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Abstract—Dictionary learning and component analysismodels are fundamental for learning compact representations that are relevant to

a given task (feature extraction, dimensionality reduction, denoising, etc.). Themodel complexity is encoded bymeans of specific structure,

such as sparsity, low-rankness, or nonnegativity. Unfortunately, approaches like K-SVD - that learn dictionaries for sparse coding via

Singular ValueDecomposition (SVD) - are hard to scale to high-volume and high-dimensional visual data, and fragile in the presence of

outliers. Conversely, robust component analysismethods such as the Robust Principal Component Analysis (RPCA) are able to recover

low-complexity (e.g., low-rank) representations from data corrupted with noise of unknownmagnitude and support, but do not provide a

dictionary that respects the structure of the data (e.g., images), and also involve expensive computations. In this paper, we propose a novel

Kronecker-decomposable component analysismodel, coined asRobust Kronecker Component Analysis (RKCA), that combines ideas

from sparse dictionary learning and robust component analysis. RKCAhas several appealing properties, including robustness to gross

corruption; it can be used for low-rankmodeling, and leverages separability to solve significantly smaller problems.We design an efficient

learning algorithmby drawing linkswith a restricted form of tensor factorization, and analyze its optimality and low-rankness properties. The

effectiveness of the proposed approach is demonstrated on real-world applications, namely background subtraction and image denoising

and completion, by performing a thorough comparison with the current state of the art.

Index Terms—Component analysis, dictionary learning, separable dictionaries, low-rank, sparsity, global optimality

1 INTRODUCTION

COMPONENT analysis models and representation learning
methods are flexible data-driven alternatives to analyti-

cal dictionaries (e.g., Fourier analysis, or wavelets) for signal
and data representation. The underlying principle is to solve
an optimization problem that encodes the desired properties
of the representations and of the bases, and describes what
task(s) the representation should help solving. Starting from
Principal Component Analysis [1], [2], a rich set of algo-
rithms has been developed for feature extraction, dimension-
ality reduction, clustering, classification, or denoising—to
name but a few. The importance of learned components and
representations cannot be overstated, and neither can their
effectiveness in dramatically improvingmachine perception.
Prominent examples are Convolutional Neural Networks
[3], [4], which through hierarchical feature extraction build
ad-hoc representations enabling state of the art performance
on awide range of problems [5].

In this work, we propose the Robust Kronecker Compo-
nent Analysis (RKCA) family of algorithms for the unsuper-
vised learning of compact representations of tensor data.

Our method offers to bridge (multilinear) Robust PCA [6],
[7] and Sparse Dictionary Learning [8], [9] from the perspec-
tive of a robust low-rank tensor factorization. Although our
method is generic enough to be presented for arbitrary ten-
sors, we focus on 3-dimensional tensors, and especially those
obtained by concatenating 2-dimensional tensor observa-
tions (i.e., matrices). We present a framework for jointly
learning a (Kronecker) separable dictionary and sparse rep-
resentations in the presence of outliers, such that the learned
dictionary is low-rank, and the outliers are separated from
the data. The double perspective adopted allows us to draw
on recent work from the tensor factorization literature to pro-
vide some theoretical optimality guarantees, discussed in
Section 4.

1.1 Robust PCA and Sparse Dictionary Learning

Assuming a set of N data samples x1; . . . ; xn 2 Rm repre-
sented as the columns of a matrix X, structured matrix facto-
rizations seek to decompose X into meaningful components
of a given structure, by solving a regularization problem of
the form:

min
Z

lðX;ZÞ þ � gðZÞ; (1)

whereZ is an approximation of the datawith respect to a loss
lð�Þ, gð�Þ is a possibly non-smooth regularizer that encourages
the desired structure, and � � 0 is a regularization parameter
balancing the two terms. Popular instances of Equation (1)
include Principal Component Analysis (PCA) [1], [2] and its
variants, e.g., Sparse PCA [10], Robust PCA (RPCA) [11], as
well as sparse dictionary learning [8], [9], [12].

Concretely,whenZ is taken to be factorized asZ ¼ DRwe
obtain a range of differentmodels depending on the choice of
the regularization and of the properties of D. For instance,

� M. Bahri is with the Department of Computing, Imperial College London,
London SW7 2RH, United Kingdom. E-mail: mehdi.bahri15@imperial.ac.uk.

� Y. Panagakis is with theDepartment of Computing, Imperial College London,
London SW7 2RH, United Kingdom, and also with Middlesex University,
LondonNW4 4BT, United Kingdom. E-mail: i.panagakis@imperial.ac.uk.

� S. Zafeiriou is with the Department of Computing, Imperial College London,
London SW7 2RH, United Kingdom, and also with the University of Oulu,
Oulu 90014, Finland. E-mail: s.zafeiriou@imperial.ac.uk.

Manuscript received 15 Jan. 2018; revised 1 Oct. 2018; accepted 6 Nov. 2018.
(Corresponding author: Mehdi Bahri.)
Recommended for acceptance by L. Liu, M. Pietkainen, J. Chen, G. Zhao,

X. Wang, and R. Chellappa.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2018.2881476

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publica-
tion. Citation information: DOI 10.1109/TPAMI.2018.2881476, IEEE Transactions on Pattern Analysis and Machine Intelligence

https://orcid.org/0000-0002-2409-0261
https://orcid.org/0000-0002-2409-0261
https://orcid.org/0000-0002-2409-0261
https://orcid.org/0000-0002-2409-0261
https://orcid.org/0000-0002-2409-0261
https://orcid.org/0000-0002-5222-1740
https://orcid.org/0000-0002-5222-1740
https://orcid.org/0000-0002-5222-1740
https://orcid.org/0000-0002-5222-1740
https://orcid.org/0000-0002-5222-1740
mailto:
mailto:
mailto:


assuming Z ¼ DR is a low-rank approximation of X and
� ¼ 0, Equation (1) yields PCA, while by imposing sparsity
onD, Sparse PCA [10] is obtained. To handle data corrupted
by sparse noise of large magnitude, RPCA [11] assumes that
the observation matrix, X, is the sum of a low-rank matrix A
and of a sparse matrix E that collects the gross errors, or out-
liers. This model is actually a special instance of Equation (1)
when Z ¼ Aþ E, gðZÞ ¼ jjAjj� þ �jjEjj1, and lð�Þ is the Frobe-
nius norm. Here, jj � jj� denotes the low-rank promoting
nuclear norm and jj � jj1 denotes the ‘1 norm that enforces
sparsity.Matrix RPCAhas been extended to tensors inmulti-
ple ways, relying on varying definitions of the tensor rank.
We refer to [6], [7] for an overview of CP-based and Tucker-
based tensor RPCA models, and to Section 7 for specifics on
the models compared in this paper.

Assuming D is over-complete and requiring R ¼ ½r1; . . . ;
rn� to be sparse, Equation (1) leads to sparse dictionary learn-
ing by solving the non-convex optimization problem:

min
R;D
jjX�DRjj2F þ �

Xn
i¼1
jjrijj0; (2)

where jj � jjF is the Frobenius norm and jj � jj0 is the ‘0 pseudo-
norm, counting the number of non-zero elements. In K-SVD
and its variants, problem (2) is solved in an iterative manner
that alternates between sparse coding of the data samples on
the current dictionary, and a process of updating the dictio-
nary atoms to better fit the data using the Singular Value
Decomposition (SVD) [13], [14].

1.2 Limits of the Classical Approach

While the Robust PCA and the sparse dictionary learning
paradigms have been immensely successful in practice, they
suffer from limitations that can restrict their applicability.

The recovery guarantees of Robust PCA and of similar
compressed-sensing approaches have been derived under
strong incoherence assumptions, that may not be satisfied
even if the data strictly follows the low-rank assumption. In
fact, whenever the data lies on a low-dimensional linear sub-
space but isn’t uniformly distributed, the extra structure can
induce significant coherence. [15] studies this problem in
details, and in [15], [16], the authors show the adverse effects
of coherence can be mitigated in existing low-rank modeling
methods, such as [17], by choosing the representation dictio-
nary to be low-rank.

Modern representation learningmethods have to dealwith
increasingly large amounts of increasingly high-dimensional
data. Classical low-rank modeling and dictionary learning
models tend to be too expensive for that setting: typically,
algorithms of the K-SVD family suffer from a high com-
putational burden, preventing their applicability to high-
dimensional and large scale data.

