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Abstract—Weakly Supervised Object Detection (WSOD), using only image-level annotations to train object detectors, is of growing
importance in object recognition. In this paper, we propose a novel deep network for WSOD. Unlike previous networks that transfer the
object detection problem to an image classification problem using Multiple Instance Learning (MIL), our strategy generates proposal
clusters to learn refined instance classifiers by an iterative process. The proposals in the same cluster are spatially adjacent and
associated with the same object. This prevents the network from concentrating too much on parts of objects instead of whole objects.
We first show that instances can be assigned object or background labels directly based on proposal clusters for instance classifier
refinement, and then show that treating each cluster as a small new bag yields fewer ambiguities than the directly assigning label
method. The iterative instance classifier refinement is implemented online using multiple streams in convolutional neural networks,
where the first is an MIL network and the others are for instance classifier refinement supervised by the preceding one. Experiments
are conducted on the PASCAL VOC, ImageNet detection, and MS-COCO benchmarks for WSOD. Results show that our method
outperforms the previous state of the art significantly.

Index Terms—Object detection, weakly supervised learning, convolutional neural network, multiple instance learning, proposal cluster.
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1 INTRODUCTION

O BJECT detection is one of the most important problems
in computer vision with many applications. Recently,

due to the development of Convolutional Neural Network
(CNN) [1], [2] and the availability of large scale datasets
with detailed boundingbox-level annotations [3], [4], [5],
there have been great leap forwards in object detection [6],
[7], [8], [9], [10], [11]. However, it is very labor-intensive and
time-consuming to collect detailed annotations, whereas
acquiring images with only image-level annotations (i.e.,
image tags) indicating whether an object class exists in an
image or not is much easier. For example, we can use image
search queries to search on the Internet (e.g., Google and
Flickr) to obtain a mass of images with such image-level
annotations. This fact inspires us to explore methods for the
Weakly Supervised Object Detection (WSOD) problem, i.e.,
training object detectors with only image tag supervisions.

Many previous methods follow the Multiple Instance
Learning (MIL) pipeline for WSOD [12], [13], [14], [15], [16],
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[17], [18], [19]. They treat images as bags and proposals
as instances; then instance classifiers (object detectors) are
trained under MIL constraints (i.e., a positive bag contains at
least one positive instance and all instances in negative bags
are negative). In addition, inspired by the great success of
CNN, recent efforts often combine MIL and CNN to obtain
better WSOD performance. Some researches have shown
that treating CNNs pre-trained on large scale datasets as off-
the-shelf proposal feature extractors can obtain much better
performance than traditional hand-designed features [12],
[13], [14], [15]. Moreover, many recent works have achieved
even better results for WSOD by an MIL network using
standard end-to-end training [16], [18] or a variant of end-
to-end training [17], [19]. See Section 2.3 for this variant of
end-to-end and how it differs from the standard one. We
use the same strategy of training a variant of end-to-end
MIL network inspired by [17], [19].

Although some promising results have been obtained by
MIL networks for WSOD, they do not perform as well as
fully supervised ones [6], [7], [8]. As shown in Fig. 3 (a),
previous MIL networks integrate the MIL constraints into
the network training by transferring the instance classifica-
tion (object detection) problem to a bag classification (image
classification) problem, where the final image scores are the
aggregation of the proposal scores. However, there is a big
gap between image classification and object detection. For
classification, even parts of objects can contribute to correct
results (e.g., the red boxes in Fig. 1), because important parts
include many characteristics of the objects. Many proposals
only cover parts of objects, and “seeing” proposals only of
parts may be enough to roughly localize the objects. But
this may not localize objects well enough considering the
performance requirement of high Intersection-over-Union
(IoU) between the resulting boxes and groundtruth bound-
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Fig. 1. Different proposals cover different parts of objects. All these
proposals can be classified as “bird” but only the green boxes, which
have enough IoU with groundtruth, contribute to correct detections.

(a) (b) (c)

Fig. 2. The proposals (b), of an image (a), can be grouped into different
proposal clusters (c). Proposals with the same color in (c) belong to the
same cluster (red indicates background).

ingboxes: the top ranking proposals may only localize parts
of objects instead of whole objects. Recall that for detection,
the resulting boxes should not only give correct classifica-
tion, but also localize objects and have enough overlap with
groundtruth boundingboxes (e.g., the green boxes in Fig. 1).

Before presenting our solution of the problem referred
above, we first introduce the concept of proposal cluster.
Object detection requires algorithms to generate multiple
overlapping proposals closely surrounding objects to ensure
high proposal recall (e.g., for each object, there are tens of
proposals on average from Selective Search [20] which have
IoU>0.5 with the groundtruth boundingbox on the PASCAL
VOC dataset). Object proposals in an image can be grouped
into different spatial clusters. Except for one cluster for
background proposals, each object cluster is associated with
a single object and proposals in each cluster are spatially
adjacent, as shown in Fig. 2. For fully supervised object
detection (i.e., training object detectors using boundingbox-
level annotations), proposal clusters can be generated by
treating the groundtruth boundingboxes as cluster centers.
Then object detectors are trained according to the proposal
clusters (e.g., assigning all proposals the label of the corre-
sponding object class for each cluster). This alleviates the
problem that detectors may only focus on parts.

But in the weakly supervised scenario, it is difficult to
generate proposal clusters because groundtruth bounding-
boxes that can be used as cluster centers are not provided. To
cope with this difficulty, we suggest to find proposal clusters
as follows. First we generate proposal cluster centers from
those proposals which have high classification scores during
training, because these top ranking proposals can always
detect at least parts of objects. That is, for each image, after
obtaining proposal scores, we select some proposals with
high scores as cluster centers, and then proposal clusters are
generated based on spatial overlaps with the cluster centers.
Then the problem reduces to how to select proposals as cen-
ters, because many high scoring proposals may correspond
to the same object. The most straightforward way is to
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Fig. 3. (a) Conventional MIL networks transfer the instance classification
(object detection) problem to a bag classification (image classification)
problem. (b) We propose to generate proposal clusters and assign
proposals the label of the corresponding object class for each cluster. (c)
We propose to treat each proposal cluster as a small new bag. “0”, “1”,
and “2” indicate the “background”, “motorbike”, and “car”, respectively.

choose the proposal with the highest score for each positive
object class (i.e., the object class exists in the image) as the
center. But such a method ignores the fact that there may
exist more than one object with the same object category in
natural images (e.g., the two motorbikes in Fig. 2). Therefore,
we propose a graph-based method to find cluster centers.
More specifically, we build a graph of top ranking proposals
according to the spatial similarity for each positive object
class. In the graph, two proposals are connected if they have
enough spatial overlaps. Then we greedily and iteratively
choose the proposals which have most connections with
others to estimate the centers. Although a cluster center
proposal may only capture an object partially, its adjacent
proposals (i.e., other proposals in the cluster) can cover the
whole object, or at worst contain larger parts of the object.

Based on these proposal clusters, we propose two meth-
ods to refine instance classifiers (object detectors) during
training. We first propose to assign proposals object labels
directly. That is, for each cluster, we assign its proposals
the label of its corresponding object class, as in Fig. 3 (b).
Compared with the conventional MIL network in Fig. 3 (a),
this strategy forces network to “see” larger parts of objects
by assigning object labels to proposals that cover larger
parts of objects directly, which fills the gap between clas-
sification and detection to some extent. While effective, this
strategy still has potential ambiguities, because assigning
the same object label to proposals that cover different parts
of objects simultaneously may confuse the network and will
hurt the discriminative power of the detector. To address
this problem, we propose to treat each proposal cluster
as a small new bag to train refined instance classifiers,
as in Fig. 3 (c). Most of the proposals in these new bags
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Fig. 4. The architecture of our method. All arrows are utilized during the forward process of training, only the solid ones have back-propagation
computations, and only the blue ones are used during testing. During the forward process of training, an image and its proposal boxes are fed into
the CNN which involves a series of convolutional layers, an SPP layer, and two fully connected layers to produce proposal features. These proposal
features are branched into many streams: the first one for the basic MIL network and the other ones for iterative instance classifier refinement.
Each stream outputs a set of proposal scores and generates proposal clusters consequently. Based on these proposal clusters, supervisions are
generated to compute losses for the next stream. During the back-propagation process of training, proposal features and classifiers are trained
according to the network losses. All streams share the same proposal features.

should have relatively high classification scores because the
cluster centers covers at least parts of objects and proposals
in the same cluster are spatially adjacent (except for the
background cluster). In the same time, not all proposals
in the bags should have high classification scores. Thus
compared with the directly assigning label strategy, this
strategy is more flexible and can reduce the ambiguities
to some extent. We name our method Proposal Cluster
Learning (PCL) because it learns refined instance classifiers
based on proposal clusters.

