (2) proposals with large step size and across the whole
image for target re-detection. Extensive experimental results on large-scale benchmark datasets show that the proposed algorithm

performs favorably against the state-of-the-art tracking methods.

Index Terms—Hierarchical convolutional features, correlation filters, visual tracking.

1 INTRODUCTION

ISUAL object tracking is one of the fundamental problems
Vin computer vision with numerous applications such as
intelligent video surveillance, human computer interaction and
autonomous driving [1], [2], [3], [4], to name a few. Given
the initial state (e.g., position and scale) of a target object in
the first frame, the goal of visual tracking is to estimate the
unknown states of the target in the subsequent frames. Despite
the significant progress made in the recent years [5], [6], [7], [8],
[9], [10], [11], visual object tracking remains challenging due to
large appearance variations caused by numerous negative factors
including illumination variation, occlusion, background clutters,
abrupt motion, and target moving out of views. To account for
the appearance changes over time, considerable efforts have been
made to design invariant feature descriptors to represent target
objects, such as color histograms [12], HOG [13], Haar-like fea-
tures [9], SURF [14], ORB [15], subspace representations [7], and
superpixels [16]. Recently, features learned from convolutional
neural networks (CNNs) have been used in a wide range of vision
tasks, e.g., image classification [17], object recognition [18], and
image segmentation [19], with the state-of-the-art performance.
It is thus of great interest to understand how to best exploit the
hierarchical features in CNNs for visual tracking.
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Existing tracking methods based on deep learning [20], [21],
[22], [23], [24] typically formulate the tracking task as a detection
problem in each frame. These trackers first draw positive and
negative training samples around the estimated target location to
incrementally learn a classifier over the features extracted from a
CNN. The learned classifier is then used to detect the target in the
subsequent frames. There are two issues with such approaches: (i)
how to best exploit CNN features and (ii) how to effectively extract
training samples. The first issue lies in the use of a CNN as an
online classifier similar to recent image classification approaches,
where the outputs of the last layer are mainly used to represent
targets. For high-level visual recognition problems, it is effective
to use features from the last layer as they are closely related to
category-level semantics and invariant to nuisance variables such
as intra-class variations and precise localizations. However, the
objective of visual tracking is to locate targets precisely rather than
to infer their semantic categories. Using only the features from the
last layer is thus not ideal for representing target objects in visual
tracking. The second issue is concerned with that training a robust
classifier requires a considerably large number of positive and
negative samples, which are not available in the context of visual
tracking. In addition, there lies the ambiguity in determining a
decision boundary since positive and negative samples are highly
correlated due to sampling near a target.

In this work, we address these two issues by (i) using the
features from the hierarchical layers of CNNs rather than only
the last layer to represent target objects and (ii) learning adaptive
correlation filters on each CNN layer without the need for target
state sampling. Our approach is built on the observation that
although the last layers of pre-trained CNNs are more effective to
capture semantics, they are insufficient to encode the fine-grained
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Fig. 1. Visualization of hierarchical deep features. Convolutional layers of a typical CNN model, e.g., AlexNet [17] or VGGNet [25], provide
multiple levels of abstraction in the feature hierarchies. We visualize a sample frame using the VGGNet-19 [25] to extract CNN features from the first
to fifth convolutional layers. Deep features in the earlier layers retain higher spatial resolution for precise localization with low-level visual information
similar to the response map of Gabor filters [26]. On the other hand, features in the latter layers capture more semantic information and less
fine-grained spatial details. Our approach aims to exploit the semantic information of last layers (right) to handle large appearance changes and
alleviate drifting by using features of earlier layers (left) for precise localization.

spatial details such as the target positions. The earlier layers, on the
other hand, are precise in localization but do not capture semantics
as illustrated in Figure 1. Further discussions on the roles of
different CNN layers for object recognition can be found in
[27], [28]. This observation suggests that reasoning with multiple
layers of CNN features for visual tracking is of great importance
as semantics are robust to significant appearance variations, and
spatial details are effective for precise localization. We exploit
both hierarchical features from the recent advances in CNNs and
an inference approach across multiple levels in classical computer
vision problems. For example, computing optical flow from the
coarse levels of the image pyramid is efficient, but finer levels
ensure obtaining an accurate and detailed flow field. A coarse-
to-fine search strategy is often adopted for coping with large
motion [29]. As such, we learn one adaptive correlation filter [11],
[30]1, [31], [32], [33], [34] over features extracted from each
CNN layer and use these multi-level correlation response maps
to infer the target location collaboratively. We consider all the
shifted versions of features as training samples and regress them
to soft labels generated by a Gaussian function with a small spatial
bandwidth and a range of zero to one, thereby alleviating the
sampling ambiguity of training a binary discriminative classifier.
The main contributions of this work are summarized as below:

e We exploit the hierarchical convolutional layers of pre-
trained CNNs as features to capture multi-level semantic
abstraction of target objects. At each layer, we adaptively
learn linear correlation filter to alleviate the sampling
ambiguity. We infer target positions by reasoning multi-
level correlation response maps in a coarse-to-fine manner.

e We propose to learn another correlation filter with a con-
servative learning rate to maintain a long-term memory of
target appearance as a discriminative classifier. We apply
the classifier to two types of region proposals for scale
estimation and target re-detection from tracking failures.

e We carry out experiments on the large-scale benchmark
datasets: OTB2013 [35], OTB2015 [36], VOT2014 [37],
and VOT2015 [38]. Extensive experimental results demon-
strate that the proposed tracking algorithm performs fa-
vorably against the state-of-the-art methods in terms of
accuracy and robustness.

2 RELATED WORK

We discuss tracking methods closely related to this work in this
section. A comprehensive review on visual tracking can be found

in [1], [2], [3], [4].

Tracking by Detection. Visual tracking can be posed as a se-
quential detection problem in a local window, where classifiers
are often updated online with positive and negative examples.
Since the classifiers are updated to adapt to appearance variations
over time, slight inaccuracies in the labeled samples negatively
affect the classifier and gradually cause the trackers to drift.
Considerable efforts have been made to alleviate these model
update problems caused by the sampling ambiguity. The core idea
of these algorithms lies in how to properly update a discriminative
classifier to reduce tracking drifts. Examples include ensemble
learning [39], [40], semi-supervised learning [41], multiple in-
stance learning (MIL) [9], and transfer learning [42]. Instead of
learning only one single classifier, Kalal et al. [10] decompose
the tracking task into tracking, learning, and detection (TLD)
modules where the tracking and detection modules facilitate each
other, i.e., the results from the tracker provide additional training
samples to update the detector. The online learned detector can
be used to reinitialize the tracker when tracking failure occurs.
Similar mechanisms have also been exploited [43], [44], [45]
to recover target objects from tracking failures. Hare et al. [46]
show that the objective of label prediction using a classifier is not
explicitly coupled to the objective of tracking (accurate position
estimation) and pose the problem as a joint structured output
prediction task. Zhang et al. [47] combine multiple classifiers
with different learning rates for visual tracking. By alleviating
the sampling ambiguity problem, these methods perform well in
the benchmark study [35]. We address the sample ambiguity with
correlation filters where training samples are regressed to soft
labels generated by a Gaussian function rather than binary labels
for learning discriminative classifier.