To overcome the issue of scalability in dictionary learning,
a separable structure on the dictionary can be enforced. For
instance, Separable Dictionary Learning (SeDiL) [18] consid-
ers a set of samples inmatrix form, namely,X ¼ ðXiÞi, admit-
ting sparse representations on a pair of bases A;B, of which
the Kronecker product constructs the dictionary. The corre-
sponding objective is:

min
A;B;RR

1

2

X
i

jjXi �ARiB
Tjj2F þ �gðRRÞ þ krðAÞ þ krðBÞ; (3)

where the regularizers gð�Þ and rð�Þ promote sparsity in the
representations, and low mutual-coherence of the dictionary
D ¼ B�A, respectively. Here, D is constrained to have
orthogonal columns, i.e., the pairA;B shall lie on the product
manifold of two product of sphere manifolds. A different
approach is taken in [19]: a separable 2D dictionary is learned
in a two-step strategy similar to that of K-SVD. Each matrix
observation Xi is represented as ARiB

T. In the first step, the
sparse representationsRi are found by 2DOrthogonalMatch-
ing Pursuit (OMP) [20]. In the second step, a CANDECOMP/
PARAFAC (CP) [21], [22], [23] decomposition is performed
on a tensor of residuals via Regularized Alternating Least
Squares to solve minA;B;RRjjXX �RR	1 A	2 BjjF:1 However,
thosemodels learn over-complete dictionaries on amultitude
of small patches extracted from the images. For large images
or large number of images, the number of patches can easily
becomeprohibitively large, undermining the scalability bene-
fits of learning separable dictionaries. Moreover, none of
these models is robust to gross corruption in the dataset.

Beyond scalability, separable dictionaries have been
shown to be theoretically appealing when dealing with
tensor-valued observations. According to [24], the necessary
number of samples for accurate (up to a given error) recon-
struction of a Kronecker-structured dictionary within a local
neighborhood scales with the sum of the product of the
dimensions of the constituting dictionaries when learning on
tensor data (see [25] for 2-dimensional data, and [26], [27] for
N-order tensor data), compared to the product for vectorized
observations. This suggests better performance is achievable
compared to classical methods on tensor observations.

1.3 Outline and Contributions

Here, we propose novel methods for separable dictionary
learning based on robust tensor factorisations that learn
simultaneously the dictionary and the sparse representa-
tions. We do not seek overcompleteness, but rather promote
low-rankness in a pair of dictionaries, and sparsity in the
codes to learn a low-rank representation of the input tensor.
In this regard, our methods combine ideas from both Sparse
Dictionary Learning and Robust PCA, aswell as tensor facto-
rizations. Our solvers are based on the Alternating Direction
ofMultipliersMethod (ADMM) [28].

A preliminary version of this work has been presented in
[29]. This paper offers the following novelties:

� We generalize the results of [29] and propose new
regularizers that yield stronger optimality proper-
ties, we call the resulting framework Robust Kro-
necker Component Analysis.

� Unlike previousmodels that rely solely on regulariza-
tion to impose low-rankness, our work presents sur-
rogates of specific definitions of the tensor rank that
impose low-rankness through both regularisation
and structure. Specifically, our method can be seen as
modeling a low-rank tensor by tensor sparse coding
with additional regularization on the factors.

� We show that RKCA with these well-chosen regu-
larizers can be reformulated in the framework of
[30], [31] allowing us to provide global optimality

1. cf. Definition 2.4 for the product 	n



guarantees. It is worth mentioning that our proof
applies to any Tucker factorization problem.

� We demonstrate that RKCA can perform tensor com-
pletion in the presence of gross corruption.

� We derive a Linearized ADMM (LADMM) algo-
rithm for RKCA to improve scalability.

� The experimental evaluation has been enriched to
include the Low-Rank Representation method [17],
as well as comparisons with the recent Deep Image
Prior [32].

� Finally, we offer new perspectives on the low-rank
promoting properties of RKCA.

To the best of our knowledge, our method is the first to
leverage dictionaries that are both low-rank and separable
for robust representation learning.

The rest of themanuscript is organized as follows. Section 2
reviews fundamental definitions and results of tensor algebra
and of the Kronecker product. Section 3 is dedicated to deriv-
ing the RKCA model, relating RKCA to separable dictio-
nary learning, and deriving RKCA with missing values. In
Section 4, we discuss optimality guarantees by formulating
RKCA as an equivalent CP factorization with duplicated fac-
tors. Perspectives on the low-rank promoting properties can
be found in Section 5, and a discussion on the computational
cost and implementation details of the methods in Section 6.
Finally, we present in Section 7 experimental evidence of the
effectiveness of RKCA on synthetic and real-world data.

2 PRELIMINARIES

In this section we review fundamental properties of tensor
algebra and of the Kronecker product, and present the nota-
tions and conventions followed in the paper.

2.1 Tensor Algebra

We refer to multidimensional arrays of real numbers of
dimension I1 	 I2 	 . . .	 IN as N-dimensional, or N-way
real tensors. The order of the tensor is the number of indices
required to address its elements. Consequently, each element
of an Nth-order tensor XX is addressed by N indices,
i.e., ðXXÞi1;i2;...;iN ¼

:
xi1;i2;...;iN . We denote tensors by bold calli-

graphic letters, e.g.,XX .
The sets of real and integer numbers are denoted byR and

Z, respectively. AnNth-order real-valued tensorXX is defined
over the tensor space RI1	I2	���	IN , where In 2 Z for n ¼ 1;
2; . . . ; N .

Matrices (vectors) are second order (first order) tensors and
are denoted by uppercase (lowercase) bold letters, e.g., X (x).
The ith column of amatrixXwill bewritten xi for convenience.

2.1.1 Elementary Definitions

Tensor fibers and tensor slices are special subsets of the ele-
ments of a tensor.

Definition 2.1 (Tensor slices and fibers). We define the
mode-n tensor fibers as all subsets of the tensor elements
obtained by fixing all but the nth index to given values. Simi-
larly, tensor slices are obtained by fixing all but two indices.

Fig. 1 illustrates the concepts of fibers and slices for a third
order tensor. For a third order tensor, the slices are effectively
matrices obtained by “slicing” the tensor along a mode.

A tensor’s elements can be re-arranged to form a new ten-
sor of different dimension. We define the tensor vectorisation
and tensor matricisations (or unfoldings) as re-arrangements
of particular interest.

Definition 2.2 (Tensor vectorisation). Let XX 2 RI1	I2	...	IN
be an Nth-order tensor. The tensor vectorisation, or flatten-
ing, operator XX 7! vecðXXÞ maps each element xi1;i2;...;iN of XX
to a unique element xj of a real-valued vector vecðXXÞ of dimen-

sion
QN

m¼1 Im with the following bijection:

j ¼ 1þ
XN
k¼1

ik � 1ð ÞJk and Jk ¼
Yk�1
m¼1

Im: (4)

Definition 2.3 (Mode-n unfolding and tensorisation).
Let XX 2 RI1	I2	...	IN be an Nth-order tensor. The mode-n ten-
sor matricisation - or unfolding, with n 2 f1; 2; . . . ; Ng, is
the matrix X½n� of dimensions ðIn;

Q
k 6¼n IkÞ such that tensor

entry xi1;i2;...;iN is mapped to a unique element xin;j, with the
following bijection:

j ¼ 1þ
XN
k¼1
k6¼n

ik � 1ð ÞJk and Jk ¼
Yk�1
m¼1
m6¼n

Im: (5)

The inverse operator of the mode-n unfolding is the mode-n
tensorisation and is denoted foldnðX½n�Þ ¼ XX .
In other words, the mode-n unfolding is the matrix

whose columns are the mode-n fibers obtained by first vary-
ing I1, then I2, up until IN with the exception of In.

Having defined both tensor fibers, slices, and unfoldings;
we can now define a higher-order analogue for matrix-vec-
tor multiplication as the tensor mode-n product.

Definition 2.4 (Mode-n product). The mode-n product of
XX 2 RI1 	 I2 	 ��� 	 IN with U 2 RJ	In is the tensor XX 	n U 2
RI1	���	In�1	J	Inþ1	���	IN such that

ðXX 	n UÞi1���in�1jinþ1iN ¼
XIn
in¼1

xi1i2���iN ujin : (6)

Effectively, each mode-n fiber is multiplied by U.