To implement our idea effectively and efficiently, we
further propose an online training approach. Our network
has multiple output streams as in Fig. 4. The first stream
is a basic MIL network which aggregates proposal scores
into final image scores to train basic instance classifiers, and
the other streams refine the instance classifiers iteratively.
During the forward process of training, proposal classifica-
tion scores are obtained and proposal clusters are generated
consequently for each stream. Then based on these proposal
clusters, supervisions are generated to compute losses for
the next stream. According to the losses, these refined
classifiers are trained during back-propagation. Except for
the first stream that is supervised by image labels, the
other streams are supervised by the image labels as well as
outputs from their preceding streams. As our method forces
the network to “see” larger parts of objects, the detector
can discover the whole object instead of parts gradually by
performing refinement multiple times (i.e., multiple output
streams). But at the start of training, all classifiers are almost
untrained, which will result in very noisy proposal clusters,
and so the training will deviate from the correct solutions a
lot. Thus we design a weighted loss further by associating
different proposals with different weights in different train-
ing iterations. After that, all training procedures can thus
be integrated into a single end-to-end network. This can
improve the performance benefiting from our PCL-based
classifier refinement procedure. It is also very computational

efficient in both training and testing. In addition, perfor-
mance can be improved by sharing proposal features among
different output streams.

We elaborately conduct many experiments on the chal-
lenging PASCAL VOC, ImageNet detection, and MS-COCO
datasets to confirm the effectiveness of our method. Our
method achieves 48.8% mAP and 66.6% CorLoc on VOC
2007 which is more than 5% absolute improvement com-
pared with previous best performed methods.

This paper is an extended version of our previous work
[21]. In particular, we give more analyses of our method
and enrich literatures of most recent related works, making
the manuscript more complete. In addition, we make two
methodological improvements: the first one is to generate
proposal clusters using graphs of top ranking proposals in-
stead of using the highest scoring proposal, and the second
one is to treat each proposal cluster as a small new bag.
In addition, we provide more discussions of experimental
results, and show the effectiveness of our method on the
challenging ImageNet detection and MS-COCO datasets.

The rest of our paper is organized as follows. In Sec-
tion 2, some related works are introduced. In Section 3, the
details of our method are described. Elaborate experiments
and analyses are conducted in Section 4. Finally, conclusions
and future directions are presented in Section 5.

2 RELATED WORK

2.1 Multiple instance learning
MIL, first proposed for drug activity prediction [22], is a
classical weakly supervised learning problem. Many vari-
ants have been proposed for MIL [14], [23], [24], [25]. In
MIL, a set of bags are given, and each bag is associated
with a collection of instances. It is natural to treat WSOD
as an MIL problem. Then the problem turns into finding
instance classifiers only given bag labels. Our method also
follows the MIL strategy and makes several improvements
to WSOD. In particular, we learn refined instance classifiers
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based on proposal clusters according to both instance scores
and spatial relations in an online manner. 1

MIL has many applications to computer vision, such as
image classification [26], [27], weakly supervised semantic
segmentation [28], [29], object detection [30], object tracking
[31], etc. The strategy of treating proposal clusters as bags
was partly inspired by [30], [31], where [30] proposes to
train MIL for patches around groundtruth locations and [31]
proposes to train MIL for patches around predicted object
locations. However, they require groundtruth locations for
either all training samples [30] or the beginning time frames
[31], whereas WSOD does not have such annotations. There-
fore, it is much harder to generate proposal clusters only
guided by image-level supervisions for WSOD. In addition,
we incorporate the strategy of treating proposal clusters as
bags into the network training whereas [30], [31] do not.
Oquab et al. [32] also train a CNN network using the max
pooing MIL strategy to localize objects. But their methods
can only coarsely localize objects regardless of their sizes
and aspect ratios, whereas our method can detect objects
more accurately.

2.2 Weakly supervised object detection
WSOD has attracted great interests nowadays because the
amount of data with image-level annotations is much bigger
and is growing much faster than that with boundingbox-
level annotations. Many methods are emerging for the
WSOD problem [13], [14], [33], [34], [35], [36], [37], [38], [39],
[40]. For example, Chum and Zisserman [33] first initialize
object locations by discriminative visual words and then
introduce an exemplar model to measure similarity between
image pairs for updating locations. Deselaers et al. [34]
propose to initialize boxes by objectness [41] and use a
CRF-based model to iteratively localize objects. Pandey and
Lazebnik [35] train a DPM model [42] under weak super-
visions for WSOD. Shi et al. [36] use Bayesian latent topic
models to jointly model different object classes and back-
ground. Song et al. [38] develop a technology to discover
frequent discriminative configurations of visual patterns for
robust WSOD. Cinbis et al. [13] iteratively train a multi-fold
MIL to avoid the detector being locked onto inaccurate local
optima. Wang et al. [14] relax the MIL constraints into a
derivable loss function to train detectors more efficient.

Recently, with the revolution of CNNs in computer
vision, many works also try to combine the WSOD with
CNNs. Early works treat CNN models pre-trained on Im-
ageNet as off-the-shelf feature extractors [12], [13], [14],
[15], [37], [38], [39], [40]. They extract CNN features for
each candidate regions, and then train their own detectors
on top of these features. These methods have shown that
CNN descriptors can boost performance against traditional
hand-designed features. More recent efforts tend to train
end-to-end networks for WSOD [16], [17], [18], [19]. They
integrate the MIL constraints into the network training by
aggregating proposal classification scores into final image
classification scores, and then image-level supervision can
be directly added to image classification scores. For exam-
ple, Tang et al. [16] propose to use max pooling for aggrega-
tion. Bilen and Vedaldi [17] develop a weighted sum pooing

1. “Instance” and “proposal” are used interchangeably in this paper.

strategy. Building on [17], Kantorov et al. argue that context
information can improve the performance. Diba et al. [19]
show that weakly supervised segmentation map can be used
as guidance to filter proposals, and jointly train the weakly
supervised segmentation network and WSOD end-to-end.
Our method is built on these networks and any of them can
be chosen as our basic network. Our strategy proposes to
learn refined instance classifiers based on proposal clusters,
and propose a novel online approach to train our network
effectively and efficiently. Experimental results show our
strategies can boost the results significantly.

In addition to the weighted sum pooing, [17] also pro-
poses a “spatial regulariser” that forces features of the
highest scoring proposal and its spatially adjacent proposals
to be the same. Unlike this, we show that finding proposal
cluster centers using graph and treating proposal clusters
as bags are more effective. The contemporary work [43]
uses a graph model to generate seed proposals. Their net-
work training has many steps: first, an MIL network [44]
is trained; second, seed proposals are generated using the
graph; third, based on these seed proposals, a Fast R-CNN
[7] like detector is trained. Our method differs from [43] in
many aspects: first, we propose to generate proposal clusters
for each training iteration and thus our network is trained
end-to-end instead of step-by-step, which is more efficient
and can benefit from sharing proposal features among dif-
ferent streams; second, we propose to treat proposal clusters
as bags for training better classifiers. As evidenced by exper-
iments, our method obtains much better and more robust
results.

2.3 End-to-end and its variants
In standard end-to-end training, the update requires opti-
mizing losses w.r.t. all functions of network parameters. For
example, the Fast R-CNN [7] optimizes their classification
loss and boundingbox regression loss w.r.t. proposal clas-
sification and feature extraction for fully supervised object
detection. The MIL networks in [16], [18] optimize their MIL
loss w.r.t. proposal classification and feature extraction for
WSOD.

Unlike the standard end-to-end training, there exists a
variant of end-to-end training. The variant contains func-
tions which depend on network parameters, but losses
are not optimized w.r.t. all these functions [17], [19]. As
we described in Section 2.2, the “spatial regulariser” in
[17] forces features of the highest scoring proposal and
its spatially adjacent proposals to be the same. They use
a function of network parameters to compute the highest
scoring proposal, and do not optimize their losses w.r.t. this
function. Diba et al. [19] filter out background proposals us-
ing a function of network parameters and use these filtered
proposals in their latter network computations. They also
do not optimize their losses w.r.t. this function. Inspired by
[17], [19], we use this variant of end-to-end training. More
precisely, we do not optimize our losses w.r.t. the generated
supervisions for instance classifier refinement.