Tracking by Correlation Filters. Correlation filters for visual
tracking have attracted considerable attention due to its high
computational efficiency with the use of fast Fourier transforms.
Tracking methods based on correlation filters regress all the
circular-shifted versions of input features to soft labels generated
by a Gaussian function and ranging from zero to one. As a re-
sult, learning correlation filters does not require hard-thresholded
samples corresponding to a target object. Bolme et al. [30] learn a
minimum output sum of squared error filter over the Iuminance
channel for fast visual tracking. Several extensions have been
proposed to considerably improve tracking accuracy including
kernelized correlation filters [31], multi-dimensional features [11],
[32], context learning [33], spatial weights [48], scale estima-
tion [34], and efficient filter mining [49]. In this work, we propose
to learn correlation filters over multi-dimensional features in a



way similar to the recent tracking methods [11], [32]. The main
differences lie in the use of learned deep features rather than hand-
crafted features (e.g., HOG [13] or color-attributes [32]), and we
construct multiple correlation filters on hierarchical convolutional
layers as opposed to only one single filter by existing approaches.
We also note that the methods mentioned above often adopt a
moving average scheme to update correlation filters in each frame
to account for appearance variations over time. These trackers are
prone to drift due to noisy updates [50], and cannot recover from
tracking failures due to the lack of re-detection modules. Recently,
numerous methods address this issue using an online trained
detector [51] or a bag of SIFT descriptors [52]. In this work, we
learn another correlation filter with a conservative learning rate
to maintain the long-term memory of target appearance as a dis-
criminative classifier. We apply the classifier over selected region
proposals by the EdgeBox [53] method for recovering targets from
tracking failures as well as for scale change estimation.

Tracking by Deep Neural Networks. The recent years have
witnessed significant advances in deep neural networks on a wide
range of computer vision problems. However, considerably less
attention has been made to apply deep networks to visual tracking.
One potential reason is that the training data is very limited
as the target state (i.e., position and scale) is only available in
the first frame. Several methods address this issue by learning a
generic representation offline from auxiliary training images. Fan
et al. [54] learn a specific feature extractor with CNNs from an
offline training set (about 20000 image pairs) for human tracking.
Wang and Yeung [20] pre-train a multi-layer autoencoder network
on the part of the 80M tiny image [55] in an unsupervised fashion.
Using a video repository [56], Wang et al. [22] learn video
features by imposing temporal constraints. To alleviate the issues
with offline training, the DeepTrack [21] and CNT [57] methods
incrementally learn target-specific CNNs without pre-training.
Note that existing tracking methods based on deep networks [21],
[22], [57] use two or fewer convolutional layers to represent target
objects, and do not fully exploit rich hierarchical features.
Recently, CNNs pre-trained on the large-scale ImageNet [58]
dataset have been used as feature extractors for numerous vision
problems. To compute an output response map (i.e., a heat map
indicating the probability of the target offset), deep features from
pre-trained CNNs can be regressed to three types of labels: (i)
binary labels [23], [59], [60], [61], (ii) soft labels generated by
a Gaussian function [62], [63], [64], [65], and (iii) bounding box
parameters [66]. The deep trackers [23], [59], [60], [61] using
binary labels often draw multiple samples around the estimated
target position in the current frame and inevitably suffer from
the sampling ambiguity issue. The MDNet [60] tracker uses
a negative-mining scheme to alleviate this issue and achieves
favorable performance on recent benchmark datasets. In contrast,
the proposed approach is built on adaptive correlation filters which
regress circularly shifted samples with soft labels to mitigate
sampling ambiguity. Compared to the sparse response values at
sampled states in [60], our algorithm generates a dense response
map. In contrast to the FCNT [62] tracker which uses two convolu-
tional layers for visual tracking, we exploit the feature hierarchies
of deep networks by learning adaptive correlation filters over mul-
tiple convolutional layers. The proposed algorithm resembles the
recent HDT [63] and C-COT [64] trackers in learning correlation
filters over multiple convolutional layers. The main differences lie
in explicitly exploring the deep feature hierarchies for precisely

0.18

Conva-4
Conva-4
Convs-4

0.14

o o
o >

Normahzed Imens\ty

Input Conv3-4

Conv4-4 Conv5-4

s e

O 20 40 60 80 100 120 140 160
Pixel Number

Fig. 2. Spatial resolution of CNN features. Visualization of the CNN
features of a toy image with a horizontal step edge using VGGNet [25].
We visualize each CNN layer by converting its first three principle
components of convolutional channels to RGB values. Intensities of the
dash lines are visualized on the right. Note that the conv5-4 layer is less
effective in locating the step edge due to its low spatial resolution, while
the conv3-4 layer is more useful for precise localization.

locating target objects as well as on exploiting region proposals
to address the issues with scale estimation and target re-detection
from tracking failures.

Tracking by Region Proposals. Region proposal methods [53],
[53], [67], [68], [69] provide candidate regions (in bounding
boxes) for object detection and recognition. By generating a
relatively small number of candidate regions (compared to exhaus-
tive sliding windows), region proposal methods enable the use
of CNNs for classification [18]. Several recent methods exploit
region proposal algorithms for visual tracking. Hua et al. [70]
compute the objectness scores [53] to select highly confident
sampling proposals as tracking outputs. Huang et al. [71] apply
region proposals to refine the estimated position and scale changes
of target objects. In [72], Gao et al. improve the Struck [46]
tracker using region proposals. Similar to [71], [72], we use
region proposals to generate candidate bounding boxes. The main
difference is that we learn a correlation filter with long-term
memory of target appearance to compute the confidence score
of every proposal. In addition, we tailor the EdgeBox [53] method
to generate two types of proposals for scale estimation and target
re-detection, respectively.

3 OVERVIEW

In this work, we propose the hierarchical correlation features-
based tracker (HCFT*) based on the observation that deeper
convolutional layers of CNNs encode semantic abstraction of the
target object and the corresponding feature responses are robust
to appearance variations. On the other hand, features at early
layers retain more fine-grained spatial details and are useful for
precise localization. In Figure 2, we show an illustrative example
— an image with a horizontal step edge. We visualize the CNN
activations from the third, fourth, and fifth convolutional layers
by converting their first three main components of convolutional
channels to RGB values. The intensity plot of three CNN layers
in Figure 2 shows that the features at the fifth convolutional
layer are less effective in locating the sharp boundary due to
its low spatial resolution, while the features at the third layer
are more useful to locate the step edge precisely. Our goal is
to exploit the best of both semantics and fine-grained details
for robust visual object tracking. Figure 3 illustrates the main
steps of our tracking algorithm. For translation estimation, we
learn adaptive linear correlation filters over the outputs of each
convolutional layer and perform a coarse-to-fine search over the
multi-level correlation response maps to infer the locations of
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Fig. 3. Main steps of the proposed algorithm. Given an image, we first crop the search window centered at the estimated position in the previous
frame. We use the third, fourth and fifth convolutional layers as our target object representations (Section 4.1). Each layer indexed by i is then
convolved with the learned linear correlation filter w(%) to generate a response map, whose location of the maximum value indicates the estimated
target position (Section 4.2). We search the multi-level response maps to infer the target location in a coarse-to-fine fashion (Section 4.3). Centered
at the estimated target position, we crop an image patch using the same scale in the previous frame. We apply the long-term memory filter w,
to compute the confidence score g of this patch. We detect tracking failures by checking if the confidence score is below a given threshold Tj.
We then generate region proposals across the whole image and compute their confidence scores using w;,. We search for the proposal with the
highest confidence score as the re-detected result (Section 4.4). Note that we conservatively take each re-detected result by setting the confidence
threshold to 1.57). As for scale estimation, we generate region proposals with a smaller step size to make them tightly around the estimated target
position (Section 4.4). We infer the scale change by searching for the proposal with the highest confidence score (using the long-term memory filter

w1, to compute confidence scores).