The mode-n product can be expressed as a matrix prod-
uct as per Proposition 2.1.

Proposition 2.1.With the notations of Definition 2.4:

ðXX 	N
i¼1 UiÞ½n� ¼ UnX½n�ð�1

i¼N;i6¼nUiÞT; (7)

where � is the Kronecker product of Definition 2.5.

Fig. 1. Mode-1 fibers (tubes) and mode-3 slices of a 3-way tensor.
Adapted from [33].



2.1.2 Tensor Rank

Contrary tomatrices, the tensor rank is not uniquely defined.
In this paper, we are interested in the tensor Tucker rank,
which we define as the vector of the ranks of a tensor’s
mode-n unfoldings (i.e., its mode-n ranks), and the tensor
multi-rank [34], [35] defined as the vector of the ranks of its
frontal slices.

More details about tensors, such as the definitions of the
tensor CP-rank and information about common decomposi-
tions can be found in [33], for example.

2.2 Properties of the Kronecker Product

We now remind the reader of the definition and of impor-
tant properties of the Kronecker product.

Definition 2.5 (Kronecker product). Let A 2 Rm	n and
B 2 Rp	q then

A� B ¼
a11B a12B . . . a1nB

..

. ..
. ..

. ..
.

an1B an2B . . . annB

2
64

3
75: (8)

Proposition 2.2 is a fundamental result relating the Kro-
necker product and tensor vectorisation.

Proposition 2.2. Let YY ¼ XX 	1 U1 	2 U2 . . .	N UN then

vecðYYÞ ¼ �1
i¼NUi

� �
vecðXXÞ: (9)

In particular, if Y ¼ AXBT then

vecðYÞ ¼ ðB�AÞvecðXÞ: (10)

The Kronecker product is compatible with most common
matrix decomposition. For the Singular Value Decomposi-
tion, we have Proposition 2.3.

Proposition 2.3. Let Y ¼ USVT and X ¼ HTGT then

Y� X ¼ ðU�HÞðS� TÞðV�GÞT: (11)

Where we used the identity ðA� BÞT ¼ AT � BT.

We refer the reader to one of the many linear algebra
references for further information about the Kronecker
product and its properties.

3 MODEL DERIVATION

In this section we start by describing RKCA as a structured
tensor factorization. We then show its equivalence to a dic-
tionary learning problem, discuss how to extend the model
to handle missing values, and finally derive a first algorithm
that will serve as the basis for the rest of the discussion.

3.1 The Tensor Factorization Perspective

Consider a set of N two dimensional observations (i.e.,
matrices) Xi 2 Rm	n; i ¼ 1; . . . ; N stacked as the frontal sli-
ces of a tensor XX . We study Tensor Robust PCA problems:

min
LL;EE

fðLLÞ þ gðEEÞ;
s:t XX ¼ LLþ EE; (12)

where LL and EE are respectively the low-rank and sparse
components of XX . We will define fð�Þ and gð�Þ to be regulari-
zation functions, possibly non-smooth and non-convex,
meant to promote structural properties of LL and EE - in our
case, low-rankness of LL, and sparsity in EE.

The Robust Kronecker Component Analysis is obtained
by assuming LL factorizes in a restricted form of Tucker fac-
torization, and defining fð�Þ as a combination of penalties
on the factors. More specifically, we assume:

LL ¼ RR	1 A	2 B: (13)

Fig. 2 illustrates the decomposition.
We construct f to promote low-rankness in the first two

modes of LL and therefore in each of its frontal slices. In this
work, we will discuss three different choices of f depending
on the positive-homogeneity degree of the full regularization.

Definition 3.1 (Def. 3 of [31, page 6]).A function u : RD1 	 . . .	
RDN ! RD is positively homogeneous with degree p if
uðax1; . . . ;axNÞ ¼ apuðx1; . . . ; xNÞ; 8a � 0. Notably uð0Þ ¼
0 holds.

The following choice of f is the degree 2 regularizer and
recovers the model presented in [29]:

fðLLÞ ¼ ajjRRjj1 þ jjB�AjjF; (14)

while choice

fðLLÞ ¼ ajjRRjj1jjB�AjjF; (15)

and

fðLLÞ ¼ ajjRRjj1jjB�Ajj�; (16)

are degree 3 regularizers.
In all three cases, the regularizer comprises a norm on the

Kronecker product of the Tucker factors, hence the pro-
posed method is coined as RKCA. The interpretation of this
is made clear in Section 3.2.

3.2 Robust Separable Dictionary Learning

We now establish how to interpret RKCA as a robust separa-
ble dictionary learning scheme for tensor-valued observations.
We remind the reader that we do not seek overcompleteness,
but rather choose to learn low-rank dictionaries as a mean of
modeling low-rankness in the observations. We impose sepa-
rability to preserve the spatial correlation within the tensor
inputs, and for scalability (c.f., Section 3.4). These choices are
further motivated by the work of [15] (for low-rankness), and
[24] (for separability).

Consider the following Sparse Dictionary Learning prob-
lem with Frobenius-norm regularization on the dictionary

Fig. 2. Illustration of the decomposition.



D, where we decompose N observations xi 2 Rmn on
D 2 Rmn	r1r2 with representations ri 2 Rr1r2 :

min
D;R

X
i

jjxi �Drijj22 þ �
X
i

jjrijj1 þ jjDjjF: (17)

We assume aKronecker-decomposable dictionaryD ¼ B�A
withA 2 Rm	r1 ;B 2 Rn	r2 . Tomodel the presence of outliers,
we introduce a set of vectors ei 2 Rmn and, with d ¼ r1r2þ
mn, define the block vectors andmatrices:

yi ¼
ri
ei

� �
2 Rd C ¼ B�A I½ � 2 Rmn	d: (18)

We obtain a two-level structured dictionary C and the
associated sparse encodings yi. Breaking-down the varia-
bles to reduce dimensionality and discarding jjIjjF:

min
A;B;R;E

X
i

jjxi � ðB�AÞri � eijj22

þ �
X
i

jjrijj1 þ �
X
i

jjeijj1 þ jjB�AjjF:
(19)

Suppose now that the observations xi were obtained by vecto-
rizing two-dimensional data such as images, i.e., xi ¼ vecðXiÞ;
Xi 2 Rm	n. Without loss of generality, we choose r1 ¼ r2 ¼ r
and ri ¼ vecðRiÞ;Ri 2 Rr	r, and recast the problem as:

min
A;B;RR;EE

X
i

jjXi �ARiB
T � Eijj2F

þ �
X
i

jjRijj1 þ �
X
i

jjEijj1 þ jjB�AjjF:
(20)

Equivalently, enforcing the equality constraints and conca-
tenating the matrices Xi;Ri, and Ei as the frontal slices of
3-way tensors, we obtain problem Equation (21).

min
A;B;RR;EE

ajjRRjj1 þ �jjEEjj1 þ jjB�AjjF;
s:t XX ¼ RR	1 A	2 Bþ EE;

(21)

where RR is a tensor whose ith frontal slice encodes the
representation of Xi on the column basis A and on the row
basis B. Problem Equation (21) corresponds to choosing f to
be Equation (14) and g to be the element-wise ‘1 norm in
Equation (12).

We verify r 2 N; r 
 minðm;nÞ is a natural upper bound on
the rank of each frontal slice of LL and on its mode-1 and
mode-2 ranks:

Li ¼ ARiB
T: (22)

We have thus shown how the two perspectives are
equivalent.

3.3 Tensor Completion with RKCA

Handling outliers is important for real-world applications,
but data corruption is polymorphic, and missing values are
common. We now present an extension to the original prob-
lemwherewe assumewe are only given incomplete and pos-
sibly grossly-corrupted observations, and wish to perform
simultaneous removal of the outliers and imputation of the
missing values.