2.4 Others
There are many other important related works that do
not focus on weakly supervised learning but should be
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discussed. Similar to other end-to-end MIL networks, our
method is built on top of the Region of Interest (RoI)
pooling layer [7] or Spatial Pyramid Pooling (SPP) layer
[45] to share convolutional computations among different
proposals for model acceleration. But both [7] and [45] re-
quire boundingbox-level annotations to train their detectors.
The sharing proposal feature strategy in our network is
similar to multi-task learning [46]. Unlike the multi-task
learning that each output stream has their own relatively
independent external supervisions for different tasks, in our
method, all streams have the same task and supervisions of
later streams depend on the outputs from their preceding
streams.

3 METHOD

The overall architecture of our method is shown in Fig. 4.
Given an image, about 2, 000 object proposals from Selective
Search [20] or EdgeBox [47] are generated. During the for-
ward process of training, the image and these proposals are
fed into some convolutional (conv) layers with an SPP layer
[45] to produce a fixed-size conv feature map per-proposal.
After that, proposal feature maps are fed into two fully
connected (fc) layers to produce proposal features. These
features are branched into different streams: the first one is
an MIL network to train basic instance classifiers and the
others refine the classifiers iteratively. For each stream, pro-
posal classification scores are obtained and proposal clusters
are generated consequently. Then based on these proposal
clusters, supervisions are generated to compute losses for
the next stream. During the back-propagation process of
training, the network losses are optimized to train proposal
features and classifiers. As shown in the figure, supervisions
of the 1-st refined classifier depend on the output from the
basic classifier, and supervisions of k-th refined classifier
depend on outputs from {k− 1}-th refined classifier. In this
section, we will introduce our method of learning refined
instance classifiers based on proposal clusters in detail.

3.1 Notations
Before presenting our method, we first introduce some of
the mostly used notations as follows. We have R proposals
with boxes B = {br}Rr=1 for an given image and proposal
features F, where br is the r-th proposal box. The number
of refined instance classifiers is K (i.e., we refine instance
classifier K times), and thus there are K + 1 streams. The
number of object classes is C . W0 and Wk, k ∈ {1, ...,K}
are the parameters of the basic instance classifier and the
k-th refined instance classifier, respectively. ϕ0(F,W0) ∈
RC×R and ϕk(F,Wk) ∈ R(C+1)×R, k ∈ {1, ...,K} are the
predicted score matrices of the basic instance classifier and
the k-th refined instance classifier, respectively, where C+1
indicates the C object classes and 1 background class. We
use ϕk later for simplification, dropping the dependence on
F,Wk. ϕk

cr is the predicted score of the r-th proposal for
class c from the k-th instance classifier. y = [y1, ..., yC ]

T is
the image label vector, where yc = 1 or 0 indicates the image
with or without object class c. Hk(ϕk−1,y) is the supervi-
sion of the k-th instance classifier, whereHk(ϕk−1,y), k = 0
is the image label vector y. Lk

(
F,Wk,Hk(ϕk−1,y)

)
is the

loss function to train the k-th instance classifier.

We compute Nk proposal cluster centers Sk = {Sk
n}N

k

n=1

for the k-th refinement. The n-th cluster center Sk
n =

(bkn, y
k
n, s

k
n) consists of a proposal box bkn ∈ B, an object label

ykn (ykn = c, c ∈ {1, ..., C} indicates the c-th object class),
and a confidence score ski indicating the confidence that bkn
covers at least part of an object of class ykn. We have Nk + 1

proposal clusters Ck = {Ckn}N
k+1

n=1 according to Sk (CkNk+1
for background and others for objects). For object clusters,
the n-th cluster Ckn = (Bkn, ykn, skn), n 6= Nk + 1 consists of
Mk

n proposal boxes Bkn = {bknm}
Mk

n
m=1 ⊆ B, an object label ykn

that is the same as the cluster center label, and a confidence
score skn that is the same as the cluster center score, where
skn indicates the confidence that Ckn corresponds to an object
of class ykn. Unlike object clusters, the background cluster
Ckn = (Pk

n, y
k
n), n = Nk + 1 consists of Mk

n proposals

Pk
n = {P k

nm}
Mk

n
m=1 and a label ykn = C + 1 indicating the

background. The m-th proposal P k
nm = (bknm, s

k
nm) consists

of a proposal box bknm ∈ B and a confidence score sknm
indicating the confidence that bknm is the background.

3.2 Basic MIL network

It is necessary to generate proposal scores and clusters to
supervise refined instance classifiers. More specifically, the
first refined classifier requires basic instance classifiers to
generate proposal scores and clusters. Therefore, we first
introduce our basic MIL network as the basic instance
classifier. Our overall network is independent of the specific
MIL methods, and thus any method that can be trained end-
to-end could be used. There are many possible choices [16],
[17], [18]. Here we choose the method by Bilen and Vedaldi
[17] which proposes a weighted sum pooling strategy to
obtain the instance classifier, because of its effectiveness
and implementation convenience. To make our paper self-
contained, we briefly introduce [17] as follows.

Given an input image and its proposal boxes B =
{br}Rr=1, a set of proposal features F are first generated
by the network. Then as shown in the “Basic MIL net-
work” block of Fig. 4, there are two branches which
process the proposal features to produce two matrices
Xcls(F,Wcls),Xdet(F,Wdet) ∈ RC×R (we use Xcls,Xdet

later for simplification, dropping the dependence on
F,Wcls,Wdet) of an input image by two fc layers, where
Wcls and Wdet denote the parameters of the fc layer
for Xcls and the parameters of the fc layer for Xdet,
respectively. Then the two matrices are passed through
two softmax layer along different directions: [σ(Xcls)]cr =

ex
cls
cr/
∑C

c′=1 e
xcls
c′r and [σ(Xdet)]cr = ex

det
cr/
∑R

r′=1 e
xdet
cr′ . Let

us denote (Wcls,Wdet) by W0. The proposal scores
are generated by element-wise product ϕ0(F,W0) =
σ(Xcls) � σ(Xdet). Finally, the image score of the c-th class
[φ(F,W0)]c is obtained by the sum over all proposals:
[φ(F,W0)]c =

∑R
r=1[ϕ

0(F,W0)]cr .
A simple interpretation of the two branches framework

is as follows. [σ(Xcls)]cr is the probability of the r-th pro-
posal belonging to class c. [σ(Xdet)]cr is the normalized
weight that indicates the contribution of the r-th proposal to
image being classified to class i. So [φ(F,W0)]c is obtained
by weighted sum pooling and falls in the range of (0, 1).
Given the image label vector y = [y1, ..., yC ]

T . We train the
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Algorithm 1 The overall training procedure (one iteration)
Input: An image, its proposal boxes B, and its image label

vector y = [y1, ..., yC ]
T ; refinement times K.

Output: An updated network.
1: Feed the image and B into the network to produce

proposal score matrices ϕk(F,Wk), k ∈ {0, 1, ...,K}
(simplified as ϕk later).

2: Compute loss L0
(
F,W0,y

)
by Eq. (1), see Section 3.2.

3: for k = 1 to K do
4: Generate supervisions Hk(ϕk−1,y), see Section 3.4.
5: Compute loss Lk

(
F,Wk,Hk(ϕk−1,y)

)
by

Eq. (6)/(7)/(8), see Section 3.4.

6: Optimize
K∑

k=0
Lk
(
F,Wk,Hk(ϕk−1,y)

)
, i.e., Eq. (2),

w.r.t. F,Wk (not w.r.t. Hk(ϕk−1,y)).

basic instance classifier by optimizing the multi-class cross
entropy loss Eq. (1) w.r.t. F,W0.

L0
(
F,W0,y

)
= −

C∑
c=1

{(1− yc) log(1− [φ(F,W0)]c)

+yc log[φ(F,W
0)]c}.

(1)

3.3 The overall training strategy
To refine instance classifiers iteratively, we add multiple out-
put streams in our network where each stream corresponds
to a refined classifier, as shown in Fig. 4. We integrate the
basic MIL network and the classifier refinement into an
end-to-end network to learn the refined classifier online.
Unlike the basic instance classifier, for an input image the
output score matrix ϕk(F,Wk) of the k-th refined clas-
sifier is a {C + 1} × R matrix and is obtained by pass-
ing the proposal features through a single fc layer (with
parameters Wk) as well as a softmax over-classes layer,
i.e., ϕk(F,Wk) ∈ R(C+1)×R, k ∈ {1, 2, ...,K}, as in the
“Instance classifier refinement” blocks of Fig. 4. Notice that
we use the same proposal features F for all classifiers. We
use ϕk later for simplification, dropping the dependence on
F,Wk.