targets. Centered at the estimated target position, we crop an image
patch with the same scale in the previous frame. We apply the
learned long-term memory correlation filter wy, to compute the
confidence score of this patch. When the confidence score is below
a given threshold Ty (i.e., when tracking failures may occur), we
generate region proposals across the whole image and compute
their confidence scores using w,. We search for the proposal with
the highest confidence score as the re-detected result. Note that
we take the re-detected result for training the long-term memory
filter wy, by setting a larger confidence threshold, e.g., 1.57p.
For scale estimation, we generate region proposals tightly around
the estimated target position. We compute their confidence scores
again using the long-term memory filter w, and search for the
proposal with the highest confidence score to infer the scale
change.

4 PROPOSED ALGORITHM

We first present our approach for robust object tracking which
includes extracting CNN features, learning correlation filters, and
developing a coarse-to-fine search strategy. Next, we present the
schemes for target re-detection and scale estimation using region
proposals. Finally, we introduce the scheme to incrementally
update two types of correlation filters with different learning rates.

4.1 Hierarchical Convolutional Features

We use the convolution feature maps from a CNN, e.g,
AlexNet [17] or VGGNet [25], to encode target appearance. The
semantic discrimination between objects from different categories
is strengthened as features are propagated to deeper layers, while
there exists a gradual reduction of spatial resolution (see also
Figure 1). For visual object tracking, we are interested in accurate
locations of a target object rather than its semantic category. We
thus remove the fully-connected layers as they show little spatial
resolution of 1 x 1 pixel and exploit only the hierarchical features
in the convolutional layers.

Due to the use of the pooling operations, the spatial resolution
of a target object is gradually reduced with the increase of the
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Fig. 4. Visualization of convolutional layers. (a) Four frames from the
challenging MotorRolling sequence. (b)-(d) Features are from the out-
puts of the convolutional layers conv3-4, conv4-4, and conv5-4 using the
VGGNet-19 [25]. The yellow bounding boxes indicate the tracking results
by our method. Note that although the appearance of the target changes
significantly, the features using the output of the conv5-4 convolution
layer (d) is able to discriminate it readily even the background has
dramatically changed. The conv4-4 (c) and conv3-4 (b) layers encode
more fine-grained details and are useful to locate target precisely.

CNN depth. For example, the convolutional feature maps of pool5
in the VGGNet are of 7 x 7 pixels, which is 3—12 of the input
image size of 224 x 224 pixels. As it is not feasible to locate
objects accurately with such low spatial resolution, we alleviate
this issue by resizing each feature map to a fixed larger size using
bilinear interpolation. Let h denote the feature map and x be the

upsampled feature map. The feature vector for the ¢-th location is:
=) urhy, (1)
k

where the interpolation weight o, depends on the position of
1 and k neighboring feature vectors, respectively. Note that this
interpolation takes place in the spatial domain. In Figure 4, we
use the pre-trained VGGNet-19 [25] as our feature extractor and



visualize the upsampled outputs of the conv3-4, conv4-4, and
conv5-4 layers on the MotorRolling sequence. For the features
in each convolutional layer (e.g., the comv5-4 layer has 512
channels), we convert the first three principal components of
convolutional channels to RGB values. As shown in Figure 4(a),
the target motorcyclist has significant appearance variations over
time. Figure 4(d) shows that the fifth convolutional features within
the target bounding boxes are more or less close to dark red
throughout different frames, while they are discriminative from
background areas despite the dramatic background changes. This
property of the conv5-4 layer allows us to deal with significant
appearance changes and accurately locate the target at a coarse-
grained level. In contrast, the conv4-4 (Figure 4(c)) and conv3-4
(Figure 4(b)) layers encode more spatial details and help locate
the target precisely on the fine-grained level. We note that this
insight is also exploited for segmentation and fine-grained local-
ization using CNNs [73], where features from multiple layers are
combined by concatenation. Since this representation ignores the
coarse-to-fine feature hierarchy in the CNN architecture, we find
that it does not perform well for visual tracking as shown in our
experimental validation (see Section 6.1.4).

There are two main advantages of using pre-trained CNNs
as feature extractor. First, as pre-trained CNNs do not require
fine-tuning models, extracting CNN features becomes easier and
more efficient. Second, as pre-trained CNN models are learned
from classifying 1000 object categories, the representations can
describe an unseen target object well for model-free tracking.

4.2 Correlation Filters

Typically, correlation trackers [30], [31], [32], [33], [34] regress
the circularly shifted versions of the input features to soft target
scores generated by a Gaussian function, and locates target objects
by searching for the maximum value on the response map. The
underlying assumption of these methods is that the circularly
shifted versions of input features approximate the dense samples
of the target object at different locations [11]. As learning correla-
tion filters do not require binary (hard-threshold) samples, these
trackers effectively alleviate the sampling ambiguity problem
that adversely affects most tracking-by-detection approaches. By
exploiting the complete set of shifted samples, correlation filters
can be efficiently trained with a substantially large number of
training samples using the fast Fourier transform (FFT). This data
augmentation helps discriminate the target from its surrounding
background. In this work, we use the outputs of each convolutional
layer as multi-channel features [11], [74], [75].

Let x be the [-th layer of the feature vector of size M X N x D,
where M, N, and D indicates the width, height, and the number
of feature channels, respectively. Here we denote x(!) concisely as
x and ignore the M, N, and D on the layer index [. We consider
all the circularly shifted versions of the feature x along the M
and NN dimensions as training samples. Each shifted sample x;;,
(4,7) € {0,1,...,M —1} x {0,1,..., N — 1}, has a Gaussian

. _ (i=M/2)24(j=N/2)? .
function label y;; = e 202 , where o is the kernel

width. At the target center with zero shifts, we have the maximum
score, y(u ~y = 1. When the position (i,7) is gradually away
from the target center, the score y;; decays rapidly from one to
zero. We learn the correlation filter w with the same size of x by
solving the following minimization problem:

w* = argmin Y _[|w - x;; — yi; > + A|wl]3, 2)
w ..
]

5

where )\ is a regularization parameter (A > 0) and the linear
product is defined as w - x;; = > 4 WiTjdXijd- As the label y;;
is softly defined, we no longer require hard-thresholded samples
in filter learning. The minimization problem in (2) is the same as
training the vector correlation filters using the FFT as described
in [75]. Let the capital letter be the corresponding Fourier trans-
formed signal. The learned filter in the frequency domain on the
d-th (d € {1,...,D}) channel is

X d
wio __YOX' 3)
S XX 4 A

where Y is the Fourier transformation form of y = {y;;|(i,j) €
{0,1,...,M — 1} x {0,1,...,N — 1}}, and the bar denotes
complex conjugation. The operator © is the Hadamard (element-
wise) product. Given an image patch in the next frame, we denote
z as the feature vector on the [-th layer and of size M x N x D.
We then compute the [-th correlation response map by

D
fz)=7"1>_Wlez), @)
d=1

where the operator .% ! denotes the inverse FFT transform. By
searching for the position with the maximum value on the response
map f(z) with size M X N, we can estimate the target location
based on the [/-th convolution layer.