Given a set V � NI1	I2	...IN we define the sampling oper-
ator pV : RI1	I2	...IN ! RI1	I2	...IN as the projection on the
space of N-way tensors whose only non-zero entries are
indexed byN-tuples in V, i.e., 8XX 2 RI1	I2	...IN :

pVðxi1;i2;...;iN Þ ¼
1 ði1; i2; . . . ; iNÞ 2 V
0 ði1; i2; . . . ; iNÞ =2 V

�
:

It is simple to show pV is an orthogonal projection.
Clearly, pV is linear and idempotent (pV � pV ¼ pV). A ten-
sor XX is in the null space of pV if and only if none of its non-
zero entries are indexed by N-tuples of V. Denoting by �V
the complement of V, we have 8XX ; hpVðXXÞ;p�VðXXÞi ¼ 0.

With partial observations, we solve:

min
LL;EE

fðLLÞ þ jjEEjj1;
s:t pVðXXÞ ¼ pVðLLÞ þ pVðEEÞ:

(23)

By the orthogonality of pV, jjEEjj1 ¼ jjpVðEEÞjj1 þ jjp�VðEEÞjj1 .
Without loss of generality we follow [7], [36] and assume
p�VðXXÞ ¼ 0 such that p�VðXXÞ ¼ p�VðLLÞ þ p�VðEEÞ. This implies
that we do not seek to recover possible corruption on the
missing values but directly the missing element. Problem
Equation (23) is therefore equivalent to:

min
LL;EE

fðLLÞ þ jjpVðEEÞjj1;
s:t XX ¼ LL þ EE: (24)

To solve Equation (24) we need to compute the proximal
operator of jjpVðEEÞjj1, we show (proof in Appendix A.1,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2018.2881476) that the corresponding operator is
the selective shrinkage SV� :

8XX 2 RI1	I2	...IN ;SV� ðXXÞ ¼ S�ðpVðXXÞÞ þ p�VðXXÞ: (25)

We present tensor completion results in Section 7.4.

3.4 An Efficient Algorithm for the Degree 2
Regularizer

Finally, we derive an efficient algorithm for the degree 2-
regularized problem. This discussion will serve as a basis
for the other regularizers which only require minor modifi-
cations of this algorithm.

Problem (21) is not jointly convex, but is convex in
each component individually. We resort to an alternating-
direction method and propose a non-convex ADMM proce-
dure that operates on the frontal slices.

Minimizing jjB�AjjF presents a challenge: the product
is high-dimensional, the two bases are coupled, and the loss
is non-smooth. Let jj:jjp denote the Schatten-p norm.2

Using the identity jjA� Bjjp ¼ jjAjjpjjBjjp3 and remarking

that jjBjjFjjAjjF 
 jjAjj
2
FþjjBjj2F
2 , we minimize a simpler upper

bound.4 The resulting sub-problems are smaller, and

2. The Schatten-p norm of A is the ‘p norm of its singular values.
3. See Appendix E, available in the online supplemental material,

and [37].
4. jjABTjj� [38].

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2018.2881476
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therefore easier to solve computationally. In order to
obtain exact proximal steps for the encodings Ri, we
introduce a split variable Ki such that 8i; Ki ¼ Ri. Thus,
we solve:

min
A;B;RR;KK;EE

ajjRRjj1 þ �jjEEjj1 þ 1
2 ðjjAjj2F þ jjBjj2FÞ;

s:t XX ¼ KK	1 A	2 Bþ EE;
s:t RR ¼ KK :

(26)

By introducing the Lagrange multipliers L and YY, such
that the ith frontal slice corresponds to the ith constraint,
and the dual step sizes m and mKK, we formulate the Aug-
mented Lagrangian of problem Equation (26):

LðA;B;RR; EE;KK;L;YY;m;mKKÞ ¼ �
X
i

jjRijj1 þ �
X
i

jjEijj1

þ 1

2
ðjjAjj2F þ jjBjj2FÞ þ

X
i

hLi; Xi �AKiB
T � Eii

þ
X
i

hYi; Ri �Kii þ m

2

X
i

jjXi �AKiB
T � Eijj2F

þ mKK
2

X
i

jjRi �Kijj2F:

(27)

We can now derive the ADMM updates. Each Ei is given by
shrinkage after rescaling [11]:

Ei ¼ S�=mðXi �AKiB
T þ 1

m
LiÞ: (28)

From the developments of Section 3.3, extending our algo-
rithms to handle missing value only involves using the
selective shrinkage operator Equations (25) in (28).

A similar rule is immediate to derive for Ri, and solving
for A and B is straightforward with some matrix algebra.
We therefore focus on the computation of the split variable
Ki. Differentiating, we find Ki satisfies:

mKKKi þ mATAKiB
TB

¼ ATðLi þ mðXi � EiÞÞBþ mKKRi þ Yi:
(29)

The key is here to recognize Equation (29) is a Stein
equation, and can be solved in cubical time and qua-
dratic space in r by solvers for discrete-time Sylvester
equations - such as the Hessenberg-Schur method [39] -
instead of the naive Oðr6Þ time, Oðr4Þ space solution of
vectorizing the equation in a size-r2 linear system. We
obtain Algorithm 1.

4 RKCA AND GLOBAL OPTIMALITY

The work of [30], [31] suggests global optimality can be
achieved from any initialization in tensor factorization
models given that the factorization and regularization
mappings match in certain ways. We summarize the main
results of this work and show our model with regularizer
Equation (15) or (16) respects the conditions for global
optimality.

4.1 Review of the Main Results

We first review some of the concepts manipulated in [30],
[31] and give an overview of the main results.

Algorithm 1. RKCA with Degree 2 Regularization

1: procedure RKCA(XX ; r; �;a)
2: A0;B0; EE0;RR0;KK0;L0;YY0;m0;m0

KK  INITIALIZE(XX )
3: while not converged do
4: EEtþ1  S�=mtðXX � KKt 	1 A

t 	2 B
t þ 1

mt L
tÞ

5: ~XX tþ1  XX � EEtþ1
6: Atþ1  ðPiðmt~Xtþ1

i þLt
iÞBtðKt

iÞTÞ =
ðIþ mt

P
i K

t
iðBtÞTBtðKt

iÞTÞ
7: Btþ1  ðPiðmt~Xtþ1

i þLt
iÞTAtþ1Kt

iÞ =
ðIþ mt

P
iðKt

iÞTðAtþ1ÞTAtþ1Kt
iÞ

8: for all i do
9: Ktþ1

i  STEIN(� mt

mt
KK
ðAtþ1ÞTAtþ1, ðBtþ1ÞTBtþ1,

1
mt
KK
½ðAtþ1ÞTðLt

i þ mt~Xtþ1
i ÞBtþ1 þ Yt

i� þ Rt
i)

10: Rtþ1
i  Sa=mt

KK
ðKtþ1

i � 1
mt
KK
Yt
iÞ

11: end for
12: Ltþ1  Lt þ mtð ~XX tþ1 �KKtþ1 	1 A

tþ1 	2 B
tþ1Þ

13: YYtþ1  YYt þ mt
KKðRRtþ1 �KKtþ1Þ

14: mtþ1  minðm�; rmtÞ
15: mtþ1

KK  minðm�KK; rmt
KKÞ

16: end while
17: return A;B;RR; EE
18: end procedure

Definition 4.1 (Def. 1 of [31, page 6]). A size-r set of K fac-
tors ðXX1; . . . ;XXKÞr is defined to be a set ofK tensors where the
final dimension of each tensor is equal to r: ðXX 1; . . . ;XXKÞr
2 RðD

1	rÞ 	 . . .	RðD
K	rÞ.

Definition 4.2 (Def. 6 of [31, page 6]). An elemental map-

ping, f : RD1 	 . . .	RDK ! RD is any mapping which is

positively homogeneous with degree p 6¼ 0. The r-element fac-

torization mapping Fr : R
ðD1	rÞ 	 . . .	RðD

K	rÞ ! RD is
defined as:

FrðXX 1; . . . ;XXKÞ ¼
Xr

i¼1
fðXX 1

i ; . . . ;XXK
i Þ: (30)

Definition 4.3 (Def. 7 of [31, page 8]).An elemental regular-

ization function g : RD1 	 . . .	RDK ! Rþ [1, is defined
to be any function which is positive semidefinite and positively
homogeneous.