As we stated before, supervisions to train the k-th in-
stance classifier are generated based on proposal scores
ϕk−1 and image label y. Thus we denote the supervisions
byHk(ϕk−1,y). Then we train our overall network by opti-
mizing the loss Eq. (2) w.r.t. F,Wk. We do not optimize the
loss w.r.t. Hk(ϕk−1,y), which means that the supervisions
Hk(ϕk−1,y) are only computed in the forward process and
we do not compute their gradients to train our network.

K∑
k=0

Lk
(
F,Wk,Hk(ϕk−1,y)

)
. (2)

The loss Lk
(
F,Wk,Hk(ϕk−1,y)

)
, k > 0 for the k-th re-

fined instance classifier is defined in later Eq. (6)/(7)/(8)
which are loss functions with supervisions provided
by Hk(ϕk−1,y). We will give details about how
to get supervisions Hk(ϕk−1,y) and loss functions
Lk
(
F,Wk,Hk(ϕk−1,y)

)
in Section 3.4.

During the forward process of each Stochastic Gradient
Descent (SGD) training iteration, we obtain a set of proposal

scores of an input image. Accordingly, we generate the su-
pervisionsHk(ϕk−1,y) for the iteration to compute the loss
Eq. (2). During the back-propagation process of each SGD
training iteration, we optimize the loss Eq. (2) w.r.t. proposal
features F and classifiers Wk. We summarize this procedure
in Algorithm 1. Note that we do not use an alternating train-
ing strategy, i.e., fixing supervisions and training a complete
model, fixing the model and updating supervisions. The
reasons are that: 1) it is very time-consuming because it
requires training models multiple times; 2) training different
models in different refinement steps separately may harm
the performance because it hinders the process to benefit
from the shared proposal features (i.e., F).

3.4 Proposal cluster learning
Here we will introduce our methods to learn refined in-
stance classifiers based on proposal clusters (i.e., proposal
cluster learning).

Recall from Section 3.1 that we have a set of proposals
with boxes B = {br}Rr=1. For the k-th refinement, our goal
is to generate supervisions Hk(ϕk−1,y) for the loss func-
tions Lk

(
F,Wk,Hk(ϕk−1,y)

)
using the proposal scores

ϕk−1 and image label y in each training iteration. We use
Hk,Lk later for simplification, dropping the dependence on
ϕk−1,y,F,Wk.

We do this in three steps. 1) We find proposal cluster
centers which are proposals corresponding to different ob-
jects. 2) We group the remaining proposals into different
clusters, where each cluster is associated with a cluster
center or corresponds to the background. 3) We generate
the supervisionsHk for the loss functions Lk, enabling us to
train the refined instance classifiers.

For the first step, we compute proposal cluster centers
Sk = {Sk

n}N
k

n=1 based on ϕk−1 and y. The n-th cluster center
Sk
n = (bkn, y

k
n, s

k
n) is defined in Section 3.1. We propose two

algorithms to find Sk in Section 3.4.1 (1) and (2) (also Algo-
rithm 2 and Algorithm 3), where the first one was proposed
in the conference version paper [21] and the second one is
proposed in this paper.

For the second step, according to the proposal cluster
centers Sk, proposal clusters Ck = {Ckn}N

k+1
n=1 are generated

(CkNk+1 for background and others for objects). The n-th
object cluster Ckn = (Bkn, ykn, skn), n 6= Nk + 1 and the
background cluster Ckn = (Pk

n, y
k
n), n = Nk+1 are defined in

Section 3.1. We use the different notation for the background
cluster because background proposals are scattered in each
image, and thus it is hard to determine a cluster center and
accordingly a cluster score. The method to generate Ck was
proposed in the conference version paper and is described
in Section 3.4.2 (also Algorithm 4).

For the third step, supervisions Hk to train the k-th
refined instance classifier are generated based on the pro-
posal clusters. We use two strategies where Hk are either
proposal-level labels indicating whether a proposal belongs
to an object class, or cluster-level labels that treats each
proposal cluster as a bag. Subsequently these are used to
compute the loss functions Lk. We propose two approaches
to do this as described in Section 3.4.3 (1) and (2), where the
first one was proposed in the conference version paper and
the second one is proposed in this paper.
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Algorithm 2 Finding proposal cluster centers using the
highest scoring proposal
Input: Proposal boxes B = {b1, ..., bR}; image label vector

y = [y1, ..., yC ]
T ; proposal score matrix ϕk−1.

Output: Proposal cluster centers Sk.
1: Initialize Sk = ∅.
2: for c = 1 to C do
3: if yc = 1 then
4: Choose the rkc -th proposal by Eq. (3).
5: Sk.append

(
(brkc , c, ϕ

k−1
crkc

)
)

.

3.4.1 Finding proposal cluster centers

In the following we introduce two algorithms to find pro-
posal cluster centers.

(1) Finding proposal cluster centers using the highest
scoring proposal. A solution for finding proposal cluster
centers is to choose the highest scoring proposal, as in our
conference version paper [21]. As in Algorithm 2, suppose
an image has object class label c (i.e., yc = 1). For the k-th
refinement, we first select the rkc -th proposal which has the
highest score by Eq. (3), where ϕk−1

cr is the predicted score
of the r-th proposal, as defined in Section 3.1.

rkc = argmax
r

ϕk−1
cr . (3)

Then this proposal is chosen as the cluster center, i.e.,
Sk
n = (bkn, y

k
n, s

k
n) = (brkc , c, ϕ

k−1
crkc

), where brkc is the box of
the rkc -th proposal. ϕk−1

cr is chosen as the confidence score
that the r-th proposal covers at least part of an object of class
c, because ϕk−1

cr is the predicted score of the r-th proposal
been categorized to class c. Therefore, the highest scoring
proposal can probably cover at least part of the object and
thus be chosen as the cluster center.

There is a potential problem that one proposal may be
chosen as the cluster centers for multiple object classes.
To avoid this problem, if one proposal corresponds to the
cluster centers for multiple object classes, this proposal
would be chosen as the cluster center only by the class with
the highest predicted score and we re-choose cluster centers
for other classes.

(2) Finding proposal cluster centers using graphs of top
ranking proposals. As stated in Section 1, although we
can find good proposal cluster centers using the highest
scoring proposal, this ignores that in natural images there
are often more than one object for each category. Therefore,
we propose a new method to find cluster centers using
graphs of top ranking proposals.

More specifically, suppose an image has object class label
c. We first select the top ranking proposals with indexes
Rk

c = {rkc1, ..., rkcNk
c
} for the k-th refinement. Then we

build an undirected unweighted graph Gk
c = (V k

c , E
k
c ) of

these proposals based on spatial similarity, where vertexes
V k
c correspond to these top ranking proposals, and edges
Ek

c = {ekcrr′} = {e(vkcr, vkcr′)}, r, r′ ∈ Rk
c correspond to

the connections between the vertexes. ekcrr′ is determined
according to the spatial similarity between two vertexes (i.e.,

Algorithm 3 Finding proposal cluster centers using graphs
of top ranking proposals
Input: Proposal boxes B = {b1, ..., bR}; image label vector

y = [y1, ..., yC ]
T ; proposal score matrix ϕk−1.

Output: Proposal cluster centers Sk.
1: Initialize Sk = ∅.
2: for c = 1 to C do
3: if yc = 1 then
4: Select top ranking proposals with indexes Rk

c .
5: Build a graph Gk

c using the top ranking proposals.
6: repeat
7: Set rkc = argmaxr′

∑
r∈V k

c
ekcrr′ .

8: Set s = maxr ϕ
k−1
cr , r s.t. ekcrrkc = 1 or r = rkc .

9: Sk.append
(
(brkc , c, s)

)
.

10: Remove the r-th proposal box from V k
c ,

∀r s.t. ekcrrkc = 1 or r = rkc .
11: until V k

c is empty.

proposals) as in Eq. (4), where Irr′ is the IoU between the
r-th and r′-th proposals and It is a threshold (e.g., 0.4).

err′ =

{
1 if Irr′ > It,

0 otherwise.
(4)

Therefore, two vertexes are connected if they are spatially
adjacent. After that, we greedily generate some cluster
centers for class c using this graph. That is, we iteratively
select vertexes which have most connections to be the
cluster centers, as in Algorithm 3. The number of cluster
centers (i.e., Nk) changes for each image in each training
iteration because the top ranking proposals Rk

c change. See
Section 4.2.9 for some typical values of Nk. We use the same
method as in Section 3.4.1 (1) to avoid one proposal been
chosen as the cluster centers for multiple object classes.