4.3 Coarse-to-Fine Translation Estimation

Given the set of correlation response maps { f; }, we hierarchically
infer the target translation of each layer, i.e., the location with
the maximum value in the last layer is used as a regularization to
search for the maximum value of the earlier layer. Let f;(m,n)
be the response value at the position (m,n) on the [-th layer,
and (m,n) = argmax,, ,, fi(m,n) indicates the location of the
maximum value of f;. We locate the target in the (I — 1)-th layer
by:

argmax fi_1(m,n) + pu fi(m, n), 5)

m,n

st. [m—1m|+|n—n|<r

The constraint indicates that we only search the 7 X r neighboring
regions of (7,7) on the (I — 1)-th correlation response map.
The response values from the last layers are weighted by the
regularization term y; and then are propagated to the response
maps of early layers. We finally estimate the target location by
maximizing (5) on the layer with the finest spatial resolution. In
practice, we observe that the tracking results are not sensitive
to the parameter r of the neighborhood search constraint. This
amounts to computing a weighted average of the response maps
from multiple layers to infer the target location as follows:

argmax

m,n

pa fr(m, n). ©6)
l

To choose the weights for the response maps, we consider the
following two factors. First, we use larger weight for the response
map from the last convolutional layers as they capture semantics
that are robust to appearance changes. We empirically decrease the
weight parameter g; by half from the [-th layer to the (I — 1)-th
layer:

pu o 2177, )
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Fig. 5. Comparison of different weighting schemes to locate the tar-
get in the search window (yellow). (a) Sample frame in the KiteSurf [36]
sequence. (b)-(d) Correlation response maps from single convolutional
layers. (e)-(g) Different schemes to weight (b), (c) and (d). The maximum
values in (e)-(g) are highlighted by squares, and their tracking results are
with the corresponding colors in (a). Note that the soft weight scheme
(g) is robust to noisy maximum values in (c) and (d) when compared to
the soft mean (e) and hard weight (f) schemes.

where [ = 5,4, 3. Second, we observe that correlation response
maps from different convolutional layers are often with inconsis-
tent ranges, e.g., the maximum values of the response map from
the conv5-4 layer are generally smaller than that from the conv3-4
layer (see Figure 6(a)-(c)). We address this problem by setting the
weight parameter p; to be inversely proportional to the maximum
value of the [-th response map f; as:

1
My X —————~-
max(f;)
Note that enabling either or both of these two factors results in

three different weight schemes:
e soft mean: using only (8), p; =

®)

ma;(f )

o hard weight: using only (7), y; = 2!7°.

e soft weight: using both (7) and (8).
Since (8) amounts to conducting maximum normalization to each
response map, we rearrange (6)-(8) for the soft weight scheme to
locate target objects by

/J'lfl(myn)
argmax —_—, 9
%,n Zl: max(f;) )
where f1; = 2'=°. In Figure 5, we compare three different

weight schemes to locate the target in the 38-th frame of the
KiteSurf [36] sequence. Compared to the soft mean (Figure 5(e))
and hard weight (Figure 5(f)) schemes, the soft weight scheme
(Figure 5(g)) is robust to noisy maximum values in the conv4-
4 and conv3-4 layers. In addition, Figure 6 shows the weighted
maximum response values as well as the center location errors
in the entire KiteSurf [36] sequence. The soft weight scheme
helps to track the target well over the entire sequence despite the
presence of heavy occlusion and abrupt motion in the 38-th frame
(see Figure 5(a)). Note that other alternative approaches including
response maps of single convolutional layers cannot reliably track
the object in the sequence. Our preliminary results in [76] use the
hard weight scheme. Ablation studies (see Section 6.1.3) show the
effectiveness of the soft weight scheme that achieves the accuracy
gain of around +1% on the tracking benchmark dataset with 100
sequences.
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Fig. 6. Frame-by-frame maximum response values and center lo-
cation error plot on the KiteSurf [36] sequence. In (a)-(c), dash lines
indicate maximum values of single correlation response maps on dif-
ferent CNN layers. Solid lines show maximum values of the combined
response map over all CNN layers. Note that the soft weight scheme
sets the weights to be inversely proportional to the maximum values
of response maps. The weighted values are more consistent than the
soft mean and hard weight schemes. The center location error plot
shows that the soft weight scheme helps track the target over the entire
sequence, despite the presence of heavy occlusion and abrupt motion
in the 38-th frame (see Figure 5), while other alternative approaches do
not produce satisfactory results.

4.4 Region Proposals

To better estimate scale change and re-detect target objects from
tracking failures, we use the EdgeBox [53] method to generate
two types of region proposals: (1) scale proposals B, with small
step size and tightly around the estimated target location, and
(2) detection proposals B, with large step size and across the
whole image. We denote each proposal b in either B, or By as
a candidate bounding box (x, y, w, h), where (x,y) is center axis
and (w, h) is width and height. In order to compute the confidence
score of each proposal b, we learn another correlation filter with
a conservative learning rate (Section 4.2) to maintain a long-term
memory of target appearance. Specifically, we learn this filter over
the histogram of both gradients and intensities as in [77] to encode
more spatial details for differentiating minor scale changes. Given
a proposal b, we denote the maximum filter response of the long-
term memory correlation filter by g(b).

4.4.1

Given the estimated target position (z,%;) in the ¢-th frame
using (9), we crop a patch z centered at this position with the
same width and height in the previous frame. We set a threshold
To to determine if tracking failures occur. When the confidence
score g(z) is below Tp, we flag the tracker as losing the target and
proceed with target re-detection.

We generate a set of region proposals B, with a large step
size across the whole frame for recovering target objects. Rather
than simply selecting the candidate bounding box with maximum
confidence score as the recovered result, we also take the motion
constraint into consideration for cases with drastic change between
two consecutive frames. We compute the center location distance

Target Recovery



D between each proposal b} and the bounding box b;_; in the
previous frame as:

D(b:{,bt—l) = eXp(—ﬁH(xi,yz) - (ajt—l7yt—l)||2)7 (10)

where o is the diagonal length of the initial target size. We select
the optimal proposal as the re-detection result by minimizing the
following problem:

argmin g(b!) + aD(bi, b;_1), (11)

st. g(bl) > 1.5Ty.

In (11), the weight factor «v aims to strike a balance between patch
confidence and motion smoothness.

4.4.2 Scale Estimation

By using a small step size and a small non-maximum suppression
(NMS) threshold, we use the EdgeBox [53] method to generate
multi-scale region proposals B, for scale estimation. We use
a similar proposal rejection technique as in [71] to filter the
proposals whose intersection over union (IoU) with the target
bounding box (centered at the estimated position with the scale of
the last frame) is smaller than 0.6 or larger than 0.9. We then resize
the remaining proposals to a fixed size for computing confidence
scores. If the maximum confidence score {g(b)|b € B} is larger
than g(z), we update the width w; and height h; of the target using
a moving average:

(we, he) = Bwy, hy) + (1 — B)(we—1, hy—1),

where w; and h} denote the width and height of the proposal with
maximum confidence score. The weight factor 5 makes the target
size estimates change smoothly.