Definition 4.4 (Def. 8 of [31, page 9]). Given an elemental
mapping f and an elemental regularization function g, the
authors define ðf; gÞ to be a nondegenerate pair if 1) g and f

are both positively homogeneous with degree p, for some p 6¼ 0

and 2) 8X 2 ImðfÞn0; 9m 2 ð0;1� and ð~z~z1; . . . ; ~z~zKÞ such

that fð~z~z1; . . . ; ~z~zKÞ ¼ XX , gð~z~z1; . . . ; ~z~zKÞ ¼ m, and gðzz1; . . . ;
zzKÞ � m for all ðzz1; . . . ; zzKÞ such that fðzz1; . . . ; zzKÞ ¼ XX .
The main result, Theorem 15 of [31], provides a charac-

terization of the global optima of CP-based tensor factoriza-
tion problems.

Theorem 4.5 (Theorem 15 of [31, page 15]). Given a func-
tion frðXX1; . . . ;XXK;QÞ, any local minimizer of the optimiza-
tion problem:

min
ðXX1;...;XXK Þr;Q

frðXX1; . . . ;XXK;QÞ 


‘ðFrðXX1; . . . ;XXKÞ; QÞ þ �
Xr
i¼1

gðXX1
i ; . . . ;XXK

i Þ þHðQÞ
(31)



such that ðXX 1
i0
; . . . ;XXK

i0
Þ ¼ ð0; . . . ; 0Þ for some i0 2 f1; . . . ; rg

is a global minimizer.

Where Q is an optional set of non-factorized variables (in
our case EE), H is convex and possibly non-smooth, ‘ is
jointly convex and once-differentiable in ðXX ; QÞ, and ðf; gÞ is
a nondegenerate pair.

4.2 Outline of the Proof

In order to apply the aforementioned results, we reformulate
RKCA in an equivalent formulation that satisfies the hypothe-
ses of [30], [31]. The arguments we develop actually hold for
the general Tucker factorization. This section outlines the
proof of equivalence, the detailed developments can be found
inAppendix C, available in the online supplementalmaterial.

The main challenge is to find a factorization function that
can be expressed as a sum of elemental mappings. Problem
(21) as-is does not lend itself to such a formulation: even
though the factors A and B form a size-r set of 2 factors, the
core tensorRR is of sizeN on its last dimension. We note how-
ever that the set of frontal slices ofRR is a size-r set ofN factors,
but this formulation doesn’t satisfy Proposition 10 of [31] and
it is not immediately obvious how to define concatenation of
the factors of XX and YY and how to verify the convexity of the
factorization-regularization function V (Equation (18) and
Proposition 11 of [31] omitted here for brevity). Additionally,
the results of [30], [31] have been proved in the case of a single
sum over the last dimension of the factors, but our factoriza-
tion being a special case of Tucker decomposition is most
naturally described as:

LL ¼ RR	1 A	2 B (32)

¼ RR	1 A	2 B	3 IN (33)

¼
X
i

X
j

X
k

ri;j;k � ai � bj � ck: (34)

First, we note the order of the sums can be permuted
such that it is clear our model expresses LL as the sum of N
tensors of size m	 n	N , where all frontal slices are the
null matrix except for one:

LL ¼
X
k

X
i

X
j

ri;j;k � ai � bj � ck: (35)

With ðckÞi ¼ di;k ¼ 1 i ¼ j
0 i 6¼ j

�
.

Next, we seek a transformation such that Equation (35)
does not involve cross-terms. Our idea is to unfold the
Tucker factorization by duplicating elements of the factors to
express it in the form Equation (30) where the sum is over a
size-s set of 3 factors (orM factors for the general Tucker).

� We define s ¼ vecðRRÞ.
� We construct ~A and ~B from A and B by duplicating

columns.
� IN doesn’t depend on the data and can be injected

directly in the elemental mapping.
We show the factorization function is defined over the

size-Nr2 set of 3 factors ðss; ~A; ~BÞ by:

FNr2ðss; ~A; ~BÞ ¼
XNr2

l¼1
sl � ~al � ~bl � ddl;ðd l

r2
e�1Þmod r2 þ 1: (36)

4.3 RKCA with Degree 3 Regularization

We now check that the degree 3 regularizers introduced in
Section 3 are compatible with our reformulated factoriza-
tion. Recall both regularizers are of the form:

gðLLÞ ¼ ajjRRjj1jjAjjqjjBjjq: (37)

With jj:jjp the Schatten-p norm, p ¼ 1 for the Nuclear

norm and p ¼ 2 for the Frobenius norm. As we shall see in
Section 5.2, g is low-rank promoting.

In the case of the Frobenius penalty, the resulting optimi-
zation problem is:

min
A;B;RR;EE

�jjRRjj1jjBjjFjjAjjF þ �jjEEjj1;
s:tXX ¼ RR	1 A	2 Bþ EE:

(38)

The regularizer g adapted to our transformation is:

gðss; ~A; ~BÞ ¼ jjssjj1
jj~AjjF
Nr

jj~BjjF
Nr

: (39)

This stems from the fact that the Frobenius norm is
equivalent to the element-wise ‘2 norm, and each element
of A and B appears Nr times in ~A and ~B.

In the case of the Nuclear norm, we simply observe that
the numbers of linearly independent columns in ~A and ~B
are clearly the same as in A and B, so our transformation
preserves the ranks of the target matrices, and the regulari-
zation function is simply:

fðss; ~A; ~BÞ ¼ jjssjj1jj~Ajj�jj~Bjj�: (40)

It should be clear that the newly defined f and g are both
positively homogeneous of degree 3, and form a nondegen-
erate pair. Property 10 of [31] also holds.

Hence, we argue that RKCA with a product of norms
regularization enjoys the optimality guarantees of [31].

5 RKCA LEARNS LOW-RANK DICTIONARIES

In this Section we explain the low-rank promoting behavior
of RKCA from complementary perspectives. First, we show
the regularizers defined in Equations (14), (15), and (16)
directly provide upper bounds on the mode-1 and mode-2
ranks of the low-rank component, and thus on the rank of
each of its frontal slices. This perspective was first presented
in [29]. The second approach to explaining the models’ prop-
erties studies the optimization sub-problems associated with
the two bases A and B. Based on recent work [40], we show
these sub-problems are equivalent to rank-minimization
problems and admit closed-form solutions that involve
forms of singular value thresholding. Finally, we discuss
connections with recent work on low-rank inducing norms.

5.1 Direct Penalization of the Rank of LL
Seeing the models from the perspective of Robust PCA,
which seeks a low-rank representationA of the dataset X, we
minimize the rank of the low-rank tensor LL. More precisely,
we show in Theorem 5.1 that we simultaneously penalize the
Tucker rank and the multi-rank of LL.



Theorem 5.1. RKCA encourages low mode-1 and mode-2 rank,
and thus, low-rankness in each frontal slice of LL, for suitable
choices of the parameters � and a.

Proof. We minimize either �jjEEjj1 þ ajjRRjj1 þ jjA� BjjF,
�jjEEjj1 þ ajjRRjj1jjA� BjjF, or �jjEEjj1 þ ajjRRjj1jjA� Bjj�.
From the equivalence of norms in finite-dimensions,
9k 2 R�þ; jjA� Bjj� 
 kjjA� BjjF. In the case of the Frobe-
nius norm, we can choose a ¼ a0

k ; � ¼ �0
k to reduce the

problem to that of the nuclear norm. In all cases, we
penalize rankðA� BÞ ¼ rankðAÞrankðBÞ. Given that the
rank is a non-negative integer, rankðAÞ or rankðBÞ
decreases necessarily. Therefore, we minimize the mode-
1 and mode-2 ranks of LL ¼ RR	1 A	2 B. Additionally,
8i; rankðARiB

TÞ 
 minðrankðAÞ; rankðBÞ; rankðRiÞÞ.
Exhibiting a valid k may help in the choice of parame-

ters. We show 8A 2 Rm	n; jjAjj� 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðm;nÞp jjAjjF:

We know 8x 2 Rn; jjxjj1 

ffiffiffi
n
p jjxjj2. Recalling the nuclear

norm and the Frobenius norm are the Schatten-1 and
Schatten-2 norms, and A has minðm;nÞ singular values,
the result follows. tu
In practice, we find that on synthetic data designed to

test the models, we effectively recover the ranks of A and B
regardless of the choice of r, as seen in Fig. 3.

5.2 Analysis of the Sub-Problems in A and B

We present an alternative interpretation of the low-rank
properties of our methods. In [40] the authors show that
Frobenius norm and Nuclear norm regularizations either
lead to the same optimal solution - even in the presence of
noise - when the dictionary provides enough representa-
tive power, or are equivalent in the sense that they
describe two different bases on the column space of the
dictionary. We explain the behavior of our algorithms by
showing the sub-problems in A and B are rank-minimiza-
tion problems.