The reasons for this strategy are as follows. First, ac-
cording to our observation, the top ranking proposals can
always cover at least parts of objects, thus generating centers
from these proposals encourages the selected centers to meet
our requirements. Second, because these proposals cover
objects well, better proposals (covering more parts of ob-
jects) should have more spatially overlapped proposals (i.e.,
have more connections). Third, these centers are spatially far
apart, and thus different centers can correspond to different
objects. This method also has the attractive characteristic
that it can generate adaptive number of proposals for each
object class, which is desirable because in natural images
there are arbitrary number of objects per-class. We set the
score of the n-th proposal cluster center skn by

skn = max
r
ϕk−1
cr , r s.t. ekcrrkc = 1 or r = rkc

(see the 8-th line in Algorithm 3) because if the adjacent
proposals of a center proposal have high confidence to cover
at least part of an object (i.e., have high classification scores)
the center proposal should also have such high confidence.

There is an important issue for the graph-based method:
how to select the top ranking proposals? A simple method is
to select proposals whose scores exceed a threshold. But in
our case, proposal scores change in each training iteration,
and thus it is hard to determine a threshold. Instead, for each
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Algorithm 4 Generating proposal clusters
Input: Proposal boxes B = {b1, ..., bR}; proposal cluster

centers Sk = {Sk
1 , ..., S

k
Nk}.

Output: Proposal clusters Ck.
1: Initialize Bkn = ∅,∀n 6= Nk + 1.
2: Set ykn, s

k
n of Ckn to ykn, s

k
n of Sk

n, ∀n 6= Nk + 1.
3: Initialize Pk

Nk+1 = ∅ and set ykNk+1 = C + 1.
4: for r = 1 to R do
5: Compute IoUs {Ikr1, ..., IkrNk}.
6: Choose the most spatially adjacent center Sk

nk
r

.
7: if Ikrnk

r
> I ′t then

8: Bknk
r

.append (br).
9: else

10: Pk
Nk+1.append

(
(br, s

k
nk
r
)
)

.

positive object class, we use the k-means [48] algorithm to
divide proposal scores of an image into some clusters, and
choose proposals in the cluster which has the highest score
center to form the top ranking proposals. This method en-
sures that we can select the top ranking proposals although
proposal scores change during training. Other choices are
possible, but this method works well in experiments.

3.4.2 Generating proposal clusters
After the cluster centers are found, we generate the proposal
clusters as in our conference version paper [21]. Except for
the cluster for background, good proposal clusters require
that proposals in the same cluster are associated with the
same object, and thus proposals in the same cluster should
be spatially adjacent. Specially, given the r-th proposal, we
compute a set of IoUs {Ikr1, ..., IkrNk}, where Ikrn is the IoU
between the r-th proposal and the box bkn of the n-th cluster
center. Then we assign the r-th proposal to the nkr -th object
cluster if Ikrnk

r
is larger than a threshold I ′t (e.g., 0.5) and to

the background cluster otherwise, where nkr is the index of
the most spatially adjacent cluster center as Eq. (5).

nkr = argmax
n

Ikrn. (5)

The overall procedures to generate proposal clusters are
summarized in Algorithm 4. We set the proposal scores for
the background cluster to the scores of their most spatially
adjacent centers as the 10-the line in Algorithm 4, because
if the cluster center Sk

n has confidence skn that it covers
an object, the proposal far away from Sk

n should have
confidence skn to be background.

3.4.3 Learning refined instance classifiers
To get supervisions Hk and loss functions Lk to learn the
k-th refined instance classifier, we design two approaches as
follows.

(1) Assigning proposals object labels. The most straight-
forward way to refine classifiers is to directly assign ob-
ject labels to all proposals in object clusters because these
proposals potentially correspond to whole objects, as in
our conference version paper [21]. As the cluster centers
covers at least parts of objects, their adjacent proposals
(i.e., proposals in the cluster) can contain larger parts of

objects. Accordingly, we can assign the cluster label ykn to
all proposals in the n-th cluster.

More specifically, the supervisionsHk are proposal-level
labels, i.e., Hk = {yk

r}Rr=1. yk
r = [yk1r, ..., y

k
(C+1)r]

T ∈
R(C+1)×1 is the label vector of the r-th proposal for the k-
th refinement, where ykyk

nr
= 1 and ykcr = 0, c 6= ykn if the

r-th proposal belongs to the n-th clusters. Consequently, we
use the standard softmax loss function to train the refined
classifiers as in Eq. (6), where ϕk

cr is the predicted score of
the r-th proposal as defined in Section 3.1.

Lk
(
F,Wk,Hk

)
= − 1

R

R∑
r=1

C+1∑
c=1

ykcr logϕ
k
cr. (6)

Through iterative instance classifier refinement (i.e., multi-
ple times of refinement as k increase), the detector detects
larger parts of objects gradually by forcing the network to
“see” larger parts of objects.

Actually, the so learnt supervisions Hk are very noisy,
especially in the beginning of training. This results in unsta-
ble solutions. To solve this problem, we change the loss in
Eq. (6) to a weighted version, as in Eq. (7).

Lk
(
F,Wk,Hk

)
= − 1

R

R∑
r=1

C+1∑
c=1

λkry
k
cr logϕ

k
cr. (7)

λkr is the loss weight that is the same as the cluster con-
fidence score skn for object clusters or proposal confidence
score sknm for the background cluster if the r-th proposal
belongs to the n-th cluster. From Algorithm 4, we can
observe that λkr is the same as the cluster center confidence
score skn. The reasons for this strategy are as follows. In the
beginning of training, although we cannot obtain good pro-
posal clusters, each skn is small, hence each λkr is small and
the loss is also small. As a consequence, the performance
of the network will not decrease a lot. During the training,
the top ranking proposals will cover objects well, and thus
we can generate good proposal clusters. Then we can train
satisfactory instance classifiers.

(2) Treating clusters as bags. As we stressed before, al-
though directly assigning proposals object labels can boost
the results, it may confuse the network because we simul-
taneously assign the same label to different parts of objects.
Focusing on this, we further propose to treat each proposal
cluster as a small new bag and use the cluster label as the
bag label. Thus the supervisions Hk for the k-th refinement
are bag-level (cluster-level) labels, i.e., Hk = {ykn}N

k+1
n=1 . ykn

is the label of the n-th bag, i.e., the label of the n-th proposal
cluster, as defined in Section 3.1.

Specially, for object clusters, we choose average MIL
pooling, because these proposals should cover at least parts
of objects and thus should have relatively high prediction
scores. For the background cluster, we assign the back-
ground label to all proposals in the cluster according to the
MIL constraints (all instances in negative bags are negative).
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Then the loss function for refinement will be Eq. (8).

Lk
(
F,Wk,Hk

)
= − 1

R
(

Nk∑
n=1

sknM
k
n log

∑
r s.t. br∈Bk

n

ϕk
yk
nr

Mk
n

+
∑

r∈Ck
Nk+1

λkr logϕ
k
(C+1)r).

(8)
skn, Mk

n , and ϕk
cr are the cluster confidence score of the n-th

object cluster, the number of proposals in the n-th cluster,
and the predicted score of the r-th proposal, respectively, as
defined in Section 3.1. br ∈ Bkn and r ∈ CkNk+1 indicate that
the r-th proposal belongs to the n-th object cluster and the
background cluster respectively.

Compared with the directly assigning label approach,
this method tolerates some proposals to have low scores,
which can reduce the ambiguities to some extent.

3.5 Testing

During testing, the proposal scores of refined instance classi-
fiers are used as the final detection scores, as the blue arrows
in Fig. 4. Here the mean output of all refined classifiers
is chosen. The Non-Maxima Suppression (NMS) is used to
filter out redundant detections.

4 EXPERIMENTS

In this section, we first introduce our experimental setup
including datasets, evaluation metrics, and implementation
details. Then we conduct elaborate experiments to discuss
the influence of different settings. Next, we compare our
results with others to show the effectiveness of our method.
After that, we show some qualitative results for further
analyses. Finally, we give some runtime analyses of our
method. Codes for reproducing our results are available at
https://github.com/ppengtang/oicr/tree/pcl.