(12)

4.5 Model Update

An optimal filter on [/-th layer can be updated by minimizing the
output error over all tracked results at time ¢ as described in [75].
However, this involves solving a D X D linear system of equations
per location at (z,y), which is computationally expensive as the
channel number is usually large with the CNN features (e.g., D =
512 in the conv5-4 and conv4-4 layers in the VGGNet). To obtain
a better approximation, we update the correlation filter W in (3)
using a moving average:

Al =(1-nAl | +nY 0 X (13a)
D
B = (1-n)B{, +7) X 0Xj (13b)
1=1
Ad
d t
= 13
t Bg+)\7 ( C)

where ¢ is the frame index and 7 is a learning rate.

On the other hand, we conservatively update the long-term
correlation filter g(-) only if the tracked result z is highly con-
fident, i.e., g(z) > Tp. As such, the learned filter is equipped
with a long-term memory of target appearance and robust to noisy
updates that often cause rapid model degradation.

5 IMPLEMENTATION DETAILS

We present the main steps of the proposed tracking algorithm
in Algorithm 1 and implementation details as follows. We adopt
the VGGNet-19 [25] trained on the ImageNet [58] dataset as our
feature extractor. We first remove the fully-connected layers and

Algorithm 1: Proposed tracking algorithm.

Input : Initial target position (z¢—1,Yt—1, Wi—1, he—1),
the hierarchical correlation filters
{W! ||l =3,4,5}, and the classifier g;_;(-) for
confidence computation.
Output: Estimated object position (z¢, vz, wy, hy), { WL},
and gs(-).
1 repeat
2 Crop out the search window in frame ¢ centered at
(¢—1,yt—1) and extract covolutional features with
spatial interpolation using (1);

3 foreach layer | do computing confidence score f; using
W!_| and (4);

4 Estimate the new position (x¢, y+) on response map set
{fi} using (9);

5 Crop out new patch z centered at (4, y;) and compute

the tracking confidence g(z);

6 if g(z) < To then perform target re-detection to update
(x4, y¢) using (11);

7 Estimate the new scale (wy, hy) using (12) around

(x+, y+) and compute the new confidence score ¢(z);

s | foreach layer [ do updating correlation filters { W'}
using (13) with convolutioanl features;

9 if g(z) > Ty then update classifier g;

o until End of video sequences;

—

use the outputs of the conv3-4, conv4-4, and conv5-4 convolutional
layers as deep features (see Figure 4). To retain a larger spatial
resolution on each convolutional layer, we do not use the outputs
of the pooling layers. Given an image frame with search window
of size M x N (e.g., 1.8 times of the target size), we set a
fixed spatial size of % X % to resize the feature channels from
each convolutional layer. For translation estimation, we keep the
parameters on each convolutional layer the same for training
correlation filters. We set the regularization parameter A in (2)
to 10~* and the kernel width for generating the Gaussian function
labels to 0.1. We set the model update learning rate 7 in (13)
to 0.01. To remove the boundary discontinuities, we weight the
extracted feature channels of each convolutional layer by a cosine
box filter [30]. We set the weight parameters pi1, p2 and p3 in (9)
to 1, 0.5 and 0.25, respectively. We fine-tune the step size and
the non-maximum suppress threshold of the EdgeBox method to
generate two types of region proposals. For generating proposals
to re-detect target objects, we use a large step size 0.85 and a
larger NMS threshold 0.8. For generating proposals to estimate
scales, we set the step size to 0.75 and the NMS threshold to 0.6.
The weight parameter « in (11) is set to 0.1. For scale estimation,
the parameter (3 in (12) is set to 0.6. The tracking failure threshold
Ty is set to 0.2. More details regarding parameter settings on a
separate set of video sequences introduced by the MEEM method
(http://cs-people.bu.edu/jmzhang/MEEM/MEEM . html) are provided
in the supplementary document.

6 EXPERIMENTS

We evaluate the proposed algorithm on four benchmark
datasets: OTB2013 [35], OTB2015 [36], VOT2014 [37], and
VOT2015 [38]. We use the benchmark protocols and the same
parameters for all the sequences as well as all the sensitivity
analysis. For completeness, we also report the results in terms


http://cs-people.bu.edu/jmzhang/MEEM/MEEM.html

of distance precision rate, overlap ratio, center location error, and
tracking speed in comparison with the state-of-the-art trackers.
We implement the proposed tracking algorithm in MATLAB on
an Intel 17-4770 3.40 GHz CPU with 32 GB RAM and the
MatConvNet toolbox [78], where the computation of forward
propagation for CNN feature extraction is carried out on a
GeForce GTX Titan GPU. The source code, as well as addi-
tional experimental results, are publicly available at our project
page https://sites.google.com/site/chaoma99/hcft-tracking.

6.1 OTB datasets

The object tracking benchmark (OTB) dataset contains two sets:
(1) OTB2013 [35] with 50 sequences and (2) OTB2015 [36] with
100 sequences. We mainly report the results on the OTB2015
dataset since the other one is a subset.

We compare the proposed algorithm with 10 state-of-the-art
trackers which can be categorized as follows:

o Deep learning trackers including FCNT [62] and DLT [20]
as well as the HCFT [76] method which is our earlier
work;

e Correlation filter trackers including SRDCF
MUSTer [79], LCT [51], DSST [34] and KCF [11];

o Representative tracking algorithms using single or mul-
tiple online classifiers, including the MEEM [47],
TGPR [42], and Struck [46] methods.

(48],

We use the benchmark protocol [35] and two metrics to evaluate
the tracking performance. The overlap success rate is the percent-
age of frames where the overlap ratio between predicted bounding
box (B1) and ground truth bounding box (Bjg) is larger than a
given threshold 7, i.e., g’i%gg > T'. The distance precision rate
is the percentage of frames where the estimated center location
error is smaller than a given distance threshold, e.g., 20 pixels in

this work.

6.1.1 Overall Performance

Tracking algorithms are evaluated on the OTB datasets using
three protocols with either distance precision or overlap success
rates [35]. In the one-pass evaluation (OPE) protocol, each tracker
is initialized with the ground truth location for evaluation until
the end of each sequence. For the spatial robustness evaluation
(SRE) protocol, each tracker is initialized with the perturbed object
location for evaluation of the entire sequence. In the temporal
robustness evaluation (TRE) protocol, each tracker is re-initialized
at fixed frame interval until the end of a sequence. Figure 7 shows
the plots of the distance precision rate and the overlap success rate
using all three protocols. Overall, the proposed algorithm HCFT*
performs favorably against the state-of-the-art methods in all three
protocols on the OTB2015 dataset. For completeness, we present
the OPE results against other methods on the OTB2013 dataset
in Figure 8. We list the quantitative results of distance precision
rate at 20 pixels, overlap success rate at 0.5 intersections over
union (IoU), center location errors, and tracking speed in Table 1.
Table 1 shows that the proposed algorithm performs well against
the state-of-the-art trackers in distance precision (DP) rate, overlap
success (OS) rate and center location error (CLE). Notice that
the OTB2015 dataset is more challenging where all the evaluated
trackers perform worse than on the OTB2013 dataset.