5.2.1 Sub-Problems in A and B

For generality purposes, let us begin with the problem:

min
A;B;RR;EE

bðRRÞjjAjjFjjBjjF þ �jjEEjj1 þWðRRÞ;
s:t XX ¼ RR	1 A	2 B	3 IN þ EE:

(41)

In the degree 3 case we have bðRRÞ ¼ ajjRRjj1 and WðRRÞ ¼
0, in the degree 2 case, bðRRÞ ¼ 1 and WðRRÞ ¼ ajjRRjj1. We
now omit the dependency in RR for b and W as they are
constant in the sub-problems in A and B.

The sub-problem in A is:

min
A

bjjBjjF½ �jjAjjF;
s:t XX ¼ RR	1 A	2 B	3 IN þ EE:

(42)

Equivalently, in a matricized way using Property (2.1):

min
A

bjjBjjF½ �jjAjjF;
s:t X½1� ¼ AR½1�ðIN � BÞT þ E½1�:

(43)

Noting that jjAjjF ¼ jjATjjF we reformulate the problem
in the form of Equation (4) of [40]:

min
A

gjjATjjF; s:t ~XT
½1� ¼ DAA

T: (44)

With ~XT
½1� ¼ XT

½1� � ET
½1�, g ¼ bjjBjjF½ �,DA ¼ ðIN � BÞRT

½1�.
The sub-problem in B is very similar:

min
B

bjjAjjF½ �jjBjjF;
s:t XX ¼ RR	1 A	2 B	3 IN þ EE:

(45)

Matricizing on the second mode:

min
B

kjjBTjjF; s:t ~XT
½2� ¼ DBB

T: (46)

With ~XT
½2� ¼ XT

½2� � ET
½2�, k ¼ bjjAjjF½ �,DB ¼ ðIN �AÞRT

½2�.

5.2.2 Optimal Solutions and Interpretation

According to [17] the optimal solution of minjjCjj�; s:t X ¼
DC assuming feasible solutions exist and D 6¼ 0 is C� ¼
VrV

T
r where UrSrV

T
r is the skinny SVD of D. [41] showed it

is also the optimal solution ofminjjCjjF; s:t X ¼ DC.
It is therefore easy to show that the optimal solution of

minjjCTjj� s:tX ¼ DCT under similar conditions is UrU
T
r .

Proof. Letting X ¼ USVT we have XT ¼ VSUT. tu
Letting UA

p S
A
p V

AT

p the skinny SVD of DA and UB
q S

B
qV

BT

q

the skinny SVD of DB the optimal solutions for A and B are

therefore UA
p U

AT

p and UB
q U

BT

q .

For the sake of brevity, we shall describe the interpreta-
tion for A as the same holds for B by symmetry. It should be

noted that UA
p is the PCA basis of DA and that UA

p U
AT

p is the

matrix of the orthogonal projection onto that basis. Thus,
the optimal A is the projection of DA onto its principal com-

ponents. Remembering that DA ¼ ðIN � BÞRT
½1�, DA is the

product of B with each code Ri matricized such that the ith
line of DA is the concatenation of all the ith columns of all
the partial reconstructions RkB

T, and all the columns of DA

are all the lines of RkB
T, which can be seen as the partial

reconstruction of the low-rank images in their common row
space SpanðBÞ.

Hence, we can see the process of updating A and B
as alternating PCAs in the row and column spaces,
respectively.

5.3 A Note on Low-Rank Inducing Norms

The recently published [42] suggests onemore interpretation
of our regularizers. In [42], the authors show a family of
low-rank inducing norms, based on solving rank-constrained

Fig. 3. Sample spectrums of A and B. Ground truth attained (A: 42, B:
12). r ¼ 100. Degree 2 regularizer.



Frobenius norm minimization, or rank-constrained Spectral
norm minimization problems can outperform the standard
nuclear norm relaxation in rank-minimization problems.
Given that the role of the parameter r in our model is to
impose an upper bound on the ranks of the dictionaries and
of the reconstructions, we suggest the choice of Frobenius reg-
ularization instead of nuclear norm regularization is further
justified. Deeper analysis of this connection is required and is
left for futurework.

6 IMPLEMENTATION DETAILS AND COMPLEXITY

In this section, we discuss the computational complexity of
our algorithms, and the scalability issues depending on the
regularization. We discuss parameter tuning and adaptive
ADMM schemes [43], [44], [45] in Appendix F.1, available in
the online supplemental material. The initialization proce-
dure has already been discussed in [29], and is included in
Appendix F.2, available in the online supplemental material
along with references regarding the convergence of ADMM
solvers [46], [47]. Empirically, we obtained systematic con-
vergence of Algorithm 1 to a good solution, and a linear con-
vergence rate, as shown in Fig. 4.

6.1 Computational Complexity and LADMM

The substitution method used in Section 3.4 is effective but
comes with an additional cost that limits its scalability. Nota-
bly, the cost of solvingN Stein equations cannot be neglected
in practice. Additionally, the added parameters canmake tun-
ing difficult. Linearization provides an alternative approach
that can scale better to large dimensions and large datasets. In
Appendix D, available in the online supplemental material,
we give detailed derivations of how RKCA can be imple-
mentedwith LADMM.

The time and space complexity per iteration of Algorithm1
(i.e., with the degree two regularizer) are OðNðmnrþ ðm þ
nÞrþmn þ minðm;nÞr2 þ r3 þ r2ÞÞ and OðNðmn þ r2Þ þ
ðmþ nÞrþ r2Þ. Since r 
 minðm;nÞ, the terms in r are asymp-
totically negligible, but in practice it is useful to know how
the computational requirements scale with the size of the
dictionary. Similarly, the initialization procedure has cost
OðNðmn minðm;nÞ þ ðminðm;nÞÞ3 þmnÞ þmnÞ in time and
needs quadratic space per slice, assuming a standard algo-
rithm is used for the SVD[48].

Switching to an LADMM update for RR eliminates the need
of solving costly Stein equations. The soft-shrinkage operator is

applied to the tensor ðRR	1 A	2 B� DDÞ 	1 A
T 	2 B

T, which
has Nr2 elements, and can be computed in OðNðminðm;nÞr2
þmnþ r2 þ r3Þ þmr2 þ nr2Þ by remembering that ðXX 	1 AÞ

	1B ¼ XX 	1 BA. The space complexity of the update is
OðNðminðm;nÞrþ r2Þ þ r2Þ.

Updating A and B with a Frobenius norm or with a
nuclear norm penalty requires computing a proximal opera-
tor, and solving a linear system in the case of ADMM with
substitution. We focus on the computation of the proximal
operator in Section 6.2. The substitution adds an additional
time and space complexity of Oðmrþ nrÞ.

Several key steps of Algorithm 1 and its variants, such as
summations of independent terms, are trivially distributed
in a MapReduce [49] way. Proximal operators are separable
in nature and are therefore parallelizable. Consequently,
highly parallel and distributed implementations are possi-
ble, and computational complexity can be further reduced
by adaptively adopting sparse linear algebra structures.

6.2 Frobenius and Nuclear Norm Penalties

In Equation (26) we used an upper bound on jjAjjFjjBjjF to
obtain smooth sub-problems. In the degree 3-regularized
case, we did not apply the same bound. Given the non-
smoothness of the Frobenius norm, we must resort to other
approaches such as substitution or linearization (c.f. Appen-
dix B and Appendix D, available in the online supplemental
material), as with the Nuclear norm.

In Section 5.2, we then showed how Frobenius and
Nuclear normpenalties can yield the same optimal solutions,
and how in our case they would be equivalent in solving the
sub-problems associated withA and B. It is therefore natural
to wonder why we should choose one over the other, and
what the practical implications of this choice are.

It can be shown that the proximal operator of the
Schatten-p norm has a closed form expression that requires
the computation of the SVD of the matrix (Proposition A.1,
Appendix A.2, available in the online supplemental mate-
rial). Computing the SVD is costly, with a typical algorithm
[48] requiring Oðmn minðm;nÞ þ ðmin ðm;nÞÞ3Þ floating-
point operations. Storing the resulting triple ðU;S;VÞ req-
uires m	minðm;nÞ þminðm;nÞ2 þ n	minðm;nÞ space.
Although faster algorithms have been developed, scalability
remains a concern.