4.1 Experimental setup

4.1.1 Datasets and evaluation metrics
We evaluate our method on four challenging datasets: the
PASCAL VOC 2007 and 2012 datasets [3], the ImageNet
detection dataset [4], and the MS-COCO dataset [5]. Only
image-level annotations are used to train our models.

The PASCAL VOC 2007 and 2012 datasets have 9, 962
and 22, 531 images respectively for 20 object classes. These
two datasets are divided into train, val, and test sets. Here
we choose the trainval set (5, 011 images for 2007 and
11, 540 images for 2012) to train our network. For testing,
there are two metrics for evaluation: mAP and CorLoc.
Following the standard PASCAL VOC protocol [3], Average
Precision (AP) and the mean of AP (mAP) is the evalua-
tion metric to test our model on the testing set. Correct
Localization (CorLoc) is to test our model on the training
set measuring the localization accuracy [34]. All these two
metrics are based on the PASCAL criterion, i.e., IoU>0.5
between groundtruth boundingboxes and predicted boxes.

The ImageNet detection dataset has hundreds of thou-
sands of images with 200 object classes. It is also divided
into train, val, and test sets. Following [6], we split the val set

into val1 and val2, and randomly choose at most 1K images
in the train set for each object class (we call it train1K). We
train our model on the mixture of train1K and val1 sets, and
test it on the val2 set, which will lead to 160, 651 images for
training and 9, 916 images for testing. We also use the mAP
for evaluation on the ImageNet.

The MS-COCO dataset has 80 object classes and is di-
vided into train, val, and test sets. Since the groundtruths
on the test set are not released, we train our model on
the MS-COCO 2014 train set (about 80K images) and test
it on the val set (about 40K images). For evaluation, we
use two metrics mAP@0.5 and mAP@[.5, .95] which are the
standard PASCAL criterion (i.e., IoU>0.5) and the standard
MS-COCO criterion (i.e., computing the average of mAP for
IoU∈[0.5 : 0.05 : 0.95]) respectively.

4.1.2 Implementation details
Our method is built on two pre-trained ImageNet [4] net-
works VGG M [49] and VGG16 [50], each of which has
some conv layers with max-pooling layers and three fc
layers. We replace the last max-pooling layer by the SPP
layer, and the last fc layer as well as the softmax loss layer by
the layers described in Section 3. To increase the feature map
size from the last conv layer, we replace the penultimate
max-pooling layer and its subsequent conv layers by the
dilated conv layers [51], [52]. The newly added layers are
initialized using Gaussian distributions with 0-mean and
standard deviations 0.01. Biases are initialized to 0.

During training, the mini-batch size for SGD is set to
be 2, 32, and 4 for PASCAL VOC, ImageNet, and MS-
COCO, respectively. The learning rate is set to 0.001 for
the first 40K, 60K, 15K, and 85K iterations for the PASCAL
VOC 2007, PASCAL VOC 2012, ImageNet, and MS-COCO
datasets, respectively. Then we decrease the learning rate to
0.0001 in the following 10K, 20K, 5K, and 20K iterations
for the PASCAL VOC 2007, PASCAL VOC 2012, ImageNet,
and MS-COCO datasets, respectively. The momentum and
weight decay are set to be 0.9 and 0.0005 respectively.

Selective Search [20], EdgeBox [47], and MCG [53] are
adopted to generate about 2, 000 proposals per-image for
the PASCAL VOC, ImageNet, and MS-COCO datasets, re-
spectively. For data augmentation, we use five image scales
{480, 576, 688, 864, 1200} (resize the shortest side to one
of these scales) with horizontal flips for both training and
testing. If not specified, the instance classifiers are refined
three times, i.e., K = 3 in Section 3.3, so there are four
output streams; the IoU threshold It in Section 3.4.1 (2)
(also Eq. (4)) is set to 0.4; the number of k-means clusters
in the last paragraph of Section 3.4.1 (2) is set to 3; I ′t in
Section 3.4.2 (also the 5-th line of Algorithm 4) is set to 0.5.

Similar to other works [19], [43], [54], we train a su-
pervised object detector through choosing the top-scoring
proposals given by our method as pseudo groundtruths to
further improve our results. Here we train a Fast R-CNN
(FRCNN) [7] using the VGG16 model and the same five
image scales (horizontal flips only in training). The same
proposals are chosen to train and test the FRCNN. NMS
(with 30% IoU threshold) is applied to compute AP.

Our experiments are implemented based on the Caffe
[55] deep learning framework, using Python and C++. The
k-means algorithm to produce top ranking proposals is

https://github.com/ppengtang/oicr/tree/pcl
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Fig. 5. Results on VOC 2007 for different refinement times and differ-
ent training strategies, where “PCL-xx-H” and “PCL-xx-G” indicate the
highest scoring proposal based method and the graph-based method
to generate proposal clusters respectively, “PCL-OL-x” and “PCL-OB-x”
indicate the directly assigning label method and the treating clusters as
bags method to train the network online respectively, and “PCL-AB-x”
indicates using the alternating training strategy.

implemented by scikit-learn [56]. All of our experiments are
running on an NVIDIA GTX TitanX Pascal GPU and Intel(R)
i7-6850K CPU (3.60GHz).

4.2 Discussions
We first conduct some experiments to discuss the influence
of different components of our method (including instance
classifier refinement, different proposal generation methods,
different refinement strategies, and weighted loss) and dif-
ferent parameter settings (including the IoU threshold It
defined in Section 3.4.1 (2), the number of k-means clusters
described in Section 3.4.1 (2), the IoU threshold I ′t defined in
Section 3.4.2, and multi-scale training and testing.) We also
discuss the number of proposal cluster centers. Without loss
of generality, we only perform experiments on the VOC 2007
dataset and use the VGG M model.

4.2.1 The influence of instance classifier refinement
As the five curves in Fig. 5 show, we observe that compared
with the basic MIL network, for both refinement methods,
even refining instance classifier a single time boosts the
performance a lot. This confirms the necessity of refinement.
If we refine the classifier multiple times, the results are
improved further. But when refinement is implemented too
many times, the performance gets saturated (there are no
obvious improvements from 3 times to 4 times). This is be-
cause the network tends to converge so that the supervision
of the 4-th time is similar to the 3-rd time. In the rest of this
paper we only refine classifiers 3 times. Notice that in Fig. 5,
the “0 time” is similar to the WSDDN [17] using Selective
Search as proposals.

4.2.2 The influence of different proposal cluster generation
methods
We discuss the influence of different proposal cluster gen-
eration methods. As shown in the Fig. 5 (green and purple
solid curves for the highest scoring proposal based method,
blue and red solid curves for the graph-based method), for
all refinement times, the graph-based method obtains better
performance, because it can generate better cluster centers.
Thus we choose the graph-based method in the rest of our
paper.
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different IoU threshold It.
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Fig. 7. Results on VOC 2007 for
different IoU threshold I′t.

4.2.3 The influence of different refinement strategies

We then show the influence of different refinement strate-
gies. The directly assigning label method is replaced by
treating clusters as bags (blue and green solid curves). From
Fig. 5, it is obvious that the results by treating clusters as
bags are better. In addition, compared with the alternating
training strategy (blue dashed curve), our online training
boosts the performance consistently and significantly, which
confirms the necessity of sharing proposal features. Online
training also reduces the training time a lot, because it only
requires training a single model instead of training K + 1
models for K times refinement in the alternating strategy.
In the rest of our paper, we only report results by the
“PCL-OB-G” method in Fig. 5 because it achieves the best
performance.

4.2.4 The influence of weighted loss

We also study the influence of our weighted loss in Eq. (8).
Note that Eq. (8) can be easily changed to the unweighted
version by simply setting λkr and skn to be 1. Here we train
a network using the unweighted loss. The results of the
unweighted loss are mAP 33.6% and CorLoc 51.2%. We
see that if we use the unweighted loss, the improvement
from refinement is very scant and the performance is even
worse than the alternating strategy. Using the weighted loss
achieves much better performance (mAP 40.8% and CorLoc
59.6%), which confirms our theory in Section 3.4.3.

4.2.5 The influence of the IoU threshold It

Here we discuss the influence of the IoU threshold It de-
fined in Section 3.4.1 (2) and Eq. (4). From Fig. 6, we see that
setting It to 0.4 obtains the best performance. Therefore, we
set It to 0.4 for the other experiments.