Among the state-of-the-art tracking methods, the HCFT [76],
FCNT [62] and SRDCF [48] are three concurrently proposed
trackers. The HCFT* consistently performs well against these
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Fig. 7. Distance precision and overlap success plots on the
0OTB2015 [36] dataset. Quantitative results on the 100 benchmark
sequences using OPE, SRE and TRE. The legend of distance precision
contains threshold scores at 20 pixels, while the legend of overlap
success contains area-under-the-curve score for each tracker. The pro-
posed algorithm, HCFT*, performs favorably against the state-of-the-art
trackers.
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Fig. 8. Distance precision and overlap success plots on the
0TB2013 [35] dataset. Quantitative results on the 50 benchmark se-
quences using OPE. The legend of distance precision contains the
threshold scores at 20 pixels while the legend of overlap success con-
tains area-under-the-curve score for each tracker. Our tracker HCFT*
performs well against the state-of-the-art algorithms.

three baseline methods. With the use of coarse-to-fine localization
and region proposals for target re-detection as well as scale estima-
tion, the proposed HCFT* significantly improves the performance
in both distance precision (3.3%) and overlap success (6.5%) when
compared to the HCFT on the OTB2015 dataset. For the OTB2013
dataset, the HCFT* gains 3.2% in distance precision and 5.3%
in overlap success. Compared to the HCFT [76], the HCFT*
reduces the center location error by 6.3 pixels on the OTB2013
dataset and 6.1 pixels on the OTB2015 dataset. The runtime
performance of the HCFT* is 7 frames per second where the
main computational load lies in the forward propagation process
to extract deep convolutional features (around 40% of the runtime
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TABLE 1
Comparisons with state-of-the-art trackers on OTB2013 (l) [35] and OTB2015 (ll) [36] benchmark sequences. Our approach performs
favorably against existing methods in distance precision rate at a threshold of 20 pixels, overlap success rate at an overlap threshold of 0.5 and
center location error. The first and second best values are highlighted by bold and underline.

HCFT* HCFT  FCNT  SRDCF  MUSTer LCT MEEM  TGPR  DSST KCF  Struck DLT

[76] [62] [48] [79] [51] [47] [42] [34] [11] [46] [20]

DP rate (%) I 92.3 89.1 85.7 823 86.5 84.8 83.0 70.5 73.9 74.1 65.6 54.8
1T 87.0 83.7 717.9 77.6 77.4 76.2 78.1 64.3 69.5 69.2 63.5 52.6

0S rate (%) I 79.3 74.0 75.7 71.6 78.4 81.3 69.6 62.8 59.3 62.2 559 47.8
11 72.0 65.5 66.6 71.5 68.3 70.1 62.2 53.5 53.7 54.8 51.6 43.0

CLE (pixel) I 9.43 15.7 17.4 35.8 17.3 26.9 20.9 51.3 40.7 355 50.6 65.2
11 16.7 22.8 23.6 39.2 31.5 67.1 27.7 55.5 47.7 45.0 47.1 66.5

Speed (FPS) I 6.63 11.0 2.31 6.09 9.32 21.6 20.8 0.66 43.0 246 10.0 8.59
1T 6.70 10.4 2.48 5.69 8.46 20.7 20.8 0.64 40.9 243 9.84 8.43
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Fig. 9. Performance evaluation on benchmark attributes: illumi-
nation variation (IV35), out-of-plane rotation (OR59), scale variation
(SV61), occlusion (OCC44), deformation (DEF39), motion blur (MB29),
fast motion (FM37), in-plane rotation (IR51), out-of-view (OV14), back-
ground clutter (BC31), and low resolution (LR9). The later digits in each
acronym mean the number of videos with that attribute. The proposed
algorithm HCFT* performs well against state-of-the-art results.

for each frame). The components using region proposals for scale
estimation and target recovery from tracking failures account for
another 35% of the runtime.

6.1.2 Attribute-based Evaluation

We analyze the tracker performance using 11 annotated attributes
in the OTB2015 [36] dataset: illumination variation (IV35),
out-of-plane rotation (ORS59), scale variation (SV61), occlusion
(0CC44), deformation (DEF39), motion blur (MB29), fast mo-
tion (FM37), in-plane rotation (IR51), out-of-view (OV14), back-
ground clutter (BC31), and low resolution (LR9) (number of
videos for each attribute is appended to the end of each abbre-
viation). Figure 9 presents the results under one-pass evaluation
regarding these challenging attributes for visual object tracking.
First, the proposed tracker HCFT*, as well as the HCFT [76] and
FCNT [62], generally perform well in scenes with background
clutters, which can be attributed to the use of deep feature
hierarchies capturing semantics and spatial details. The DLT [20]
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Fig. 10. Ablation study. Component analysis on the OTB2015 [36]
dataset with comparisons to the HCFT [76]. SW: soft weight. SP: scale
proposals for scale estimation. DP: detection proposals for target re-
detection. The values at the legends with distance precision is based on
the threshold of 20 pixels while values at the legend of overlap success
are based on area under the curve.The proposed HCFT* incorporates
all of these components and achieves performance gains of +3.3% and
+3.6% in distance precision and overlap success when compared to the
HCFT.

pre-trains neural networks in an unsupervised manner for visual
tracking, and it does not perform well in all attributes. This shows
that CNN features trained with category-level supervision for
object representations are more discriminative. Second, as the last
layer of the pre-trained CNN model retains semantic information
insensitive to scale changes (Figure 4(d)), even without the scale
estimation component, the HCFT still achieves favorable perfor-
mance in the presence of scale variations. Third, correlation filters
trained over each convolutional layer can be viewed as holistic
templates of target objects on different abstraction levels. On the
other hand, the HCFT does not perform well for scenes with
occlusion and out-of-view. With the use of recovery module based
on object proposals, the proposed HCFT* achieves significant
gains of 4.0% and 6.1% for scenes with occlusion and out-of-view
attributes.

6.1.3 Component Analysis

Compared with the HCFT, there are three additional components
in HCFT*: (1) a soft weight scheme to combine hierarchical
correlation response maps, (2) object proposal for scale estimation,
and (3) object proposals for target re-detection. In Figure 10,
we demonstrate the effectiveness of these three schemes on
the OTB2015 [36] dataset. The baseline HCF-SW method in-
dicates the hierarchical convolutional features (HCF) with the
soft weight (SW) scheme. The HCF-SW-SP scheme adds the
scale estimate module using object proposals (SP) based on the
HCF-SW approach, while the HCF-SW-DP method adds the
re-detection scheme using object proposals (DP) based on the
HCF-SW module. The proposed HCFT* incorporates all of these
components (HCF-SW-SP-DP) and achieves considerably large
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Fig. 11. Performance evaluation using different convolutional layers
from the VGGNet-19 (VGG) [25], AlexNet (Alex) [17] and ResNet-
152 (Res152) [80] on the OTB2015 [36] dataset. Each single layer
(C5, C4, C3, C2 and C1), the combination of correlation response
maps from the conv5-4 and conv4-4 layers (C5-C4), and concatenation
of three convolutional layers (C543) are evaluated. By exploiting the
hierarchical information from multiple convolutional layers, the VGG-C5-
C4-C3 (HCFT [76]) tracker performs well against alternative baseline
implementations. Overall, the proposed HCFT* performs favorably with
the use of region proposals for scale estimation and target recovery.

performance gains in both distance precision and overlap success
when compared to the HCFT [76].