However, the Frobenius norm is equal to the matrix ele-
ment-wise ‘2 norm, whose proximal operator is only the pro-
jection on the unit ball and doesn’t require any costly matrix
decomposition. The choice of the Frobenius norm is therefore
justified in the high dimensional setting. A comparable use of
the Frobenius norm in lieu of the Nuclear norm for representa-
tion learning can be seen in [50], also motivated by scalability.

7 EXPERIMENTAL EVALUATION

We first provide experimental verification of the correctness
of Algorithm 1 (with degree 2 regularization) on synthetic
data. We then compared the performance of RKCA with
degree 2 regularization against a range of state-of-the-art ten-
sor decomposition algorithms on four low-rank modeling
computer vision benchmarks: two for image denoising, and
two for background subtraction. As a baseline, we report the
performance of matrix Robust PCA implemented via inexact
ALM (RPCA) [11], [51], of Non-Negative Robust Dictionary
Learning (RNNDL) [52], and of the Low-Rank Representa-
tions algorithm [17] implemented with both exact ALM

Fig. 4. Convergence on synthetic data with 30 and 60 percent corruption.



(LRRe) and inexact ALM (LRRi). We chose the following
methods to include recent representatives of various existing
approaches to low-rank modeling on tensors: The singleton
version of Higher-Order Robust PCA (HORPCA-S) [7] opti-
mizes the Tucker rank of the tensor through the sum of the
nuclear norms of its unfoldings. In [53], the authors consider
a similar model but with robust M-estimators as loss func-
tions, either a Cauchy loss or a Welsh loss, and support both
hard and soft thresholding; we tested the soft-thresholding
models (Cauchy ST and Welsh ST). Non-convex Tensor
Robust PCA (NC TRPCA) [54] adapts to tensors the matrix
non-convex RPCA [55]. Finally, the two Tensor RPCA algo-
rithms [34], [35] (TRPCA ’14 and TRPCA ’16) work with
slightly different definitions of the tensor nuclear norm as a
convex surrogate of the tensor multi-rank. In addition to the
aforementioned low-rank matrix and tensor factorizations,
we include in the comparison the recently proposed Deep
Image Prior [32] with two different architectures (DIP 1 and
DIP 2) as an example of deep learning based approach for
denoising. Our choice of comparing to DIP is motivated by
the fact that DIP is fully unsupervised, designed for denois-
ing (among other tasks), does not require a large dataset for
training, and is close in spirit to tensor factorizations. Given
the small sizes of the datasets at hand, training deep neural
networkswould have been impractical.

For all models but RNNDL, we used the implementation made
available by their respective authors, either publicly or on request.
Our implementation of RNNDL was tested for conformity with
the original paper.

For each model, with the exception of DIP, we identified a
maximum of two parameters to tune via grid-search in order
to keep parameter tuning tractable. When criteria or heuris-
tics for choosing the parameters were provided by the
authors, we chose the search space around the value obtained
from them. In all cases, the tuning process explored a wide
range of parameters to maximize performance. In the special
case of DIP, we re-used the two architectures implemented in
the denoising example in the code made available online by
the authors (c.f. Appendix G, available in the online supple-
mental material). We then trained for 2500 iterations while
keeping track of the best reconstruction so-far measured by
the PSNR. The best reconstruction is then saved for further
comparison. Following [32], the input is chosen to be ran-
dom. As in [17], the data matrix itself was used as the dictio-
nary for LRRe and LRRi.

When the performance of one method was significantly
worse than that of the other, the result is not reported so as
not to clutter the text (see Appendix H, available in the
online supplemental material). This is the case of Separable
Dictionary Learning [18] whose drastically different nature
renders unsuitable for robust low-rank modeling, but was
compared for completeness. For the same reason, we did
not compare our method against K-SVD [13], or [19].

Finally, we provide tensor completion experiments with
and without gross corruption in Section 7.4.

7.1 Validation on Synthetic Data

We generated synthetic data following the RKCA model’s
assumptions by first sampling two random basesA and B of
known ranks rA and rB,N Gaussian slices for the coreRR, and
forming the ground truth LL ¼ RR	1 A	2 B. We modeled

additive random sparse Laplacian noise with a tensor EE
whose entries are 0with probability p, and 1 or�1with equal
probability otherwise. We generated data for p ¼ 70% and
p ¼ 40%, leading to a noise density of, respectively, 30 and 60
percent. We measured the reconstruction error on LL and EE,
and the density of EE for varying values of �, and a ¼ 10�2.
Our model achieved near-exact recovery of both LL and EE,
and exact recovery of the density of EE, for suitable values of
�. Evidence is presented in Fig. 5 for the 60 percent noise case.

Algorithm 1 appears robust to small changes in �, which
suggests more than one value can lead to optimal results,
and that a simple criterion that provides consistently good
reconstruction might be derived, as in Robust PCA [11]. In
the 30 percent noise case, we did not observe an increase in
the density of EE as � increases, and the ‘2 error on both EE
and LLwas of the order of 1	 10�7.

7.2 Background Subtraction

Background subtraction is a common task in computer
vision and can be tackled by robust low-rank modeling: the
static or mostly static background of a video sequence can
effectively be represented as a low-rank tensor while the
foreground forms a sparse component of outliers.

7.2.1 Experimental Procedure

We compared the algorithms on two benchmarks. The first is
an excerpt of theHighway dataset [56], and consists in a video
sequence of cars travelling on a highway; the background is
completely static. We kept 400 gray-scale images re-sized to
48	 64 pixels. The second is theAirport Halldataset ([57]) and
has been chosen as a more challenging benchmark since the
background is not fully static and the scene is richer. We used
the same excerpt of 300 frames (frames 3301 to 3600) as in [58],
and kept the frames in their original size of 144	 176 pixels.

We treat background subtraction as a binary classifica-
tion problem. Since ground truth frames are available for
our excerpts, we report the AUC [59] on both videos. The
value of awas set to 1	 10�2 for both experiments.

7.2.2 Results

The original, ground truth, and recovered frames are in
Fig. 6 for the Hall experiment (Highway in Appendix H,
available in the online supplemental material).

Table 1 presents the AUC scores of the algorithms, ranked
in order of their mean performance on the two benchmarks.
The two matrix methods rank high on both benchmarks and
only half of the tensor algorithms match or outperform this
baseline. Our proposedmodel matches the best performance

Fig. 5. Recovery performance with 60 percent corruption. Relative ‘2
error and density.



on the Highway dataset and provides significantly higher
performance than the other on the more challenging Hall
benchmark. Visual inspection of the results show RKCA
is the only method that doesn’t fully capture the immobile
people in the background, and therefore achieves the best
trade-off between foreground detection and background-
foreground contamination.

7.3 Image Denoising

Many natural and artificial images exhibit an inherent low-
rank structure and are suitably denoised by low-rankmodel-
ing algorithms. In this section, we assess the performance of
the cohort on two datasets chosen for their popularity, and
for the typical use cases they represent.

We consider collections of grayscale images, and color
images represented as 3-way tensors. Laplacian (salt & pep-
per) noise was introduced separately in all frontal slices of
the observation tensor at three different levels: 10, 30, and
60 percent, to simulate medium, high, and gross corruption.
In these experimentswe set the value of a to 1	 10�3 for noise
levels up to 30 percent, and to 1	 10�2 at the 60 percent level.

We report two complementary image qualitymetrics. The
Peak Signal To Noise Ratio (PSNR)will be used as an indicator
of the element-wise reconstruction quality of the signals,
while the Feature Similarity Index (FSIM, FSIMc for color
images) [60] evaluates the recovery of structural information.
Quantitative metrics are not perfect replacements for subjec-
tive assessment of image quality; therefore, we present
reconstructed images for verification. Our measure of choice

for determining which images to compare visually is the
FSIM(c) for its higher correlation with human evaluation
than the PSNR [61].