4.2.6 The influence of the number of k-means clusters

In previous experiments we set the number of k-means
clusters described in the last paragraph of Section 3.4.1 (2) to
be 3. Here we set it to other numbers to explore its influence.
The results from other numbers of k-means clusters are
mAP 40.2% and CorLoc 59.3% for 2 clusters, and mAP
40.7% and CorLoc 59.6% for 4 clusters, which are a little
worse than the results from 3 cluster. Therefore, we set the
number of k-means clusters to 3 for the other experiments.
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TABLE 1
Results (AP in %) for different methods on the VOC 2007 test set. The upper part shows the results using a single model. The lower part shows

the results of combing multiple models. See Section 4.3 for the definitions of the PCL-based methods.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
WSDDN-VGG F [17] 42.9 56.0 32.0 17.6 10.2 61.8 50.2 29.0 3.8 36.2 18.5 31.1 45.8 54.5 10.2 15.4 36.3 45.2 50.1 43.8 34.5
WSDDN-VGG M [17] 43.6 50.4 32.2 26.0 9.8 58.5 50.4 30.9 7.9 36.1 18.2 31.7 41.4 52.6 8.8 14.0 37.8 46.9 53.4 47.9 34.9
WSDDN-VGG16 [17] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8
WSDDN+context [18] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3
PCL-OB-G-VGG M 54.0 60.8 33.9 18.4 15.8 57.7 59.8 52.0 2.7 48.3 46.4 38.5 47.9 63.9 7.0 21.7 38.1 42.1 54.3 53.0 40.8
PCL-OB-G-VGG16 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5

WSDDN-Ens. [17] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.3
OM+MIL+FRCNN [54] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5
WCCN [19] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8
Jie et al. [43] 54.2 52.0 35.2 25.9 15.0 59.6 67.9 58.7 10.1 67.4 27.3 37.8 54.8 67.3 5.1 19.7 52.6 43.5 56.9 62.5 43.7
PCL-OB-G-Ens. 57.1 67.1 40.9 16.9 18.8 65.1 63.7 45.3 17.0 56.7 48.9 33.2 54.4 68.3 16.8 25.7 45.8 52.2 59.1 62.0 45.8
PCL-OB-G-Ens.+FRCNN 63.2 69.9 47.9 22.6 27.3 71.0 69.1 49.6 12.0 60.1 51.5 37.3 63.3 63.9 15.8 23.6 48.8 55.3 61.2 62.1 48.8

TABLE 2
Results (CorLoc in %) for different methods on the VOC 2007 trainval set. The upper part shows the results using a single model. The lower part

shows the results of combing multiple models. See Section 4.3 for the definitions of the PCL-based methods.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
WSDDN-VGG F [17] 68.5 67.5 56.7 34.3 32.8 69.9 75.0 45.7 17.1 68.1 30.5 40.6 67.2 82.9 28.8 43.7 71.9 62.0 62.8 58.2 54.2
WSDDN-VGG M [17] 65.1 63.4 59.7 45.9 38.5 69.4 77.0 50.7 30.1 68.8 34.0 37.3 61.0 82.9 25.1 42.9 79.2 59.4 68.2 64.1 56.1
WSDDN-VGG16 [17] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5
WSDDN+context [18] 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1
PCL-OB-G-VGG M 78.7 75.7 55.9 33.5 35.9 72.6 81.2 69.5 10.1 74.7 52.5 55.1 73.1 87.6 15.9 46.2 70.1 60.5 71.9 71.3 59.6
PCL-OB-G-VGG16 79.6 85.5 62.2 47.9 37.0 83.8 83.4 43.0 38.3 80.1 50.6 30.9 57.8 90.8 27.0 58.2 75.3 68.5 75.7 78.9 62.7

OM+MIL+FRCNN [54] 78.2 67.1 61.8 38.1 36.1 61.8 78.8 55.2 28.5 68.8 18.5 49.2 64.1 73.5 21.4 47.4 64.6 22.3 60.9 52.3 52.4
WSDDN-Ens. [17] 68.9 68.7 65.2 42.5 40.6 72.6 75.2 53.7 29.7 68.1 33.5 45.6 65.9 86.1 27.5 44.9 76.0 62.4 66.3 66.8 58.0
WCCN [19] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7
Jie et al. [43] 72.7 55.3 53.0 27.8 35.2 68.6 81.9 60.7 11.6 71.6 29.7 54.3 64.3 88.2 22.2 53.7 72.2 52.6 68.9 75.5 56.1
PCL-OB-G-Ens. 81.7 82.4 63.4 41.0 42.4 79.7 84.2 54.9 23.4 78.8 54.4 46.0 75.9 89.6 22.8 51.3 72.2 66.1 74.9 76.0 63.0
PCL-OB-G-Ens.+FRCNN 83.8 85.1 65.5 43.1 50.8 83.2 85.3 59.3 28.5 82.2 57.4 50.7 85.0 92.0 27.9 54.2 72.2 65.9 77.6 82.1 66.6

TABLE 3
Results (AP in %) for different methods on the VOC 2012 test set. See Section 4.3 for the definitions of the PCL-based methods.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
WSDDN+context [18] 64.0 54.9 36.4 8.1 12.6 53.1 40.5 28.4 6.6 35.3 34.4 49.1 42.6 62.4 19.8 15.2 27.0 33.1 33.0 50.0 35.3
WCCN [19] - - - - - - - - - - - - - - - - - - - - 37.9
Jie et al. [43] 60.8 54.2 34.1 14.9 13.1 54.3 53.4 58.6 3.7 53.1 8.3 43.4 49.8 69.2 4.1 17.5 43.8 25.6 55.0 50.1 38.3
PCL-OB-G-VGG M 63.2 58.0 37.8 19.6 18.9 48.9 49.5 27.9 5.6 45.5 13.7 45.8 53.4 65.9 8.2 20.7 40.4 41.7 36.9 50.5 37.6
PCL-OB-G-VGG16 58.2 66.0 41.8 24.8 27.2 55.7 55.2 28.5 16.6 51.0 17.5 28.6 49.7 70.5 7.1 25.7 47.5 36.6 44.1 59.2 40.6
PCL-OB-G-Ens. 63.4 64.2 44.2 25.6 26.4 54.5 55.1 30.5 11.6 51.0 15.8 39.4 55.9 70.7 8.2 26.3 46.9 41.3 44.1 57.7 41.6
PCL-OB-G-Ens.+FRCNN 69.0 71.3 56.1 30.3 27.3 55.2 57.6 30.1 8.6 56.6 18.4 43.9 64.6 71.8 7.5 23.0 46.0 44.1 42.6 58.8 44.2

TABLE 4
Results (CorLoc in %) for different methods on the VOC 2012 trainval set. See Section 4.3 for the definitions of the PCL-based methods.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
WSDDN+context [18] 78.3 70.8 52.5 34.7 36.6 80.0 58.7 38.6 27.7 71.2 32.3 48.7 76.2 77.4 16.0 48.4 69.9 47.5 66.9 62.9 54.8
Jie et al. [43] 82.4 68.1 54.5 38.9 35.9 84.7 73.1 64.8 17.1 78.3 22.5 57.0 70.8 86.6 18.7 49.7 80.7 45.3 70.1 77.3 58.8
PCL-OB-G-VGG M 82.1 81.6 67.0 48.4 42.7 78.6 73.1 40.1 24.7 82.2 42.1 61.6 83.4 87.1 21.7 53.7 80.7 64.9 63.8 78.5 62.9
PCL-OB-G-VGG16 77.2 83.0 62.1 55.0 49.3 83.0 75.8 37.7 43.2 81.6 46.8 42.9 73.3 90.3 21.4 56.7 84.4 55.0 62.9 82.5 63.2
PCL-OB-G-Ens. 82.7 84.8 69.5 56.4 49.2 80.0 76.2 39.4 35.4 82.8 45.2 51.4 82.2 89.6 21.9 59.0 83.4 62.9 66.4 82.4 65.0
PCL-OB-G-Ens.+FRCNN 86.7 86.7 74.8 56.8 53.8 84.2 80.1 42.0 36.4 86.7 46.5 54.1 87.0 92.7 24.6 62.0 86.2 63.2 70.9 84.2 68.0

4.2.7 The influence of the IoU threshold I ′t
We also analyse the influence of I ′t defined in Section 3.4.2
and the 5-th line of Algorithm 4. As shown in Fig. 7, I ′t = 0.5
outperforms other choices. Therefore, we set I ′t to 0.5 for the
other experiments.