6.1.4 Feature Analysis

To analyze the effectiveness of the proposed algorithm, we com-
pare the tracking results using different convolutional layers as
features on the OTB2015 dataset. Figure 11 shows 11 alternative
baseline methods using one-pass evaluation, where the values at
the legends with distance precision is based on the threshold
of 20 pixels while values at the legend of overlap success are
based on area under the curve (AUC). We first use each single
convolutional layer (C5, C4, C3, C2 and C1) of the VGGNet-
19 model to represent objects in the proposed algorithm. Note
that if one convolutional layer contains multiple sub-layers, we
use features from the last sub-layer, e.g., C5 indicates the conv5-4
layer in VGGNet-19. Figure 11 shows better tracking performance
can be obtained when a deeper layer of the VGGNet is used,
which can be attributed to the semantic abstraction from a deeper
network. We then perform the coarse-to-fine search scheme on
the fifth and fourth layers (C5-C4). The VGG-C5-C4 method
performs better than VGG-C5 and worse than the VGG-C5-C4-
C3 scheme (as used in HCFT [76]). The quantitative results show
that hierarchical inference on the translation cues from multiple
CNN Ilayers helps improve tracking performance. Moreover, we
concatenate the fifth, fourth, and third layers together (C543)
as multiple channel features similar to the hypercolumns used
in [73]. However, such concatenation breaks down the hierarchical
features over CNN layers (learning a single correlation filter over
C543 equally weighs each CNN layer) and thus does not perform
well for visual tracking. Given that the second (C2) and first (C1)
layers do not perform well independently and there exists slight
performance gain from VGG-C5-C4 to HCFT (C5-C4-C3), we
do not explore the feature hierarchies from the second or first
layers. Since features extracted from the VGGNet are generally
more effective than the AlexNet in visual tracking, we attribute
the performance gain to a deeper network architecture. We further
implement an alternative baseline method (Res-C5) using the last
convolutional layer of the ResNet-152 [80]. However, we find
that Res-C5 method does not perform well. We also evaluate
the performance of other layers of the ResNet and do not obtain
performance gain as well. These results may be explained by the
fact that the ResNet uses skip connections to combine different
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Fig. 12. Classifier analysis on the Lemming sequence. The target
object is under heavy occlusion in the 360th frame. Bottom left: Without
a re-detection module, the HCFT [76] fails after the 360th frame. A
correlation filter g(-) with an aggressive learning rate cannot predict
tracking failures after the 360th frame due to noisy updates. In contrast,
a conservatively learned filter g(-) accurately predicts the confidence
score of every tracking result. Bottom right: For the proposed HCFT*
with a re-detection module, we test the update threshold for learning
classifier g(-). Confidence scores are consistent with threshold values
between 0.2 and 0.5.

layers. Thus, the ResNet does not maintain an interpretable coarse-
to-fine feature hierarchy from the last layer to early layers as the
VGGNet does. Each layer of ResNet contains both semantical
abstraction and spatial details from earlier layers.

6.1.5 Classifier Analysis

The long-term memory correlation filter plays a critical role in
scoring the confidence of each tracked result. Taking the Lemming
sequence as an example, we first analyze the stability of the corre-
lation filter classifier. Figure 12 shows two classifiers with different
incremental learning schemes to determine the confidence of every
tracked result of the HCFT [76] (bottom left). Without a re-
detection module, the HCFT loses the target after the 360th frame.
A correlation filter g(-) may easily adapt to noisy appearance
changes and fail to predict tracking failures after the 360th frame.
In contrast, the conservatively learned filter g(-) is robust to noisy
updates and succeeds in estimating the confidence of every tracked
result. For the HCFT* with a re-detection module, we analyze the
model stability using different thresholds to determine tracking
failures. Overall, the performance of the HCFT* is not sensitive
when the threshold value is between 0.2 to 0.5. In this work, we
set the threshold T} to 0.2 for all experiments.

6.1.6 Qualitative Evaluation

Figure 13 shows qualitative comparisons with the top performing
tracking methods: SRDCF [48], MUSTer [79], MEEM [47],
LCT [51], FCNT [62], TGPR [42] and the proposed algorithm
on four most challenging sequences from the OTB2015 dataset.
The FCNT also exploits the deep feature hierarchy and performs
well in sequences with deformation and rotation (MotorRolling
and Skiing), but fails when the background is cluttered and fast
motion occurs (Matrix and Soccer) as the underlying random
sampling scheme to infer target states is not robust to cluttered
backgrounds. The MEEM tracker uses quantized color features
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Fig. 13. Sample tracking results. We show some tracking results of the SRDCF [48], MUSTer [79], MEEM [47], LCT [51] FCNT [62] TGPR [42]
methods, and the proposed algorithm on four most challenging sequences (From top: Matrix, MotorRolling, Skiing, and Soccer).

TABLE 2
Average ranks of accuracy and robustness under baseline and
region noise experiments on the VOT2014 dataset. The first, second
and third best scores are highlighted in red, blue and green.

baseline region_noise

Expected overlap ~ Expected overlap Overall
HCFT* 0.3532 0.2798 0.3165
HCFT 0.3242 0.2695 0.2968
DSST 0.2990 0.2630 0.2810
DGT 0.2770 0.2624 0.2697
BDF 0.2826 0.2528 0.2677
HMMTxD 0.2613 0.2702 0.2657
VTDMG 0.2687 0.2562 0.2625
MatFlow 0.2936 0.2308 0.2622
ABS 0.2615 0.2565 0.2590
SAMF 0.2741 0.2343 0.2542
KCF 0.2734 0.2336 0.2535
ACAT 0.2401 0.2243 0.2322
DynMS 0.2293 0.2143 0.2218
ACT 0.2346 0.1915 0.2131
PTp 0.2161 0.2047 0.2104
EDFT 0.2208 0.1965 0.2086
IPRT 0.2078 0.1856 0.1967
LT_FLO 0.2035 0.1814 0.1925
SIR_PF 0.1943 0.1872 0.1908
FoT 0.1935 0.1622 0.1779
Struck 0.1858 0.1670 0.1764
FSDT 0.1553 0.1544 0.1549
CMT 0.1577 0.1472 0.1524
FRT 0.1590 0.1434 0.1512
VT 0.1527 0.1452 0.1489
OGT 0.1470 0.1307 0.1389
MIL 0.1579 0.1112 0.1346
CT 0.1262 0.1173 0.1218
NCC 0.0790 0.0749 0.0770

and performs well in the Skiing sequence. The SRDCF, MUSTer
and LCT all build on adaptive correlation filters with hand-crafted
features, which are not robust to large appearance changes. These
trackers drift quickly at the beginning of the MotorRolling, Matrix
and Soccer sequences even if with a re-detection module (MSUTer
and LCT). The reasons that the proposed algorithm performs well
are three-fold: First, the visual representation using hierarchical
convolutional features learned from a large-scale dataset are more
effective than the conventional hand-crafted features. With CNN
features from multiple levels, the representation scheme contains
both category-level semantics and fine-grained spatial details
which account for appearance changes caused by deformations,
rotations and background clutters (Matrix, Skiing, and Soccer). It

Ranking plot for experiment baseline (mean) Ranking plot for experiment region_noise (mean)
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Fig. 14. Robustness-accuracy ranking plots under the baseline and
region noise experiments on the VOT2014 [37] dataset. Trackers
closer to upper right corner perform better.

is worth mentioning that for the most challenging MotorRolling
sequence, none of the other methods are able to track targets well
whereas the HCFT* achieves the distance precision rate of 94.5%.
Second, the linear correlation filters trained on convolutional
features are updated properly to account for appearance variations.
Third, two types of designed region proposals help to recover lost
target objects as well as estimate scale changes.