7.3.1 Monochromatic Face Images

Our face denoising experiment uses the Extented Yale-B
dataset [62] of 10 different subject, each under 64 different
lighting conditions. According to [63], [64], face images of
one subject under various illuminations lie approximately
on a 9-dimensional subspace, and are therefore suitable for
low-rank modeling. We used the pre-cropped 64 images of
the first subject and kept them at full resolution. The result-
ing collection of images constitutes a 3-way tensor of 64
images of size 192	 168. Each mode corresponds respec-
tively to the columns and rows of the images, and to the illu-
mination component. All three are expected to be low-rank
due to the spatial correlation within frontal slices and to the
correlation between images of the same subject under differ-
ent illuminations. We present the comparative quantitative
performance of the methods tested in Fig. 7, and provide vis-
ualizations of the reconstructed first image at the 30 percent
noise level in Fig. 8. We report themetrics averaged on the 64

Fig. 6. Background subtraction results on Airport Hall. TRPCA ’14
removed.

TABLE 1
AUC on Highway and Hall Ordered by Mean AUC

Algorithm Highway Hall

RKCA (proposed) 0.94 0.88
TRPCA ’16 0.94 0.86
NC TRPCA 0.93 0.86
RPCA (baseline) 0.94 0.85
RNNDL (baseline) 0.94 0.85
LRR Exact (baseline) 0.94 0.84
LRR Inexact (baseline) 0.93 0.84
HORPCA-S 0.93 0.86
Cauchy ST 0.83 0.76
Welsh ST 0.82 0.71
TRPCA ’14 0.76 0.61

Fig. 7. Mean PSNR and FSIM on the 64 images of the first subject of
Yale at noise levels 10, 30, and 60 percent.

Fig. 8. Results on the Yale benchmark with 30 percent noise. TRPCA ’14
removed.



images. For DIP, we chose to use a single model for the 64
images, rather than one model per image, to provide a better
comparisonwith the other approaches. In this case, the input
dimension was chosen to be 128.

At the 10 percent noise level, nearly every method pro-
vided good to excellent recovery of the original images. We
therefore omit this noise level (cf. Appendix H, Table 7 and
figures, available in the online supplemental material). On
the other hand, most methods, with the notable exception of
RKCA,NCTRPCA, and TRPCA ’16, failed to provide accept-
able reconstruction in the gross corruption case. Thus, we
present the denoised images at the 30 percent level, and com-
pare the performance of the three best performing methods
in Table 2 for the 60 percent noise level.

Clear differences appeared at the 30 percent noise level, as
demonstrated both by the quantitative metrics, and by visual
inspection of Fig. 8.Overall, performancewasmarkedly lower
than at the 10 percent level, and most methods started to lose
much of the details. Visual inspection of the results confirms a
higher reconstruction quality for RKCA. We invite the reader
to look at the texture of the skin, the white of the eye, and at
the reflection of the light on the subject’s skin and pupil. The
latter, in particular, is very close in nature to the white pixel
corruption of the salt & pepper noise. Out of all methods,
RKCA provided the best reconstruction quality: it is the only
algorithm that removed all the noise and for which all the
aforementioned details are distinguishable in the reconstruc-
tion. Both deep learning approaches provided reconstructions
with visually-identifiable features, but under-performed com-
pared to the best robust factorization models.

At the 60 percent noise level, ourmethod scoredmarkedly
higher than its competitors on image quality metrics, as seen

both in Fig. 7 and in Table 2. Visualizing the reconstructions
confirms the difference: the image recovered by RKCA at the
60 percent noise level is comparable to the output of compet-
ing algorithms at the 30 percent noise level.

7.3.2 Color Image Denoising

Our benchmark is the Facade image [65]: the geometric nature
of the building’s front wall, and the strong correlation
between the RGB bands indicate the data can be modeled by
a low-rank 3-way tensor where each frontal slice is a color
channel. The rich details and lighting make it interesting to
assess fine reconstruction. The input dimension for DIP was
set to 32, following the color image denoising examples.

At the 10 percent noise level, RKCA attained the highest
PSNR, and the highest FSIMc value. Most methods provided
excellent reconstruction, in agreement with the high values
of themetrics shown in Fig. 9. As in the previous benchmark,
full results are in AppendixH (Table 8 and figures), available
in the online supplemental material. At the 30 percent noise
level, Cauchy ST exhibited the highest PSNR and RKCA the
second highest, while TRPCA ’16 and RKCA were tied for
first place on the FSIMc metric. Details are provided in
Fig. 10. Clear differences in reconstruction quality are visible,
and are best seen on the fine details of the picture, such as the
black iron ornaments, or the light coming through the win-
dow. Our method best preserved the dynamics of the light-
ing, and the sharpness of the details, and in the end provided
the reconstruction visually closest to the original. Competing
models tend to oversmooth the image, and to make the light
dimmer; indicating substantial losses of high-frequency and
dynamic information. RKCA appears to also provide the
best color fidelity. Similar to the Yale-B experiment, the
deep-learningmodels are able to handle the gross corruption
to a certain extent, but suffer from more distortion than the
robust factorizations.

In the gross-corruption case, RKCA was the only method
with TRPCA ’16 and HORPCA-S to provide a reconstruction
with distinguishable details, and did it best (Table 3) while
achieving the highest score on both quantitativemetrics.

7.4 Tensor Completion

To showcase the tensor completion capabilities of our
algorithm, we implemented an LADMM method to solve

TABLE 2
Three best results on Yale at 60 percent Noise.

Fig. 9. PSNR and FSIMc of all methods on the Facade benchmark at
noise levels 10, 30, and 60 percent.

Fig. 10. Results on the Facade benchmark with 30 percent noise.



problem (24) with fðLLÞ ¼ ajjRRjj1 þ 1
2 ðjjAjj2F þ jjBjj2FÞ. We

provide comparison with one robust tensor completion
model (HORPCA-S with missing values [7]) and the matrix
Robust PCA with missing values [11].

7.4.1 Yale-B with Noise and Missing Values

Our first experiment extends Section 7.3.1: we investigate the
case where apart from corruption, some values are missing.
We generated the data by first introducing 30 percent salt &
pepper noise, then removing 30 percent of the pixels at
random.

As seen in Table 4, RKCA markedly outperformed both
other models in terms of FSIM, which translates into a more
natural reconstruction. HORPCA-S achieved a similar PSNR
but many details are lost, while RPCA removed much of the
image’s details and left some corruption.

7.4.2 300 Faces in the Wild

Our second experiment is on the completion of unwarped
3D faces with partial self-occlusions taken from the 300
faces in the wild challenge [66], [67], [68].

We present in Table 5 the occluded frames 1, 44, and 76 of
a video of the dataset, and the completed frames obtained
with RKCA, HORPCA-S, and RPCA. Since no corruption is
present in the dataset, the � parameters were fixed to a high
value (1	 104) such that the algorithms behaved as tensor or
matrix completion models. For RKCA, we bounded the rank
of the reconstruction to 50 and performed grid-search on 5
values of the a parameter.

It is clear from Table 5 that RKCA provides the most com-
pletion. HORPCA-S is able to complete sparse missing val-
ues at the center of the image but is lacking on the self-
occlusions at the right. Matrix RPCA failed to complete the
frames on this benchmark.

8 CONCLUSION

In this work we presented RKCA, a framework for robust
low-rank representation learning on separable dictionaries
that expresses the problem as a tensor factorization. We pro-
posed three different regularizers and derived the steps for
bothADMMandLADMMsolvers.We showed the factoriza-
tion can be expressed in an equivalent way that gives opti-
mality guarantees when coupled with a regularizer that is
positively-homogeneous of degree 3. We then further dis-
cussed the low-rank properties of themodels, and their prac-
tical implementation. We reached the conclusion that our
model with a degree 2 regularizer, achieved a good trade-off
between experimental effectiveness and parameter tuning
difficulty.

Future work can seek to develop a supervised variant of
RKCA that could be applied to the same tasks. Another
extension that we leave for future work is to consider non-
convex regularizers: it is well-known that letting p! 0 in the
element-wise ‘p and in the Scatten-p norms recover respec-
tively the ‘0 pseudo-norm and the rank functions. We refer
to [69] for an example in the matrix RPCA case. Finally, we
believe RKCA could be extended with deep learning by
replacing the factorization of the low-rank component by a
deep neural network, such as an auto-encoder. Effectively,
the bilinear factorizationwe use can be seen as an elementary
linear auto-encoder, and replacing it with a more involved
non-linear model would be straightforward.
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