4.2.8 The influence of multi-scale training and testing

Previously our experiments are conducted based on five
image scales for training and testing. Here we show the
influence of this multi-scale setting. We train and test our
method using a single image scale 600 as the default scale
setting of FRCNN [7]. The single-scale results are mAP

37.4% and CorLoc 55.5% which are much worse than our
multi-scale results (mAP 40.8% and CorLoc 59.6%). There-
fore, we use five image scales as many WSOD networks [17],
[18], [19].

4.2.9 The number of proposal cluster centers

As we stated in Section 3.4.1 (2), the number of proposal
cluster centers (i.e., Nk) changes for each image in each
training iteration. Here we give some typical values of Nk.
In the beginning of training, the proposal scores are very
noisy and thus the selected top ranking proposals to form
graphs are scattered in images, which results in dozens of
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TABLE 5
Results (mAP in %) for different methods on the ImageNet dataset. See

Section 4.3 for the definitions of the PCL-based methods.

Method Results
Ren et al. [12] 9.6
Li et al. [54] 10.8
WCCN [19] 16.3
PCL-OB-G-VGG M 14.4
PCL-OB-G-VGG16 18.4
PCL-OB-G-Ens. 18.8
PCL-OB-G-Ens.+FRCNN 19.6

proposal cluster centers for each image. After some (about
3K) training iterations, the proposal scores are more reliable
and our method finds 1∼3 proposal cluster centers for each
positive object class. To make the training more stable in
the beginning, for each positive object class we empirically
select at most five proposal cluster centers which have
higher scores, and the number of selected proposal cluster
centers does not influence the performance much.

4.3 Comparison with other methods

Here we compare our best performed strategy PCL-OB-G,
i.e., using graph-based method and treating clusters as bags
to train the network online, with other methods.

We first report our results for each class on VOC 2007
and 2012 in Table 1, Table 2, Table 3, and Table 4. It is obvious
that our method outperforms other methods [17], [18] using
single model VGG M or VGG16 (PCL-OB-G+VGG M and
PCL-OB-G+VGG16 in tables.) Our single model results even
better than others by combining multiple different models
(e.g., ensemble of models) [17], [19], [43], [54]. Specially,
our method obtains much better results compared with
other two methods also using the same basic MIL network
[17], [18]. Importantly, [17] also equips the weighted sum
pooling with objectness measure of EdgeBox [47] and the
spatial regulariser, and [18] adds context information into
the network, both of which are more complicated than our
basic MIL network. We believe that our performance can
be improved by choosing better basic MIL networks, like
the complete network in [17] and using context information
[18]. As reimplementing their method completely is non-
trivial, here we only choose the simplest architecture in
[17]. Even in this simplified case, our method achieves very
promising results.

Our results can also be improved by combing multiple
models. As shown in the tables, there are little improve-
ments from the ensemble of the VGG M and VGG16 mod-
els (PCL-OB-G-Ens. in tables). Here we do the ensemble
by summing up the scores produced by the two models.
Also, as mentioned in Section 4.1, similar to [19], [43], [54],
we train a FRCNN detector using top-scoring proposals
produced by PCL-OB-G-Ens. as groundtruths (PCL-OB-G-
Ens.+FRCNN in tables). As we can see, the performance is
improved further.

We then show results of our method on the large scale
ImageNet detection dataset in Table 5. We observe similar
phenomenon that our method outperforms other methods
by a large margin.

TABLE 6
Results (mAP@0.5 and mAP@[.5, .95] in %) of different methods on

the MS-COCO dataset. See Section 4.3 for the definitions of the
PCL-based methods.

Method mAP@0.5 mAP@[.5, .95]
Ge et al. [57] 19.3 8.9
PCL-OB-G-VGG M 16.6 7.3
PCL-OB-G-VGG16 19.4 8.5
PCL-OB-G-Ens. 19.5 8.6
PCL-OB-G-Ens.+FRCNN 19.6 9.2

Fig. 8. Some learned proposal clusters. The proposals with white are
cluster centers. Proposals with the same color belong to the same
cluster. We omit the background cluster for simplification.

We finally report results of our method on MS-COCO
in Table 6. Our method obtains better performance than the
recent work [57]. In particular, Ge et al. [57] use the method
proposed in our conference version paper [21] as a basic
component. We can expect to obtain better detection perfor-
mance through replacing our conference version method in
[57] by our newly proposed method here, which we would
like to explore in the future.

4.4 Qualitative results
We first show some proposal clusters generated by our
method in Fig. 8. As we can see, the cluster centers contain at
least parts of objects and are able to cover adaptive number
of objects for each class.

We then show qualitative comparisons among the WS-
DDN [17], the WSDDN+context [18], and our PCL method,
both of which use the same basic MIL network. As shown in
Fig. 9, we can observe that for classes such as bike, car, cat,
etc., our method tends to provide more accurate detections,
whereas other two methods sometimes fails by producing
boxes that are overlarge or only contain parts of objects
(the first four rows in Fig. 9). But for some classes such as
person, our method sometimes fails by only detecting parts
of objects such as the head of person (the fifth row in Fig. 9).
Exploiting context information sometimes help the detection
(as in WSDDN+context [18]), we believe our method can be
further improved by incorporating context information into
our framework. All these three methods (actually almost all
weakly supervised object detection methods) suffers from
two problems: producing boxes that not only contain the
target object but also include their adjacent similar objects,
or only detecting parts of object for objects with deformation
(the last row in Fig. 9).
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WSDDN WSDDN+context PCL WSDDN WSDDN+context PCL

Fig. 9. Some visualization comparisons among the WSDDN [17], the WSDDN+context [18], and our method (PCL) (in each image only the top-
scoring box is shown). Green rectangle indicates success cases (IoU>0.5), red rectangle indicates failure cases (IoU<0.5), and yellow rectangle
indicates groundtruths. The first four rows show examples that our method outperforms other two methods (with larger IoU). The fifth row shows
examples that our method is worse than other two methods (with smaller IoU). The last row shows failure examples for both three methods.

We finally visualize some success and failure detection
results on VOC 2007 trainval by PCL-Ens.+FRCNN, as in
Fig. 10. We observe similar phenomena as in Fig. 9. Our
method is robust to the size and aspect of objects, especially
for rigid objects. The main failures for these rigid objects
are always due to overlarge boxes that not only contain
objects, but also include adjacent similar objects. For non-
rigid objects like “cat”, “dog”, and “person”, they often have
great deformations, but their parts (e.g., head of person)
have much less deformation, so our detector is still inclined
to find these parts. An ideal solution is yet wanted because
there is still room for improvement.

4.5 Runtime
The runtime comparisons between our method and our
basic MIL network [17] are shown in Table 7, where the
runtime of proposal generation is not considered. As we
can see, although our method has more components than
our basic MIL network [17], our method takes almost the
same testing time as it. This is because all our output

TABLE 7
Runtime comparisons between our method (“PCL” in table) and our

basic MIL network [17] (“Basic” in table).

PCL Basic
VGG M VGG16 VGG M VGG16

Training (second/iteration) 1.11 1.51 0.99 1.40
Testing (second/image) 0.71 1.22 0.71 1.21

streams share the same proposal feature computations. The
small extra training computations of our method mainly
come from the procedures to find proposal cluster centers
and generate proposal clusters. Although with small extra
training computations, our method obtains much better
detection results than the basic MIL network.

5 CONCLUSION

In this paper, we propose to generate proposal clusters
to learn refined instance classifiers for weakly supervised
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Fig. 10. Some detection results for class bicycle, bus, cat, chair, dog, motorbike, person, and train (in each image only the top-scoring box is shown).
Green rectangle indicates success cases (IoU>0.5), and red rectangle indicates failure cases (IoU<0.5).

object detection. We propose two strategies for proposal
cluster generation and classifier refinement, both of which
can boost the performance significantly. The classifier re-
finement is implemented by multiple output streams corre-
sponding to some instance classifiers in multiple instance
learning networks. An online training algorithm is intro-
duced to train the proposed network end-to-end for ef-
fectiveness and efficiency. Experiments show substantial
and consistent improvements by our method. We observe
that the most common failure cases of our algorithm are
connected with the deformation of non-rigid objects. In the
future, we will concentrate on this problem. In addition,
we believe our learning algorithm has the potential to be
applied in other weakly supervised visual learning tasks
such as weakly supervised semantic segmentation. We will
also explore how to apply our method to these related
applications.
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