6.2 VOT2014 Dataset

The VOT2014 [37] dataset contains 25 real-world video se-
quences. We conduct two sets of experiments based on the
metrics [37]: (1) the baseline evaluation in which trackers are
initialized with ground truth locations; and (2) the noise evaluation
in which the initial target locations are perturbed with random
noise. The VOT challenge provides a re-initialization protocol,
where trackers are reset with ground-truths when tracking failures
occur.

We use two metrics to rank all the trackers: (1) accuracy mea-
sure based on the overlap ratio with ground truth bounding box and
(2) robustness measure based on the number of tracking failures.
We validate the proposed HCFT* in comparison to all the trackers



TABLE 3
Results on VOT2015. Average ranks of accuracy and robustness
under baseline experiments on the VOT2015 [38] dataset. The first,
second and third best scores are highlighted in red, blue and green
colors, respectively

Accuracy Robustness  Expected Overlap

MDNet 0.5939 0.7656 0.3783
DeepSRDCF 0.5621 0.3181
HCFT* 0.4843 0.9844

SRDCF 0.5506 1.1833 0.2877
LDP 0.4932 1.3000 0.2785
SCEBT 0.5379 1.7189 0.2548
Struck 0.4597 1.4956 0.2458
SumShift 0.5115 1.6167 0.2341
SODLT 0.5573 1.8067 0.2329
DAT 0.4804 1.8833 0.2238
MEEM 0.4994 1.7833 0.2212
OACF 0.5676 1.8833 0.2190
MCT 0.4677 1.7378 0.2188
ASMS 0.5011 1.7833 0.2117
AOGTracker 0.5109 1.7400 0.2080
SAMF 0.5115 2.0833 0.2021
MUSTer 0.5116 2.2044 0.1950
TGPR 0.4636 2.2433 0.1938
ACT 0.4579 2.2167 0.1861
LGT 0.4003 2.0511 0.1737
DSST 0.5283 2.7167 0.1719
MIL 0.4161 2.6078 0.1710
PKLTF 0.4458 2.6167 0.1524
HT 0.4236 2.8111 0.1515
FCT 0.4170 2.9500 0.1512
Matflow 0.4037 2.8167 0.1500
SCBT 0.4059 2.6367 0.1496
DFT 0.4527 3.8167 0.1395
LI1APG 0.4607 4.0333 0.1270
OAB 0.4243 3.9167 0.1259
VT 0.4218 4.1000 0.1220
STC 0.3801 3.7333 0.1179
CMT 0.3795 3.9000 0.1153
CT 0.3742 3.5589 0.1135
FragTrack 0.3942 4.6833 0.1081
NCC 0.4818 8.1833 0.0795

submitted to the VOT2014 challenge [37]. Table 2 presents the
average accuracy and robustness rank of all evaluated trackers.
In both the baseline and region noise validations, the proposed
HCFT* performs well in terms of accuracy and robustness scores.
Note that the DSST [34] learns adaptive correlation filters over
HOG features for estimating the translation and scale changes. In
contrast, the HCFT* learns correlation filter over hierarchical deep
CNN features, which provide multi-level semantical abstractions
of target objects for robust tracking. Figure 14 shows the accuracy-
robustness plots on the VOT2014 dataset. Our method performs
favorably among all the other trackers in terms of both accuracy
and robustness (see the upper right corner).

6.3 VOT2015 Dataset

We evaluate the proposed algorithm on the VOT2015 [38] dataset,
which contains 60 challenging video sequences with sufficient
variations. We use accuracy and robustness as the performance
metrics. Table 3 presents the average accuracy and robustness
rank of all evaluated trackers including those submitted to the
VOT2015. The proposed HCFT* ranks second and third in
terms of robustness and overall overlap, respectively. Note that
MDNet [60] draws multiple binary samples for learning CNNs.
With the use of a negative-mining scheme to alleviate sampling
ambiguity as well as the domain transfer learning scheme to learn
from more training data offline, the MDNet method performs
favorably among all trackers. We note the proposed HCFT* is
computationally more efficient than the MDNet method in terms
of tracking speed: 6.7 FPS (HCFT*) vs. 1.2 FPS (MDNet).

Fig.

15. Failure cases on the Girl2 (OTB2013 [35]),
(0TB2015 [36]) and Gymnastics (VOT2015 [38]) sequences. Red
boxes show our results and the green ones are ground truth.

Jump

6.4 Failure Cases

We show sample tracking failures by the HCFT* in Figure 15.
For the Girl2 sequence, when long-term occlusions occur, the
proposed re-detection scheme is not successfully activated due
to the high similarity between the target person and surrounding
people. In the Jump sequence, we use the EdgeBox [53] method
with a small step size to generate scale proposals tightly around
the estimated target position. This approach does not perform
well in the presence of drastic scale changes. For the Gymnastics
sequence, our approach does not generate the rotated bounding
boxes as the annotated ground truth labels. As the proposed
HCFT#* does not consider in-plane rotation, pixels in the back-
ground regions are considered as parts of the foreground object,
thereby causing inaccurate model updates and drifts.

7 CONCLUSION

In this paper, we exploit rich feature hierarchies of CNNs for
visual tracking. We use the semantic information within the last
convolutional layers for handling significant appearance variations
and spatial details within early convolutional layers for locating
target objects. Specifically, we train a linear correlation filter on
each convolutional layer and infer the target position from hier-
archical correlation maps in a coarse-to-fine manner. We further
address the challenging problems of scale estimation and target re-
detection. We conservatively learn another correlation filter with a
long-term memory of target appearance on two type of region pro-
posal generated by the EdgeBox method, and respectively select
the proposals with highest confidence scores as estimated scale
and candidate re-detection results. We extensively validate the
proposed algorithm on the OTB2013, OTB2015, VOT2014, and
VOT2015 datasets. Experimental results show that the proposed
algorithm performs favorably against the state-of-the-art methods
in terms of accuracy and robustness.

We summarize the potential directions to improve our ap-
proach and shed light on our future work. First, since correlation
filters regress the circularly shifted versions of deep features to
soft labels, the performance of our approach is sensitive to the
initial center location in the first frame. On the VOT2014 and
VOT2015 datasets, we use the unrotated minimum enclosing rect-
angles as ground truth, which may contain a large body of noisy
background. For some sequences, the geometric centers of ground
truth are far from the actual center positions of target objects. Our
approach on the VOT2014 and VOT2015 datasets do not perform
as well as on the OTB2013 and OTB2015 datasets. This suggests
our future work using a better way to define search windows
for learning correlation filters. Second, we hierarchically infer the
target location with empirical weights. Although the soft weight
scheme used in this paper shows advantages when compared to
the hard weight scheme used for our preliminary results [76], we
do not have principled interpretations and explanations. Our future



work will emphasize a learning based approach to avoid manually
setting these empirical weights. Third, our approach relies on
several free parameters such as thresholds to activate the re-
detection module as well as to accept/reject the detection results.
As these fixed parameters cannot be applied to all sequences
effectively, it is of great interest to develop adaptive re-detection
modules for recovering target objects from tracking failures.
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